洛阳市九年级上册期末精选试卷检测题

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

洛阳市九年级上册期末精选试卷检测题

一、初三数学 一元二次方程易错题压轴题(难)

1.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.

(1)求甲、乙两种苹果的进价分别是每千克多少元?

(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.

【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7.

【解析】

【分析】

(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.

【详解】

(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.

由题得:()()18344282a b a b +=⎧⎨+++=⎩

解之得:108

a b =⎧⎨=⎩ 答:甲、乙两种苹果的进价分别为10元/千克,8元/千克

(2)由题意得:()()()()410010214010960x x x x +-++-=

解之得:12x =,27x =

经检验,12x =,27x =均符合题意

答:x 的值为2或7.

【点睛】

本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.

2.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?

(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?

【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售.

【解析】

【分析】

(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折.

【详解】

(1)设每千克茶叶应降价x 元.根据题意,得:

(400﹣x ﹣240)(200+10

x ×40)=41600. 化简,得:x 2﹣10x +240=0.

解得:x 1=30,x 2=80.

答:每千克茶叶应降价30元或80元.

(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.

此时,售价为:400﹣80=320(元),

320100%80%400⨯=. 答:该店应按原售价的8折出售.

【点睛】

本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.

3.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点.

己知函数2

22(3)y x mx m =--+(m m 为常数). (1)当m =0时,求该函数的零点;

(2)证明:无论m 取何值,该函数总有两个零点;

(3)设函数的两个零点分别为1x 和2x ,且121114

x x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.

【答案】(1)当m =0

(2)见解析,

(3)AM 的解析式为112

y x =-

-. 【解析】

【分析】

(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;

(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式 【详解】

(1)当m =0时,该函数的零点为6和6-.

(2)令y=0,得△=

∴无论m 取何值,方程

总有两个不相等的实数根. 即无论m 取何值,该函数总有两个零点.

(3)依题意有

, 由解得.

∴函数的解析式为

. 令y=0,解得

∴A(),B(4,0) 作点B 关于直线10y x =-的对称点B’,连结AB’,

则AB’与直线10y x =-的交点就是满足条件的M 点.

易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10).

连结CB’,则∠BCD=45°

∴BC=CB’=6,∠B’CD=∠BCD=45°

∴∠BCB’=90°

即B’(106-,)

设直线AB’的解析式为y kx b =+,则

20{106k b k b -+=+=-,解得112

k b =-=-, ∴直线AB’的解析式为112y x =-

-, 即AM 的解析式为112

y x =--.

4.如图,在平面直角坐标系中,正方形ABCD 的顶点A 在y 轴正半轴上,顶点B 在x 轴正半轴上,OA 、OB 的长分别是一元二次方程x 2﹣7x+12=0的两个根(OA >OB ).

相关文档
最新文档