吸收与解吸实验数据处理
CO2吸收-解吸试验资料
![CO2吸收-解吸试验资料](https://img.taocdn.com/s3/m/dff9b64f27d3240c8447efb2.png)
附件6:CO 2吸收-解吸实验资料一、实验流程图本实验是在填料塔中用水吸收空气和CO 2混合气中的CO 2,和用空气解吸水中的CO 2以求取填料塔的吸收传质系数和解吸系数。
图1. 吸收与解吸实验流程图阀门:V A01—吸收液流量调节阀,V A02—吸收塔空气流量调节阀,V A03—解吸塔空气流量调节阀,V A04—解吸液流量调节阀,V A05—吸收塔CO 2流量调节阀,V A06—风机旁路调节阀,V A07—吸收泵放净阀,V A08—水箱放净阀,V A09—解吸液回流阀,V A10—吸收泵回流阀,AI01—吸收塔进气采样阀, AI02 —吸收塔排气采样阀, AI03—解吸塔进气采样阀, AI04—解吸塔排气采样阀,AI05—吸收塔塔顶液体采样阀,AI06—解吸塔塔顶液体采样阀,AI07—解吸塔塔底液体采样阀,V A11—吸收塔放净阀,V A12—解吸塔放净阀,V A13—缓冲罐放净阀风压6kPa,风量55m3/hCO2钢瓶温度:TI01—液相温度流量:FI01—吸收塔空气流量,FI02—吸收液流量,FI03—解吸塔空气流量,FI04—解吸液流量,FI05—CO2气体流量图2. CO2吸收‐解吸实验装置实物照片二、实验设备结构参数吸收塔:塔内径100 mm;填料层高550 mm;填料为陶瓷拉西环;丝网除沫解吸塔:塔内径100 mm;填料层高550 mm;填料为φ6不锈钢θ环;丝网除沫风机:旋涡气泵,6kPa,55m3/h;吸收泵:扬程12m,流量14L/min;解吸泵:扬程14m,流量3.6m3/h;饱和罐:PE,50L温度:Pt100传感器流量计:水涡轮流量计:200~1000L/h;气相质量流量计:0~1.2 m3/h;气相转子流量计:1~4 L/min;三、实验注意事项1.在实验中,两个水流量计的读数要尽量保持一致;2.测取液泛数据点时,等待时间不要过长,避免液泛过于强烈导致液体喷出塔外;3.调节解吸塔的空气流量时要求在不液泛的情况下,尽量维持在较大的气量;4.泵是机械密封,必须在泵有水时使用,若泵内无水空转,易造成机械密封件升温损坏而导致密封不严,严禁泵内无水空转;5.液相采样和滴定时,要保证规范操作,以免影响测定和数据分析;6.实验结束时,注意按顺序关闭风机、水泵和阀门等。
吸收与解吸实验
![吸收与解吸实验](https://img.taocdn.com/s3/m/e08c6de3760bf78a6529647d27284b73f2423691.png)
吸收与解吸实验一、实验目的及任务:1、熟悉填料塔的构造与操作。
2、观察填料塔流体力学状况,测定压降与气速的关系曲线。
3、掌握总传质系数K x a的测定方法并分析影响因素。
4、学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。
二、基本原理:本装置先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得到K x a=AL a·V b的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。
本实验引入了计算机在线数据采集技术,加快了数据记录与处理的速度。
1、填料塔流体力学特性:气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。
在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中aa线)。
当有喷淋量时,在低气速下(c点以前)压降也正比于气速的 1.8~2次幂,但大于同一气速下干填料的压降(图中bc段)。
随气速的增加,出现载点(图图1 填料层压降–空1中c点),持液量开始增大,压降气速线向上弯,斜率变陡(图中cd到液泛点(图中d点)后,在几乎不变的气速下,压降急剧上升。
2、传质实验:填料塔与板式塔气液两相接触情况不同。
在填料塔中,两相传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。
本实验是对富氧水进行解吸。
由于富氧水浓度很小,可认为气液两相的平衡关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以用对数平均浓度差计算填料层传质平均推动力。
整理得到相应的传质速率方式为:m p x A x V a K G ∆∙∙=m p A x x V G a K ∆∙=其中 22112211ln )()(e e e e m x x x x x x x x x -----=∆()21x x L G A -= Ω∙=Z V p相关的填料层高度的基本计算式为:OL OL x x e x N H xx dx a K L Z ∙=-Ω∙=⎰12 即 OL OL N Z H /=其中 m x x e OL x x x x x dx N ∆-=-=⎰2112 , Ω∙=a K L H x OL式中:G A —单位时间内氧的解吸量[Kmol/h] K x a —总体积传质系数[Kmol/m 3•h •Δx]V P —填料层体积[m 3]Δx m —液相对数平均浓度差x 1 —液相进塔时的摩尔分率(塔顶)x e1 —与出塔气相y 1平衡的液相摩尔分率(塔顶) x 2 —液相出塔的摩尔分率(塔底)x e2 —与进塔气相y2平衡的液相摩尔分率(塔底)Z—填料层高度[m]Ω—塔截面积[m2]L—解吸液流量[Kmol/h]H OL—以液相为推动力的传质单元高度N OL—以液相为推动力的传质单元数由于氧气为难溶气体,在水中的溶解度很小,因此传质阻力几乎全部集中于液膜中,即K x=k x, 由于属液膜控制过程,所以要提高总传质系数K x a,应增大液相的湍动程度。
氧吸收解吸系数测定实验报告
![氧吸收解吸系数测定实验报告](https://img.taocdn.com/s3/m/035c8717168884868762d6b1.png)
氧吸收/解吸系数测定实验报告一、实验目的1、了解传质系数的测定方法;2、测定氧解吸塔内空塔气速与液体流量对传质系数的影响;3、掌握气液吸收过程液膜传质系数的实验测定方法;4、关联圆盘塔液膜传质系数与液流速率之间的关系; 4、掌握VOC 吸收过程传质系数的测定方法。
二、实验原理1) 吸收速率吸收是气、液相际传质过程,所以吸收速率可用气相内、液相内或两相间传质速率表示。
在连续吸收操作中,这三种传质速率表达式计算结果相同。
对于低浓度气体混合物单组分物理吸收过程,计算公式如下。
气相内传质的吸收速率:)(i y A y y F k N -=液相内传质的吸收速率:)(x x F k N i x A -=气、液相相际传质的吸收速率:)()(**x x F K y y F K N x y A -=-=式中:y ,y i ——气相主体和气相界面处的溶质摩尔分数;x ,x i ——液相主体和液相界面处的溶质摩尔分数; x *,y *——与x 和y 呈平衡的液相和气相摩尔分数;k x ,K x ——以液相摩尔分数差为推动力的液相分传质系数和总传质系数; k y ,K y ——以气相摩尔分数差为推动力的气相分传质系数和总传质系数; F ——传质面积,m 2。
对于难溶气体的吸收过程,称为液膜控制,常用液相摩尔分数差和液相传质系数表达吸收速率式。
对于易溶气体的吸收过程,称为气膜控制,常用气相摩尔分数差和气相传质系数表达吸收速率式。
本实验为一解吸过程,将空气和富氧水接触,因富氧水中氧浓度高于同空气处于平衡的水中氧浓度,富氧水中的氧向空气中扩散。
解吸是吸收的逆过程,传质方向与吸收相反,其原理和计算方法与吸收类似。
但是传质速率方程中的气相推动力要从吸收时的(y -y *)改为解吸时的(y *-y ),液相推动力要从吸收时的(x *-x )改为解吸时的(x -x *)。
2) 吸收系数和传质单元高度吸收系数和传质单元高度是反映吸收过程传质动力学特性的参数,是吸收塔设计计算的必需数据。
吸收(解吸)实验报告
![吸收(解吸)实验报告](https://img.taocdn.com/s3/m/2649fbd559f5f61fb7360b4c2e3f5727a5e924e4.png)
吸收(解吸)实验报告化⼯基础实验报告实验名称吸收(解吸)系数的测定班级化21 姓名张腾学号2012011864 成绩实验时间2014.5 同组成员张煜林努尔艾⼒·麦麦提⼀、实验⽬的1、了解吸收(解析)操作的基本流程和操作⽅法;2、测定氧解吸液相总体积传质系数K x a和液体流量的关系;3、测定筛板塔的板效率与液体流量和⽓体流量的关系。
⼆、实验原理吸收是⼯业上常⽤的操作。
在吸收过程中,⽓体混合物和吸收剂分别从塔底和塔顶进⼊塔内,⽓液两相在塔内实现逆流接触,使⽓体混合物中的溶质较完全地溶解在吸收剂中,于是塔顶获得较纯的惰性组分,从塔底得到溶质和吸收剂组成的溶液(通称富液)。
当溶质有回收价值或吸收剂价格较⾼时,把富液送⼊再⽣装置进⾏解吸,得到溶质或再⽣的吸收剂(通称贫液),吸收剂返回吸收塔循环使⽤。
吸收是⽓液相际传质过程,所以吸收速率可⽤⽓相内,液相内或者两相间的传质速率来表⽰。
在连续吸收操作中,这三种传质速率表达式计算结果相同。
对于低浓度吸收过程。
计算公式如下。
⽓相内传质的吸收速率:N A=k y(y?y i)F液相内传质的吸收速率:N A=k x(x i?x)F⽓、液两相相际传质的吸收速率:N A=K y F(y?y?)=K x F(x??x)式中:y,y i—分别表是⽓相主体和⽓相界⾯处的溶质摩尔分率;x,x i—分别表⽰液相主体和液相界⾯处的溶质摩尔分率;x?,y?—分别为与y和x呈平衡的液相和⽓相摩尔分率;k x,K x—分别为以液相摩尔分率差为推动⼒的液相传质分系数和传质总系数;k y,K y—分别为以⽓相摩尔分率差为推动⼒的⽓相传质分系数和传质总系数;F—传质⾯积,m2。
对于难溶溶质的吸收,常⽤液相摩尔分率差和液相传质系数表达的吸收速率式。
对于易溶⽓体的吸收,常⽤⽓相摩尔分率差和⽓相传质系数表达的吸收速率式。
本实验为⼀解析过程,是⽤空⽓与富氧⽔接触,因富氧⽔中氧的浓度⾼于同空⽓处于平衡的⽔中氧的浓度。
二氧化碳吸收与解吸实验
![二氧化碳吸收与解吸实验](https://img.taocdn.com/s3/m/d62bf3d2f242336c1eb95ea0.png)
二氧化碳吸收与解吸实验一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。
2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。
二、实验内容1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。
2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。
3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。
三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。
压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图一所示:123L 3L 2L 1L 0 =>>0图一 填料层的P ∆~u 关系当液体喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。
ΔP , k P a当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。
这两个转折点将P ∆~u 关系分为三个区段:既恒持液量区、载液区及液泛区。
传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。
对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。
1.二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ;A C —液侧A 组分的平均浓度,3-⋅m kmol Ai C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ;l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。
吸收与解吸实验
![吸收与解吸实验](https://img.taocdn.com/s3/m/7c00c83787c24028915fc397.png)
一、实验目的12 3 4二、实验原理㈠、吸收实验根据传质速率方程,在假定Kxa 低浓、难溶等] 条件下推导得出吸收速率方程:Ga=Kxa ·V ·Δx m 则: Kxa=Ga/(V ·Δx m )式中:Kxa ——体积传质系数 [kmolCO 2/m 3hr Ga ——填料塔的吸收量 [Kmol CO 2 V ——填料层的体积 [m 3] Δx m ——填料塔的平均推动力 1、Ga 的计算已知可测出:Vs[m 3/h]、V B [m 3/h](可由色谱直接读出)Ls[Kmol/h]=Vs ×ρ水/M 水1011'29]/[ρρρρV M V h Kmol G B B B =⋅=⋅=空气 标定情况:T 0=273+20 P 0=101325 测定情况:T 1=273+t1 P 1=101325+ΔP 因此可计算出L S 、G B 。
又由全塔物料衡算:G a =Ls(X 1-X 2)=G B (Y 1-Y 2) 22211111y y Y y y Y -=-=且认为吸收剂自来水中不含CO 2,则X 2=0,则可计算出G a 和X 1 2、Δx m 的计算根据测出的水温可插值求出亨利常数E[atm],本实验为P=1[atm] 则 m=E/Pmy x m y x x x x x x x x x x x x e e e e m 11221112221212ln ==-=∆-=∆∆∆∆-∆=∆㈡、解吸实验低浓、难溶等] Ga=K Y a ·V 则: K Y a=Ga/(V 式中:K Y a Ga V ΔY m 1、Ga 的计算已知可测出:y 2 ]/[h Kmol G B 标定情况:T 0 测定情况:T 1因此可计算出L S 、G B 。
又由全塔物料衡算:G a =Ls(X 1-X 2)=G B (Y 1-Y 2) 011222111=-=-=y y Y y y Y且认为空气中不含CO 2,则y 2=0;又因为进塔液体中X 1有两种情况,一是直接将吸收后的液体用于解吸,则其浓度即为前吸收计算出来的实际浓度X 1;二是只作解吸实验,可将CO 2用文丘里吸碳器充分溶解在液体中,可近似形成该温度下的饱和浓度,其X 1*可由亨利定律求算出:mm y x 1*1==则可计算出G a 和X 2 2、ΔY m 的计算根据测出的水温可插值求出亨利常数E[atm],本实验为P=1[atm] 则 m=E/P11221112221212ln x m y x m y Y Y Y Y Y Y Y Y Y Y Y e e e e m ⋅=⋅=-=∆-=∆∆∆∆-∆=∆根据 e e Y y yy Y 换算成将-=1三、实验装置CO2:钢瓶中的CO2经根部阀、减压阀、针型调节阀,一路经流量计V CO2-1进入吸收塔;另一路经流量计V CO2-2进入文丘里吸碳器与饱和罐中的循环水充分混合可形成饱和CO2水溶液。
实验四 氨气的吸收与解吸实验
![实验四 氨气的吸收与解吸实验](https://img.taocdn.com/s3/m/c1e51cabdc3383c4bb4cf7ec4afe04a1b071b0dc.png)
实验四氨气的吸收与解吸实验----7d97e6e4-715c-11ec-8b34-7cb59b590d7d实验四氨气的吸收与解吸实验实验四氨的吸收和解吸实验实验四氨气的吸收与解吸实验一、实验目的1.了解填料吸收装置的基本流程及设备结构;2.了解气体流速与压强降的关系;3.了解气流速度和喷雾密度对总吸收系数的影响;4.掌握总吸收系数K的测量方法;5.掌握填料塔水动力性能的测量方法。
2、实验装置的特性测量流体力学性能是吸收实验的一项重要内容,填料塔流体力学特性包括压强降和液泛规律。
计算填料塔需用动力时,必须知道压强降的大小。
而确定吸收塔的气、液负载量时,则必须了解液泛的规律。
实验用空气与水进行,在各种喷淋量下,逐步增大气速,记录必要的数据直至刚出现液泛时止。
必须注意,不要使气速过分超过泛点,避免冲跑和冲破填料。
三、实验装置流程如图图1xsgx-1吸附脱附实验装置流程图四、实验内容与步骤(一)填料塔流体力学特性的测定本项实验操作不要开动氨气系统,仅用水对空气进行操作。
1.首先启动供水系统。
首先打开出水阀,然后缓慢打开进水阀,启动供水系统中的滤水器。
注意:如果入口阀在出口阀关闭时打开,则水过滤器可能超压。
2.开动空气系统。
开动时要首先全开叶氏风机的旁通阀,然后再启动叶氏风机,风机启动后再通过关小旁通阀的方法调节空气流量。
否则风机一开动,系统内气速突然上升可能碰坏空气转子流量计。
3.缓慢增加气体速度,使其接近溢流,充分湿润填料一次,然后返回预定气体速度进行正式测量。
4.正式测量时,固定一定的喷淋量,测量填料在一定气速下的压降,并根据实验记录表记录数据。
5.实验结束后,停止机器。
转子转速下降后,完全打开旁通阀并停止机器。
否则,如果机器突然停止,气流突然停止,转子将突然下降,损坏流量计。
(2)传质系数的测定1.确定好操作条件(氨气流量、空气流量、喷淋量),准备好尾气分析器。
2.开动水系统和空气系统,一切准备就绪后开动氨气系统。
吸收解吸实验
![吸收解吸实验](https://img.taocdn.com/s3/m/a16cf8906037ee06eff9aef8941ea76e58fa4ae8.png)
化工原理课程实验报告L K —以气相分压表示推动力的总传质系数,或简称为液相传质总系数,1-⋅s m 。
若气液相平衡关系遵循享利定律:A A Hp C =,则:l g G HK k K 111+= lg L k k H K 11+= (3-24)C A1,F L图3-10 双膜模型的浓度分布图 图3-11 填料塔的物料衡算图 当气膜阻力远大于液膜阻力时,则相际传质过程式受气膜传质速率控制,此时,g G k K =;反之,当液膜阻力远大于气膜阻力时,则相际传质过程受液膜传质速率控制,此时,l L k K =。
本实验采用转子流量计测得CO2、空气和水的流量。
根据实验条件(温度和压力)折算为实际流量,最后按有关公式换算成CO2、空气和水的摩尔流量。
填料塔物料衡算如图3-11所示。
气体校正公式:v =√ρ₀ρ (3-26)式中:V 。
——流量计读数;V ——被测流体实际流量;ρ₀,ρ——标定流体和被测流体在标定状态(T 。
,p 。
)下的密度。
测定塔顶和塔底液相组成C A1和C A2,利用滴定法测定吸收液浓度,根据吸收液消耗盐酸体积量可计算塔底吸收液浓度:C A1=2C Ba(OH)2V Ba(OH)2−C HCl V HCl2V 溶液(3-27)吸收剂(水)中含有少量的二氧化碳,根据吸收剂(水)滴定消耗盐酸体积量可计算出塔顶吸收剂(水)中CO ,浓度为:dh相 界 面距离液 膜气膜浓度图1 二氧化碳吸收与解吸实验装置流程示意图1-CO2钢瓶;2-减压阀;3-CO2流量计;4-吸收风机;5-吸收塔空气流量计;6-吸收水泵;7-吸收塔水流量计;8-吸收尾气传感器;9-吸收塔;10、15-液封;11-解吸液罐;12-解吸尾气传感器;13-吸收液罐;14-解吸塔;16-压差计;17-解吸水泵;18-解吸塔水流量计;19-解吸风机;20-解吸塔空气流量计; 21-空气旁路调节阀;22-π型管。
长江大学 氧吸收与解吸综合实验 实验报告
![长江大学 氧吸收与解吸综合实验 实验报告](https://img.taocdn.com/s3/m/e431734052ea551810a68778.png)
(3)掌握总传质系数 的测定方法并分析影响因素。
(4)学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方
法。
(5)研究流体的流动对传质阻力的影响、吸收剂用量对传质系数的影响
和传质系数的影响和传质阻力较小侧流体的流量变化对吸收过程的影响,学会吸收过程的调节。
39883.677
5.265E-06
1.404E-05
5.416E-06
4.0593
4.79
101.64
39883.677
5.265E-06
1.254E-05
5.321E-06
4.8692
4.01
101.67
39873.870
5.266E-06
1.268E-05
5.523E-06
3.3620
3.98
0.1643
3
19
1.42
0.68
22.55
9.82
25506.22
0.2380
4
20
1.57
0.73
22.94
9.49
96144.75
0.1706
计算;
以第一组数据为例:
系统总压强:
相平衡常数:
六、思考题
i.为什么易溶气体的吸收和解吸属于气膜控制过程,难溶气体的吸收和
解吸属于液膜控制过程?
答:对于易溶气体而言,主要的阻力来自溶质从气相到气液界面扩散的阻力,从气液界面到溶液的过程所受到的阻力相对来说很小,所以在吸收过程显示为气膜控制过程;而对于难溶气体,吸收时受到的主要阻力是在气液界面到液相的过程中产生,而在气相到气液界面的阻力相对来说很小,所以其吸收的过程显示为液膜控制过程。
二氧化碳吸收与解吸实验汇总
![二氧化碳吸收与解吸实验汇总](https://img.taocdn.com/s3/m/453f84546edb6f1aff001f56.png)
二氧化碳吸收与解吸实验一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。
2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。
二、实验内容1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。
2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。
3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。
三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。
压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图一所示:图一 填料层的P ∆~u 关系当液体喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。
当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。
这两个转折点将P ∆~u 关系分为三个区段:既恒持液量区、载液区及液泛区。
传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。
对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。
1.二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ;A C —液侧A 组分的平均浓度,3-⋅m kmol Ai C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ;l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。
吸收与解吸实验
![吸收与解吸实验](https://img.taocdn.com/s3/m/be20be2701f69e3143329478.png)
一、实验目的12 3 4二、实验原理㈠、吸收实验根据传质速率方程,在假定Kxa 低浓、难溶等] 条件下推导得出吸收速率方程:Ga=Kxa ·V ·Δx m 则: Kxa=Ga/(V ·Δx m )式中:Kxa ——体积传质系数 [kmolCO 2/m 3hr Ga ——填料塔的吸收量 [Kmol CO 2 V ——填料层的体积 [m 3] Δx m ——填料塔的平均推动力 1、Ga 的计算已知可测出:Vs[m 3/h]、V B [m 3/h](可由色谱直接读出)Ls[Kmol/h]=Vs ×ρ水/M 水1011'29]/[ρρρρV M V h Kmol G B B B =⋅=⋅=空气 标定情况:T 0=273+20 P 0=101325 测定情况:T 1=273+t1 P 1=101325+ΔP 因此可计算出L S 、G B 。
又由全塔物料衡算:G a =Ls(X 1-X 2)=G B (Y 1-Y 2) 22211111y y Y y y Y -=-=且认为吸收剂自来水中不含CO 2,则X 2=0,则可计算出G a 和X 1 2、Δx m 的计算根据测出的水温可插值求出亨利常数E[atm],本实验为P=1[atm] 则 m=E/Pmy x m y x x x x x x x x x x x x e e e e m 11221112221212ln ==-=∆-=∆∆∆∆-∆=∆㈡、解吸实验低浓、难溶等] Ga=K Y a ·V 则: K Y a=Ga/(V 式中:K Y a Ga V ΔY m 1、Ga 的计算已知可测出:y 2 ]/[h Kmol G B 标定情况:T 0 测定情况:T 1因此可计算出L S 、G B 。
又由全塔物料衡算:G a =Ls(X 1-X 2)=G B (Y 1-Y 2) 011222111=-=-=y y Y y y Y且认为空气中不含CO 2,则y 2=0;又因为进塔液体中X 1有两种情况,一是直接将吸收后的液体用于解吸,则其浓度即为前吸收计算出来的实际浓度X 1;二是只作解吸实验,可将CO 2用文丘里吸碳器充分溶解在液体中,可近似形成该温度下的饱和浓度,其X 1*可由亨利定律求算出:mm y x 1*1==则可计算出G a 和X 2 2、ΔY m 的计算根据测出的水温可插值求出亨利常数E[atm],本实验为P=1[atm] 则 m=E/P11221112221212ln x m y x m y Y Y Y Y Y Y Y Y Y Y Y e e e e m ⋅=⋅=-=∆-=∆∆∆∆-∆=∆根据 e e Y y yy Y 换算成将-=1三、实验装置CO2:钢瓶中的CO2经根部阀、减压阀、针型调节阀,一路经流量计V CO2-1进入吸收塔;另一路经流量计V CO2-2进入文丘里吸碳器与饱和罐中的循环水充分混合可形成饱和CO2水溶液。
氧吸收解吸系数测定实验报告
![氧吸收解吸系数测定实验报告](https://img.taocdn.com/s3/m/bdaad2120622192e453610661ed9ad51f01d54a3.png)
氧吸收解吸系数测定实验报告
实验名称:氧吸收解吸系数测定实验
实验日期:2020年8月20日
实验目的:
1.了解氧吸收解吸系数;
2.掌握氧吸收解吸系数的测定方法。
实验原理:
氧吸收解吸系数是指物质在固定的状态下,在指定压力、温度下,某物质从气体和液体之间依次扩散的速度,它表示在一定时间内物质从某一相扩散到另一相内所达到的最高吸收量。
实验材料:
1.精制空气;
2.普通空气;
3.实验水槽;
4.湿布;
5.温度检测管;
6.压力表;
7.解吸装置;
实验过程:
1.将水槽中的湿布放入实验管;
2.在实验管内测量温度,调节温度到预定温度;
3.在实验管内调节压力,调节压力到预定压力;
4.调节精制空气流量到预定流量;
5.调节普通空气流量到预定流量;
6.实验时间内,将空气经过湿布,调节解吸装置,将气体收集到容器中;
7.重复以上步骤,测试不同温度和压力下的氧吸收解吸系数;
实验结果:
温度压力收集量氧吸收解吸系数
20℃ 0.2MPa 0.43g/L 0.07
20℃ 0.5MPa 1.2g/L 0.20
20℃ 0.8MPa 2.15g/L 0.35
30℃ 0.2MPa 0.51g/L 0.09
30℃ 0.5MPa 1.54g/L 0.25
30℃ 0.8MPa 2.67g/L 0.45
实验结论:
根据实验结果可以得出:随着温度和压力的增加,氧吸收解吸系数呈现增加趋势,表明氧吸收解吸的效率随着温度和压力的增加而提升。
气体的吸收与解吸
![气体的吸收与解吸](https://img.taocdn.com/s3/m/1642f32eba1aa8114431d9bf.png)
kxa L
三、实验要求
学生根据学习吸收-解吸的基本原理和本装 置条件确定实验内容
确定数据采集点,获取必须的实验数据
拟定实验步骤和操作方法;保证实验数据的
准确性及可靠性,经指导教师同意以后开始
实验操作
三、实验要求
按照拟定的实验步骤进行实验,在获取必要 的数据后经指导教师同意,停止实验操作
六、注意事项
取样的流量与测量饱和水的取样流量保持 一致
实验中采集数据不能漏项
实验开始阶段应适当加大流量排出气泡, 确定管道内无气泡之后进行实验
一、实验目的和任务
1观察填料塔内的气液流动现象;学会气相色谱仪、 二氧化碳气敏电极的测定方法及原理,测出“二氧 化碳、空气与水”体系的体积传质系数 2了解填料吸收塔的操作原理和实验方法; 3测定干填料塔单位填料高度的压力降Δp与空气 气速的变化关系; 4在一定的水喷淋密度下,测定湿填料塔单位填料 高度的压力降Δp与空气气速的变化关系,并确定 泛点速度; 5以氨吸收为对象测定填料塔的传质单元数 NOG、 传质单元高度HOG、总体积吸收系数KYa.
整理实验数据,写实验报告
实验中要求纪录的数据包括进塔水流量、
水温、氮气、空气流量、进出塔水中溶解
氧浓度及饱和水浓度和温度
四、实验基本操作步骤
制取饱和水,由泵输送至饱和塔3顶部,空 气泵将空气送入塔3的底部;用饱和水标定 测氧仪。
饱和水槽溢流以后,即可向解吸塔1和吸收 塔2供水,同时向塔内通入气体。气体流量 保持恒定,水流量从10L/h至60L/h改变6次。
四、实验操作步骤
二氧化碳吸收与解吸实验解读
![二氧化碳吸收与解吸实验解读](https://img.taocdn.com/s3/m/840d7ff5172ded630b1cb6ec.png)
二氧化碳吸收与解吸实验一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。
2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。
二、实验内容1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。
2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。
3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。
三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。
压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图一所示:图一 填料层的P ∆~u 关系当液体喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。
当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。
这两个转折点将P ∆~u 关系分为三个区段:既恒持液量区、载液区及液泛区。
传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。
对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。
1.二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ;A C —液侧A 组分的平均浓度,3-⋅m kmol Ai C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ;l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。
氧吸收解析实验报告
![氧吸收解析实验报告](https://img.taocdn.com/s3/m/ed2c7c88c0c708a1284ac850ad02de80d4d806f8.png)
一、实验目的1. 了解氧吸收解析操作的基本流程和操作方法;2. 测定氧吸收解析过程中气相和液相的传质系数;3. 分析影响氧吸收解析效率的因素;4. 掌握氧吸收解析设备的设计原理。
二、实验原理氧吸收解析是利用吸收剂对氧气的吸收和解吸特性,实现氧气与其他气体的分离。
在吸收过程中,氧气从气相转移到液相,使气相中的氧气浓度降低;在解析过程中,氧气从液相转移到气相,使液相中的氧气浓度降低。
本实验采用液相吸收法,以水为吸收剂,研究氧气在吸收和解吸过程中的传质系数。
三、实验材料与设备1. 实验材料:氧气、空气、水、NaOH溶液;2. 实验设备:气瓶、流量计、吸收塔、解析塔、温度计、压力计、搅拌器、记录仪。
四、实验步骤1. 吸收过程:(1)将氧气通入吸收塔,空气作为稀释剂;(2)调节流量计,控制氧气流量;(3)启动搅拌器,使水在吸收塔内循环;(4)记录吸收过程中氧气浓度、液相温度、压力等数据。
2. 解析过程:(1)将吸收后的溶液通入解析塔,空气作为稀释剂;(2)调节流量计,控制氧气流量;(3)启动搅拌器,使溶液在解析塔内循环;(4)记录解析过程中氧气浓度、液相温度、压力等数据。
3. 数据处理:(1)计算气相和液相的传质系数;(2)分析影响氧吸收解析效率的因素;(3)绘制氧气浓度、温度、压力等参数与时间的关系曲线。
五、实验结果与分析1. 吸收过程:实验过程中,氧气浓度随时间逐渐降低,液相温度和压力变化不大。
根据实验数据,计算得到气相和液相的传质系数分别为0.05和0.02。
2. 解析过程:实验过程中,氧气浓度随时间逐渐升高,液相温度和压力变化不大。
根据实验数据,计算得到气相和液相的传质系数分别为0.03和0.01。
3. 影响氧吸收解析效率的因素:(1)温度:实验过程中,温度对氧吸收解析效率的影响较小;(2)压力:实验过程中,压力对氧吸收解析效率的影响较小;(3)搅拌速度:搅拌速度对氧吸收解析效率有较大影响,适当提高搅拌速度可以加快传质过程。
莱帕克吸收与解吸实验报告
![莱帕克吸收与解吸实验报告](https://img.taocdn.com/s3/m/41f57817cd1755270722192e453610661ed95a4d.png)
莱帕克吸收与解吸实验报告大庆吸收与解吸实验演示-定制,近年来,我国的科研仪器在国产化上已取得积极进展,但由于***积累不足等多方面原因,科研仪器依赖进口的局面尚未得到根本改观。
在建设世界科技强国的征程中,科研仪器特别是科研仪器如何尽快实现国产化,已成为一个不容回避的重要问题。
工欲善其事,必先利其器。
现代科技发展实践表明,科研仪器是科学研究不可或缺的工具和手段,谁在科研仪器上率先突破,谁就往往能占据科学研究的先发优势。
应当注意的是,当气相压力的数值达到饱和蒸汽压力的数值时,液相的水分子仍然不断地汽化,气相中的水分子也不断地冷凝成液体,只是由于水的汽化速度等于蒸汽的冷凝速度,液体量才没有减少,气体量也没有增加。
气体和液体达到平衡状态。
所以,液体纯物质蒸汽所具有的压力为其饱和蒸汽压时,气液两相即达到了相平衡。
针对这个案例中科研仪器设备范畴的界定问题,部分高校纷纷发表了自己的疑惑和见解。
有高校认为,该项目是D大学附属中学的,不能算D大学的科研仪器设备。
即使不是附属中学的,把智慧校园软件平台算成科研仪器设备也有些牵强,甚至这个项目连设备采购都算不上,更不用提科研了。
不论科研仪器设备界定的尺度在哪儿,把附属中学的采购活动也“靠”过来,有点儿名过其实。
也有高校认为,很多高校都是带着中学生一起做科研的,类似高校附属中学的采购项目并不少见,该如何组织实施。
液泛形成的原因,主要是由于塔内上升蒸汽的速度过大,超过了允许速度所造成的。
另外在精馏操作中,也常常遇到液体负荷太大,使溢流管内液面上升,以至上下塔板的液体连在一起,破坏了塔的正常操作的现象,这也是液泛的一种形式。
以上两种现象都属于液泛,但引起的原因是不一样的。
在精馏操作中,下层塔板上的液体涌至上层塔板,破坏了塔的正常操作,这种现象叫做液泛。
什么是液泛。
精馏塔可分为板式塔和填料塔。
板式塔又分为有溢流装置和无溢流装置。
有溢流装置的塔板有泡罩塔板S型塔板浮阀塔板筛板舌型塔板浮动喷射塔板和斜孔塔板。