2019-2020年高中数学必修二第一章《立体几何初步》学案

合集下载

2019_2020学年高中数学第一章立体几何初步1.2.3空间中的垂直关系第1课时直线与平面垂直学案新人教B版必修2

2019_2020学年高中数学第一章立体几何初步1.2.3空间中的垂直关系第1课时直线与平面垂直学案新人教B版必修2

第1课时直线与平面垂直1.理解线线垂直、线面垂直的概念.2.掌握直线与平面垂直的判定定理及性质.3.能应用性质定理证明空间位置关系.1.直线与直线的垂直两条直线垂直的定义:如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.2.直线与平面垂直(1)直线与平面垂直的定义:如果一条直线和一个平面相交于点O,并且和这个平面内过交点O的任何直线都垂直,则称这条直线和这个平面互相垂直.这条直线叫做平面的垂线,这个平面叫做直线的垂面,交点叫做垂足,垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的距离.(2)直线和平面垂直的判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线就垂直于这个平面. (简而言之:线线垂直,则线面垂直)(3)推论:如果在两条平行直线中,有一条垂直于平面,那么另一条也垂直于这个平面.3.直线与平面垂直的性质(1)由直线和平面垂直的定义知,直线与平面内的所有直线都垂直,除此以外还有性质定理.(2)垂直于同一个平面的两条直线平行.垂直于同一条直线的两个平面平行.1.下列命题正确的是( )A.垂直于同一条直线的两直线平行B.垂直于同一条直线的两直线垂直C.垂直于同一个平面的两直线平行D.垂直于同一条直线的一条直线和平面平行解析:选C.在空间中垂直于同一直线的两条直线,可能平行,可能相交,也可能异面,所以A,B错;垂直于同一直线的直线和平面的位置关系可以是直线在平面内,也可以是直线和平面平行,所以D错;注意分析清楚给定条件下直线和平面可能的位置关系,不要有遗漏.2.在三棱锥A­BCD中,AB=AD,CB=CD,求证:AC⊥BD.证明:如图取BD的中点E,连接AE,EC.因为AB=AD,BE=ED,所以AE⊥BD.又因为CB=CD,BE=ED,所以CE⊥BD.又AE∩EC=E,所以BD⊥平面ACE,又AC⊂平面ACE,所以AC⊥BD.3.垂直于同一条直线的两条直线平行吗?解:不一定.平行、相交、异面都有可能.线面垂直的判定如图,AB为⊙O的直径,PA垂直于⊙O所在的平面,M为圆周上任意一点,AN ⊥PM,N为垂足.(1)求证:AN⊥平面PBM;(2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.【证明】(1)因为AB为⊙O的直径,所以AM⊥BM.又PA⊥平面ABM,所以PA⊥BM.又因为PA∩AM=A,所以BM⊥平面PAM.又AN⊂平面PAM,所以BM⊥AN.又AN⊥PM,且BM∩PM=M,所以AN⊥平面PBM.(2)由第一问知AN⊥平面PBM,PB⊂平面PBM,所以AN⊥PB.又因为AQ⊥PB,AN∩AQ=A,所以PB⊥平面ANQ.又NQ⊂平面ANQ,所以PB⊥NQ.在本例中若条件不变,在四面体P­AMB的四个面中共有多少个直角三角形.解:由本例第一问的证明过程知,BM⊥平面PAM,又PM⊂平面PAM,所以BM⊥PM.所以∠PAM=∠PAB=∠AMB=∠BMP=90°.所以四个面都是直角三角形.证明线面垂直的方法(1)线线垂直证明线面垂直①定义法(不常用,但由线面垂直可得出线线垂直);②判定定理法:要着力寻找平面内哪两条相交直线(有时作辅助线);结合平面图形的性质(如勾股定理逆定理、等腰三角形底边中线等)及一条直线与平行线中一条垂直也与另一条垂直等结论来论证线线垂直.(2)平行转化法(利用推论)①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.如图所示,S为Rt△ABC所在平面外一点,且SA=SB=SC.点D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若直角边BA=BC,求证:BD⊥平面ASC.证明:(1)法一:在等腰三角形SAC中,D为AC的中点,所以SD⊥AC,取AB的中点E,连接DE、SE.则ED∥BC,又AB⊥BC,所以DE⊥AB.又SE⊥AB,SE∩DE=E,所以AB⊥平面SED,所以AB⊥SD,又AB∩AC=A,所以SD⊥平面ABC.法二:因为D为AC中点,△ABC为直角三角形.所以AD=BD,又SA=SB,SD=SD,所以△SAD≌△SBD,所以∠SDB=∠SDA.又SA=SC,所以SD⊥AC,即∠SDA=90°,所以∠SDB=90°,即SD⊥BD,又BD∩AC=D,所以SD⊥平面ABC.(2)因为BA=BC,所以BD⊥AC,又SD⊥平面ABC,所以SD⊥BD,因为SD∩AC=D,所以BD⊥平面ASC.线面垂直的性质的应用如图,已知矩形ABCD,过A作SA⊥平面AC,再过A作AE⊥SB于点E,过E作EF⊥SC于点F.(1)求证:AF⊥SC;(2)若平面AEF交SD于点G,求证:AG⊥SD.【证明】(1)因为SA⊥平面AC,BC⊂平面AC,所以SA⊥BC,因为四边形ABCD为矩形,所以AB⊥BC.所以BC⊥平面SAB,所以BC⊥AE.又SB⊥AE,SB∩BC=B,所以AE⊥平面SBC,所以AE⊥SC.又EF⊥SC,AE∩EF=E,所以SC⊥平面AEF.所以AF⊥SC.(2)因为SA⊥平面AC,所以SA⊥DC.又AD⊥DC,AD∩SA=A,所以DC⊥平面SAD.所以DC⊥AG.又由(1)有SC⊥平面AEF,AG⊂面AEF,所以SC ⊥AG ,所以AG ⊥平面SDC ,所以AG ⊥SD .证明线线垂直的常用思路线面垂直――→推出定义线线垂直――→推出判定定理线面垂直――→推出定义线线垂直.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC . 求证:(1)MN ∥AD 1; (2)M 是AB 的中点.证明:(1)因为四边形ADD 1A 1为正方形,所以AD 1⊥A 1D . 又因为CD ⊥平面ADD 1A 1,所以CD ⊥AD 1. 因为A 1D ∩CD =D , 所以AD 1⊥平面A 1DC . 又因为MN ⊥平面A 1DC , 所以MN ∥AD 1.(2)如图,连接ON ,在△A 1DC 中,A 1O =OD ,A 1N =NC . 所以ON ═∥12CD .因为CD ═∥AB , 所以ON ∥AM . 又因为MN ∥OA ,所以四边形AMNO 为平行四边形. 所以ON =AM .因为ON =12CD ,所以AM =12DC =12AB .所以M 是AB 的中点.线面垂直的综合应用如图所示,在直四棱柱ABCD ­A 1B 1C 1D 1中,已知DC =DD 1=2AD =2AB ,AD ⊥DC ,AB∥DC .(1)求证:D 1C ⊥AC 1;(2)设E 是DC 上一点,试确定E 的位置,使D 1E ∥平面A 1BD ,并说明理由. 【解】 (1)证明:连接C 1D .因为DC =DD 1,所以四边形DCC 1D 1是正方形,所以DC 1⊥D 1C . 因为AD ⊥DC ,AD ⊥DD 1,DC ∩DD 1=D , 所以AD ⊥平面DCC 1D 1,D 1C ⊂平面DCC 1D 1,所以AD ⊥D 1C .又AD ∩DC 1=D ,所以D 1C ⊥平面ADC 1. 又AC 1⊂平面ADC 1,所以D 1C ⊥AC 1.(2)如图,当E 是CD 的中点时满足条件,连接BE 、D 1E ,因为AB ═∥12CD , 所以四边形ABED 为平行四边形. 所以BE ∥AD ∥A 1D 1.所以四边形BED 1A 1为平行四边形, 所以D 1E ∥A 1B .又D 1E ⊄面A 1BD ,A 1B ⊂A 1BD , 所以D 1E ∥平面A 1BD .综上所述,当E 是DC 的中点时,可使D 1E ∥平面A 1BD .线面垂直与平行的相互转化(1)空间中直线与直线垂直、直线与平面垂直、直线与直线平行可以相互转化,每一种垂直与平行的判定都是从某种垂直与平行开始转化为另一种垂直与平行,最终达到目的的.(2)转化关系:线线垂直判定定理定义线面垂直性质判定定理推论线线平行.如图所示,侧棱垂直于底面的三棱柱ABC ­A 1B 1C 1中,底面ABC 为等腰直角三角形,∠ACB =90°,CE ⊥AB 1,D 为AB 的中点.求证:(1)CD ⊥AA 1; (2)AB 1⊥平面CED .证明:(1)由题意,得AA 1⊥平面ABC ,CD ⊂平面ABC ,所以CD ⊥AA 1.(2)因为D 是AB 的中点,△ABC 为等腰直角三角形,∠ACB =90°,所以CD ⊥AB . 又CD ⊥AA 1,AB ∩A 1A =A ,所以CD ⊥平面A 1B 1BA ,因为AB 1⊂平面A 1B 1BA ,所以CD ⊥AB 1. 又CE ⊥AB 1,CD ∩CE =C , 所以AB 1⊥平面CED .1.直线与直线垂直如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.两条直线垂直包括相交垂直和异面垂直. 2.线面垂直、线线垂直的证明方法 (1)线面垂直的证明方法:①定义法;②判定定理法;③判定定理的推论.(2)线线垂直的证明方法:①定义法;②线面垂直的性质. (3)线线垂直与线面垂直可相互转化.1.直线与平面垂直的定义,应注意:①定义中的“任何直线”这一条件,②直线与平面垂直是相交中的特殊情况,③利用定义可得直线和平面垂直则直线与平面内的所有直线垂直.2.直线与平面垂直应注意两点:①定理中的条件,是“平面内的两条相交直线”既不能说是“两条直线”,也不能说“无数条直线”.②应用定理的关键是在平面内,找到两条相交直线与已知直线垂直.3.“垂直于同一条直线的两条直线平行”要求涉及到的三条直线在同一个平面内,否则不正确.这告诉我们平面几何中的一些结论推广到空间时不一定成立,需要多加注意.1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( )A.平行B.垂直C.相交不垂直D.不确定解析:选B.一条直线垂直于三角形的两条边,那么这条直线必垂直于这个三角形所在的平面,因而必与第三边垂直.2.l1,l2,l3是空间三条不同的直线,则下列命题正确的是( )A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面解析:选B.A答案还有异面或者相交的情况,C、D不一定.3.已知PA垂直于平行四边形ABCD所在平面,若PC⊥BD,平行四边形ABCD一定是.解析:因为PA⊥平面ABCD,所以PA⊥BD.又因为PC⊥BD,PA∩PC=P,所以BD⊥平面PAC,所以BD⊥AC,所以平行四边形ABCD一定是菱形.答案:菱形4.点P是等腰三角形ABC所在平面外一点,PA⊥平面ABC,PA=8,在△ABC中,AB=AC=5,BC=6,则点P到BC的距离是.答案:4 5[学生用书P97(单独成册)])[A 基础达标]1.已知直线a⊥平面α,b∥α,则a与b的关系为( )A.a⊥b,且a与b相交B.a⊥b,且a与b不相交D.a与b不一定垂直解析:选C.过b作平面β,β∩α=b′,则b∥b′,因为a⊥平面α,所以a⊥b′,所以a⊥b.2.已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( ) A.m⊂α,n⊂α,m∥β,n∥β⇒α∥βB.α∥β,m⊂α,n⊂β⇒m∥nC.m⊥α,m⊥n⇒n∥αD.m∥n,n⊥α⇒m⊥α解析:选D.由直线与平面垂直的判定定理的推论可知D正确.3.E、F分别是正方形ABCD中AB、BC的中点,沿DE、DF及EF把△ADE、△CDF和△BEF 折起,使A、B、C三点重合于一点P,则有( )A.DP⊥平面PEF B.DE⊥平面PEFC.EF⊥平面PEF D.DF⊥平面PEF解析:选A.如图所示,A、B、C三点重合于点P,则PD⊥PE,PD⊥PF,又PE∩PF=P,所以PD⊥平面PEF.4.如图,设平面α∩平面β=PQ,EG⊥平面α,FH⊥平面α,垂足分别为G,H.为使PQ⊥GH,则需增加的一个条件是( )A.EF⊥平面αB.EF⊥平面βC.PQ⊥GE解析:选B .因为EG ⊥平面α,PQ ⊂平面α,所以EG ⊥PQ .若EF ⊥平面β,则由PQ ⊂平面β,得EF ⊥PQ .又EG 与EF 为相交直线,所以PQ ⊥平面EFHG ,所以PQ ⊥GH ,故选B .5.在正方体ABCD ­A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总保持AP ⊥BD 1,则动点P 的轨迹是( )A .线段B 1C B .线段BC 1C .BB 1中点与CC 1中点连成的线段D .BC 中点与B 1C 1中点连成的线段解析:选A .如图,由于BD 1⊥平面AB 1C ,故点P 一定位于B 1C 上.6.如图,▱ADEF 的边AF ⊥平面ABCD ,AF =2,CD =3,则CE =.解析:因为AF ⊥平面ABCD ,AF ∥DE ,所以DE ⊥平面ABCD ,CD ⊂平面ABCD ,所以DE ⊥CD ,因为DE =AF =2,CD =3,所以CE =22+33=13.答案:137.α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个论断:①m ∥n ;②α∥β;③m ⊥α;④n ⊥β.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题: .答案:⎭⎪⎬⎪⎫m ∥n α∥βm ⊥α⇒n ⊥β 8.如图所示,在矩形ABCD 中,AB =1,BC =a (a >0),PA ⊥平面AC ,且PA =1,若BC 边上存在点Q ,使得PQ ⊥QD ,则a 的最小值为 .解析:因为PA ⊥平面ABCD ,所以PA ⊥QD . 若BC 边上存在一点Q ,使得QD ⊥PQ , 则有QD ⊥平面PAQ ,从而QD ⊥AQ .在矩形ABCD 中,当AD =a <2时,直线BC 与以AD 为直径的圆相离,故不存在点Q ,使PQ ⊥DQ .所以当a ≥2时,才存在点Q ,使得PQ ⊥QD .所以a 的最小值为2. 答案:29.如图,在四棱锥P ­ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,AP =AB =2,BC =22,E ,F 分别是AD ,PC 的中点.证明:PC ⊥平面BEF .证明:如图所示,连接PE ,EC , 在Rt △PAE 和Rt △CDE 中,因为PA =AB =CD ,AE =DE ,所以PE =CE ,即△PEC 是等腰三角形. 又因为F 是PC 的中点,所以EF ⊥PC . 又因为BP = AP 2+AB 2=22=BC ,F 是PC 的中点,所以BF ⊥PC .又因为BF ∩EF =F ,所以PC ⊥平面BEF . 10.侧棱垂直于底面的三棱柱ABC ­A ′B ′C ′满足∠BAC =90°,AB =AC =12AA ′=2,点M ,N 分别为A ′B ,B ′C ′的中点.(1)求证:MN ∥平面A ′ACC ′; (2)求证:A ′N ⊥平面BCN ; (3)求三棱锥C ­MNB 的体积. 解:(1)证明:如图,连接AB ′,AC ′,因为四边形ABB ′A ′为矩形,M 为A ′B 的中点,所以AB ′与A ′B 交于点M ,且M 为AB ′的中点,又点N 为B ′C ′的中点,所以MN ∥AC ′, 又MN ⊄平面A ′ACC ′,且AC ′⊂平面A ′ACC ′, 所以MN ∥平面A ′ACC ′.(2)证明:因为A ′B ′=A ′C ′=2,点N 为B ′C ′的中点, 所以A ′N ⊥B ′C ′.又BB ′⊥平面A ′B ′C ′,所以A ′N ⊥BB ′, 所以A ′N ⊥平面B ′C ′CB ,所以A ′N ⊥平面BCN . (3)由图可知V C ­MNB =V M ­BCN , 因为∠BAC =90°, 所以BC =AB 2+AC 2=22,S △BCN =12×22×4=42.由(2)及∠B ′A ′C ′=90°可得A ′N =2, 因为M 为A ′B 的中点, 所以M 到平面BCN 的距离为22, 所以V C ­MNB =V M ­BCN =13×42×22=43.[B 能力提升]11.在正方体ABCD ­A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( ) A .AC B .BD C .A 1DD .A 1A解析:选B.如图所示,连接AC,BD,因为BD⊥AC,A1C1∥AC,所以BD⊥A1C1,因为BD⊥A1A,A1A∩A1C1=A1,所以BD⊥平面ACC1A1,因为CE⊂平面ACC1A1,所以BD⊥CE.12.如图所示,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中,正确结论的序号是.解析:对于①、③,因为PA⊥平面ABC,故PA⊥BC.又BC⊥AC,故BC⊥平面PAC,从而BC⊥AF.故③正确.又AF⊥PC,故AF⊥平面PBC,所以AF⊥PB,故①正确.对于②,由①知AF⊥PB,而AE⊥PB,从而PB⊥平面AEF,故EF⊥PB.故②正确.对于④,AE与平面PBC不垂直,故④不正确.答案:①②③13.如图,四棱锥P­ABCD中,O是底面正方形ABCD的中心,侧棱PD⊥底面ABCD,PD =DC,E是PC的中点.(1)证明:EO∥平面PAD;(2)证明:DE⊥平面PBC.证明:(1)连接AC,因为点O是底面正方形ABCD的中心,所以点O是AC的中点,又因为E是PC的中点,所以在△PAC中,EO是中位线,所以PA∥EO.因为EO⊄平面PAD,PA⊂平面PAD,所以EO∥平面PAD.(2)因为PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC,因为底面ABCD是正方形,有BC⊥DC,所以BC⊥平面PDC.而DE⊂平面PDC,所以BC⊥DE.因为PD=DC,可知△PDC是等腰直角三角形,而DE是斜边PC的中线,所以DE⊥PC.又BC,PC⊂平面PBC,且BC∩PC=C,所以DE⊥平面PBC.14.(选做题)如图,A、B、C、D为空间四点,在△ABC中,AC=BC,等边三角形ADB 以AB为轴转动,问是否总有AB⊥CD?证明你的结论.解:当△ADB以AB为轴转动时,总有AB⊥CD.证明如下:①当点D在平面ABC内时,因为AC=BC,AD=BD,所以C、D都在线段AB的垂直平分线上.所以CD⊥AB.②当点D不在平面ABC内时,取AB中点O,连DO,CO.因为AC=BC,AD=BD,所以CO⊥AB,DO⊥AB.又CO∩DO=O,所以AB⊥平面COD.因为CD⊂平面COD,所以AB⊥CD.综上所述,总有AB⊥CD.。

数学必修2立体几何第一章全部教(学)案

数学必修2立体几何第一章全部教(学)案

第一章:空间几何体1.1.1柱、锥、台、球的结构特征(一)一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学过程:一、创设情景,揭示课题1. 讨论:经典的建筑给人以美的享受,其中奥秘为何?世间万物,为何千姿百态?2. 提问:小学与初中在平面上研究过哪些几何图形?在空间围上研究过哪些?3. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.二、讲授新课:1. 教学棱柱、棱锥的结构特征:①提问:举例生活中有哪些实例给我们以两个面平行的形象?②讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?③定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱.→列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.④分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.表示:棱柱ABCDE-A’B’C’D’E’⑤讨论:埃及金字塔具有什么几何特征?⑥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形认识:底面、侧面、侧棱、顶点、高. →讨论:棱锥如何分类及表示?⑦讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.2. 教学圆柱、圆锥的结构特征:①讨论:圆柱、圆锥如何形成?②定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.→列举生活中的棱柱实例→结合图形认识:底面、轴、侧面、母线、高. →表示方法③讨论:棱柱与圆柱、棱柱与棱锥的共同特征?→柱体、锥体.④观察书P2若干图形,找出相应几何体;举例:生活中的柱体、锥体.3.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

2019-2020学年度最新北师大版高中数学必修二学案:第一章 1 简单几何体

2019-2020学年度最新北师大版高中数学必修二学案:第一章 1 简单几何体

2019-2020学年度最新北师大版高中数学必修二学案:第一章1简单几何体 1.理解旋转体与多面体的概念.2.掌握球、圆柱、圆锥、圆台的结构特征.3.掌握棱柱、棱锥、棱台的基本性质.知识点一两平面平行和直线与平面垂直的概念思考1如何定义两平面平行?思考2如何判定直线与平面垂直?梳理(1)________________的两个平面平行.(2)如果一条直线与一个平面内的__________________都垂直,则这条直线与这个平面垂直.知识点二旋转体与多面体知识点三常见的旋转体及概念思考1以直角三角形的一条直角边所在的直线为轴旋转180°所得的旋转体是圆锥吗?思考2能否由圆锥得到圆台?梳理记作:球O 球面:以_______线为旋转轴,将半圆________面.球体:球面所围成的几何体叫作球体,简称球记作:圆柱OO′以直线为旋转轴,其余各边旋转而形成的的几何体叫作圆柱记作:圆锥OO′以直角三角形的__________直线为旋转轴,其余各边旋转而形成的的几何体叫作圆锥记作:圆台OO′以直角梯形_____________在的直线为旋转轴,其余各边旋转而形成的所围成的几何体叫作圆台特别提醒:(1)经过旋转体轴的截面称为该几何体的轴截面.(2)圆柱的母线互相平行,圆锥的母线相交于圆锥的顶点,圆台的母线延长后相交于一点.知识点四常见的多面体及相关概念思考观察下列多面体,试指明其类别.梳理(1)棱柱①定义要点:(ⅰ)两个面________________;(ⅱ)其余各面都是________________;(ⅲ)每相邻两个四边形的公共边都________________.②相关概念:底面:两个________________的面.侧面:除底面外的其余各面.侧棱:相邻______________的公共边.顶点:底面多边形与________的公共顶点.③记法:如三棱柱ABC-A1B1C1.④分类及特殊棱柱:(ⅰ)按底面多边形的边数分,有____________________、________________、________________、…….(ⅱ)直棱柱:侧棱________于底面的棱柱.(ⅲ)正棱柱:底面是________________的直棱柱.(2)棱锥①定义要点:(ⅰ)有一个面是________________;(ⅱ)其余各面是三角形;(ⅲ)这些三角形有一个________________.②相关概念:底面:除去棱锥的侧面余下的那个________________.侧面:除底面外的其余__________面.侧棱:相邻两个________的公共边.顶点:________的公共顶点.③记法:如三棱锥S-ABC.④分类及特殊棱锥:(ⅰ)按底面多边形的边数分,有________、__________、__________、……,(ⅱ)正棱锥:底面是______________,且各侧面________的棱锥.(3)棱台①定义要点:用一个______________________的平面去截棱锥,________与________之间的部分.②相关概念:上底面:原棱锥的________.下底面:原________的底面.侧棱:相邻的________的公共边.顶点:________与底面的公共顶点.③记法:如三棱台ABC-A1B1C1.④分类及特殊棱台:(ⅰ)按底面多边形的边数分,有____________________、________________、________________、……,(ⅱ)正棱台:由________________截得的棱台.类型一旋转体的概念例1下列命题正确的是________.(填序号)①以直角三角形的一边所在直线为旋转轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰所在直线为旋转轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④以等腰三角形的底边上的高线所在的直线为旋转轴,其余各边旋转一周形成的几何体是圆锥;⑤半圆面绕其直径所在直线旋转一周形成球;⑥用一个平面去截球,得到的截面是一个圆面.反思与感悟(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成.②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.跟踪训练1下列命题:①圆柱的轴截面是过母线的截面中最大的一个;②用任意一个平面去截圆锥得到的截面一定是一个圆;③圆台的任意两条母线的延长线,可能相交也可能不相交;④球的半径是球心与球面上任意一点的连线段.其中正确的个数为()A.0 B.1C.2 D.3类型二多面体及其简单应用例2(1)下列关于多面体的说法正确的个数为________.①所有的面都是平行四边形的几何体为棱柱;②棱台的侧面一定不会是平行四边形;③底面是正三角形,且侧棱相等的三棱锥是正三棱锥;④棱台的各条侧棱延长后一定相交于一点;⑤棱柱的每一个面都不会是三角形.(2)如图所示,长方体ABCD-A1B1C1D1.①这个长方体是棱柱吗?如果是,是几棱柱?为什么?②用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,说明理由.(提示:可以证明BC綊MN)引申探究若用一个平面去截本例(2)中的四棱柱,能截出三棱锥吗?反思与感悟(1)棱柱的识别方法①两个面互相平行.②其余各面都是四边形.③每相邻两个四边形的公共边都互相平行.(2)棱锥的识别方法①有一个面是多边形.②其余各面都是有一个公共顶点的三角形.③棱锥仅有一个顶点,它是各侧面的公共顶点.④对几类特殊棱锥的认识(ⅰ)三棱锥是面数最少的多面体,又称四面体.它的每一个面都可以作为底面.(ⅱ)各棱都相等的三棱锥称为正四面体.(ⅲ)正棱锥有以下性质:侧面是全等的等腰三角形,顶点与底面正多边形中心的连线与底面垂直.(3)棱台的识别方法①上、下底面互相平行.②各侧棱延长交于一点.跟踪训练2下列说法正确的是()A.有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台B.两底面平行,并且各侧棱也互相平行的几何体是棱柱C.棱锥的侧面可以是四边形D.棱柱中两个互相平行的平面一定是棱柱的底面1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个2.关于下列几何体,说法正确的是()A.图①是圆柱B.图②和图③是圆锥C.图④和图⑤是圆台D.图⑤是圆台3.下面有关棱台说法中,正确的是()A.上下两个底面平行且是相似四边形的几何体是四棱台B.棱台的所有侧面都是梯形C.棱台的侧棱长必相等D.棱台的上下底面可能不是相似图形4.等腰三角形ABC绕底边上的中线AD所在的直线旋转一周所得的几何体是() A.圆台B.圆锥C.圆柱D.球5.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的母线长为________.1.圆柱、圆锥、圆台的关系如图所示.2.棱柱、棱锥、棱台定义的关注点(1)棱柱的定义有以下两个要点,缺一不可:①有两个平面(底面)互相平行;②其余各面(侧面)每相邻两个面的公共边(侧棱)都互相平行.(2)棱锥的定义有以下两个要点,缺一不可:①有一个面(底面)是多边形;②其余各面(侧面)是有一个公共顶点的三角形.(3)用一水平平面截棱锥可得到棱台.答案精析问题导学知识点一思考1两平面无公共点.思考2直线和平面内的任何一条直线都垂直.梳理(1)无公共点(2)任何一条直线知识点二平面曲线旋转面旋转体平面多边形多面体知识点三思考1不是.以直角三角形的一条直角边所在的直线为轴旋转180°所得的旋转体是圆锥的一半,不是整个圆锥.思考2用平行于圆锥底面的平面截去一个圆锥可以得到.梳理半圆的直径曲面圆心球面球心矩形的一边曲面一条直角边曲面垂直于底边的腰曲面旋转轴旋转轴圆面不垂直于旋转轴不垂直于旋转轴知识点四思考(1)五棱柱;(2)四棱锥;(3)三棱台.梳理(1)①(ⅰ)互相平行(ⅱ)四边形(ⅲ)互相平行②互相平行两个侧面侧面④(ⅰ)三棱柱四棱柱五棱柱(ⅱ)垂直(ⅲ)正多边形(2)①(ⅰ)多边形(ⅲ)公共顶点②多边形三角形侧面侧面④(ⅰ)三棱锥四棱锥五棱锥(ⅱ)正多边形全等(3)①平行于棱锥底面底面截面②截面棱锥侧面侧面④(ⅰ)三棱台四棱台五棱台(ⅱ)正棱锥题型探究例1④⑤⑥解析①以直角三角形的一条直角边所在直线为旋转轴旋转一周才可以得到圆锥;②以直角梯形垂直于底边的腰所在直线为旋转轴旋转一周可得到圆台;③它们的底面为圆面;④⑤⑥正确.跟踪训练1 C例2 3解析①中两个四棱柱放在一起,如下图所示,能保证每个面都是平行四边形,但并不是棱柱.故①错;②中棱台的侧面一定是梯形,不可能为平行四边形,②正确;根据棱锥的概念知,③正确;根据棱台的概念知,④正确;棱柱的底面可以是三角形,故⑤错.正确的个数为3.(2)解①长方体是棱柱,是四棱柱.因为它有两个平行的平面ABCD与A1B1C1D1,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,符合棱柱的定义.②用平面BCNM把这个长方体分成两部分,其中一部分有两个平行的平面BB1M与CC1N,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,符合棱柱的定义,所以是三棱柱,可用符号表示为三棱柱BB1M-CC1N;另一部分有两个平行的平面ABMA1与DCND1,其余各面都是四边形且每相邻两个四边形的公共边互相平行,符合棱柱的定义,所以是四棱柱,可用符号表示为四棱柱ABMA1-DCND1.引申探究解如图,几何体B-A1B1C1就是三棱锥.跟踪训练2B[A中所有侧棱不一定交于一点,故A不正确;B正确;C中棱锥的侧面一定是三角形,故C不正确;D中棱柱的侧面也可能平行,故D不正确.]当堂训练1.D[由棱柱的定义知,①③为棱柱.]2.D[由旋转体的结构特征知,D正确.]3.B[由棱台的结构特征知,B正确.]4.B[中线AD⊥BC,左右两侧对称,旋转体为圆锥.]5.2解析如图所示,设等边三角形ABC为圆锥的轴截面,由题意知,圆锥的母线长即为△ABC的边长,且S△ABC=34AB 2,∴3=34AB2,∴AB=2.故答案为2.11 / 11。

2019_2020学年高中数学第一章立体几何初步1.2.1平面的基本性质与推论学案新人教B版必修2

2019_2020学年高中数学第一章立体几何初步1.2.1平面的基本性质与推论学案新人教B版必修2

若 A∈l,B∈l,A∈α, B∈α,则 l⊂α
过直线
经过不在同一条直线上的三
若 A,B,C 三点不共线,
基本
点,有且只有一个平面,简称
则有且只有一个平面
性质 2 为不共线的三点确定一个平
α,使 A∈α,B∈α,C

∈α
基本 性质 3
如果不重合的两个平面有一 个公共点,那么它们有且只有 一条过这个点的公共直线
2.如图,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,且 C∉ l,则平面 ABC 与平面β的交线是( )
A.直线 AC B.直线 BC C.直线 AB D.直线 CD 解析:选 D.由题意知平面 ABC 与平面β有公共点 C,根据基本性质 3,这两平面必定 相交,有且只有一条经过点 C 的交线.由于两点确定一条直线,所以只要再找到两平面的另 一个公共点即可.显然点 D 在直线 AB 上,从而它在平面 ABC 内;而 D 在直线 l 上,所以它 又在平面β内,这样 D 也是平面 ABC 与平面β的公共点.因此平面 ABC 与平面β的交线是直 线 CD. 3.已知α,β为平面,A,B,M,N 为点,a 为直线,下列推理错误的是( ) A.A∈a,A∈β,B∈a,B∈β⇒a⊂β B.M∈α,M∈β,N∈α,N∈β⇒α∩β=MN C.A∈α,A∈β⇒α∩β=A D.A,B,M∈α,A,B,M∈β,且 A,B,M 不共线⇒α,β重合 解析:选 C.选项 C 中,α与β有公共点 A,则它们有过点 A 的一条交线,而不是点 A, 故 C 错. 4.空间四点 A,B,C,D 共面但不共线,那么这四点中( ) A.必有三点共线 B.必有三点不共线 C.至少有三点共线 D.不可能有三点共线 解析:选 B.若 AB∥CD,则 AB,CD 共面,但 A,B,C,D 任何三点都不共线,故排除 A, C;若直线 l 与直线外一点 A 在同一平面内,且 B,C,D 三点在直线 l 上,所以排除 D.故 选 B.

2019-2020高中数学 第一章 立体几何初步章末复习课学案 北师大版必修2

2019-2020高中数学 第一章 立体几何初步章末复习课学案 北师大版必修2

第一章立体几何初步章末复习课网络构建核心归纳1.多面体的结构特征(1)棱柱的侧棱都互相平行且相等,上下底面是全等的多边形. (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形. (3)棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形. 2.旋转体的结构特征(1)圆柱可以由矩形绕一边所在的直线旋转一周得到.(2)圆锥可以由绕直角三角形一条直角边所在的直线旋转一周得到.(3)圆台可以由直角梯形绕垂直于底边的腰所在直线或等腰梯形绕上、下底面中心连线旋转一周得到,也可由平行于底面的平面截圆锥得到. (4)球可以由半圆或圆绕直径所在直线旋转一周得到. 3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是: (1)画几何体的底面在已知图形中取互相垂直的x 轴、y 轴,两轴相交于点O ,画直观图时,把它们画成对应的x ′轴、y ′轴,两轴相交于点O ′,且使∠x ′O ′y ′=45°,已知图形中平行于x 轴、y轴的线段,在直观图中平行于x ′轴、y ′轴.已知图形中平行于x 轴的线段,在直观图中长度不变,平行于y 轴的线段,长度变为原来的一半. (2)画几何体的高在已知图形中过O 点作z 轴垂直于xOy 平面,在直观图中对应的z ′轴,也垂直于x ′O ′y ′平面,已知图形中平行于z 轴的线段,在直观图中仍平行于z ′轴且长度不变. 4.空间几何体的三视图空间几何体的三视图是用平行投影得到的,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是全等的,三视图包括主视图、左视图、俯视图. 5.平面的基本性质公理1 过不在一条直线上的三点,有且只有一个平面.公理2 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 6.(1)公理4 平行于同一条直线的两直线平行. (2)空间直线与直线的位置关系有且只有三种:⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧相交直线平行直线异面直线:不同在任何一个平面内,没有公共点.7.直线与平面的位置关系(1)直线a与平面α的位置关系有平行、相交、在平面内,其中平行与相交统称直线在平面外.(2)直线和平面平行的判定①定义:直线和平面没有公共点,则称直线平行平面;②判定定理:aα,bα,a∥b⇒a∥α;③其他判定方法:α∥β,aα⇒a∥β.(3)直线和平面平行的性质定理:a∥α,aβ,α∩β=l⇒a∥l.(4)直线和平面垂直①定义如果一条直线l和一个平面α内的任意一条直线都垂直,那么就说这条直线和平面α互相垂直.②判定与性质a.判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.b.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.8.两平面的位置关系(1)两个平面的位置关系有平行、相交.(2)两个平面平行的判定①定义:两个平面没有公共点,称这两个平面平行;②判定定理:aα,bα,a∩b=M,a∥β,b∥β⇒α∥β;(3)两个平面平行的性质定理α∥β,aα⇒a∥β;α∥β,r∩α=a,r∩β=b⇒a∥b.(4)与垂直相关的平行的判定①a⊥α,b⊥α⇒a∥b;②a⊥α,a⊥β⇒α∥β.(5)两个平面垂直①二面角的平面角以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角.②定义如果两个相交平面所成的二面角是直二面角,就说这两个平面互相垂直.③判定和性质a.判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.b.性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.9.多面体的侧面积(1)设直棱柱高为h ,底面多边形的周长为c ,则S 直棱柱侧=ch .(2)设正n 棱锥底面边长为a ,底面周长为c ,斜高为h ′,则S 正棱锥侧=12nah ′=12ch ′.(3)设正n 棱台下底面边长为a ,周长为c ,上底面边长为a ′,周长为c ′,斜高为h ′,则S 正棱台侧=12n (a +a ′)h ′=12(c +c ′)h ′.10.旋转体的表面积(1)如果圆柱的底面半径为r ,母线长为l ,那么圆柱的底面面积为πr 2,侧面积为2πrl .因此,圆柱的表面积S =2πr 2+2πrl =2πr (r +l ).(2)如果圆锥的底面半径为r ,母线长为l ,那么它的侧面积为πrl ,表面积S =πr 2+πrl =πr (r +l ).(3)如果圆台的两底面半径分别为r ′、r ,母线长为l ,则侧面积为π(r ′+r )l ,表面积为S =π(r ′2+r 2+r ′l +rl ).(4)球的表面积公式:S =4πR 2(其中R 为球的半径)即球面面积等于它的大圆面积的四倍. 11.几何体的体积公式(1)柱体的体积V 柱体=Sh (其中S 为柱体的底面面积,h 为高). 特别地,底面半径是r ,高是h 的圆柱体的体积V 圆柱=πr 2h . (2)锥体的体积V 锥体=13Sh (其中S 为锥体的底面面积,h 为高).特别地,底面半径是r ,高是h 的圆锥的体积V 圆锥=13πr 2h .(3)台体的体积V 台体=13h (S +SS ′+S ′)(其中S ′,S 分别是台体上、下底面的面积,h 为高).特别地,上、下底面的半径分别是r ′、r ,高是h 的圆台的体积V 圆台=13πh (r 2+rr ′+r ′2).(4)球的体积V 球=43πR 3(其中R 为球的半径).要点一 三视图与直观图由三视图确定几何体分三步:第一步:通过主视图和左视图确定是柱体、锥体还是台体.若主视图和左视图为矩形,则原几何体为柱体;若主视图和左视图为等腰三角形,则原几何体为锥体;若主视图和左视图为等腰梯形,则原几何体为台体.第二步:通过俯视图确定是多面体还是旋转体.若俯视图为多边形,则原几何体为多面体;若俯视图为圆,则原几何体为旋转体.第三步:由“长对正、高平齐、宽相等”的原则确定几何体的尺寸.【例1】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6 2B.6C.4 2D.4解析由多面体的三视图可知该几何体的直观图为一个三棱锥,如图所示.其中面ABC⊥面BCD,△ABC为等腰直角三角形,AB=BC=4,取BC的中点M,连接AM,DM,则DM⊥面ABC,在等腰△BCD中,BD=DC=25,BC=DM=4,所以在Rt△AMD中,AD=AM2+DM2=42+22+42=6,又在Rt△ABC中,AC=42<6,故该多面体的各条棱中,最长棱为AD,长度为6,故选B.答案 B【训练1】某几何体的三视图如图所示,则该几何体的体积为( )A.12B.18C.24D.30解析由俯视图可以判断该几何体的底面为直角三角形,由主视图和左视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,V 棱柱ABC -A 1B 1C 1=S △ABC ·AA 1=12×4×3×5=30,V棱锥P -A 1B 1C 1=13S △A 1B 1C 1·PB 1=13×12×4×3×3=6.故几何体ABC -PA 1C 1的体积为30-6=24.故选C.答案 C【训练2】 某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π解析 由三视图可知该几何体由长方体和圆柱的一半组成.其中长方体的长、宽、高分别为4、2、2,圆柱的底面半径为2,高为4.所以该几何体的体积V =4×2×2+12π×22×4=16+8π.故选A. 答案 A要点二 空间中的平行关系 1.判断线面平行的两种常用方法:面面平行判定的落脚点是线面平行,因此掌握线面平行的判定方法是必要的,判定线面平行的两种方法:(1)利用线面平行的判定定理;(2)利用面面平行的性质,即当两平面平行时,其中一平面内的任一直线平行于另一平面. 2.判断面面平行的常用方法: (1)利用面面平行的判定定理;(2)面面平行的传递性(α∥β,β∥γ⇒α∥γ); (3)利用线面垂直的性质(l ⊥α,l ⊥β⇒α∥β).【例2】 如图所示,四边形ABCD 是平行四边形,PB ⊥平面ABCD ,MA ∥PB ,PB =2MA .在线段PB 上是否存在一点F ,使平面AFC ∥平面PMD ?若存在,请确定点F 的位置;若不存在,请说明理由.解 当点F 是PB 的中点时,平面AFC ∥平面PMD ,证明如下:如图连接AC 和BD 交于点O ,连接FO ,则PF =12PB .∵四边形ABCD 是平行四边形, ∴O 是BD 的中点,∴OF ∥PD . 又O F⃘平面PMD ,PD 平面PMD , ∴OF ∥平面PMD .又MA 綊12PB ,∴PF 綊MA ,∴四边形AFPM 是平行四边形, ∴AF ∥PM .又A F⃘平面PMD ,PM 平面PMD . ∴AF ∥平面PMD .又AF ∩OF =F ,AF 平面AFC ,OF 平面AFC . ∴平面AFC ∥平面PMD .【训练3】 如图,E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点,求证:(1)GE ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H . 证明 (1)如图,取B 1D 1中点O , 连接GO ,OB ,易证OG 綊12B 1C 1,BE 綊12B 1C 1,∴OG 綊BE ,四边形BEGO 为平行四边形. ∴OB ∥GE .∵OB 平面BDD 1B 1,G E⃘平面BDD 1B 1,∴GE ∥平面BDD 1B 1.(2)由正方体性质得B 1D 1∥BD , ∵B 1D 1平面BDF ,B D⃘平面BDF ,∴B 1D 1∥平面BDF . 连接HB ,D 1F ,易证HBFD 1是平行四边形,得HD 1∥BF . ∵HD 1平面BDF ,BF 平面BDF ,∴HD 1∥平面BDF . ∵B 1D 1∩HD 1=D 1, ∴平面BDF ∥平面B 1D 1H . 要点三 空间中的垂直关系 空间垂直关系的判定方法: (1)判定线线垂直的方法:①计算所成的角为90°(包括平面角和异面直线所成的角); ②线面垂直的性质(若a ⊥α,b α,则a ⊥b ). (2)判定线面垂直的方法:①线面垂直定义(一般不易验证任意性);②线面垂直的判定定理(a ⊥b ,a ⊥c ,b α,c α,b ∩c =M ⇒a ⊥α); ③平行线垂直平面的传递性质(a ∥b ,b ⊥α⇒a ⊥α);④面面垂直的性质(α⊥β,α∩β=l ,a β,a ⊥l ⇒a ⊥α); ⑤面面平行的性质(a ⊥α,α∥β⇒a ⊥β);⑥面面垂直的性质(α∩β=l ,α⊥γ,β⊥γ⇒l ⊥γ). (3)面面垂直的判定方法:①根据定义(作两平面构成二面角的平面角,计算其为90°); ②面面垂直的判定定理(a ⊥β,a α⇒α⊥β).【例3】 如图,A ,B ,C ,D 为空间四点.在△ABC 中,AB =2,AC =BC =2,等边三角形ADB 以AB 为轴运动. (1)当平面ADB ⊥平面ABC 时,求CD 的长;(2)当△ADB 转动时,是否总有AB ⊥CD ?证明你的结论.解 (1)如图,取AB 的中点E ,连接DE ,CE ,因为△ADB 是等边三角形,所以DE ⊥AB .当平面ADB ⊥平面ABC 时,因为平面ADB ∩平面ABC =AB ,所以DE ⊥平面ABC ,因为CE平面ABC ,可知DE ⊥CE ,由已知可得DE=3,EC =1,在Rt△DEC 中,CD =DE 2+EC 2=2. (2)当△ADB 以AB 为轴转动时,总有AB ⊥CD .证明如下:①当D 在平面ABC 内时,因为AC =BC ,AD =BD , 所以C ,D 都在线段AB 的垂直平分线上,即AB ⊥CD . ②当D 不在平面ABC 内时,取AB 中点E ,由(1)知AB ⊥DE .又因AC =BC ,所以AB ⊥CE .又DE ,CE 为相交直线,所以AB ⊥平面CDE ,由CD 平面CDE ,得AB ⊥CD .综上所述,总有AB ⊥CD .【训练4】 如图,在三棱锥V -ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC =2,O ,M 分别为AB ,VA 的中点. (1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V -ABC 的体积.(1)证明 ∵O ,M 分别为AB ,VA 的中点, ∴OM ∥VB .∵V B⃘平面MOC ,OM 平面MOC , ∴VB ∥平面MOC .(2)证明 ∵AC =BC ,O 为AB 的中点,∴OC ⊥AB .又∵平面VAB ⊥平面ABC ,且平面VAB ∩平面ABC =AB ,OC 平面ABC ,∴OC ⊥平面VAB . ∵OC 平面MOC ,∴平面MOC ⊥平面VAB . (3)解 在等腰直角△ACB 中,AC =BC =2, ∴AB =2,OC =1, ∴S △VAB =34AB 2= 3. ∵OC ⊥平面VAB ,∴V C -VAB =13OC ·S △VAB =13×1×3=33,∴V V -ABC =V C -VAB =33. 要点四 几何体的表面积与体积几何体的表面积和体积的计算是现实生活中经常遇到的问题,如制作物体中的如何下料问题、材料最省问题、相同材料容积最大问题,都涉及表面积和体积的计算.特别是特殊的柱、锥、台,在计算中要注意其中矩形、梯形及直角三角形等重要的平面图形的使用,对于圆柱、圆锥、圆台,要重视旋转轴所在轴截面、底面圆的作用.割补法、构造法是常用的技巧.【例4】 如图所示,已知三棱柱ABC -A ′B ′C ′,侧面B ′BCC ′的面积是S ,点A ′到侧面B ′BCC ′的距离是a ,求三棱柱ABC -A ′B ′C ′的体积. 解 连接A ′B ,A ′C ,如图所示,这样就把三棱柱分割成了两个棱锥.设所求体积为V ,显然三棱锥A ′-ABC 的体积是13V .而四棱锥A ′-BCC ′B ′的体积为13Sa ,故有13V +13Sa =V ,即V =12Sa .【训练5】 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( ) A.227 B.258C.15750D.355113解析 圆锥的体积V =13πr 2h =13π⎝ ⎛⎭⎪⎫L 2π2h =L 2h 12π,由题意得12π≈752,π近似取为258,故选B. 答案 B【训练6】 已知某一多面体内接于球构成一个简单组合体,如果该组合体的主视图、左视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.解析 由三视图知,组合体是棱长为2的正方体内接于球,故正方体的体对角线长为23,即为球的直径.所以球的表面积S =4π⎝ ⎛⎭⎪⎫2322=12π.答案 12π要点五 线线角、线面角和二面角问题(1)两条异面直线所成的角的范围是(0°,90°].找两条异面直线所成的角,关键是选取合适的点,引两条异面直线的平行线,这两条相交直线所成的锐角或直角即为两条异面直线所成的角.特别地,两条异面直线垂直,可由线面垂直得到.(2)直线和平面所成的角的范围是 [0°,90°].找线面角的关键是找到直线与其在平面内的射影的夹角.当线面角为0°时,直线与平面平行或直线在平面内;当线面角为90°时,直线与平面垂直.(3)如果求两个相交平面所成的二面角,除垂直外,均有两个答案,即θ或180°-θ.具体几何体中,由题意和图形确定.作二面角的平面角时,首先要确定二面角的棱,然后结合题设构造二面角的平面角.一般常用:①定义法;②垂面法.(4)求角度问题时,无论哪种情况,最终都归结到两条相交直线所成的角的问题.求角度的解题步骤:①找出这个角;②证该角符合题意;③构造出含这个角的三角形,解这个三角形,求出角.【例5】 如图所示,矩形ABCD 中,AB =6,BC =23,沿对角线BD 将△ABD 折起,使点A 移至点P ,P 在平面BCD 内的投影为O ,且O 在DC 上. (1)求证:PD ⊥PC ;(2)求二面角P -DB -C 的余弦值.(1)证明 P 在平面BCD 内的投影为O , 则PO ⊥平面BCD ,∵BC 平面BCD ,∴PO ⊥BC .∵BC ⊥CD ,CD ∩PO =O ,∴BC ⊥平面PCD . ∵DP 平面PCD ,∴BC ⊥DP .又∵DP ⊥PB ,PB ∩BC =B ,∴DP ⊥平面PBC . 而PC 平面PBC ,∴PD ⊥PC .(2)解 △PBD 在平面BCD 内的投影为△OBD , 且S △PBD =12×6×23=63,S △OBD =S △CBD -S △BOC =63-12×23×OC .在Rt△DPC 中,PC 2=DC 2-DP 2=24.设OC =x ,则OD =6-x , ∴PC 2-OC 2=DP 2-DO 2,即24-x 2=12-(6-x )2,解得x =4. ∴S △BOD =63-43=2 3.过点P 作PQ ⊥DB ,连接OQ ,则DB ⊥平面OPQ , ∴∠OQP 即为二面角P -DB -C 的平面角, ∴cos∠OQP =S △BOD S △PBD =2363=13. ∴二面角P -DB -C 的余弦值为13.【训练7】 在长方体ABCD -A 1B 1C 1D 1中,异面直线AB ,A 1D 1所成的角等于( ) A.30° B.45° C.60°D.90°解析 由于AD ∥A 1D 1,则∠BAD 是异面直线AB ,A 1D 1所成的角,很明显∠BAD =90°. 答案 D基础过关1.设a ,b ,c 是空间的三条直线,给出以下三个命题:①若a ⊥b ,b ⊥c ,则a ⊥c ;②若a 和b 共面,b 和c 共面,则a 和c 也共面; ③若a ∥b ,b ∥c ,则a ∥c .其中正确命题的个数是( ) A.0 B.1 C.2D.3解析 借助正方体中的线线关系易知①②全错;由公理4知③正确. 答案 B2.某几何体的三视图如图所示,则该几何体的体积为( )A.13+π B.23+π C.13+2π D.23+2π 解析 由三视图知,该几何体是一个三棱锥与半个圆柱的组合体.V =V 三棱锥+ 12V 圆柱=13×12×2×1×1+12×π×12×2=13+π.选A. 答案 A3.如图,已知正六棱柱的最大对角面的面积为4 m 2,互相平行的两个侧面的距离为2 m ,则这个六棱柱的体积为( ) A.3 m 3B.6 m 3C.12 m 3D.以上都不对解析 设底面边长为a ,高为h ,则a =233,又2×233×h =4,∴h =3,∴V =12×233×32×233×6×3=6(m 3),故选B.答案 B4.如图所示,点P 在正方形ABCD 所在平面外,PA ⊥平面ABCD ,PA =AB ,则PB 与AC 所成的角是________.解析 将其还原成正方体ABCD -PQRS ,连接SC ,AS ,则PB ∥SC ,∴∠ACS (或其补角)是PB 与AC 所成的角,∵△ACS 为正三角形,∴∠ACS =60°,∴PB 与AC 所成的角是60°. 答案 60°5.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析 设正方体棱长为a ,则6a 2=18⇒a 2=3,a = 3. 外接球直径为2R =3a =3,R =32,V =43πR 3=43π×278=92π.答案 9π26.如图所示,在长方体ABCD -A 1B 1C 1D 1中,M 、N 分别为AB 、A 1D 1的中点,判断MN 与平面A 1BC 1的位置关系,为什么? 解 直线MN ∥平面A 1BC 1.证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1. ∴M N⃘平面A 1BC 1. 如图,取A 1C 1的中点O 1, 连接NO 1、BO 1.∵NO 1綊12D 1C 1,MB 綊12D 1C 1,∴NO 1綊MB ,∴四边形NO 1BM 为平行四边形,∴MN ∥BO 1. 又∵BO 1平面A 1BC 1, ∴MN ∥平面A 1BC 1.7.如图,在直三棱柱ABC -A 1B 1C 1中,E ,F 分别为A 1C 1和BC 的中点. (1)求证:EF ∥平面AA 1B 1B ;(2)若AA 1=3,AB =23,求EF 与平面ABC 所成的角. (1)证明 如图,取A 1B 1的中点D ,连接DE ,BD . 因为E 是A 1C 1的中点,所以DE 綊12B 1C 1.又因为BC 綊B 1C 1,BF =12BC ,所以DE 綊BF ,所以四边形BDEF 为平行四边形, 所以BD ∥EF .又因为BD 平面AA 1B 1B ,E F⃘平面AA 1B 1B , 所以EF ∥平面AA 1B 1B .(2)解 如图,取AC 的中点H ,连接HF ,EH .因为EH ∥AA 1,AA 1⊥平面ABC , 所以EH ⊥平面ABC .所以∠EFH 就是EF 与平面ABC 所成的角. 在Rt△EHF 中,FH =3,EH =AA 1=3, tan∠EFH =EH FH=3, 所以∠EFH =60°.故EF 与平面ABC 所成的角为60°.能力提升8.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A.36π B.64π C.144πD.256π解析 ∵S △OAB 是定值,且V O -ABC =V C -OAB ,∴当OC ⊥平面OAB 时,V C -OAB 最大,即V O -ABC 最大. 设球O 的半径为R ,则(V O -ABC )max =13×12R 2×R =16R 3=36,∴R =6,∴球O 的表面积S =4πR 2=4π×62=144π. 答案 C9.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A.26 B.36 C.23D.22解析 利用三棱锥的体积变换求解.由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍.在三棱锥O -ABC 中,其棱长都是1,如图所示,S △ABC =34×AB 2=34, 高OD =12-⎝ ⎛⎭⎪⎫332=63,∴V S -ABC =2V O -ABC =2×13×34×63=26.答案 A10.三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.解析 如图,设S △ABD =S 1,S △PAB =S 2,E 到平面ABD 的距离为h 1,C 到平面PAB 的距离为h 2,则S 2=2S 1,h 2=2h 1,V 1=13S 1h 1,V 2=13S 2h 2,∴V 1V 2=S 1h 1S 2h 2=S 1h 12S 1×2h 1=14. 答案 1411.如图所示,在矩形ABCD 中,AB =3,BC =a ,若PA ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.解析 由题意知:PA ⊥DE , 又PE ⊥DE ,PA ∩PE =P ,∴DE ⊥平面PAE ,∵AE 平面PAE , ∴DE ⊥AE . 易证△ABE ∽△ECD . 设BE =x ,则AB CE =BE CD ,即3a -x =x3.∴x 2-ax +9=0,E 点有两个,即方程有两不同的实根,由Δ>0,解得a >6. 答案 (6,+∞)12.如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点. (1)求证:DE ∥平面ABC ; (2)求三棱锥E -BCD 的体积.(1)证明 如图,取BC 中点G ,连接AG ,EG . 因为E 是B 1C 的中点, 所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1綊BB 1,而D 是AA 1的中点,所以EG 綊AD ,所以四边形EGAD 是平行四边形.所以ED ∥AG . 又D E⃘平面ABC ,AG 平面ABC , 所以DE ∥平面ABC .(2)解 因为AD ∥EG ,所以AD ∥平面BCE , 所以V E -BCD =V D -BEC =V A -BCE =V E -ABC , 由(1)知,DE ∥平面ABC .所以V E -ABC =V D -ABC =13AD ·12BC ·AG =16×3×6×4=12.13.(选做题)如图,在三棱锥P -ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点. (1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E -BCD 的体积. (1)证明 ∵PA ⊥AB ,PA ⊥BC ,AB 平面ABC ,BC 平面ABC ,且AB ∩BC =B ,∴PA ⊥平面ABC ,又∵BD 平面ABC ,∴PA ⊥BD . (2)证明 ∵AB =BC ,D 是AC 的中点, ∴BD ⊥AC .由(1)知PA ⊥平面ABC ,∵PA 平面PAC ,∴平面PAC ⊥平面ABC . ∵平面PAC ∩平面ABC =AC ,BD 平面ABC ,BD ⊥AC ,∴BD ⊥平面PAC . ∵BD 平面BDE , ∴平面BDE ⊥平面PAC , (3)解 ∵PA ∥平面BDE , 又平面BDE ∩平面PAC =DE ,PA 平面PAC ,∴PA ∥DE .由(1)知PA ⊥平面ABC ,∴DE ⊥平面ABC . ∵D 是AC 的中点,∴E 为PC 的中点, ∴DE =12PA =1.∵D 是AC 的中点,∴S △BCD =12S △ABC =12×12×2×2=1,1 3×S△BCD×DE=13×1×1=13.∴V E-BCD=。

必修2第一章立体几何导学案

必修2第一章立体几何导学案

1、1简单几何体学习目标1、知识与技能了解简单旋转体和简单多面体的有关概念。

通过教材展示的几何体的实物、模型、图片等,让学生感受空间几何体的结构特征。

3、情感、态度与价值观通过学生生活中的实物展示和化学中的物质晶体状来培养学生观察、分析、思考的科学态度。

进一步培养学生的数学建模思想。

【重点】简单几何体的有关概念。

【难点】对简单多面体中棱柱、棱台概念的理解。

学习过程一、预习案:“我学习,我主动,我参与,我收获!”◆学法指导:认真阅读教材p3-p4,初步了解简单几何体的有关概念及结构特征,最后把自己在学习中遇到的疑惑写下来,有待上课时和老师、同学共同探究解决。

◆教材助读:1、旋转体(1)旋转面:一条绕着它所在的平面内的一条旋转所形成的曲面。

(2)旋转体:的旋转面围成的几何体。

2、球(1)球面:所在的直线为旋转轴,将半圆旋转所围成的曲面。

(2)球:所围成的几何体叫作球体,简称球。

(3)球的有关概念①球心: .②球的半径:连接和的线段。

③球的直径:连接,并且的线段。

3、圆柱、圆锥、圆台(1)定义:分别以、、所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫作圆柱、圆锥、圆台。

(2)高、底面、侧面及侧面的母线。

4、多面体:由若干个围成的几何体叫作多面体。

5、棱柱:两个面互相平行(无公共点的两个平面是平行的),其余各面都是,并且每相邻两个四边形的公共边都,这些面围成的几何体叫作棱柱。

(1)棱柱的有关概念:棱柱定义里的的平面叫作棱柱的底面,其余各面叫作棱柱的侧面,棱柱的侧面是。

叫作棱柱的棱,与的公共顶点叫作棱柱的顶点。

(2)棱柱的分类按侧棱是否垂直于底面(侧棱垂直于底面)斜棱柱(侧棱不垂直于底面)按底面多边形形状(底面是三角形)(底面是四边形)(底面是五边形)……(3)正棱柱:底面是的叫作正棱柱。

6、棱锥:有一个面是,其余各面是的三角形,这些面围成的几何体叫作棱锥。

7、棱台:用一个棱锥底面的平面去截棱锥,,叫作棱台。

2019_2020学年高中数学第1章立体几何初步1_4_2_2空间图形的公理(第2课时)学案北师大版必修2

2019_2020学年高中数学第1章立体几何初步1_4_2_2空间图形的公理(第2课时)学案北师大版必修2

4.2 空间图形的公理(第2课时)1.空间图形的公理公理4 平行于同一条直线的两条直线平行.定理 空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补. 2.异面直线 (1)异面直线的定义不共面(不同在任何一个平面内)的两条直线叫作异面直线. (2)空间两条直线的位置关系有且只有三种共面直线⎩⎪⎨⎪⎧相交直线:在同一平面内,有且只有一个公共点.平行直线:在同一平面内,没有公共点.异面直线:不共面的两条直线,没有公共点.(3)异面直线所成的角过空间任意一点P 分别引两条异面直线a ,b 的平行线l 1,l 2(a ∥l 1,b ∥l 2),这两条相交直线所成的锐角(或直角)就是异面直线a ,b 所成的角.如果两条异面直线所成的角是直角,我们称这两条直线互相垂直,记作:a ⊥b .判断正误(正确的打“√”,错误的打“×”) (1)分别在两个平面内的直线一定为异面直线.( ) (2)两条直线垂直,则一定相交.( )(3)两条直线和第三条直线成等角,则这两条直线平行.( )(4)两条直线若不是异面直线,则必相交或平行.( )(5)两条直线无公共点,则这两条直线平行.( )(6)过平面外一点与平面内一点的连线,与平面内的任意一条直线均构成异面直线.( )(7)和两条异面直线都相交的两直线必是异面直线.( )[答案] (1)×(2)×(3)×(4)√(5)×(6)×(7)×题型一空间两直线位置关系的判定【典例1】已知a、b、c是空间三条直线,下面给出四个命题:①如果a⊥b,b⊥c,那么a∥c;②如果a、b是异面直线,b、c是异面直线,那么a、c也是异面直线;③如果a、b是相交直线,b、c是相交直线,那么a、c也是相交直线;④如果a、b共面,b、c共面,那么a、c也共面.在上述命题中,正确命题的个数是( )A.0 B.1 C.2 D.3[思路导引] 两条直线的位置关系拓展到空间中有且仅有三种:相交、平行、异面.根据具体情况,具体分析.[解析] ①a与c可能相交,也可能异面;②a与c可能相交,也可能平行;③a与c可能异面,也可能平行;④a与c可能不在一个平面内.故①②③④均不正确.[答案] A(1)判定两条直线平行与相交可用平面几何的方法去判断,而两条直线平行也可以用公理4判断.(2)判定两条直线是异面直线有定义法和排除法,由于使用定义判断不方便,故常用排除法,即说明这两条直线不平行、不相交,则它们异面.[针对训练1] 如图,正方体ABCD-A1B1C1D1中,判断下列直线的位置关系:①直线A 1B 与直线D 1C 的位置关系是________; ②直线A 1B 与直线B 1C 的位置关系是________; ③直线D 1D 与直线D 1C 的位置关系是________; ④直线AB 与直线B 1C 的位置关系是________.[解析] 根据题目条件知道直线A 1B 与直线D 1C 在平面A 1BCD 1中,且没有交点,则两直线“平行”,所以①应该填“平行”;点A 1、B 、B 1在一个平面A 1BB 1内,而C 不在平面A 1BB 1内,则直线A 1B 与直线B 1C “异面”.同理,直线AB 与直线B 1C “异面”.所以②④都应该填“异面”;直线D 1D 与直线D 1C 相交于D 1点,所以③应该填“相交”.[答案] ①平行 ②异面 ③相交 ④异面 题型二公理4及等角定理的应用【典例2】 如图,已知在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱CD ,AD 的中点.求证:(1)四边形MNA 1C 1是梯形; (2)∠DNM =∠D 1A 1C 1.[思路导引] (1)由中位线定理可证MN ∥AC ,MN =12AC .由正方体的性质得:AC ∥A 1C 1,AC =A 1C 1.从而应用公理4,可证MN ∥A 1C 1,且MN =12A 1C 1,于是命题可证.(2)利用等角定理可证.[证明] (1)如图,连接AC ,在△ACD 中,∵M ,N 分别是CD ,AD 的中点, ∴MN 是△ACD 的中位线, ∴MN ∥AC ,MN =12AC .由正方体的性质得:AC ∥A 1C 1,AC =A 1C 1.∴MN ∥A 1C 1,且MN =12A 1C 1,即MN ≠A 1C 1,∴四边形MNA 1C 1是梯形. (2)由(1)可知MN ∥A 1C 1.又∵ND ∥A 1D 1,∴∠DNM 与∠D 1A 1C 1相等或互补. 而∠DNM 与∠D 1A 1C 1均为锐角, ∴∠DNM =∠D 1A 1C 1.(1)空间两条直线平行的证明一是定义法:即证明两条直线在同一个平面内且两直线没有公共点;二是利用平面图形的有关平行的性质,如三角形中位线,梯形,平行四边形等关于平行的性质;三是利用公理4:找到一条直线,使所证的直线都与这条直线平行. (2)求证角相等一是用等角定理;二是用三角形全等或相似.[针对训练2] 长方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点.(1)求证:D1E∥BF;(2)求证:∠B1BF=∠A1ED1.[证明] (1)取BB1的中点M,连接EM,C1M.在矩形ABB1A1中,易得EM綊A1B1,∵A1B1綊C1D1,∴EM綊C1D1,∴四边形EMC1D1为平行四边形,∴D1E∥C1M.在矩形BCC1B1中,易得MB綊C1F,∴BF∥C1M,∴D1E∥BF.(2)∵ED1∥BF,BB1∥EA1,又∠B1BF与∠A1ED1的对应边方向相同,∴∠B1BF=∠A1ED1.题型三异面直线所成的角【典例3】如图所示,在正方体ABCD-EFGH中,O为侧面ADHE的中心,求:(1)BE与CG所成的角;(2)FO与BD所成的角.[思路导引] (1)由于CG∥BF,即∠EBF(或其补角)为异面直线CG与BE所成的角.(2)由于BD∥FH,故∠HFO(或其补角)为异面直线FO与BD所成的角.[解] (1)如图,因为CG∥BF,所以∠EBF(或其补角)为异面直线BE与CG所成的角,又在△BEF中,∠EBF=45°,所以BE与CG所成的角为45°.(2)连接FH,因为HD∥EA,EA∥FB,所以HD∥FB,又HD=FB,所以四边形HFBD为平行四边形.所以HF∥BD,所以∠HFO(或其补角)为异面直线FO与BD所成的角.连接HA,AF,易得FH=HA=AF,所以△AFH为等边三角形,又知O为AH的中点.所以∠HFO=30°,即FO与BD所成的角为30°.求异面直线所成的角的步骤(1)找出(或作出)适合题设的角——用平移法,遇题设中有中点,常考虑中位线;若异面直线依附于某几何体,且对异面直线平移有困难时,可利用该几何体的特殊点,使异面直线转化为相交直线.(2)求——转化为求一个三角形的内角,通过解三角形,求出所找的角.(3)结论——设由(2)所求得的角的大小为θ.若0°<θ≤90°,则θ为所求;若90°<θ<180°,则180°-θ为所求.提醒:求异面直线所成的角,通常把异面直线平移到同一个三角形中去,通过解三角形求得,但要注意异面直线所成的角θ的范围是0°<θ≤90°.[针对训练3] 如图,P 是平面ABC 外一点,PA =4,BC =25,D 、E 分别为PC 和AB 的中点,且DE =3.求异面直线PA 和BC 所成角的大小.[解] 如图,取AC 中点F ,连接DF 、EF ,在△PAC 中,∵D 是PC 中点,F 是AC 中点,∴DF ∥PA ,同理可得EF ∥BC , ∴∠DFE 为异面直线PA 与BC 所成的角(或其补角). 在△DEF 中,DE =3,又DF =12PA =2,EF =12BC =5,∴DE 2=DF 2+EF 2.∴∠DFE =90°,即异面直线PA 与BC 所成的角为90°.1.过一点与已知直线垂直的直线有( )A.一条B.两条C.无数条D.无法确定[解析] 过一点与已知直线垂直的直线有无数条,包括相交垂直和异面垂直.[答案] C2.异面直线是指( )A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线[解析] 不相交的直线有可能是平行也有可能是异面,故A不正确;如图①中,aα,bβ,但是,a∩b=A,故B不正确;如图②,aα,bα,但是a∩b=A,故C不正确;D是异面直线的定义.[答案] D3.若a、b是异面直线,b、c是异面直线,则( )A.a∥c B.a、c是异面直线C.a、c相交D.a、c平行或相交或异面[解析] a、b、c的位置关系有下面三种情况,如图所示,由图形分析可得答案为D.[答案] D4.过直线l外两点可以作l的平行线条数为( )A.1 B.2C.3 D.0或1[解析] 以如图所示的正方体ABCD -A 1B 1C 1D 1为例.令A 1B 1所在直线为直线l ,过l 外的两点A ,B 可以作一条直线与l 平行,过l 外的两点B ,C 不能作直线与l 平行,故选D.[答案] D探究空间中四边形的形状问题根据三角形的中位线、公理4证明两条直线平行是常用的方法.公理4表明了平行线的传递性,它可以作为判断两条直线平行的依据,同时也给出空间两直线平行的一种证明方法.【示例】 如图,空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.求证:四边形EFGH 是平行四边形.[思路分析] 欲证EFGH 为平行四边形,只需证EH ∥FG ,只需证BD ∥FG 且BD ∥EH . [证明] 连接BD , 因为EH 是△ABD 的中位线, 所以EH ∥BD ,且EH =12BD .同理,FG ∥BD ,且FG =12BD .因此EH ∥FG .又EH =FG ,所以四边形EFGH 为平行四边形.[引申探究] (1)本例中若加上条件“AC ⊥BD ”,则四边形EFGH 是什么形状? (2)本例中,若加上条件“AC =BD ”,则四边形EFGH 是什么形状?(3)本例中,若加上条件“AC ⊥BD ,且AC =BD ”,则四边形EFGH 是什么形状? [解] (1)由例题可知EH ∥BD ,同理EF ∥AC , 又BD ⊥AC ,因此EH ⊥EF , 所以四边形EFGH 为矩形.(2)由例题知EH ∥BD ,且EH =12BD ,同理EF ∥AC ,且EF =12AC .又AC =BD ,所以EH =EF .又EFGH 为平行四边形,所以EFGH 为菱形. (3)由(1)(2)可知,EFGH 为正方形.[针对训练] 如图所示,设E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且AE AB =AH AD =λ,CF CB =CG CD=μ(λ,μ∈(0,1)),试判断四边形EFGH 的形状.[解] 连接BD ,在△ABD 中,AE AB =AHAD=λ, ∴EH ∥BD ,且EH =λBD . 在△CBD 中,CF CB =CGCD=μ,∴FG ∥BD ,且FG =μBD ,∴EH ∥FG ,∴顶点E 、F ,G 、H 在由EH 和FG 确定的平面内. (1)当λ=μ时.EH =FG ,故四边形EFGH 为平行四边形; (2)当λ≠μ时.EH ≠FG ,故四边形EFGH 是梯形.课后作业(六) (时间45分钟)学业水平合格练(时间20分钟)1.分别和两条异面直线平行的两条直线的位置关系是( ) A .一定平行 B .一定相交 C .一定异面D .相交或异面[解析] 可能相交也可能异面,选D.[答案] D2.下列选项中,点P,Q,R,S分别在正方体的四条棱上,并且是所在棱的中点,则直线PQ与RS是异面直线的一个图是( )[解析] 易知选项A,B中PQ∥RS,选项D中RS与PQ相交,只有选项C中RS与PQ是异面直线.[答案] C3.异面直线a,b,有aα,bβ,且α∩β=c,则直线c与a,b的关系是( ) A.c与a,b都相交B.c与a,b都不相交C.c至多与a,b中的一条相交D.c至少与a,b中的一条相交[解析] 若c与a,b都不相交,∵c与a在α内,∴a∥c.又c与b都在β内,∴b∥c.由公理4,可知a∥b,与已知条件矛盾.如图,只有以下三种情况.[答案] D4.如图,三棱柱ABC-A1B1C1中,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是( )A .CC 1与B 1E 是异面直线 B .C 1C 与AE 共面 C .AE 与B 1C 1是异面直线D .AE 与B 1C 1所成的角为60°[解析] 由于CC 1与B 1E 都在平面C 1B 1BC 内,故C 1C 与B 1E 是共面的,所以A 错误;由于C 1C 在平面C 1B 1BC 内,而AE 与平面C 1B 1BC 相交于E 点,点E 不在C 1C 上,故C 1C 与AE 是异面直线,B 错误;同理AE 与B 1C 1是异面直线,C 正确;而AE 与B 1C 1所成的角就是AE 与BC 所成的角,E 为BC 中点,△ABC 为正三角形,所以AE ⊥BC ,D 错误.[答案] C5.已知空间四边形ABCD 中,M ,N 分别为AB ,CD 的中点,则下列判断正确的是( ) A .MN ≥12(AC +BD )B .MN ≤12(AC +BD )C .MN =12(AC +BD )D .MN <12(AC +BD )[解析] 取BC 的中点E ,连接ME ,EN ,又M 、N 分别为AB 、CD 的中点, ∴ME 綊12AC ,EN 綊12BD ,又在△EMN 中,ME +EN >MN ,∴12(AC +BD )>MN . [答案] D6.在四棱锥P -ABCD 中,各棱所在的直线互相异面的有________对.[解析] 以底边所在直线为准进行考查,因为四边形ABCD 是平面图形,4条边在同一平面内,不可能组成异面直线,而每一边所在直线能与2条侧棱组成2对异面直线,所以共有4×2=8(对)异面直线.[答案] 87.如图,正方体ABCD-A1B1C1D1中,AC与BC1所成角的大小是________.[解析] 连接AD1,则AD1∥BC1.∴∠CAD1(或其补角)就是AC与BC1所成的角,连接CD1,在正方体ABCD—A1B1C1D1中,AC =AD1=CD1,∴∠CAD1=60°,即AC与BC1所成的角为60°.[答案] 60°8.如图,在三棱锥A-BCD中,E,F,G分别是AB,BC,AD的中点,∠GEF=120°,则BD和AC所成角的度数为________.[解析] 依题意知,EG∥BD,EF∥AC,所以∠GEF所成的角或其补角即为异面直线AC 与BD所成的角,又∠GEF=120°,所以异面直线BD与AC所成的角为60°.[答案] 60°9.如图所示,空间四边形ABCD 中,AB =CD ,AB ⊥CD ,E 、F 分别为BC 、AD 的中点,求EF 和AB 所成的角.[解] 取AC 的中点G ,连接EG ,FG , 则FG ∥CD ,EG ∥AB ,所以∠FEG 即为EF 与AB 所成的角(或其补角), 且FG =12CD ,EG =12AB ,所以FG =EG .又由AB ⊥CD 得FG ⊥EG , 所以∠FEG =45°.故EF 和AB 所成的角为45°.10.在平行六面体ABCD -A 1B 1C 1D 1中,M 、N 、P 分别是CC 1、B 1C 1、C 1D 1的中点.求证:∠NMP =∠BA 1D.[证明] 如图,连接CB 1、CD 1,∵CD 綊A 1B 1∴四边形A1B1CD是平行四边形∴A1D∥B1C.∵M、N分别是CC1、B1C1的中点∴MN∥B1C,∴MN∥A1D.∵BC綊A1D1,∴四边形A1BCD1是平行四边形∴A1B∥CD1.∵M、P分别是CC1、C1D1的中点,∴MP∥CD1∴MP∥A1B∴∠NMP和∠BA1D的两边分别平行且方向都相反∴∠NMP=∠BA1D.应试能力等级练(时间25分钟)11.若直线a、b分别与直线l相交且所成的角相等,则a、b的位置关系是( ) A.异面B.平行C.相交D.三种关系都有可能[解析] 以正方体ABCD-A1B1C1D1为例.A1B1、AB所在直线与BB1所在直线相交且所成的角相等,A1B1∥AB;A1B1、BC所在直线与BB1所在直线相交且所成的角相等,A1B1与BC是异面直线;AB、BC所在直线与AC所在直线相交且所成的角相等,AB与BC相交,故选D.[答案] D12.如图所示,空间四边形ABCD的对角线AC=8,BD=6,M、N分别为AB、CD的中点,并且异面直线AC与BD所成的角为90°,则MN等于( )A .5B .6C .8D .10[解析] 如图,取AD 的中点P ,连接PM 、PN ,则BD ∥PM ,AC ∥PN ,∴∠MPN 即异面直线AC 与BD 所成的角,∴∠MPN =90°,PN =12AC =4,PM =12BD =3,∴MN =5.[答案] A13.如图正方体ABCD -A 1B 1C 1D 1中,与AD 1异面且与AD 1所成的角为90°的面对角线(面对角线是指正方体各个面上的对角线)共有________条.[解析] 与AD 1异面的面对角线分别为:A 1C 1、B 1C 、BD 、BA 1、C 1D ,其中只有B 1C 和AD 1所成的角为90°.[答案] 114.已知空间四边形ABCD 中,AB ≠AC ,BD =BC ,AE 是△ABC 的边BC 上的高,DF 是△BCD 的边BC 上的中线,则直线AE 与DF 的位置关系是________.[解析] 由已知,得E 、F 不重合. 设△BCD 所在平面为α则DF α,A ∉α,E ∈α,E ∉DF ∴AE 与DF 异面. [答案] 异面15.梯形ABCD 中,AB ∥CD ,E 、F 分别为BC 和AD 的中点,将平面DCEF 沿EF 翻折起来,使CD 到C ′D ′的位置,G 、H 分别为AD ′和BC ′的中点,求证:四边形EFGH 为平行四边形.[证明] ∵梯形ABCD 中,AB ∥CDE 、F 分别为BC 、AD 的中点∴EF ∥AB 且EF =12(AB +CD )又C ′D ′∥EF ,EF ∥AB ,∴C ′D ′∥AB . ∵G 、H 分别为AD ′、BC ′的中点∴GH ∥AB 且GH =12(AB +C ′D ′)=12(AB +CD )∴GH 綊EF ,∴四边形EFGH 为平行四边形.。

数学必修2立体几何第一章全部教案

数学必修2立体几何第一章全部教案

第一章:空间几何体1.1.1柱、锥、台、球的结构特征(一)一、教学目标1 •知识与技能(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2. 过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3. 情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学过程:一、创设情景,揭示课题1. 讨论:经典的建筑给人以美的享受,其中奥秘为何?世间万物,为何千姿百态?2. 提问:小学与初中在平面上研究过哪些几何图形?在空间范围上研究过哪些?3. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算二、讲授新课:1. 教学棱柱、棱锥的结构特征:①提问:举例生活中有哪些实例给我们以两个面平行的形象?②讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有D哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?③定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱→列举生活中的棱柱实例(三棱镜、方砖、六角螺帽)结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线•④分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等表示:棱柱ABCDE-A 'B'C'D''⑤讨论:埃及金字塔具有什么几何特征?⑥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形认识:底面、侧面、侧棱、顶点、高∙→讨论:棱锥如何分类及表示?⑦讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方•2. 教学圆柱、圆锥的结构特征:①讨论:圆柱、圆锥如何形成?②定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥•→列举生活中的棱柱实例→结合图形认识:底面、轴、侧面、母线、高.→表示方法③讨论:棱柱与圆柱、棱柱与棱锥的共同特征?→ 柱体、锥体.④观察书P2若干图形,找出相应几何体;举例:生活中的柱体、锥体.3. 质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

2019-2020高中数学 第一章 立体几何初步 1.1.2 简单多面体学案 北师大版必修2

2019-2020高中数学 第一章 立体几何初步 1.1.2 简单多面体学案 北师大版必修2

1.2 简单多面体学习目标 1.通过对实物模型的观察,归纳认知简单多面体——棱柱、棱锥、棱台的结构特征(重点);2.能运用棱柱、棱锥、棱台的结构特征解决简单多面体的有关计算(重、难点).知识点一多面体我们把若干个平面多边形围成的几何体叫作多面体.其中棱柱、棱锥、棱台都是简单多面体. 【预习评价】(正确的打“√”,错误的打“×”)(1)多面体至少四个面.(√)(2)多面体的面都是平的,多面体没有曲面.(√)知识点二棱柱的结构特征定义图形及表示相关概念分类两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫作棱柱.如图可记作:棱柱ABCDEF-A′B′C′D′E′F′底面:两个互相平行的面.侧面:其余各面.侧棱:两个侧面的公共边.顶点:底面多边形与侧面的公共顶点.按底面多边形的边数分:三棱柱、四棱柱、……棱柱的侧面一定是平行四边形吗?提示根据棱柱的概念侧棱平行、底面平行可知,棱柱的侧面一定是平行四边形.知识点三棱锥的结构特征定义图形及表示相关概念分类有一个面是多边形,其余各面是有一个公共顶点的三角形,这些面围成的几何体叫作棱锥.如图可记作,棱锥S-ABCD底面:多边形面.侧面:有公共顶点的各个三角形面.侧棱:相邻侧面的公共边.顶点:各侧面的公共顶点.按底面多边形的边数分:三棱锥、四棱锥、……(1)五棱锥共有五个面.(×)(2)三棱锥也叫四面体.(√)(3)棱锥的侧棱长都相等.(×)知识点四棱台的结构特征定义图形及表示相关概念分类用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫作棱台.如图可记作:棱台ABCD-A′B′C′D′上底面:原棱锥的截面.下底面:原棱锥的底面.侧面:其余各面.侧棱:相邻侧面的公共边.顶点:侧面与上(下)底面的公共顶点.由三棱锥、四棱锥、五棱锥…截得的棱台分别叫做三棱台、四棱台、五棱台……棱台的上下底面互相平行,各侧棱延长线一定相交于一点吗?提示根据棱台的定义可知其侧棱延长线一定交于一点.题型一棱柱的结构特征【例1】下列说法中,正确的是( )A.棱柱中所有的侧棱都相交于一点B.棱柱中互相平行的两个面叫作棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱相等,侧面是平行四边形解析A选项不符合棱柱的特点;B选项中,如图①,构造四棱柱ABCD-A1B1C1D1,令四边形ABCD是梯形,可知平面ABB1A1∥平面DCC1D1,但这两个面不能作为棱柱的底面;C选项中,如图②,底面ABCD可以是平行四边形;D选项是棱柱的特点.故选D.答案 D规律方法棱柱的结构特征:(1)两个面互相平行;(2)其余各面都是四边形;(3)每相邻两个四边形的公共边都互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.【训练1】根据下列关于空间几何体的描述,说出几何体名称:(1)由6个平行四边形围成的几何体.(2)由8个面围成,其中两个面是平行且全等的六边形,其余6个面都是平行四边形.解(1)这是一个上、下底面是平行四边形,四个侧面也是平行四边形的四棱柱.(2)该几何体是六棱柱.题型二棱锥、棱台的结构特征【例2】下列关于棱锥、棱台的说法:①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.解析①正确,棱台的侧面一定是梯形,而不是平行四边形;②正确,由四个平面围成的封闭图形只能是三棱锥;③错误,如图所示四棱锥被平面截成的两部分都是棱锥.答案①②规律方法判断棱锥、棱台形状的两个方法:(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确. (2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点A.三棱锥B.四棱锥C.三棱台D.四棱柱解析剩余部分是四棱锥A′-BB′C′C.答案 B【探究1】画出如图所示的几何体的表面展开图.解表面展开图如图所示:【探究2】一个正方体的平面展开图及该正方体的直观图的示意图如图所示.请将字母F,G,H标记在正方体相应的顶点处(不需说明理由).解点F,G,H的位置如图所示.【探究3】如图所示,已知三棱锥P-ABC的底面是正三角形且三条侧棱两两成30°角,侧棱长为18 cm,从点A引一条丝带绕侧面一周回到A点,设D,E分别为丝带经过PC,PB 时的交点,则△ADE周长的最小值为多少?解把三棱锥P-ABC的侧面沿侧棱PA剪开,并展开在平面上,得到平面图形PABCA′,如图所示,则当A,E,D,A′四点共线时,△ADE的周长取得最小值,即线段AA′的长度.∵∠APB=∠BPC=∠CPA′=30°,∴∠APA′=90°.又AP=A′P=18 cm,∴AA′=18 2 cm.则△ADE周长的最小值为18 2 cm.【探究4】长方体中,a,b,c为棱长,且a>b>c,求沿长方体表面从P到Q的最小距离(其中P,Q是长方体对角线的两个端点).解将长方体展开,有三种情况(如图).d1=a2+(b+c)2=a2+b2+c2+2bc,d2=c2+(a+b)2=a2+b2+c2+2ab,d3=b2+(a+c)2=a2+b2+c2+2ac,因为a>b>c,故d min=d1=a2+(b+c)2.规律方法多面体表面展开图问题的解题策略:(1)绘制展开图:绘制多面体的表面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其表面展开图.(2)已知展开图:若是给出多面体的表面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的表面展开图可能是不一样的,也就是说,一个多面体可有多个表面展开图.课堂达标1.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形解析由于三棱柱的侧面为平行四边形,故选项D错.答案 D2.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析形成的几何体前后两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,符合棱柱的定义.答案 A3.下列三个命题:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是菱形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中,正确的有( )A.0个B.1个C.2个D.3个解析①中的平面不一定平行于底面,故①错;②中侧面是菱形,所以侧棱互相平行,延长后无交点,故②错;③用反例验证(如图),故③错.答案 A4.对棱柱而言,下列说法正确的序号是________.①有两个平面互相平行,其余各面都是平行四边形.②所有的棱长都相等.③棱柱中至少有2个面的形状完全相同.④相邻两个面的交线叫作侧棱.解析①正确,根据棱柱的定义可知;②错误,因为侧棱与底面上棱长不一定相等;③正确,根据棱柱的特征知,棱柱中上下两个底面一定是全等的,即棱柱中至少有两个面的形状完全相同;④错误,因为底面和侧面的交线不是侧棱.答案①③5.如图是三个几何体的侧面展开图,请问各是什么几何体?解 由几何体的侧面展开图的特点,结合棱柱、棱锥、棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以(1)为五棱柱;(2)为五棱锥;(3)为三棱台.课堂小结1.棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).2.(1)各种棱柱之间的关系 ①棱柱的分类棱柱⎩⎪⎨⎪⎧直棱柱⎩⎪⎨⎪⎧正棱柱一般的直棱柱斜棱柱②常见的几种四棱柱之间的转化关系(2)棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表: 名称 底面 侧面侧棱高平行于底面的截面 棱柱斜棱柱 平行且全等的两个多边形平行四边形 平行且相等与底面全等直棱柱平行且全等的两个多边形矩形平行、相等且垂直于底面等于侧棱与底面全等正棱柱平行且全等的两个正多边形全等的矩形平行、相等且垂直于底面等于侧棱与底面全等棱锥正棱锥一个正多边形全等的等腰三角形有一个公共顶点且相等过底面中心与底面相似其他棱锥一个多边形三角形有一个公共顶点与底面相似棱台正棱台平行且相似的两个正多边形全等的等腰梯形相等且延长后交于一点与底面相似其他棱台平行且相似的两个多边形梯形延长后交于一点与底面相似基础过关1.一般棱台不具有的性质是( )A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点解析当棱台是斜棱台时其侧棱不全相等.答案 C2.下列关于棱柱的说法错误的是( )A.所有的棱柱两个底面都平行B.所有的棱柱一定有两个面互相平行,其余各面每相邻面的公共边互相平行C.有两个面互相平行,其余各面都是四边形的几何体一定是棱柱D.棱柱至少有五个面解析对于A、B、D,显然是正确的;对于C,棱柱的定义是这样的:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫作棱柱,显然题中漏掉了“并且每相邻两个四边形的公共边都互相平行”这一条件,因此所围成的几何体不一定是棱柱.如图所示的几何体就不是棱柱,所以C错误.答案 C3.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2B.1∶4C.2∶1D.4∶1解析由棱台的结构特征知,棱台上、下底面是相似多边形,面积比为对应边之比的平方,故选B.答案 B4.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析因棱柱有10个顶点,所以棱柱为五棱柱,共有五条侧棱,所以侧棱长为605=12 cm.答案125.一个无盖的正方体盒子展开后的平面图如图所示,A,B,C是展开图上的三点,则在正方体盒子中∠ABC=________.解析如图所示,将平面图折成正方体.很明显点A,B,C是上底面正方形的三个顶点,则∠ABC=90°.答案90°6.如图所示为长方体ABCD-A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.解截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB′-CFC′,其中△BEB′和△CFC′是底面,EF,B′C′,BC是侧棱.截面BCFE左侧部分也是棱柱.它是四棱柱ABEA′-DCFD′.其中四边形ABEA′和四边形DCFD′是底面,A′D′,EF,BC,AD为侧棱.7.如图所示,有12个小正方体,每个正方体6个面上分别写着数字1,9,9,8,4,5,用这12个小正方体拼成一个长方体,那么图中看不见的那些小正方体的面有多少个,并求这些面上的数字和.解这12个小正方体,共有6×12=72个面,图中看得见的面共有3+4×4=19个,故图中看不见的面有72-19=53个,12个小正方体各个面的数字的和为(1+9+9+8+4+5)×12=432.而图中看得见的数字的和为131,所以看不见的那些小正方体的面上的数字的和为432-131=301.能力提升8.如图所示,不是正四面体的展开图的是( )A.①③B.②④C.③④D.①②解析可选择阴影三角形作为底面进行折叠,发现①②可折成正四面体,③④不论选哪一个三角形作底面折叠都不能折成正四面体.答案 C9.下列命题中,真命题是( )A.顶点在底面上的投影到底面各顶点的距离相等的三棱锥是正三棱锥B.底面是正三角形,各侧面是等腰三角形的三棱锥是正三棱锥C.顶点在底面上的投影为底面三角形的垂心的三棱锥是正三棱锥D.底面是正三角形,并且侧棱都相等的三棱锥是正三棱锥解析对于选项A,到三角形各顶点距离相等的点为三角形外心,该三角形不一定为正三角形,故该命题是假命题;对于选项B,如图所示,△ABC为正三角形,若PA=PB=AB=BC=AC≠PC,△PAB,△PBC,△PAC都是等腰三角形,但它不是正三棱锥,故该命题是假命题;对于选项C,顶点在底面上的投影为底面三角形的垂心,底面为任意三角形皆可,故该命题是假命题;对于选项D,顶点在底面上的正投影是底面三角形的外心,又因为底面三角形为正三角形,所以外心即为中心,故该命题是真命题.答案 D10.如图所示,在所有棱长为1的直三棱柱上,有一只蚂蚁从点A出发,围着三棱柱的侧面爬行一周到达点A1,则爬行的最短路程为________.解析 将三棱柱沿AA 1展开如图所示,则线段AD 1即为最短路线,即AD 1=AD 2+DD 21=10.答案 1011.在正方体上任意选择4个顶点,它们可能是如下各种几何体或几何图形的4个顶点,这些几何体或几何图形是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体. 解析 在正方体ABCD -A 1B 1C 1D 1上任意选择4个顶点,它们可能是如下各种几何体或几何图形的4个顶点,这些几何体或几何图形是:①矩形,如四边形ACC 1A 1;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体,如A -A 1BD ;④每个面都是等边三角形的四面体,如A -CB 1D 1;⑤每个面都是直角三角形的四面体,如A -A 1DC ,所以填①③④⑤. 答案 ①③④⑤12.如图,在边长为2a 的正方形ABCD 中,E ,F 分别为AB ,BC 的中点,沿图中虚线将3个三角形折起,使点A 、B 、C 重合,重合后记为点P .问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?解 (1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF 为等腰三角形,△PEF 为等腰直角三角形,△DPE 和△DPF 均为直角三角形.(3)S △PEF =12a 2, S △DPF =S △DPE =12×2a ×a =a 2,S △DEF =S 正方形ABCD -S △PEF -S △DPF -S △DPE=(2a )2-12a 2-a 2-a 2=32a 2. 13.(选做题)已知正四棱锥V -ABCD 如图所示,底面面积为16,侧棱长为211,求它的高和斜高.解 如图所示,设VO 为正四棱锥V -ABCD 的高,作VM ⊥BC 于点M ,则M 为BC 的中点.连接OB 、OM ,则VO ⊥OM ,VO ⊥OB .因为底面正方形ABCD 的面积为16,所以BC =4,所以BM =CM =OM =2,所以OB =BM 2+OM 2=22+22=2 2.又因为VB =211,所以在R t△VOB 中,VO =VB 2-OB 2=(211)2-(22)2=6,在Rt△VOM (或Rt△VBM )中,VM =62+22=210(或VM =(211)2-22=210).即正四棱锥的高为6,斜高为210.。

2019_2020学年高中数学第1课立体几何初步阶段复习课学案北师大版必修2

2019_2020学年高中数学第1课立体几何初步阶段复习课学案北师大版必修2

第1课立体几何初步A.1 B. 2 C. 3 D.2C [根据三视图,可知几何体的直观图为如图所示的四棱锥V­ABCD,其中VB⊥平面ABCD,且底面ABCD是边长为1的正方形,VB= 1.所以四棱锥中最长棱为VD.连接BD,易知BD=2,在Rt△VBD中,VD=VB2+BD2= 3.]1.以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.2.多面体的表面积是各个面的面积之和,组合体的表面积问题要注意衔接部分的处理. 3.旋转体的表面积问题注意其侧面展开图的应用.1.一个几何体的三视图如图所示,其中左视图与俯视图均为半径是2的圆,则这个几何体的体积是________.8π [由三视图知该几何体是半径为2的球被截去四分之一后剩下的几何体,则该几何体的体积V =43×π×23×34=8π.]1111A 1C 1上的点.(1)当A 1D 1D 1C 1等于何值时,BC 1∥平面AB 1D 1? (2)若平面BC 1D ∥平面AB 1D 1,求AD DC的值.[解] (1)如图所示,取D1为线段A 1C 1的中点,此时A 1D 1D 1C 1=1.连接A 1B ,交AB 1于点O ,连接OD 1.由棱柱的性质知,四边形A 1ABB 1为平行四边形,所以点O 为A 1B 的中点.在△A 1BC 1中,点O ,D 1分别为A 1B ,A 1C 1的中点,所以OD 1∥BC 1.又因为OD 1平面AB 1D 1,BC 1平面AB 1D 1,所以BC 1∥平面AB 1D 1,所以当A 1D 1D 1C 1=1时,BC 1∥平面AB 1D 1. (2)由平面BC 1D ∥平面AB 1D 1,且平面A 1BC 1∩平面BC 1D =BC 1,平面A 1BC 1∩平面AB 1D 1=D 1O ,得BC 1∥D 1O ,所以A 1D 1D 1C 1=A 1O OB ,又由题可知A 1D 1D 1C 1=DC AD ,A 1O OB =1,所以DC AD =1,即ADDC=1.1.证明线线平行的依据(1)平面几何法(常用的有三角形中位线、平行四边形对边平行);(2)公理4;(3)线面平行的性质定理;(4)面面平行的性质定理;(5)线面垂直的性质定理.2.证明线面平行的依据(1)定义;(2)线面平行的判定定理;(3)面面平行的性质定理. 3.证明面面平行的依据(1)定义;(2)面面平行的判定定理;(3)线面垂直的性质定理;(4)面面平行的传递性.2.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB =2EF ,EF ∥AB ,H 为BC 的中点,求证:FH ∥平面EDB .[解] 连接AC 交BD 于点G ,则G 为AC 的中点. 连接EG ,GH , ∵H 为BC 的中点, ∴GH 綊12AB .又EF 綊12AB ,∴EF 綊GH ,∴四边形EFHG 为平行四边形,∴EG ∥FH ,∵EG 平面EDB ,FH 平面EDB , ∴FH ∥平面EDB .【例3】 如图,在四棱锥P ­ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面PAD ⊥底面ABCD ,PA ⊥AD ,E 和F 分别是CD 和PC 的中点.求证:(1)PA ⊥底面ABCD ; (2)BE ∥平面PAD ; (3)平面BEF ⊥平面PCD .[解] (1)因为平面PAD ⊥底面ABCD ,且PA ⊥AD ,所以PA ⊥底面ABCD . (2)因为AB ∥CD ,CD =2AB ,E 为CD 的中点, 所以AB ∥DE ,且AB =DE , 所以四边形ABED 为平行四边形, 所以BE ∥AD .又因为BE 平面PAD ,AD 平面PAD ,所以BE∥平面PAD.(3)因为AB⊥AD,而且ABED为平行四边形,所以BE⊥CD,AD⊥CD.由(1)知PA⊥底面ABCD,所以PA⊥CD.又AD∩PA=A,所以CD⊥平面PAD,所以CD⊥PD.因为E和F分别是CD和PC的中点,所以PD∥EF,所以CD⊥EF.又EF∩BE=E,所以CD⊥平面BEF.又CD平面PCD,所以平面BEF⊥平面PCD.1.两条异面直线相互垂直的证明方法(1)定义;(2)线面垂直的性质定理.2.直线和平面垂直的证明方法(1)线面垂直的判定定理;(2)面面垂直的性质定理.3.平面和平面相互垂直的证明方法(1)定义;(2)面面垂直的判定定理.3.如图,直三棱柱ABC­A1B1C1中(侧棱与底面垂直的棱柱),AC=BC=1,∠ACB=90°,AA1=2,D是A1B1的中点.(1)求证:C1D⊥平面AA1B1B;(2)若点F为BB1上的动点,则当点F在BB1上的什么位置时,会使得AB1⊥平面C1DF?并证明你的结论.[解](1)由题意知,A1C1=B1C1=1,且∠A1C1B1=90°.∵D是A1B1的中点,∴C1D⊥A1B1.∵AA1⊥平面A1B1C1,C1D平面A1B1C1,∴AA1⊥C1D.∵AA1∩A1B1=A1,∴C1D⊥平面AA1B1B.(2)点F为BB1的中点时,AB1⊥平面C1DF.证明如下.∵C1D⊥平面AA1B1B,AB1平面AA1B1B,∴C1D⊥AB1.易知A 1B 1=2,∵AA 1=2,∴四边形AA 1B 1B 为正方形.又D 为A 1B 1的中点,F 为BB 1的中点,∴AB 1⊥DF ,又DF ∩C 1D =D ,∴AB 1⊥平面C 1DF .【例4】 如图,已知正三棱锥S ­ABC ,过B 和侧棱SA ,SC 的中点E ,F 作一截面,若这个截面与侧面SAC 垂直,求此三棱锥的侧面积与底面积之比.[思路探究] 构建截面,利用几何知识巧妙判断各棱之间的关系.[解] 取AC 的中点M ,连接SM ,设SM ∩EF =D . 如图.在△SAC 中,E ,F 分别为SA ,SC 的中点,所以EF ∥AC ,所以SF FC=SD DM, 而SF =FC ,所以SD =DM , 所以D 为SM 的中点. 连接BD ,BM .因为S ­ABC 为正三棱锥,所以SM ⊥AC .而AC ∥EF ,所以SM ⊥EF ,又截面BEF ⊥平面SAC ,所以SM ⊥BD . 又SD =DM ,所以△SBM 为等腰三角形,SB =BM . 设正三棱锥S ­ABC 的底面边长为a ,则BM =32a ,从而SA =SB =SC =BM =32a , 又SM =SC 2-CM 2=⎝ ⎛⎭⎪⎫32a 2-⎝ ⎛⎭⎪⎫a 22=22a , 所以S 侧=3×12×a ×22a =324a 2,S底=34a 2,所以S 侧∶S 底=6∶1.在中学数学中,有关截面的问题主要有面积、距离和角的计算问题以及与截面的位置、形状、数量有关的证明和判定问题.在解有关截面问题时要注意(1)截面的位置;(2)截面的形状及有关性质; (3)截面的元素及其相互关系; (4)截面的有关数量.4.一个圆锥底面半径为R ,高为3R ,求此圆锥的内接正四棱柱表面积的最大值. [解] 如图,△SAB 为圆锥SO 的一个轴截面,且该轴截面经过正四棱柱的对角面,DF 为棱柱的底面对角线,要求棱柱的表面积,只要求出底面正方形边长及棱柱的高即可.设正四棱柱高为h ,底面正方形边长为a ,则DE =22a . ∵△SDE ∽△SAO ,∴DE AO =SE SO. ∵AO =R ,SO =3R ,∴22a R =3R -h 3R ,∴h =3R -62a .∴S 表=2a 2+4ah =2a 2+4a ⎝ ⎛⎭⎪⎫3R -62a . 整理得S 表=(2-26)⎝⎛⎭⎪⎫a -3R 6-12+6R26-1,0<a <2R . ∵2-26<0,3R 6-1<2R ,∴当a =3R6-1时,S 表有最大值6R26-1=6(6+1)R25.即圆锥的内接正四棱柱表面积最大值是6(6+1)5R 2.【例5】 在矩形ABCD 中,已知AB =2AD ,E 是AD 的中点,沿BE 将△ABE 折起至△A ′BE的位置,使A ′C =A ′D ,求证:平面A ′BE ⊥平面BCDE .[思路探究] 运用线线垂直证明线面垂直,运用线面垂直证明面面垂直. [解] 如图所示,取CD 的中点M ,BE 的中点N ,连接A ′M ,A ′N ,MN ,则MN ∥BC .∵AB =12AD ,E 是AD 的中点,∴A ′B =A ′E ,∴A ′N ⊥BE . ∵A ′C =A ′D ,∴A ′M⊥CD .在矩形ABCD 中,DC ⊥MN ,又MN ∩A ′M =M ,∴DC ⊥平面A ′MN ,∴CD ⊥A ′N .∵ED ∥BC ,且ED ≠BC ,∴BE 必与CD 相交, ∴A ′N ⊥平面BCDE .又A ′N 平面A ′BE ,∴平面A ′BE ⊥平面BCDE .把一个平面图形按某种要求折起,转化为空间图形,进而研究图形在位置关系和数量关系上的变化,这就是折叠问题.求解折叠问题的两个关键点:(1)画好两个图——折叠前的平面图和折叠后的立体图;(2)分析好两者之间的关系——折叠前后哪些量发生了变化,哪些量没有发生变化.5.如图(1)所示,梯形ABCD 中,AB ∥CD ,E ,F 分别为BC ,AD 的中点,将平面CDFE 沿EF 翻折起来,使CD 到C ′D ′的位置,如图(2)所示,G ,H 分别为AD ′,BC ′的中点,求证:四边形EFGH 为平行四边形.[证明] 梯形ABCD 中,AB ∥CD ,E ,F 分别为BC ,AD 的中点, ∴EF ∥AB 且EF =12(AB +CD ).翻折后,C ′D ′∥EF ,∴C ′D ′∥AB . 又G ,H 分别为AD ′,BC ′的中点,∴GH ∥AB 且GH =12(AB +C ′D ′)=12(AB +CD ),∴GH 綊EF ,∴四边形EFGH 为平行四边形.。

【K12教育学习资料】高中数学 第一章 立体几何初步学案 新人教A版必修2

【K12教育学习资料】高中数学 第一章 立体几何初步学案 新人教A版必修2

教育是最好的老师,小学初中高中资料汇集第一章 立体几何初步一、知识结构二、重点难点重点:空间直线,平面的位置关系。

柱、锥、台、球的表面积和体积的计算公式。

平行、垂直的定义,判定和性质。

难点:柱、锥、台、球的结构特征的概括。

文字语言,图形语言和符号语言的转化。

平行,垂直判定与性质定理证明与应用。

第一课时 棱柱、棱锥、棱台【学习导航】学习要求1.初步理解棱柱、棱锥、棱台的概念。

掌握它们的形成特点。

2.了解棱柱、棱锥、棱台中一些常用名称的含义。

3.了解棱柱、棱锥、棱台这几种几何体简单作图方法4.了解多面体的概念和分类.【课堂互动】 自学评价1. 棱柱的定义: 表示法:思考:棱柱的特点:.【答】 2. 棱锥的定义: 表示法:思考:棱锥的特点:.【答】 3.棱台的定义: 表示法:思考:棱台的特点:.【答】4.多面体的定义:5.多面体的分类:⑴棱柱的分类⑵棱锥的分类⑶棱台的分类【精典范例】例1:设有三个命题:甲:有两个面平行,其余各面都是平行四边形所围体一定是棱柱;乙:有一个面是四边形,其余各面都三角形所围成的几何体是棱锥;丙:用一个平行与棱锥底面的平面去截棱锥,得到的几何体叫棱台。

以上各命题中,真命题的个数是(A)A.0 B. 1 C. 2 D. 3例2:画一个四棱柱和一个三棱台。

【解】四棱柱的作法:⑴画上四棱柱的底面----画一个四边形;⑵画侧棱-----从四边形的每一个顶点画平行且相等的线段;⑶画下底面------顺次连结这些线段的另一个端点互助参考7页例1⑷画一个三棱锥,在它的一条侧棱上取一点,从这点开始,顺次在各个侧面画出与底面平行的线段,将多余的线段檫去.互助参考7页例1点评:(1)被遮挡的线要画成虚线(2)画台由锥截得思维点拔:解柱、锥、台概念性问题和画图需要:(1).准确地理解柱、锥、台的定义(2).灵活理解柱、锥、台的特点:例如:棱锥的特点是:⑴两个底面是全等的多边形;⑵多边形的对应边互相平行;⑶棱柱的侧面都是平行四边形。

2019-2020学年新人教A版必修二 立体几何初步 学案

2019-2020学年新人教A版必修二   立体几何初步   学案

CE =EF =1.(1)求证:AF ∥平面BDE ; (2)求证:CF ⊥平面BDE .[证明] (1)设AC 与BD 交于点O ,连接EO ,如图所示,∵EF ∥AC ,且EF =1,AO =12AC =1,∴四边形AOEF 为平行四边形,∴AF ∥OE . ∵OE ⊂平面BDE ,AF ⊄平面BDE , ∴AF ∥平面BDE . (2)连接FO ,如图所示.∵EF ∥CO ,EF =CO =1,且CE =1, ∴四边形CEFO 为菱形,∴CF ⊥EO . ∵四边形ABCD 为正方形,∴BD ⊥AC .又平面ACEF ⊥平面ABCD ,且平面ACEF ∩平面ABCD =AC , ∴BD ⊥平面ACEF ,∴CF ⊥BD . 又BD ∩EO =O ,∴CF ⊥平面BDE .空间平行、垂直关系的转化: (1)平行、垂直关系的相互转化(2)证明空间线面平行或垂直需注意三点①由已知想性质,由求证想判定.②适当添加辅助线(或面)是解题的常用方法之一.③用定理时要先明确条件,再由定理得出相应结论.1.如图,在直三棱柱ABC­A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.[证明](1)因为ABC­A1B1C1是直三棱柱,所以CC1⊥平面ABC.又AD⊂平面ABC,所以CC1⊥AD.又因为AD⊥DE,CC1,DE⊂平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1.又AD⊂平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1.因为CC1⊥平面A1B1C1,且A1F⊂平面A1B1C1,所以CC1⊥A1F.又因为CC1,B1C1⊂平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1.由(1)知AD ⊥平面BCC 1B 1,所以A 1F ∥AD . 又AD ⊂平面ADE ,A 1F ⊄平面ADE , 所以A 1F ∥平面ADE .【例2】 如图,正方体的棱长为1,B ′C ∩BC ′=O ,求:(1)AO 与A ′C ′所成角的度数; (2)AO 与平面ABCD 所成角的正切值; (3)平面AOB 与平面AOC 所成角的度数. [解] (1)∵A ′C ′∥AC , ∴AO 与A ′C ′所成的角就是∠OAC .∵AB ⊥平面BC ′,OC ⊂平面BC ′,∴OC ⊥AB , 又OC ⊥BO ,AB ∩BO =B .∴OC ⊥平面ABO . 又OA ⊂平面ABO ,∴OC ⊥OA . 在Rt△AOC 中,OC =22,AC =2, sin∠OAC =OC AC =12,∴∠OAC =30°,即AO 与A ′C ′所成角的度数为30°. (2)如图,作OE ⊥BC 于E ,连接AE .∵平面BC ′⊥平面ABCD , ∴OE ⊥平面ABCD ,∴∠OAE 为OA 与平面ABCD 所成的角. 在Rt△OAE 中,OE =12,AE =12+⎝ ⎛⎭⎪⎫122=52,∴tan∠OAE =OE AE =55.(3)∵OC ⊥OA ,OC ⊥OB ,OA ∩OB =O , ∴OC ⊥平面AOB .又∵OC ⊂平面AOC ,∴平面AOB ⊥平面AOC . 即平面AOB 与平面AOC 所成角的度数为90°.空间角的求法:求空间各种角的大小一般都转化为平面角来计算,空间角的计算步骤:一作,二证,三计算.(1)求异面直线所成的角常用平移转化法(转化为相交直线的夹角). (2)求直线与平面所成的角常用射影转化法(即作垂线、找射影). (3)二面角的平面角的作法常有三种:①定义法;②垂线法;③垂面法.2.如图,在三棱锥P ­ABC 中,PA ⊥平面ABC ,∠BAC =90°,AB ≠AC ,D 、E 分别是BC 、AB 的中点,AC >AD ,设PC 与DE 所成的角为α,PD 与平面ABC 所成的角为β,二面角P ­BC ­A的平面角为γ,则α、β、γ的大小关系是________.α<β<γ [∵D 、E 分别是BC 、AB 的中点,∴DE ∥AC ,∴PC 与DE 所成的角为∠PCA ,即α;∵PA ⊥平面ABC ,∴PD 与平面ABC 所成的角为∠PDA ,即β;过A 作AH ⊥BC ,垂足为H ,连接PH ,易证BC ⊥平面PAH ,∴∠PHA 是二面角P ­BC ­A 的平面角,即γ. ∵AB ≠AC , ∴AD >AH ,又AC >AD , ∴AC >AD >AH ,∴PA AC <PA AD <PAAH,∴tan α<tan β<tan γ,∴α<β<γ.]△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q ­ABP 的体积.[解] (1)由已知可得,∠BAC =90°,BA ⊥AC . 又BA ⊥AD ,且AC ⊂平面ACD ,AD ⊂平面ACD ,AC ∩AD =A ,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC . (2)由已知可得,DC =CM =AB =3,DA =3 2.又BP =DQ =23DA ,所以BP =2 2.作QE ⊥AC ,垂足为E ,则QE =13DC ,QE ∥DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q ­ABP 的体积为V Q ­ABP =13×QE ×S △ABP =13×1×12×3×22sin 45°=1.解决折叠问题的关键和解题步骤:解决折叠问题的关键在于认真分析折叠前后元素的位置变化情况,看看哪些元素的位置变了,哪些没有变,基本思路是利用不变求变,一般步骤如下:⑴平面―→空间:根据平面图形折出满足条件的空间图形.想象出空间图形,完成平面图形与空间图形在认识上的转化.⑵空间―→平面:为解决空间图形问题,要回到平面上来,重点分析元素的变与不变.⑶平面―→空间:弄清楚变与不变的元素以后,再立足于不变的元素的位置关系、数量关系去探求变化后元素在空间中的位置关系与数量关系.3.如图所示,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB 沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A­BCD,则在三棱锥A­BCD中,下列结论正确的是( )A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABCD[∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,故CD⊥平面ABD,则CD⊥AB.又AD⊥AB,AD∩CD=D,AD⊂平面ADC,CD⊂平面ADC,故AB⊥平面ADC. 又AB⊂平面ABC,∴平面ADC⊥平面ABC.]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高中数学必修二第一章《立体几何初步》学案一、课前自学[学习目标]1.了解螺旋体的概念;2.理解几何体轴截面的的概念,并解决一些简单的问题。

[预习指导]1、螺旋体(1)一条绕着它所在的平面内的一条定直线旋转形成的曲面叫做旋转面;的旋转面围成的几何体叫做旋转体。

(平面曲线、封闭)(2)特殊的旋转体:圆柱、圆锥、圆台、球。

2、球(1)以半圆的所在的直线为旋转轴,将半圆旋转所形成的曲面叫做球面。

所围成的几何体叫做球体,简称球。

半圆的叫做球心,连接球心与球面上任意一点的线段叫做半径,连接球面上两点并且过的线段叫做球的。

(直径、球面、圆心、球心、直径)(2)表示:球心为O时记为球O 。

3、圆柱、圆锥、圆台(1)概念:分别以矩形的、直角三角形的一条、直角梯形垂直于底边的所在直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫做圆柱、圆锥、圆台。

圆台也可以看作是用于圆锥的平面截这个圆锥而得到的,垂直于的边旋转而成的圆面叫做它们的底面;旋转轴的边旋转而成的曲面叫做它们的侧面,无论转到什么位置这条边都叫做侧面的(一边、直角边、腰、底面、旋转轴、不垂直于母线)(2)表示:圆柱OO’,圆锥SO ,圆台OO’(如上图)二、课堂练习[精讲点拨]1、如何理解简单旋转体的有关概念?(1)对于定义应该注意以下几点:①旋转轴是一条直线;②旋转面是曲面;③旋转体为实体。

(2)几种简单旋转体的比较:想一想:以上旋转体还可以由怎样的平面图形旋转而成?提示:球,圆柱、圆锥、圆台还可以分别由圆,矩形、等腰三角形、等腰梯形绕其..对称轴...旋转半周而成。

[例题解析]例1、 直角梯形绕与底边不垂直的腰旋转所得到的旋转体是() A 、 圆台B 、圆锥C 、圆柱D 、以上都不是 [点拨]根据经验有以下结论:①垂直于旋转轴且与旋转轴有交点的线段旋转所得的图形是圆面;②垂直于旋转轴但与旋转轴没有交点的线段旋转所得到的图形是圆环面;③不垂直于旋转轴且与旋转轴有交点的线段旋转所得到的图形是圆锥侧面;④不垂直于旋转轴且与旋转轴没有交点的线段旋转所得到的图形是圆台侧面;⑤与旋转轴平行的线段旋转所形成的图形是圆柱侧面。

[解析]D解析:如图所示,直角梯形ABCD 绕与底边不垂直的 腰CD 旋转所得的几何体。

很明显,该旋转体既不是圆柱,也不是圆台,也不是球,上部是一个圆锥,下部是 一个圆台挖去了一个圆锥。

例2、 如图,下列几何体是台体的是() ① ②③④A 、①②B 、①③C 、④D 、①④ [思路点拨]由题目可获取以下主要信息:(1)①中各侧面棱延长后不能交于同一点;(2)②② 中截面不平行于底面;(3) ④中截面平行于底面,侧棱延长线交于一点。

[解析]选C ∵①中各侧面棱延长线不相交同一点,不符合台体的定义和特征,∴①不正确。

∵②③中的截面不平行于底面,不符合台体的定义和特征,∴②③不正确。

∵④中截面平行于底面,且侧棱延长线交于一点,符合台体的定义和特征。

∴④正确。

例3、 如图,请描述(1)、(2)中L 围绕∫旋转一周形成的空间几何体。

ABC D A BC D D ’C ’ B ’ A ’ ∫[点拨]①旋转轴固定;②旋转图形L 形状和位置已知; ③ 空间想象。

[解析](1) 由同底的两个圆锥相扣而组成的几何体。

(2) 圆环,形如呼拉圈。

[方法总结]多以运动的思想想象空间几何体,有利于培养空间想象能力。

一、[课堂检测]1、一条直线绕着一条直线(两条直线不重合)旋转一周,所得几何图形可以称为( ) A 、旋转体B 、圆柱C 、圆锥D 、旋转面2、以下几何体中符合球的结构特征的是 ( ) A 、足球B 、篮球C 、乒乓球D 、铅球3、下列说法不正确的是( ) A 、圆柱的侧面展开图是一个矩形。

B 、圆锥中过轴的截面是一个等腰三角形。

C 、直角三角形绕他的一条边所在直线旋转一周形成的曲面围成的几何体是圆椎。

D 、圆台平行于底面的截面是圆面。

4、圆台的轴截面为 梯形。

5、下列命题中,正确的个数是( ) (1)、球的直径是球面上任意两点间的连线段; (2)、用一个平面截一个球,得到一个圆; (3)、不过圆的截面截得的圆叫做小圆; (4)、用一个平面截一个球面,得到一个圆。

6、如图所示的几何体有 个面,面面相交成 条线。

答案:1、D2、D (解析:A 、B 、C 符合球面的定义) 3、C 4、等腰 5、2 6、3 ,2 二、课后强化1、矩形ABCD (不是正方形)绕其一边所在的直线旋转得圆柱,则得不同形状的圆柱的个数为…………………………………………………………………………………… ( ) A.1 B.2 C.3 D.42、如图一条线段绕着与它相交(不垂直)的直线旋转一周,所得几何图形是………………………………( ) A 、旋转体B 、两个圆锥侧面C 、圆柱D 、圆面3、下列旋转体仅有一个底面的是……………………………………………………… ( )∫A BA、圆台B 、圆锥C、圆柱D 、球4、下列几何体是圆柱的是…………………………………………………………………( )A 、 B、 C 、 D 、5等腰三角形ABC 绕底边上的中线AD 旋转所得到的几何体是………………………( ) A 、圆台B 、圆锥C 、圆柱D 、球6、下列说法中正确的是……………………………………………………………………( ) A 、圆台是直角梯形绕其一边旋转而成的 B 、圆锥是直角三角形绕其一边旋转而成的 C 、圆柱不是旋转体D 、圆台可以看作是平行于底面的平面截一个圆锥而得到的底面与截面之间的部分 7、有下列说法:①、连接以圆心和球心的线段垂直于小圆; ②、球的直径是球面上任意两点间的连线段; ③、用一个平面去截一个圆锥,得到的是一个圆; ④、不过球心的截面截得的圆叫做小圆。

则正确说法的序号是 。

8、边长为4的等边三角形ABC 绕∠BAC 的平分线旋转所得到圆锥的高h= 底面半径r= 。

9、一个圆台的母线长为12cm ,两底面面积分别为4πcm 2和25πcm 2 。

求:(1)圆台的高;(2)截得此圆台的圆锥的母线长。

答案:1、B 2、 B 3、B 4、B5、B 6、D 7、①④ 8、 2 9分析 :过圆台的轴作截面,通过解截面等腰梯形来解决。

解:(1)如图,过圆台的轴作截面为等腰梯形ABCD ,由 已知可得上底半径O 1A=12㎝,下底面半径OB=5㎝,且 腰长AB=12㎝,∴=,即圆台的高为(2) 设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO,(3) 可得 l-12l =25,∴l=20㎝,即截得此圆台的圆锥的母线为20cm 。

[学习反思]B OCM S ’§1.简单的几何体 1.2 简单的多面体一、课前学习 [学习目标]1、 了解和认识多面体、棱柱、棱锥、棱台的结构特征,加深对几种几何体的概念及性质的理解。

2、 掌握棱锥、棱台中平行于底面的截面的性质。

3、 了解棱柱、棱锥、棱台的分类。

[预习指导]1.简单多面体的定义把若干个 围成的几何体叫做多面体,其中 、 、 是简单多面体。

2.棱柱 (1)定义两个面 ,其中各面都是 ,并且相邻两个四边形的公共边都 ,这些围成的几何体叫做棱柱。

(2)相关概念两个 的面叫作棱柱的底面, 叫做棱柱的侧面,棱柱的侧面是 ,两个面的 叫做棱柱的棱,其中两个 的公共边叫作棱柱的侧棱,底面多边形与侧面的公共顶点叫做棱柱的顶点。

(3)图示(4)特殊棱柱直棱柱:侧棱 底面的棱柱。

正棱柱:底面是 的直棱柱。

(5)分类(底面为三角形) (底面为四角形) (底面为五角形) ……(底面为n 角形)棱柱底面 侧面 侧棱 底面 顶点答案:1.平面多边形、棱柱、棱锥、棱台2.(1)平行、平行四边形、平行(2)平行、其余各面、平行四边形、公共边侧面(4)垂直于、正多边形(5)三棱柱、四棱柱、五棱柱、n棱柱3.多边形、有一个公共点、正多边形、全等、平行于、正棱锥、全等的等腰梯形二、课堂学习[精讲点拨]2. 理解之棱柱、郑棱柱、正棱台的概念 [例题解析]例1:判断下列语句是否正确。

(1) 有一个面是多边形,其余各面都是三角形的几何体是棱锥。

(2) 有两个面平行,其余各面为梯形,则此几何体为棱台。

[思路点拨]由题目可获取以下主要信息:(1) 一几何体有一个面是多边形,其余面都是三角形。

(2) 一几何体有两个面平行,其余各面为梯形。

[解析](1)不正确,有一个面试多边形,其余各面必须是有一个公共点的三角形,否则此几何体不是棱锥,如图①。

(2)不正确,此语句不能反映出侧棱延长线交于一点,如图②,满足条件但不是棱台。

①②例2.小明设计了某个产品的包装盒,但是少设计了其中一部分 (如图所示),现欲把它补上,使其成为两边均有盖的正方体盒 子。

请你设计四种弥补的方法,并画出设计图。

[思路点拨]根据正方体有六个面只需确定两个面的位置,可先确定一个面为“底面”,进行翻折确定其他面的位置。

设计图如下:① ② ③ ④例3.在以O 为顶点的三棱锥中,过O 的三条棱两两所成的角都是30°,在一条棱上取A 、B 两点,OA=4cm,OB=3cm ,以A 、B 为端点用一条绳子紧绕三棱锥的侧面一周,求此绳在A 、B 之间的最短绳长。

[点拨]解决空间几何体表面上两点的最短路程的问题,一般都是将空间几何体表面展开,将问题转换为平面能里昂点的线段长进行求解,这体现了数学中的转化思想。

[解析]如图①所示的三棱锥,作出它的侧面展开图,如图②,A ,B 两点之间的最短绳长就是AB 长度,在△AOB 中 ,∠AOB=3×30°=90°,OA=4cm,OB=3cm,所以=5(cm)。

即此绳在A ,B 之间的最短绳长为5cm 。

① ②[变式]已知一正方体铁盒ABCD-A 1B 1C 1D 1,棱长为2,如图,O 为B 1C 1CB 的中心,一蚂蚁从A 1出发,求到达O 1的最短距离。

A 1ABB 1与面B 1BCC 1展开成一个平面,再连接A 1O ,则A 1=【课堂检测】1.棱台不具有的性质是 ( ) A 、两底面相似 B 、侧面都是梯形 C 、侧棱都平行D 、侧棱延长线后都交与一点2.下列说法中正确的是 ( ) A 、棱柱的底面一定是平行四边形BOAB 、棱锥的底面一定是三角形C 、棱锥被平面分成的两部分不可能都是棱锥D 、棱锥被平面分成的两部分可以是棱锥3.用一个过正棱柱底面一边的平面去截正四棱柱,截面形状是( ) A 、正方形B 、矩形C 、菱形D 、不确定4下列几何体中是棱柱的有 个。

①② ③ ④ ⑤ ⑥ ⑦5.有一枚正方体的骰子,每一个面上都有一个英文字母,如下图所示的是从3个不同角度看同一枚骰子的情况,则与H相对的字母是。

相关文档
最新文档