检验仪器分析技术及应用

合集下载

仪器分析技术发展趋势及应用

仪器分析技术发展趋势及应用

仪器分析技术最新发展趋势及应用摘要:本文阐述了现代科学技术发展中仪器分析发展的现状及其基础地位,仪器分析的特点及存在的局限性及最新发展趋势。

特别是当今仪器分析技术吸取数学、物理学、计算机科学以及生物学中的新思想、新理念、新方法和新技术,不断完善现有的仪器分析技术,使仪器分析技术正朝着快速、准确、自动、灵敏以及适应特殊分析方向而迅猛发展,这就是当今仪器分析技术发展的总趋势!关键词:仪器分析分析方法发展趋势当代科学技术发展的主要特征是高度分化和高度综合,分析化学也不例外。

分析化学是四大化学之一,包括两大范畴化学分析和仪器分析。

化学分析是指利用化学反应和它的计量关系来确定被测物质的组成和含量的一类分析方法。

仪器分析是以物质的物理性质和物理化学性质为基础建立起来的一种分析方法,常常需要使用比较复杂的仪器。

仪器分析又分为基础仪器分析和现代仪器分析,现代仪器分析又分为波谱分析、光谱分析、电化学分析、色谱分析、电镜分析、放射化学分析等。

1 仪器分析技术的基础地位现代仪器分析是一门信息科学,用于陈述事物的运动状态,促进人与环境的相互交流.现代仪器分析也是一门信息技术,涉及信息的生产、处理、流通、也包括信息获取、信息传递、信息存储、信息处理和信息显示等,有效地扩展了人类信息器官的功能.人们通常将信息与物质!能源相提并论,称为人类社会赖以生存发展的三大支柱。

世界由物质组成的,没有物质世界便虚无缥缈。

能量是一切物质运动的源泉,没有能源,世界便成为静寂的世界。

信息则是客观事物与主观认识相结合的产物,没有信息交换,世界便成为没有生气的世界,人类无法生存和发展。

生产和科研的发展,特别是生命科学和环境科学的发展,对分析化学的要求不再局限于“是什么”、“有多少”?而是要求提供更多更全的信息,即从常量到微量分析,从微量到微粒分析,从痕量到超痕量分析,从组成到形态分析,从总体到微区分析,从表现分布到逐层分析,从宏观到微观结构分析,从静态到快速反应追踪分析,从破坏试样到试样无损分析,从离线到在线分析等.仪器分析是生产和科研的眼睛,是高科技发展的基础和伴侣.现代分析仪器是基于多学科的高技术产物,离开现代仪器分析,高新技术研究与进步寸步难行。

检验仪器分析技术及应用讲义

检验仪器分析技术及应用讲义

检验仪器分析技术及应用讲义I. 介绍检验仪器分析技术是一种采用仪器设备进行分析和检测的方法,在科学研究和工业生产中具有重要的应用价值。

本讲义将介绍一些常见的检验仪器分析技术及其在不同领域的应用。

II. 光谱分析技术1. 紫外可见光谱紫外可见光谱是一种常用的分析技术,可用于分析物质的吸收特性。

它在药学、环境科学、食品安全等领域具有广泛的应用。

2. 红外光谱红外光谱是一种用于研究物质的分子结构的技术。

它可以用于药物研究、材料分析等领域。

3. 原子吸收光谱原子吸收光谱是分析和检测金属元素含量的一种常用方法。

它在环境监测、食品安全等方面有着重要的应用。

III. 色谱分析技术1. 气相色谱气相色谱是将样品中的化合物分离并定量分析的一种技术。

它在药物分析、环境检测等领域得到了广泛应用。

2. 液相色谱液相色谱是一种将样品中的化合物分离并定量分析的技术。

它在生物医药、环境检测等领域有着重要的应用。

3. 离子色谱离子色谱是一种用于分离和检测离子化合物的分析技术。

它在环境监测、食品安全等方面具有重要意义。

IV. 电化学分析技术1. 电化学传感器电化学传感器是一种将物理化学性质转化为电信号的传感器。

它在生物传感、环境监测等方面具有广泛的应用。

2. 电化学分析方法电化学分析方法是一种利用电化学原理进行分析和检测的技术。

它在药物分析、环境监测等领域得到了广泛应用。

V. 质谱分析技术质谱分析技术是一种将化合物的质量信息进行分析和检测的技术。

它在化学合成、药学研究等方面具有重要的应用。

VI. 应用案例1. 药物分析检验仪器分析技术在药物分析领域被广泛应用,可用于药物质量评价、成分分析等方面。

2. 环境监测检验仪器分析技术在环境监测领域起到了重要作用,可用于检测大气污染物、水体污染物等。

3. 食品安全检验仪器分析技术在食品安全领域有着广泛的应用,可用于检测食品中的残留农药、重金属等有害物质。

VII. 结论检验仪器分析技术在科学研究和工业生产中扮演着重要角色,通过对不同领域的应用案例的介绍,我们可以看到其在药物分析、环境监测、食品安全等方面的重要性。

仪器分析技术最新发展趋势及应用

仪器分析技术最新发展趋势及应用

仪器分析技术最新发展趋势及应用仪器分析技术是指将化学、物理、生物等分析方法中的测试仪器、设备和技术应用于实验室中的分析。

随着科学技术的不断进步,仪器分析技术也在不断发展,并且在许多领域得到广泛应用。

本文将介绍仪器分析技术的最新发展趋势及应用。

(1)仪器分析技术的自动化自动化是仪器分析技术发展的重要趋势。

传统的仪器分析方法需要大量的手工操作,而自动化技术可以将这些操作自动化,从而提高效率和精度。

例如,自动化的样品制备技术可以将样品的前处理过程自动化,从而减少操作人员的误差和劳动强度。

微型化是仪器分析技术的一个重要趋势。

微型化技术可以将传统的大型仪器压缩到微型尺寸,从而使得仪器更加便携、更加便于操作和管理。

例如,微型质谱仪可以将传统的高分辨率质谱仪缩小到便携式大小,从而方便实时监测。

多模态是仪器分析技术的一个新趋势。

多模态的仪器可以同时具有不同的测试模式,从而可以更加全面地分析样品的信息。

例如,多模态光谱仪可以同时测量样品的吸收光谱、荧光光谱和散射光谱等信息。

2. 仪器分析技术的应用仪器分析技术在许多领域都有广泛的应用,以下是几个常见的应用:(1)食品分析仪器分析技术在食品分析中被广泛应用,例如高效液相色谱、气相色谱、质谱等方法可以检测食品中的有害物质和添加剂,从而确保食品的质量安全。

(2)环境分析(3)医学分析仪器分析技术在医学分析中也有重要的应用,例如生物芯片技术、分子诊断技术等方法可以检测人体组织、细胞和分子中的信息,从而帮助医学诊断和治疗。

(4)材料分析仪器分析技术在材料分析中也有广泛的应用,例如透射电子显微镜、扫描电子显微镜等方法可以检测材料的微观结构和成分分布,从而帮助材料的设计和加工。

综上所述,仪器分析技术的发展已经具备自动化、微型化和多模态等趋势,并且在食品分析、环境分析、医学分析和材料分析等领域有广泛的应用。

未来,仪器分析技术将不断发展,为我们的日常生活和科学研究提供更加精确、高效和便捷的分析方法。

食品检验中仪器分析方法的有效应用

食品检验中仪器分析方法的有效应用

食品检验中仪器分析方法的有效应用食品检验是保证食品质量和安全的重要措施之一,其中仪器分析技术是现代食品检验的重要手段。

仪器分析技术可以检测食品中的营养成分、添加剂、农药、重金属、微生物以及其他有害物质。

对于食品生产企业和消费者而言,食品的质量和安全无疑是最为关心的问题,因此如何有效地应用仪器分析方法,提高食品检验的精度和准确性,是当前食品行业急需解决的问题。

首先,仪器分析技术可以检测食品中的营养成分。

营养成分是评价食品营养价值的关键指标,例如蛋白质、脂肪、碳水化合物、矿物质、维生素等。

常用的仪器分析方法包括高效液相色谱、气相色谱、原子吸收光谱、质谱等技术,这些技术可以快速、准确地检测食品中的各种营养成分,并提供关于食品质量的详细信息。

其次,仪器分析技术还可以检测食品中的添加剂和农药。

由于现代食品生产过程中添加剂的使用普遍,因此检测食品中的添加剂含量成为了食品安全控制的重要环节。

例如,高效液相色谱-质谱联用技术可以快速、准确地检测食品中的防腐剂、色素、调味剂等添加剂,以及农药残留等有害物质。

这将有助于检测食品是否符合国家和地方的标准,保证食品的质量和安全。

另外,仪器分析技术还可以检测食品中的重金属。

如果食品中重金属的含量过高,就会对人体健康产生严重的影响。

例如,大量摄入含有铅的食品会导致儿童中毒和智力发育迟缓。

为了保证食品的质量和安全,需要使用原子吸收光谱、质谱等仪器分析技术检测食品中的重金属含量,并提供关于食品质量的详细信息。

同时,食品生产企业也需要落实质量控制措施,确保食品中重金属含量符合国家和地方的标准。

最后,仪器分析技术还可以检测食品中的微生物。

由于微生物对人体健康的影响极大,因此检测食品中的微生物是保证食品安全的重要环节。

常用的仪器分析技术包括聚合酶链式反应、荧光定量PCR等技术,这些技术可以快速、准确地检测食品中的各种有害微生物,例如大肠杆菌、沙门氏菌、金黄色葡萄球菌等,从而保证食品的质量和安全。

现代仪器分析技术在食品安全检测中的应用分析

现代仪器分析技术在食品安全检测中的应用分析

现代仪器分析技术在食品安全检测中的应用分析随着人民生活水平的不断提高,食品安全问题日益成为人们关注的焦点。

食品中的化学物质、微生物和其他污染物质对人体健康构成潜在威胁,因此食品安全检测变得至关重要。

传统的食品安全检测方法通常费时费力,且检测结果不够准确,这就需要现代仪器分析技术的应用。

本文将围绕现代仪器分析技术在食品安全检测中的应用进行分析。

1. 气相色谱-质谱联用技术(GC-MS)气相色谱-质谱联用技术是一种广泛应用于食品安全检测的分析方法。

它结合了气相色谱(GC)和质谱(MS)两种技术的优势,可以有效地分离和鉴定食品中的化学成分。

通过GC-MS技术,可以快速准确地检测食品中的农药残留、重金属、有机污染物以及食品添加剂等物质,为食品安全提供了可靠的数据支持。

3. 原子吸收光谱技术(AAS)原子吸收光谱技术是一种常用的重金属元素分析方法,也被广泛应用于食品安全检测中。

通过AAS技术,可以对食品中的铅、镉、汞等重金属元素进行准确测定,帮助人们了解食品的重金属污染程度,保障食品安全。

5. 分子生物学检测技术分子生物学检测技术通过检测食品中的微生物DNA、RNA等分子信息,能够对食品中的致病菌和毒素进行快速准确的鉴定。

该技术具有高灵敏度、高特异性的特点,对保障食品安全具有重要意义。

1. 高灵敏度现代仪器分析技术具有高灵敏度的特点,能够对食品中微量的化学成分和污染物质进行快速准确的检测。

这为食品安全检测提供了更为可靠的数据支持,有助于发现食品中的潜在安全隐患。

2. 高效性现代仪器分析技术具有高效性的特点,能够快速完成对食品样品的分析,大大提高了检测的效率。

这对于监管部门和食品生产企业而言,都是一种重要的优势。

3. 多元化现代仪器分析技术种类繁多,可以满足对食品中不同类型化学成分和污染物质的综合检测需求。

不同的分析技术可以相互补充,形成更为完善的食品安全检测体系。

4. 自动化现代仪器分析技术的自动化程度较高,能够减少人为操作对检测结果的干扰,提高了检测的准确性。

仪器分析技术的应用

仪器分析技术的应用

仪器分析技术的应用仪器分析技术指的是以物理、化学和生物方法为基础,利用各种仪器对物质进行定量和定性分析的技术。

此技术广泛应用于工业、环境、医学及其他领域,其作用几乎随处可见。

工业领域是仪器分析技术的主要领域之一。

许多工业过程需要进行在线检测,以保证产品的质量和稳定性。

例如,在炼油、化工等行业中,利用光谱仪、气相色谱仪、质谱仪等仪器对原料、中间体和成品进行监测,可快速准确地确定其中各种化学成分、含量和结构等信息。

此外,离子色谱仪、电化学仪器等也常常被应用于工业上的水质、污泥等环境检测。

在环境保护这一领域中,仪器分析技术的应用也体现得尤为明显。

海洋、空气、土壤污染等环境问题对于社会发展具有重要的影响,因此对其进行准确定量的分析和监测显得尤为重要。

例如,运用电子显微镜、X射线荧光光谱仪、激光雷达等技术,可对气溶胶、PM2.5等物质进行定量分析和监测,并具有高精度、灵敏度、实时性等特点。

医学领域也广泛应用于仪器分析技术。

在医院中,常用的CT、MRI、超声等影像技术,均采用了各种先进的仪器工具,可帮助医生更加准确地判断和诊断病情。

此外,近年来,基于新型纳米材料和表面增强拉曼技术的成像技术,给医学科研带来了新的突破。

这些先进的医疗仪器通过尽可能地摆脱过时的、不准确的手动测量方法,可更准确地了解病患情况,帮助医生更好的做出治疗计划。

总的来说,不断更新的仪器分析技术为人类发展带来了广阔的科学视野和新的技术创新,对于工业、环境、医学等各个领域的发展都有着极为深远的意义。

未来,在无人机、生物传感器、热成像等新技术的支持下,仪器分析技术的创新和应用空间将变得更加宽广和多样化,带给我们崭新世界。

仪器分析及其方法

仪器分析及其方法

仪器分析及其方法仪器分析是指利用各种仪器设备进行样品分析的科学技术领域。

它是现代分析化学的重要分支,具有高准确度、高灵敏度、高选择性等特点,广泛应用于环境监测、药品检测、食品安全等领域。

仪器分析的方法主要包括物质分离、物质识别与测定、物质结构研究等方面。

下面我们详细介绍几种常见的仪器分析方法。

一、光谱分析法:光谱分析法利用物质与电磁波相互作用的原理,通过测量样品在不同波长或频率下的吸收、发射、散射等光谱特性来进行分析。

常见的光谱分析方法有紫外可见吸收光谱法、红外光谱法、核磁共振光谱法等。

二、电化学分析法:电化学分析法是利用电化学基本原理,通过物质与电极界面的电化学反应产生的电流、电势等信号来进行分析。

常见的电化学分析方法包括电位滴定法、极谱分析法、循环伏安法等。

三、色谱分析法:色谱分析法是以固定相与流动相之间的分配作用对物质进行分离与测定的方法。

常见的色谱分析方法有气相色谱法、液相色谱法、超临界流体色谱法等。

四、质谱分析法:质谱分析法是利用物质的质量与电荷比在磁场中的运动轨迹和谱图进行分析的方法。

常见的质谱分析方法有质谱仪法、飞行时间质谱法、离子阱质谱法等。

五、核素分析法:核素分析法是利用放射性核素的独特性质进行分析的方法。

常见的核素分析方法有放射计数法、伽马射线分析法、中子活化分析法等。

六、电子显微镜分析法:电子显微镜分析法是利用电子束与样品相互作用所产生的信号来进行分析的方法。

常见的电子显微镜分析方法包括扫描电子显微镜、透射电子显微镜等。

七、光电分析法:光电分析法是利用光电效应测量电流或电压信号进行分析的方法。

常见的光电分析方法有光电比色法、光电导比法、光电堆积法等。

这些仪器分析方法各具特点,可以根据不同样品的性质和需要选择相应的方法进行分析。

仪器分析方法的发展使得分析结果更加准确、灵敏,缩短了分析时间,提高了工作效率,大大推动了科学研究和工业生产的进程。

仪器分析检验技术

仪器分析检验技术

X射线衍射仪(XRD)
01
利用X射线在晶体中的衍射现象,研究物质的晶体结
构和相组成。
粉末衍射法
02 将粉末样品平铺在样品台上,通过X射线照射得到衍
射图谱,用于研究粉末样品的晶体结构和相组成。
单晶衍射法
03
利用单晶体对X射线的衍射,得到更为精确的晶体结
构信息。
核磁共振波谱技术
核磁共振波谱仪(NMR)
02 样品前处理技术
样品采集与保存方法
01
02
03
采集工具选择
根据样品性质选择合适的 采集工具,如玻璃器皿、 不锈钢器具等。
采集方法
遵循随机、均匀、代表性 原则进行样品采集。
保存条件
根据样品性质确定保存条 件,如温度、湿度、光照 等,确保样品在保存期间 不发生变质。
样品制备与处理方法
制备方法
包括粉碎、研磨、溶解、 稀释等步骤,使样品满足 分析要求。
06 其他仪器分析检验技术
热分析技术
01
热重分析(TGA)
通过测量物质在程序升温过程中 的质量变化,研究物质的热稳定 性和热分解过程。
02
差热分析(DTA)
在程序升温过程中,测量物质与 参比物之间的温度差,研究物质 的热效应。
03
差示扫描量热法 (DSC)
在程序升温过程中,测量物质与 参比物之间的功率差,研究物质 的热性质和相变过程。
利用电极电位与待测离子浓度之间的关系,通过测量电极电位来 确定待测离子浓度。
应用
广泛应用于酸碱滴定、络合滴定、氧化还原滴定等化学分析中,也 可用于气体分析、水质分析等领域。
优点
选择性好、灵敏度高、响应速度快、操作简便等。
库仑分析法

食品检验中仪器分析方法的有效应用

食品检验中仪器分析方法的有效应用

食品检验中仪器分析方法的有效应用食品安全一直是人们关注的焦点,食品检验是保障食品安全的重要手段之一。

随着科技的不断发展,仪器分析方法在食品检验中得到了广泛的应用。

仪器分析方法能够更准确、快速地检测食品中的各种成分,有效保障了食品的安全性和质量。

本文将介绍仪器分析方法在食品检验中的有效应用,并探讨其在食品安全保障中的重要性。

1、色谱技术色谱技术是一种常见的仪器分析方法,包括气相色谱和液相色谱两种。

色谱技术可以对食品中的各种成分,如添加剂、残留农药、重金属等进行快速、高效地分析。

比如在食品中添加剂检测方面,色谱技术可以对食品中的防腐剂、甜味剂、着色剂等进行准确检测,避免食品中添加剂残留超标的情况发生。

色谱技术还可以对食品中的污染物进行快速检测,保障食品的安全性。

光谱技术是一种常用的仪器分析方法,包括紫外-可见光谱、荧光光谱、红外光谱等。

光谱技术可以对食品中的各种成分进行快速、非破坏性的检测,比如对食品中的色素、脂肪、蛋白质等进行快速定性和定量分析,保障了食品的品质和安全。

二、仪器分析方法在食品安全保障中的重要性1、提高检测准确性传统的食品检验方法多是依靠人工操作和化学试剂进行分析,存在操作复杂、耗时长、准确性低等问题。

而仪器分析方法能够通过科学的原理和精密的仪器设备,对食品进行快速、准确地分析,提高了检测的准确性,避免了人为因素对检测结果的影响,保障了食品的安全性和质量。

2、加快检测速度传统的食品检验方法需要较长的时间才能得出结果,而仪器分析方法则能够快速地对食品进行分析,大大提高了检测的速度。

这对于食品生产企业来说意味着更快速地发现问题,并及时采取措施,保障了产品的质量和安全。

3、提升检测范围仪器分析方法能够检测更多种类的食品成分,覆盖面广,能够对食品中的各种成分进行全面检测。

这对于食品生产企业和监管部门来说都是非常重要的,可以更好地保障食品的安全和质量。

4、降低成本仪器分析方法在检测食品安全方面具有较高的自动化水平,可以通过批量化的检测来降低成本,提高效率。

仪器分析在食品领域的应用及发展

仪器分析在食品领域的应用及发展

仪器分析在食品领域的应用及发展一、引言食品安全一直是人们关注的焦点之一,而仪器分析技术的应用在食品领域中起着至关重要的作用。

本文将详细介绍仪器分析在食品领域的应用及发展,并讨论其对食品质量控制和食品安全监管的意义。

二、仪器分析在食品领域的应用1. 质量检测仪器分析技术可以对食品中的营养成分、添加剂、重金属等进行准确快速的检测。

例如,利用高效液相色谱仪(HPLC)可以测定食品中的维生素、氨基酸等成分的含量;利用质谱仪可以检测食品中的农药残留和微量元素含量。

这些分析结果可以帮助食品生产企业掌握产品质量,确保食品的安全和营养价值。

2. 食品鉴别仪器分析技术可以对食品的真实性和纯度进行鉴定。

例如,利用红外光谱仪可以对食品中的成分进行快速鉴别,判断是否掺假或掺杂其他物质。

此外,利用DNA测序技术可以对食品中的原料来源进行追溯,确保食品的安全和可追溯性。

3. 检测食品中的有害物质仪器分析技术可以对食品中的有害物质进行检测,如重金属、农药残留、致病菌等。

利用原子吸收光谱仪可以对食品中的重金属含量进行分析,确保食品的安全性。

同时,利用PCR技术可以对食品中的致病菌进行快速检测,及时发现并控制食品中的潜在危害。

三、仪器分析在食品领域的发展趋势1. 进一步提高分析仪器的灵敏度和准确性随着科技的不断进步,分析仪器的灵敏度和准确性将不断提高,可以检测到更低浓度的有害物质和微量元素,提高食品质量的监控能力。

2. 发展多功能的分析仪器未来的仪器分析技术将会发展出更多功能的分析仪器,可以同时检测多种成分和有害物质,提高分析效率和准确性。

3. 推广便携式仪器分析设备随着便携式仪器分析设备的不断发展,未来食品生产企业和监管机构可以更方便地进行现场食品检测,及时掌握食品的质量和安全情况。

4. 结合大数据和人工智能技术大数据和人工智能技术的发展将为仪器分析提供更多的数据支持和分析方法,可以更准确地预测和控制食品质量风险,提高食品安全监管的效率。

检验仪器分析技术

检验仪器分析技术

显微镜-光学微镜的使用与维护
光学显微镜的使用
4.将玻片放置载物台上,使玻片中被观察的部分 位于通光孔的正中央,并用标本夹夹好载玻片
5.先用低倍镜观察(物镜10×、目镜10×)。观察 之前,先调节粗动调焦手轮,使载物台上升,物镜 逐渐接近玻片。然后,左眼注视目镜内,同时右眼 不要闭合,并调节粗动调焦手轮,使载物台慢慢下 降,直至清晰看到玻片中材料的放大物像
光学显微镜的使用与维护
显微镜-光学微镜的使用与维护
光学显微镜的使用
01
实验时显微镜应放在座前桌面上稍偏左 的位置,镜座应距桌沿6~7cm左右
02
2打.打开开光光源源开开关关,,调调节节光光强强到到合合适适大大小小。。
显微镜-光学微镜的使用与维护
3.转动物镜转换器,使低倍镜头正对载物 台上的通光孔。镜头调节至距载物台1~ 2cm左右处,接着调节聚光器的高度,把 孔径光阑调至最大,使光线通过聚光器入 射到镜筒内,这时视野内呈明亮的状态
6.更换视野可通过调节载物台移动手柄。玻片移动方向 与物像移动方向正好相反
显微镜-光学微镜的使用与维护
光学显微镜的使用
7.如果进一步使用高倍物镜观察,应在转换高 倍物镜之前,把物像中需要放大观察的部分移至 视野中央,换高倍物镜应可以见到物像,但物像 不一定很清晰,可以转动微动调焦手轮进行调节。
8.观察完毕,应先将物镜镜头从通光孔处移开, 然后将孔径光阑调至最大,再将载物台缓缓落下, 并严格检查显微镜零件有无损伤或污染检查处理 完毕后即可装箱。
显微镜-光学微镜的使用使 用规程
观察时,不能随便移动显 微镜的位置
01 02
03 04
取送显微镜时一定要一手握 住弯臂,另一手托住底座, 做到轻拿轻放

现代分析测试技术(仪器分析)

现代分析测试技术(仪器分析)
于研究分子的结构和化学键。
应用
用于有机化合物、高分子化合物、 无机化合物等的结构分析和鉴定。
特点
样品用量少、不破坏样品、分析 速度快、可与其他技术联用。
原子发射光谱法
原理
利用物质在受到激发后发射出特征光谱进行分析。不同元素受到激 发后会发射出不同的特征光谱,可用于元素的定性和定量分析。
应用
广泛应用于金属元素、非金属元素、有机物中元素的定性和定量分 析。
离子色谱法
专门用于离子型物质的分离和分析,如环境监测中的阴阳离子检测。
毛细管电泳色谱法
结合了毛细管电泳和色谱技术的优点,具有高分辨率和高灵敏度等 特点,适用于生物大分子和复杂样品的分析。
05 质谱分析法与联用技术
CHAPTER
质谱法基本原理及仪器结构
质谱法基本原理
通过测量离子质荷比 (m/z)进行成分和结 构分析的方法。
02 光学分析法
CHAPTER
紫外-可见分光光度法
原理
利用物质在紫外-可见光区的吸收 特性进行分析。通过测量物质对 特定波长光的吸收程度,确定物
质的种类和浓度。
应用
广泛应用于无机物、有机物、药物、 生物样品等的定性和定量分析。
特点
灵敏度高、选择性好、操作简便、 分析速度快。
红外光谱法
原理
利用物质在红外光区的吸收特性 进行分析。红外光谱是分子振动 和转动能级的跃迁产生的,可用
03 电化学分析法
CHAPTER
电位分析法
原理
利用电极电位与待测离子浓度之间的关系,通过测量电极电位来 确定待测离子浓度的分析方法。
应用
广泛应用于水质分析、环境监测、生物医学等领域,如pH计测量 溶液酸碱度、离子选择性电极测量特定离子浓度等。

仪器分析技术发展趋势及应用

仪器分析技术发展趋势及应用

仪器分析技术发展趋势及应用仪器分析技术是一种应用物理、化学原理建立的一种科学计量技术,在现代科学研究和工业生产中具有广泛的应用。

随着科学技术的不断发展,仪器分析技术也在不断创新和进步。

本文将从仪器分析技术的发展趋势和应用两个方面进行讨论。

一、仪器分析技术的发展趋势1.多元化随着科学研究和生产技术的不断进步,对于分析物种类的需求也越来越多元化。

传统的仪器分析技术主要针对特定的分析物进行分析,如气相色谱、液相色谱等仪器,但是这些仪器在多元化的分析中存在局限性。

因此,未来的仪器分析技术将越来越多地向多元化方向发展,即一台仪器能够同时对多种物质进行分析。

2.高灵敏度高灵敏度是仪器分析技术发展的一个重要方向。

在许多科学研究和生产过程中,需要对微量的物质进行准确的分析。

因此,未来的仪器分析技术需要具备更高的灵敏度,能够检测到更低浓度的物质。

3.实时监测实时监测是仪器分析技术的另一个发展方向。

在工业生产过程中,及时了解反应的动态变化对于产物质量的控制非常重要。

因此,未来的仪器分析技术需要具备实时监测的能力,能够及时反馈反应信息,以提高生产效率和产品质量。

4.自动化自动化是现代科学研究和工业生产的趋势之一、未来的仪器分析技术将不断朝着自动化方向发展,即仪器能够自主完成分析过程,减少人工操作,提高工作效率和准确性。

二、仪器分析技术的应用1.环境监测仪器分析技术在环境监测中有着重要的应用。

如大气分析仪器可以监测大气中的污染物浓度,水质分析仪器可以监测水体中的污染物浓度等。

通过仪器分析技术,可以及时监测环境中的污染物浓度,为环境管理和环境保护提供科学依据。

2.药物研发在药物研发过程中,仪器分析技术的应用非常广泛。

如质谱仪、核磁共振仪等仪器可以对化合物的结构进行解析,荧光分析仪可以用于药物的荧光特性研究等。

通过仪器分析技术可以快速准确地对药物进行分析,为药物研发提供关键的数据支持。

3.食品安全检测食品安全一直是人们关注的焦点问题之一、仪器分析技术在食品安全检测中具有重要的应用。

仪器分析技术发展趋势及应用

仪器分析技术发展趋势及应用

仪器分析技术发展趋势及应用
一、仪器分析技术发展趋势
1、更高的检测性能:如需要更加精确的检测性能,当前技术已经有
一定水平,仪器分析技术在满足这一要求的同时还要求更快、更高的检测
灵敏度、更小的检测量、更低的检测限度和更广泛的检测范围。

2、信号处理技术:信号处理技术是提高仪器分析的关键所在,该技
术涉及到各种逻辑算法、数字滤波、数字信号处理、数字图像处理、信号
编码解码等。

3、技术服务扩大:现有的仪器分析技术只能应用于实验室,而新的
仪器分析技术要求将技术服务扩大到实地应用,包括现场仪器分析、实时
监控、远程控制、远程信息传递等,以满足实际应用中更广阔的使用范围。

4、信息技术:如今,仪器分析技术应用越来越广泛,数据管理和传
输也在这类技术中占有重要地位,信息技术是完成数据处理和传输的重要
工具,因此,信息技术也将成为仪器分析技术发展的重要组成部分。

二、仪器分析技术的应用
1、材料分析:仪器分析技术可以用于材料分析,可以利用仪器测量
和分析材料的物理、化学和微观结构特性,为材料的研究和开发提供可靠
的数据和依据。

2、药物分析:仪器分析技术可以用于药物分。

仪器分析的原理及其应用

仪器分析的原理及其应用

仪器分析的原理及其应用1. 仪器分析的概述仪器分析是一种利用科学仪器对物质成分进行定性和定量分析的方法。

它依赖于现代科学技术和仪器设备,通过测量和分析样品的性质和特征,来获取有关样品组成、结构和性质的信息。

2. 仪器分析的原理仪器分析的原理基于物质与光、电、磁等能量的相互作用。

根据具体的仪器和分析方法的不同,分析原理也有所差异。

以下是常见的仪器分析原理:•光谱分析:利用物质对电磁波的吸收、发射或散射等现象,通过测量和分析光的强度和频率,可以得到样品的成分和结构信息。

常见的光谱分析方法包括紫外可见吸收光谱、红外光谱和质谱等。

•电化学分析:利用物质在电场或电流作用下的电化学反应,测量和分析电流、电势或电荷的变化,来推断样品的成分和性质。

常见的电化学分析方法有电位滴定、电位法和电化学波谱等。

•色谱分析:利用物质在移动相(液相或气相)和静相(固相或涂覆相)之间分配和迁移的差异,实现对样品分离和分析的方法。

常见的色谱分析方法包括气相色谱、液相色谱和薄层色谱等。

•质谱分析:利用物质在质谱仪中经过聚焦、加速和扫描等过程后,不同质量的离子以不同的比例经过检测器,得到质谱图谱,从而获得样品组分和结构信息的方法。

•核磁共振分析:通过应用外磁场和射频辐射,探测样品中原子核的共振行为,测量核磁共振信号的强度和频率,获得样品的成分和结构信息。

3. 仪器分析的应用仪器分析在各个领域都有广泛的应用,其中一些主要应用领域如下:3.1 化学分析•分子结构分析:利用光谱分析等仪器方法,确定有机分子和化合物的结构和功能基团。

•药物分析:通过质谱分析、液相色谱等仪器方法,对药物的成分进行分析和鉴定,保证药物质量和安全性。

•环境分析:通过仪器分析技术,监测和分析大气、水体和土壤中的污染物,为环境保护和治理提供数据和依据。

3.2 生物医学分析•生物分析:通过核磁共振、质谱分析等技术,对生物样品(如血液、尿液等)中的成分和代谢产物进行定量和定性分析。

仪器分析与表征技术的应用及并行技术的发展趋势

仪器分析与表征技术的应用及并行技术的发展趋势

仪器分析与表征技术的应用及并行技术的发展趋势随着人类对于物质研究深入,越来越多的仪器分析与表征技术应运而生。

这些技术可以用来分析物质性质、组成、结构等,对许多领域都有着重要的应用。

在本文中,我们将探讨仪器分析与表征技术的应用以及并行技术的发展趋势。

一、仪器分析与表征技术的应用1.质谱分析质谱分析是通过对化合物和元素进行分析,进而确定它们的结构和组成。

质谱仪被广泛应用于各个领域,如医药、环境和石油行业等。

在医药领域,质谱分析可用于确定药物的结构和组成,以及测定其纯度和质量。

在环境领域,它可用于分析水、大气和土壤污染物,以了解环境中的污染程度。

而在石油行业,质谱仪被用于研究石油中各种组分的组成和分布,以辅助石油炼制和生产。

2.红外光谱分析红外光谱分析是一种分析化合物结构和化学键的方法。

这种分析技术广泛应用于化学、药物、生物和材料学等领域。

在化学领域,红外光谱分析可用于快速确定化合物的结构、成分和纯度。

在生物领域,它可用于分析蛋白质和核酸等生物大分子的结构和功能。

在材料领域,它可用于研究新型材料的组成和结构,以及评估材料的性能和质量。

3.电子显微镜技术电子显微镜技术是一种用电子束扫描成像的技术,可以研究物质的形貌和微观结构。

它在材料科学、纳米科技、生物学等多个研究领域有着广泛的应用。

在材料领域,电子显微镜技术可用于观察材料的形态、结构和组成,以及评估材料的性能。

在纳米科技领域,电子显微镜技术则可用于研究纳米颗粒、纳米管等微观结构,以及评估纳米材料的性能和应用前景。

在生物领域,电子显微镜技术可用于研究生物体的细胞结构、分子组成和动态过程。

二、并行技术的发展趋势随着计算机科学和技术的发展,多核并行计算技术已成为计算领域的重要研究方向之一。

它可以大幅提高计算速度和效率,对于开发高效分析和表征算法、优化计算过程等方面具有极大的意义。

1.高性能计算高性能计算已成为多核并行技术的一个热门领域。

该领域的研究旨在开发各种类型的高性能计算机、编写高效的计算程序,并通过优化算法、动态调度实现计算资源的高效利用等手段,从而提高计算速度和效率。

食品检验中仪器分析方法的有效应用

食品检验中仪器分析方法的有效应用

食品检验中仪器分析方法的有效应用食品安全是人民生命健康的重要保证。

食品品质和安全性的检测、检验是一个复杂的过程,需要使用高精度的科学仪器对食品成分、食品营养、有害物质等方面进行分析。

食品检验中的仪器分析方法已经成为食品科学领域中不可或缺的分析手段。

本文将介绍食品检验中仪器分析方法的有效应用。

一、食品化学分析方法食品成分分析是检测食品质量的主要手段之一,其中常用的化学分析方法有:高效液相色谱法(HPLC)、气相色谱法(GC)、液相色谱质谱联用技术(LC-MS)等。

这些仪器的应用可以对食品中的各种成分进行定量和定性分析。

例如,使用HPLC技术对食品中的某些物质进行检测,可以发现某些食品中添加了过量的防腐剂、色素等非法添加剂,严重影响了消费者的健康。

食品的营养成分是衡量食品价值的重要指标之一,而营养成分的检测成为衡量食品营养的有效途径。

食品中营养成分的检测可以通过化学分析仪器如气相色谱仪、荧光分析仪、原子吸收光谱仪等进行。

例如,使用原子吸收光谱仪分析食品中的微量元素含量,可以发现某些食品中缺乏重要的营养成分。

食品中的有害物质如农药、重金属等是食品检验中的重点检测对象。

这类化学物质对健康的危害性很大,所以需要对食品中的有害物质进行精细的分析,以确保食品的安全性。

有害物质分析方法可以使用的仪器包括液相色谱-质谱联用仪、气相色谱-质谱联用仪、原子荧光光谱仪等。

例如,使用液相-质谱联用仪对食品中农药残留的检测,可以精确地测定农药的类型和残留量。

食品的口感和气味对食品的质量评价有很大的影响。

感官分析方法是通过观察、嗅闻、口感等因素对食品进行评价。

这类分析方法可用的仪器包括感官评价室、嗅闻室等。

例如,专门的饮食美食师使用感官分析方法对食品的口感、颜色等进行定量分析,确保食品的各种属性均符合标准化技术。

仪器分析技术在食品安全检测中的应用

仪器分析技术在食品安全检测中的应用

仪器分析技术在食品安全检测中的应用随着人们生活水平的提高和饮食习惯的改变,人们对食品质量和安全性的需求与日俱增,食品安全问题关乎到公众的健康和生命安全。

因此,食品安全监管是当今社会的重要任务之一。

而其中最主要的手段就是对食品进行严格的检测和监测。

而仪器分析技术,就是在食品安全检测中不可或缺的关键手段之一。

仪器分析技术是制定和实施食品安全标准的必不可少的手段,它是食品检测过程中技术含量最高的一步。

仪器分析技术广泛应用于食品生产加工、储存运输和销售过程中的全过程控制。

目前根据不同检测目的和特点,主要采用的仪器有色谱仪、质谱仪、原子吸收光谱仪和光谱仪等。

色谱仪是一种能将复杂样品分离和检测的仪器,它能将食品样品中的复杂成分分离出来,以便了解样品中不同成分的含量和特性。

对彩色素、食品添加剂、农药残留、致癌物和禁用药物等进行检测,是色谱仪应用的重点领域。

质谱仪是一种高灵敏度的仪器,具有非常高的检测精度和分辨率,可检测对样品非常敏感的成分,如食品中的微量元素、重金属和氨基酸等,对于检测食品中的微量元素,特别是重金属成分,质谱仪是非常重要的。

原子吸收光谱仪主要用于检测食品中的金属元素。

原子吸收光谱仪在微量元素检测应用中有非常明显的优势,它能够对样品中的铅、汞、镉、铬、锰等十几种元素进行检测,而且检测结果非常准确。

光谱仪则可进行核磁共振、拉曼、紫外、近红外、激光诱导荧光和荧光等技术的应用,广泛应用于食品生产中的检测和判定。

仪器分析技术在食品安全检测中的应用可以追溯到上个世纪,随着科学技术的不断进步,仪器分析技术也得到了不断的提高和改进。

现在,我们已经能够用仪器分析技术精准地检测出食品中的各种成分,保障公众的生命安全。

然而,仪器分析技术的应用仍存在一些局限性。

仪器分析技术虽然可以检测出食品中的成分,但无法直接判断这些成分是否对人体健康产生影响。

因此,在开发新型仪器和推广新技术的同时,我们还应加大对食品安全检测的研究和改进,不断提高食品检测的准确性和灵敏度,创新出更加适合食品安全检测的检测标准和方法。

现代仪器分析技术的应用现状

现代仪器分析技术的应用现状

现代仪器分析技术的应用现状随着科技的不断发展,现代仪器分析技术得到了迅速发展和广泛应用。

其应用涵盖了生命科学、环境监测、材料分析、制药、食品安全等领域,成为各行各业研究和检测的重要手段之一。

一、生命科学领域现代仪器分析技术在生命科学领域中得到了广泛应用。

例如,蛋白质分析技术可以帮助科学家研究蛋白质结构和功能;质谱技术也可以帮助科学家研究蛋白质结构并开发新药。

在基因测序和基因组学领域中,高通量测序技术使得基因测序变得更快,更准确,更便宜。

这些技术都是现代仪器分析技术的重要组成部分。

二、环境监测领域现代仪器分析技术在环境监测领域中也得到了广泛应用。

例如,利用气相色谱-质谱联用技术可以对空气中的各种污染物进行快速、准确的分析;高效液相色谱-质谱联用技术可以对水体中的有机物进行检测。

此外,现代仪器分析技术还可以用于分析土壤中的有毒物质和重金属元素、检测食品中的化学污染物等。

三、材料分析领域现代仪器分析技术在材料分析领域中也得到广泛应用。

例如,X射线衍射技术可以用于分析材料的晶体结构和晶体学性质;扫描电子显微镜可以用于对材料表面进行微观形貌分析;拉曼光谱技术可以用于分析材料的分子结构。

这些技术可以帮助科学家更好地理解材料的性质,从而开发出更好的材料。

四、制药领域现代仪器分析技术在制药领域中也得到了广泛应用。

例如,利用气相色谱技术和高效液相色谱技术可以对药品中的成分进行检测,并确定药品的纯度和质量;利用高效液相色谱质谱联用技术可以对药物代谢产物进行分析。

这些技术可以保证药品的安全和有效性。

五、食品安全领域现代仪器分析技术在食品安全领域中也得到了广泛应用。

例如,利用质谱技术可以对食品中的有害物质进行快速检测;利用高效液相色谱技术可以对食品中的添加剂进行检测。

这些技术可以保证食品的安全和质量。

总之,现代仪器分析技术的应用正在各行各业得到广泛的应用。

未来,这些技术还会得到进一步的发展和应用,为各行各业的研究和检测带来更多的便利和效益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一绪论临床检验技术技术分类:①临床化学检验分析技术(包括自动生化分析、干化学分析、血气分析、电解质分析、电泳分析)②临床免疫学检验分析技术③临床血液学检验和尿液检验分析技术(血细胞分析、血液凝固分析、血液流变分析、流式细胞分析、血红细胞沉降分析和尿液分析)④临床微生物学检验分析技术⑤临床分子生物学检验分析技术二.血细胞分析技术血液由血浆(55%)和血细胞(45%)组成。

(填空题)所谓血细胞计数主要是指计数单位容积中红细胞、白细胞和血小板的个数。

(填空题)白细胞被称为人体卫士,它可以防止外来微生物的侵害及其他感染。

血细胞计数有变阻脉冲法(简称变阻法)、光电计数法和激光计数法。

(大题)变阻法血细胞计数原理:血细胞是电的不良导体,将血细胞置于电解液中,由于细胞很小,一般不会影响电解液的导通程度。

但是如果构成电路的某一小段电解液截面很小,其尺度可与细胞直径相比拟,那么当有细胞浮游到此时,将明显增大整段电解液的等效电阻。

如果该电解液外接恒流源(不论负载阻值如何改变,均提供恒定不变的电流),则此时电解液中两极间的电压是增大的,产生的电压脉冲信号与血细胞的电阻率成正比。

如果控制定量溶有血细胞的电解溶液,使其从小截面通过,也即使血细胞顺序通过小截面,则可得到一连串脉冲,对这些脉冲计数,就可求得血细胞数量。

由于各种血细胞直径不同,所以其电阻率也不同,所测得的脉冲幅度也不同,根据这一特点就可以对各种血细胞进行分类计数。

这就是变阻脉冲法原理。

(填空题)变阻脉冲法计数在大多数细胞计数器中是利用小孔管换能器装置实现的。

(填空题)脉冲的个数与通过小孔的细胞个数相当,脉冲的幅度与细胞体积成正比。

脉冲信号经过下列步骤得出细胞计数结果:放大,阈值调节,甄别,整形。

(填空题)体积不同的红细胞、白细胞、血小板,其产生的脉冲幅度也不同,排列序列以白细胞最大,红细胞次之,血小板最小。

(简答)什么叫细胞直方图:以体积为横坐标,以细胞的相对数量为纵坐标。

把细胞在一个个很小的体积范围(小于2fld,又称通道,频道)内的数量分布情况表达出来,我们称之为直方图。

红细胞直方图(显示范围从24—360fl)血小板直方图(显示范围0—36fl)白细胞直方图(显示范围是30—450fl,在直方图上表现为3个白细胞亚群,35—90fl 范围的淋巴细胞群,可以包括淋巴细胞,91—160fl范围的单个核细胞群,可以包括单核细胞、幼稚细胞,161—450fl 范围的粒细胞群,可以包括嗜酸性细胞、嗜碱性细胞、中性粒细胞。

)白细胞直方图除显示分类外,还显示4个报警区域,如果某个报警区域里的计数值异常增多,就在此区域出现R 报警,R1为直方图上淋巴峰左侧区域有异常,可能有血小板凝块、巨大血小板、有核红细胞、不溶性红细胞和冷凝集素等因素的影响,R2为直方图上淋巴峰和单和峰之间的区域有异常,可能有异型淋巴细胞、幼稚淋巴细胞、浆细胞、嗜酸性细胞或嗜碱性细胞等因素的影响,R3为直方图上核峰和中性粒峰之间的区域有异常有不成熟粒细胞、嗜酸性粒细胞等因素的影响,R4为直方图上中性粒峰右侧区域有异常,粒细胞数量过多,Rm为以上区域2个或2个以上同时有异常。

存在着2个以上的细胞同时通过细孔的现象称为重合现象。

为了在物理上最大限度地减少重合现象,开发出了鞘流法,具体方法为:具体做法是用一毛细管对准小孔管,细胞混悬液从毛细管喷出,同时与四周流出的鞘液一起流过敏感区,保证细胞混悬液在中间形成单个排列的细胞液,四周被鞘液围绕.鞘流技术可应用于两种细胞计数原理:一为电阻抗原理,鞘流通过小孔的敏感区进行细胞计数,另一种为激光计数原理,细胞液流室较长,与激光垂直相交,激光光束对流经的每一个细胞照射后产生光散射,利用此原理进行细胞计数。

(大题)为控制细胞通过小孔时的精密度,除采用鞘流技术外,各厂家还采用了一系列相关技术:脉冲编辑,高精度体积分析,扫流技术,防反流装置VonBehrens感应器,延时计数。

定量装置中的特殊部件主要有负压泵、压力调节器、废液瓶等。

(大题)白细胞分类技术:1.容量、电导、光散射法(VCS)体积(V):测量使用的是电阻抗原理。

电导法(C):根据细胞壁能产生高频电流的性能采用高频电磁探针,测量细胞内部结构、细胞核和细胞浆的比例以及细胞内质粒的大小和密度。

光散射(S):是根据细胞表面光散射的特点提供了注重细胞类型的鉴别方式,来自激光光源的单色光束直接进入计数池的敏感区,在10~70°时对每一个细胞进行扫描分析,提供了细胞结构,形态的光散射信息。

2.阻抗与射频联合法:此类仪器白细胞分类通过三个不同检测系统完成.a嗜酸性细胞检测系统b嗜碱性细胞检测系统c淋巴、单核、粒细胞(中性、嗜碱性、嗜酸性)检测系统3.光散射与细胞化学技术联合法4.多角度偏振光散射技术。

测量正常标本时,可以从这4个角度(0°<1-3>、10°<7-11>、90°垂直光散射<70-110>对白细胞进行测量。

同一种特定的程序自动存储和分析数据,将白细胞分为嗜酸性粒、中性粒、嗜碱性粒、淋巴和单核五种。

(大题)血红蛋白测量原理:血红蛋白的单位是g/100m1(新制是g/L),临床检验时因难以从血液中将其分离出来而采用相对比色法进行间接测量。

用溶血剂将经过稀释的血液中的红细胞破坏,血红蛋白便溶解出来,再加入转化试剂进而转化为颜色稳定的氰化血红蛋白。

血红蛋白含量越高,它的颜色就越深,透光性就越差(或吸光性越强)。

用光电器件检测透射光强度,并与已定标的血红蛋白值相比较,即可得出血红蛋白含量。

常用的光路系统为了防止光散射和外来光干扰,均采用双波长法测量。

在血液样品中加入氰化钾,将生成氰化血红蛋白,这是一种颜色很稳定的物质。

它的光密度曲线在540nm处有一个吸收峰。

(填空)血样分析一般包括吸样、稀释、送样等过程。

三.流式细胞分析技术(简答题)流式细胞仪(FCM):主要功能:可进行细胞多参量分析,包括细胞大小、形状、蛋白荧光、氧化还原状态、膜的结构、流动性、微黏性、膜电位、酶活性、钙离子含量、pH、染色质结构、DNA合成、碱基比例等;进行细胞表型分析;细胞分选、DNA含量分析以及细胞分化周期分析等。

FCM工作原理:将待测细胞染色后制成单细胞悬液。

用一定压力将待测样品压入流动室,不含细胞的磷酸缓冲液在高压下从鞘液管喷出,鞘液管入口方向与待测样品流成一定角度,这样,鞘液就能够包围着样品高速流动,组成一个圆形的流束,待测细胞在鞘液的包被下单行排列,依次通过监测区域。

流式细胞仪通常以激光作为激发光源。

经过聚焦整形后的光束,垂直照射在样品流上,被荧光染色的细胞在激光束的照射下产生散射光和激光荧光。

光散射信号在前向小角度进行检测,这种信号基本上反映了细胞体积的大小。

这些荧光信号的强度代表了所测细胞膜表面抗原的强度或其核内物质的浓度,经光电倍增管接收后可转换为电信号。

细胞的分选是通过分离含有单细胞的液滴而实现的。

流式细胞仪中所用的滤片有中性滤片、带通滤片、带阻滤片、长波通滤片、短波通滤片、长波通双色性反射片(填空题)影响流式细胞术分析的因素:细胞的荧光染色、激光光源的稳定性、细胞流速的稳定性、细胞悬液样品的影响(细胞黏连,团块常造成管道阻塞,重叠细胞可造成分析误差。

)流式细胞仪的组成:光学系统,液流系统,电子系统,计算机系统和数据转换处理系统。

(大题)流式细胞仪的临床应用:在免疫学中的应用(外周血T淋巴细胞亚群的测定,T淋巴细胞亚群用于器官移植后排斥反应的监测,肺泡灌洗液中T淋巴细胞亚群的测定,在艾滋病监测中的应用,细胞内染色和细胞因子的测定);在血液病学中的应用。

四.血凝分析技术生物学方法:凝固法,即将凝血因子激活剂加入到待检血浆中,使血浆发生体外凝固,凝血仪连续记录血浆凝固过程中的一系列变化,并将这些变化信号转变成数据,用计算机收集、处理数据后得出检测结果。

(填空题)可分为三类:电流法、黏度法、光学法。

(判断题)凝血仪根据这种由于血液凝固而导致光强度的变化来判断凝固终点的方法称之为光学法。

(填空或判断题)散射比浊法:根据待检样品在凝固过程中散射光的变化来确定凝固终点的检测方法。

透射比浊法:根据待检样品在凝固过程中吸光度的变化来确定凝固终点的检测方法。

黏度法:在待检样品中加入小铁珠,利用变化的磁场使小铁珠产生运动,随着血浆的凝固,血浆粘稠度增加,小铁珠的运动强度逐渐减弱,仪器根据小铁珠运动强度的变化来确定凝固终点。

生物化学方法是以酶学方法为基础的直接定量法,其优点是用酶学方法直接定量;测定结果准确;重复性好;便于自动化;标准化;所需样品量小。

五.血液流变学分析技术影响血液流变特性因素:红细胞的特性、白细胞的变形性、血小板的聚集性、纤维蛋白原浓度等血液流变特性:红细胞聚集性,红细胞变形性,血液黏度(全血黏度<与流变场中切变率有一定关系>、运动黏度、相对黏度、比黏度、还原黏度)。

血液黏度的测量是其中最重要的指标。

测量血液黏度的仪器目前普遍应用的是毛细管黏度计及回转锥板式黏度计。

毛细管法测血黏度的理论依据是泊肃叶定律。

血液黏度的影响因素:血液中细胞因素的影响<红细胞对血液黏度的影响(红细胞压积是主要影响因素),白细胞对血液黏度的影响,血小板对血液黏度的影响>;血浆血清黏度对血液黏度的影响;温度对血液黏度的影响;酸碱度及渗透压对血液黏度的影响;血液流速对血液黏度的影响;血管对血液黏度的影响;其他如性别,新生儿,运动,时间,季节等。

六.尿液分析技术尿液分析仪是某些化学成分含量的专用自动化仪器,可分为湿式和干式化学系统两大类。

自动尿液分析的原理和方法:(填空或选择题)按测试项目分类:8项尿液分析仪包括尿蛋白(PRO)、尿糖(GLU)、尿PH(PH)、尿酮体(KET)、尿胆红素(BIL)、尿胆原(URO,UBG)、尿潜血(ERY)、尿亚硝酸盐(NTT)。

9项尿液分析仪包括尿8项+尿白细胞(WBC或LUE)。

10项尿液分析仪包括尿8项+尿白细胞、尿比重。

11项尿液分析仪包括尿8项+尿白细胞、尿比重和颜色或维生素C。

12项尿液分析仪包括尿8项+尿白细胞、尿比重、尿液颜色和浊度。

(大题)尿液干化学分析仪的测试原理:多联试剂带的多层膜结构:1尼龙膜<保护作用>2绒制层<过碘酸盐试剂区>3吸水层<使尿均匀快速浸入抑制流到相邻反应区>4塑料片<支持体>空白块是为了消除尿液本身的颜色及试剂块分布的状态不均等所产生测试误差,提高测量准确度而设置的。

原理:当把浸了尿液的试剂带放入分析仪的试剂带传送带槽内,传送系统将试剂带传送到检测器下面进行扫描时,实际带上已经产生化学反应的各种试剂块被光源照射,其反射光被检测器吸收。

相关文档
最新文档