带答案 数学北师大版选修2-3计数原理原理练习题 】第一章 1(一)
2019版北师大版数学【选修2-3】:第1章《计数原理》综合测试(含答案)
![2019版北师大版数学【选修2-3】:第1章《计数原理》综合测试(含答案)](https://img.taocdn.com/s3/m/66ebe8c76294dd88d0d26b61.png)
2019版数学精品资料(北师大版)第一章综合测试时间120分钟,满分150分。
一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,从上往下读(不能跳读)构成句子“构建和谐社会,创美好未来”的不同读法种数是()构建建和和和谐谐谐谐社社社社社会会会会会会创创创创创美美美美好好好未未来A.250B.240C.252D.300[答案] C[解析]要组成题设中的句子,则每行读一字,不能跳读.每一种读法须10步完成(从上一个字到下一个字为一步),其中5步是从左上角到右下角方向读的,故共有不同读法C510=252种.2.某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天,若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有() A.30种B.36种C.42种D.48种[答案] C[解析]本题考查排列组合的基本知识,涉及分类,分步计算原理、特殊元素、特殊位置.甲在16日,有C14C24=24种;甲在15日,乙在15日有C24=6种.甲在15日,乙在14日时有C14C13=12种,所以总共24+6+12=42,故选C.3.(1+x)7的展开式中x2的系数是()A.42 B.35C.28 D.21[答案] D[解析]展开式中第r+1项为Tr+1=C r7x r,T3=C27x2,∴x2的系数为C27=21,此题误认为T r+1为第r项,导致失分.4.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法种数有()A.60种B.48种C.36种D.24种[答案] D[解析]把A,B视为一人,且B固定在A的右边,则本题相当于4人的全排列,A44=24种.5.(2013·新课标Ⅰ理,9)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=() A.5 B.6C.7 D.8[答案] B[解析]a=c m2m =2m(2m-1)…(m+1)m!,b=c m2m+1=(2m+1)·2m…(m+2)m!,又∵13a=7b,∴13(m+1)=7(2m+1),∴m=6.6.设集合A ={1,2,3,4},m ,n ∈A ,则关于x ,y 的方程x 2m +y 2n =1表示焦点在x 轴上的椭圆有( )A .6个B .8个C .12个D .16个[答案] A[解析] 解法一:因为椭圆的焦点在x 轴上,所以当m =4时,n =1或2或3;当m =3时,n =1或2;当m =2时,n =1,即所求的椭圆共有3+2+1=6(个).解法二:由题意知m >n ,则应有C 24=6(个)焦点在x 轴上的不同椭圆.故选A.7.如图,一圆形花圃内有5块区域,现有4种不同颜色的花.从4种花中选出若干种植入花圃中,要求相邻两区域不同色,种法有( )A .324种B .216种C .244种D .240种[答案] D[解析] 若1、4同色,共有C 14×3×3×2=72(种).若1、4不同色(里面分2与4同色不同色),共有A 24×2×(1×3+2×2)=168(种).所以一共有168+72=240(种).8.(2012·辽宁理,5)一排9个座位坐了3个三口之家, 若每家人坐在一起,则不同的坐法种数为( )A .3×3!B .3×(3!)3C .(3!)4D .9! [答案] C[解析] 本题考查捆绑法排列问题.由于一家人坐在一起,可以将一家三口人看作一个整体,一家人坐法3!, 三个家庭即(3!)3,三个家庭又可全排列,因此(3!)4 注意排列中在一起可用捆绑法,即相邻问题.9.(2014·山东省胶东示范校检测)已知某动点在平面直角坐标系第一象限的整点上运动(含x ,y 正半轴上的整点),其运动规律为(m ,n )→(m +1,n +1)或(m ,n )→(m +1,n -1).若该动点从原点出发,经过6步运动到点(6,2),则不同的运动轨迹有( )A .15种B .14种C .9种D .103种[答案] C[解析] 由运动规律可知,每一步的横坐标都增加1,只需考虑纵坐标的变化,而纵坐标每一步增加1(或减少1),经过6步变化后,结果由0变到2,因此这6步中有2步是按照(m ,n )→(m +1,n -1)运动的,有4步是按照(m ,n )→(m +1,n +1)运动的,因此,共有C 26=15种,而此动点只能在第一象限的整点上运动(含x ,y 正半轴上的整点),当第一步(m ,n )→(m +1,n -1)时不符合要求,有C 15种;当第一步(m ,n )→(m +1,n +1),但第二、三两步为(m ,n )→(m +1,n -1)时也不符合要求,有1种,故要减去不符合条件的C 15+1=6种,故共有15-6=9种.10.(2014·福建理,10)用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a )(1+b )的展开式1+a +b +ab 表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球,而“ab ”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个有区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )A .(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5B .(1+a 5)(1+b +b 2+b 3+b 4+b 5)(1+c )5C .(1+a )5(1+b +b 2+b 3+b 4+b 5)(1+c 5)D .(1+a 5)(1+b )5(1+c +c 2+c 3+c 4+c 5) [答案] A[解析] 从5个无区别的红球中取出若干个球的所有情况为1+a +a 2+a 3+a 4+a 5,从5个有区别的黑球中取出若干个球的所有情况为(1+c )(1+c )(1+c )(1+c )(1+c ),而所有蓝球都取出或都不取出有1+b 5种情况,故选A.二、填空题(本大题共5小题,每小题5分,共25分) 11.(2013·安徽理,11)若(x +a 3x)8的展开式中x 4的系数为7,则实数a =________.[答案] 12[解析] 由T r +1=C r 8·x r (a3x )8-r =C r 8·x 4r -83·a 8-r.令4r -83=4,∴r =5,则x 4的系数为C 58a 3=7.解之得a =12.12.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有______种(用数字作答).[答案] 36[解析] 分2步完成:第一步:将4名大学生按2,1,1分成三组,其分法有C 24C 12C 11A 22种.第二步:将分好的三组分配到3个乡镇,其分法有A 33种,所以满足条件的分配方案有C 24C 12C 11A 22A 33=36种.13.用数字0,1,2,3,4,5,6组成设有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有________个(用数字作答).[答案] 324[解析] 分两大类:(1)四位数中如果有0,这时0一定排在个、十、百位的任一位上,如排在个位,这时,十位、百位上数字又有两种情况:①可以全是偶数;②可以全是奇数.故此时共有C 23A 33C 14+C 23A 33C 14=144(种).(2)四位数中如果没有0,这时后三位可以全是偶数,或两奇一偶.此时共有A 33A 13+C 23C 13A 33C 13=180(种).故符合题意的四位偶数共有:144+180=324(种).14.若(x -2)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 1+a 2+a 3+a 4+a 5=________(用数字作答).[答案] 31[解析] 已知(x -2)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0, 令x =1,得(1-2)5=a 5+a 4+a 3+a 2+a 1+a 0=-1, 令x =0,得(0-2)5=a 0=-32, 所以a 1+a 2+a 3+a 4+a 5=31.15.一直线和圆相离,这条直线上有6个点,圆周上有4个点,通过任意两点作直线,最少可作直线的条数是________.[答案] 19[解析] 为了作的直线条数最少,应出现3点或更多点共线的情况,由于直线与圆相离,应让圆上任意两点都与直线上的一点共线.圆周上有4点能连成C 24=6条直线,而直线上恰有6个点,故这10个点中最多有6个三点共线和1个六点共线的情况,因此最少可作直线C 210-6C 23-C 26+6+1=19(条).三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分) 16.(1)化简n ·(n +1)·…·(n +m );(2)求证:A 57+5A 47=A 58; (3)求n 使A 32n =10A 3n .[解析] (1)由排列数公式的阶乘形式可得n ·(n +1)·…·(n +m )=(n +m )!(n -1)!=A m +1n +m .(2)A 57+5A 47=7×6×5×4×3+5×7×6×5×4=(3+5)×7×6×5×4=8×7×6×5×4=A 58,故等式得证.(3)由A 32n =10A 3n 得2n (2n -1)(2n -2)=10n (n -1)(n -2),即4n (2n -1)(n -1)=10n (n -1)(n -2),4(2n -1)=10(n -2)(n ≥3,n 是正整数),解得n =8.17.把4个男同志和4个女同志均分成4组,到4辆公共汽车里参加售票劳动,如果同样两人在不同汽车上服务算作不同情况.(1)有几种不同的分配方法?(2)每个小组必须是一个男同志和一个女同志有几种不同的分配方法? (3)男同志与女同志分别分组,有几种不同分配方法?[解析] (1)男女合在一起共有8人,每辆车上2人,可以分四个步骤完成,先安排2人上第一辆车,共有C 28种,再上第二车共有C 26种,再上第三车共有C 24种,最后上第四车共有C 22种,这样不同分配方法,按分步计数原理有C 28·C 26·C 24·C 22=2520(种). (2)要求男女各1人,因此先把男同志安排上车,共有A 44种不同方法,同理,女同志也有A 44种方法,由分步计数原理,男女各1人上车的不同分配方法为A 44·A 44=576(种).(3)男女分别分组,4个男的平分成两组共有C 242=3(种),4个女的分成两组也有C 242=3(种)不同分法,这样分组方法就有3×3=9(种),对于其中每一种分法上4部车,又有A 44种上法,因而不同分配方法为9·A 44=216(种).18.把7个大小完全相同的小球,放置在三个盒子中,允许有的盒子一个也不放. (1)如果三个盒子完全相同,有多少种放置方法? (2)如果三个盒子各不相同,有多少种放置方法?[解析] (1)∵小球的大小完全相同,三个盒子也完全相同,∴把7个小球分成三份,比如分成3个、2个、2个这样三份放入三个盒子中,不论哪一份小球放入哪一个盒子均是同一种放法,因此,只需将7个小球分成如下三份即可,即(7,0,0)、(6,1,0)、(5,2,0)、(5,1,1)、(4,3,0)、(4,2,1)、(3,3,1)、(3,2,2).共计有8种不同的放置方法.(2)设三个盒子中小球的个数分别为x 1,x 2,x 3,显然有:x 1+x 2+x 3=7,于是,问题就转化为求这个不定方程的非负整数解,若令y i =x i +1(i =1,2,3)由y 1+y 2+y 3=10,问题又成为求不定方程y 1+y 2+y 3=10的正整数解的组数的问题,在10个1中间9个空档中,任取两个空档作记号,即可将10分成三组,∴不定方程的解有C 29=36组.19.在产品质量检验时,常从产品中抽出一部分进行检查,现有100件产品,其中有98件正品,2件次品,从中任意抽出3件检查,(1)共有多少种不同的抽法?(2)恰好有一件是次品的抽法有多少种? (3)至少有一件是次品的抽法有多少种?[分析] 由于抽取的产品与顺序无关,因此是一个组合问题.[解析] (1)所求的不同抽法数,即从100个不同元素中任取3个元素的组合数,共有C 3100=100×99×983×2×1=161700(种).(2)抽出的3件中恰好有一件是次品的这件事,可以分两步完成. 第一步:从2件次品中任取1件,有C 12种方法; 第二步:从98件正品中任取2件,有C 298种方法.根据分步乘法计数原理知,不同的抽取方法共有C 12·C 298=2×4753=9506(种). (3)方法一:抽出的3件中至少有一件是次品的这件事,分为两类:第一类:抽出的3件中有1件是次品的抽法,有C 12C 298种; 第二类:抽出的3件中有2件是次品的抽法,有C 22C 198种.根据分类加法计数原理,不同的抽法共有C 12C 298+C 22C 198=9506+98=9604(种).方法二:从100件产品中任取3件的抽法有C 3100种,其中抽出的3件中至少有一件是次品的抽法共有C 3100-C 398=161700-152096=9 604(种).[点评] 本题考查了计数原理和组合知识的应用. 20.求(x 2+3x +2)5的展开式中x 项的系数. [分析] 转化为二项式问题或利用组合知识.[解析] 方法一:因为(x 2+3x +2)5=(x +2)5·(x +1)5=(C 05x 5+C 15x 4·2+…+C 55·25)(C 05x 5+C 15x 4+…+C 55)展开后x 项为C 45x ·24·C 55+C 55·25·C 45x =240x . 所以(x 2+3x +2)5展开式中x 项的系数为240. 方法二:因为(x 2+3x +2)5=[x 2+(3x +2)]5,设T r +1=C r 5(x 2)5-r(3x +2)r , 在(3x +2)r 中,设T k +1=C k r (3x )r -k 2k , T r +1=C r 5(x 2)5-r C k r (3x )r -k 2k =C r 5C k r 3r -k 2k x 10-r -k , 依题意可知10-r -k =1,即r +k =9. 又0≤k ≤r ≤5,r ,k ∈N +,所以r =5,k =4. 则T r +1=C 55·C 45·3·24·x =240x . 所以(x 2+3x +2)5展开式中x 项的系数为240.方法三:把(x 2+3x +2)5看成5个x 2+3x +2相乘,每个因式各取一项相乘得到展开式中的一项,x 项可由1个因式取3x,4个因式取2相乘得到,即C 153x ·C 44·24=240x . 所以(x 2+3x +2)5展开式中x 项的系数为240.[点评] 本题考查利用转化的思想求三项展开式的特定项.三项式求特定项的思路有: (1)分解因式法:通过因式分解将三项式变成两个二项式,然后再用二项式定理分别展开.(2)逐层展开法:将三项式分成两组,用二项式定理展开,再把其中含两项的一组展开. (3)利用组合知识:把三项式看成几个因式的积,利用组合知识分析项的构成,注意最后应把各个同类项相合并.21.已知⎝⎛⎭⎪⎫3a -3a n (n ∈N *)的展开式的各项系数之和等于⎝⎛⎭⎪⎫43b -15b 5的展开式中的常数项,求⎝⎛⎭⎪⎫3a -3a n 的展开式中a -1项的二项式系数. [解析] 对于⎝ ⎛⎭⎪⎫43b -15b 5:T r +1=C r 5(43b )5-r ⎝⎛⎭⎫-15b r =C r 5·(-1)r ·45-r·5-r 2b 10-5r 6.若T r +1为常数项,则10-5r =0,所以r =2,此时得常数项为T 3=C 25·(-1)2·43·5-1=27.令a =1,得⎝⎛⎭⎪⎫3a -3a n 展开式的各项系数之和为2n .由题意知2n =27,所以n =7.对于⎝ ⎛⎭⎪⎫3a -3a 7:T r +1=C r 7⎝⎛⎭⎫3a 7-r ·(-3a )r =C r 7·(-1)r ·37-r a 5r -216.若T r +1为a -1项,则5r -216=-1,所以r =3.所以⎝ ⎛⎭⎪⎫3a -3a n 的展开式中a -1项的二项式系数为C 37=35.。
北师大高中数学选修2-3精练:第一章计数原理1.1.1Word版含答案
![北师大高中数学选修2-3精练:第一章计数原理1.1.1Word版含答案](https://img.taocdn.com/s3/m/5489969e941ea76e58fa04d3.png)
第一章DIYIZHANG计数原理§1分类加法计数原理和分步乘法计数原理第1课时1.某一数学问题可用综合法和分析法两种方法证明,有5名同学只会用综合法证明,有3名同学只会用分析法证明,现从这些同学中任选1名同学证明这个问题,不同的选法种数为()A.8B.15C.18D.30解析:共有5+3=8种不同的选法.答案:A2.从A地到B地要经过C地和D地,从A地到C地有3条路,从C地到D地有2条路,从D地到B地有4条路,则从A地到B地不同的走法有()A.9种B.1种C.24种D.3种解析:由分步乘法计数原理知,从A地到B地不同走法有2×3×4=24(种).答案:C3.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有()A.30个B.42个C.36个D.35个解析:要完成这件事可分两步,第一步确定b(b≠0)有6种方法,第二步确定a有6种方法,故由分步乘法计数原理知共有6×6=36个虚数,故选C.答案:C4.某公共汽车上有10名乘客,沿途有5个车站,乘客下车的可能方式有()A.510种B.105种C.15种D.50种解析:每名乘客都有在5个车站中的任何一个车站下车的可能,由分步乘法计数原理得,下车的可能方式有5×5×5×5×5×5×5×5×5×5=510种.答案:A5.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A.8种B.9种C.10种D.11种解析:设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理得监考的方法共有3+3+3=9(种).答案:B6.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12D.10解析:①当a=0时,2x+b=0总有实数根,所以(a,b)的取值有4个.②当a≠0时,需Δ=4-4ab≥0,所以ab≤1.a=-1时,b的取值有4个,a=1时,b的取值有3个,a=2时,b的取值有2个.所以(a,b)的取法有9个.综合①②知,(a,b)的取法有4+9=13个.答案:B7.8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行半决赛,获胜者角逐冠亚军,败者角逐第3,4名,则大师赛共有场比赛.解析:每个小组赛有6场比赛,两个小组有6+6=12场比赛,半决赛和决赛共有2+2=4场比赛,根据分类加法计数原理,共有12+4=16场比赛.答案:168.导学号43944001一学习小组有4名男生,3名女生,任选一名学生当数学课代表,共有种不同选法;若选男、女生各一名当组长,共有种不同选法.解析:任选一名当数学课代表可分两类,一类是从男生中选,有4种选法;另一类是从女生中选,有3种选法.根据分类加法计数原理,共有4+3=7种不同选法.若选男、女生各一名当组长,需分两步:第1步,从男生中选一名,有4种选法;第2步,从女生中选一名,有3种选法.根据分步乘法计数原理,共有4×3=12种不同选法.答案:7129.导学号43944002有一项活动,需从3位老师、8名男同学和5名女同学中选人参加.(1)若只需1人参加,有多少种不同的选法?(2)若需老师、男同学、女同学各1人参加,有多少种不同的选法?(3)若需1位老师、1名同学参加,有多少种不同的选法?解(1)选1人,可分三类:第一类从老师中选1人,有3种不同的选法;第二类从男同学中选1人,有8种不同的选法;第三类从女同学中选1人,有5种不同的选法,共有3+8+5=16种不同的选法.(2)选老师、男同学、女同学各1人,则分3步进行,第一步选1位老师,有3种不同的选法;第二步选1位男同学,有8种不同的选法;第三步选1位女同学,有5种不同的选法,共有3×8×5=120种不同的选法.(3)选1位老师、1名同学,可分两步进行,第一步选1位老师,有3种不同的选法,第二步选1位同学,有8+5=13种不同的选法,共有3×13=39种不同的选法.10.已知集合A={a1,a2,a3,a4},集合B={b1,b2},其中a i,b j(i=1,2,3,4,j=1,2)均为实数.(1)从集合A到集合B能构成多少个不同的映射?(2)能构成多少个以集合A为定义域,集合B为值域的不同函数?解(1)因为集合A中的元素a i(i=1,2,3,4)与集合B中元素的对应方法都有2种,由分步乘法计数原理,可构成A→B的映射有N=24=16个.(2)在(1)的映射中,a1,a2,a3,a4均对应同一元素b1或b2的情形.此时构不成以集合A为定义域,以集合B为值域的函数,这样的映射有2个.所以构成以集合A为定义域,以集合B为值域的函数有M=16-2=14个.。
(常考题)北师大版高中数学高中数学选修2-3第一章《计数原理》检测卷(包含答案解析)(1)
![(常考题)北师大版高中数学高中数学选修2-3第一章《计数原理》检测卷(包含答案解析)(1)](https://img.taocdn.com/s3/m/3d626ec35a8102d276a22ff1.png)
一、选择题1.设01a <<,2a b +=,随机变量X 的分布列如表:则当()0,1a ∈内增大时( )A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大2.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则任意选取一名学生,该生成绩不高于80的概率为( ) A .0.05B .0.1C .0.15D .0.23.甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛.若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为13,乙获胜的概率为23各局比赛结果相互独立.则甲在4局以内(含4局)赢得比赛的概率为( ) A .1781B .5681C .6481D .25814.已知19,3X B ⎛⎫~ ⎪⎝⎭,则()E X 、()D X 的值依次为( ). A .3,2 B .2,3C .6,2D .2,65.有10件产品,其中3件是次品,从中任取两件,若X 表示取得次品的个数,则P (X <2)等于 A .715B .815C .1415D .16.已知随机变量ξ服从正态分布2(4,)N σ,(5)0.89P ξ≤=,则(3)P ξ≤=( ) A .0.89B .0.22C .0.11D .0.787.某学校高三模拟考试中数学成绩X 服从正态分布()75,121N ,考生共有1000人,估计数学成绩在75分到86分之间的人数约为( )人.参考数据:()0.6826P X μσμσ-<<+=,(22)0.9544P X μσμσ-<<+=) A .261B .341C .477D .6838.设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,( )ξ0 12P12p- 122pA .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大 D .()D ξ先增大后减小 9.若随机变量ξ满足(1)4E ξ-=,(1)4D ξ-=,则下列说法正确的是A .4,4E D ξξ=-=B .3,3E D ξξ=-=C .4,4ED ξξ=-=-D .3,4E D ξξ=-=10.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落A 袋中的概率为( ).A .18B .14C .38D .3411.已知随机变量X 服从正态分布2(2,)N σ,(4)0.84P X ≤=,则(02)P X ≤≤=( ) A .0.64 B .0.16C .0.32D .0.3412.如果()20,X B p ,当12p =且()P X k =取得最大值时, k 的值是( )A .8B .9C .10D .11二、填空题13.一只青蛙从数轴的原点出发,当投下的硬币正面向上时,它沿数轴的正方向跳动两个单位;当投下的硬币反面向上时,它沿数轴的负方向跳动一个单位,若青蛙跳动4次停止,设停止时青蛙在数轴上对应的坐标为随机变量X ,则()E X =______.14.某市一次高三年级数学统测,经抽样分析,成绩X 近似服从正态分布()284,N σ,且(7884)0.3P X <≤=.该市某校有400人参加此次统测,估计该校数学成绩不低于90分的人数为____.15.某种填数字彩票,购票者花2元买一张小卡片,在卡片上填10以内(0,1,2,…,9)的三个数字(允许重复).如果依次填写的三个数字与开奖的三个有序的数字分别对应相等,得奖金1000元.只要有一个数字不符(大小或次序),无奖金.则购买一张彩票的期望收益是______________元.16.随机变量ξ的分布列如下:若()3E ξ=,则()D ξ=__________. 17.某同学解答两道试题,他能够解出第一道题的概率为0.8,能够解出第二道题的概率为0.6,两道试题能够解答与否相互独立,记该同学解出题目的个数为随机变量X ,则X 的数学期望()E X =______.18.邮局工作人员整理邮件,从一个信箱中任取一封信,记一封信的质量为X (单位:克),如果()100.3P X <=,()10300.4P X ≤≤=,那么()30P X >等于_________. 19.已知随机变量X ~B (10,0.2),Y =2X +3,则EY 的值为____________.20.运动员参加射击比赛,每人射击4次(每次射一发),比赛规定:全不中得0分,只中一弹得15分,中两弹得40分,中三弹得65分,中四弹得100分.已知某一运动员每一次射击的命中率为35,则他的得分期望为_____. 三、解答题21.已知甲盒中有三个白球和三个红球,乙盒中仅装有三个白球,球除颜色外完全相同,现从甲盒中任取三个球放入乙盒中.(1)求乙盒中红球个数X 的分布列与期望; (2)求从乙盒中任取一球是红球的概率.22.复旦大学附属华山医院感染科主任医师张文宏在接受媒体采访时谈到:通过救治研究发现,目前对于新冠肺炎最有用的“特效药”还是免疫力.而人的免疫力与体质息息相关,一般来讲,体质好,免疫力就强.复学已有一段时间,某医院到学校调查高二学生的体质健康情况,随机抽取12名高二学生进行体质健康测试,测试成绩(百分制)如下:65,78,90,86,52,87,72,86,87,98,88,86.根据此年龄段学生体质健康标准,成绩不低于80的为优良.(1)将频率视为概率,根据样本估计总体的思想,在该学校全体高二学生中任选3人进行体质健康测试,求至少有1人成绩是“优良”的概率;(2)从抽取的12人中随机选取3人,记X 表示成绩“优良”的人数,求X 的分布列和期望.23.“过大年,吃水饺”是我国不少地方过春节的一大习俗,2020年春节前夕,A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数x (同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z 服从正态分布()2,N μσ,利用该正态分布,求Z 落在()38.45,50.4内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于()10,30内的包数为X ,求X 的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为142.7511.95σ=≈; ②若()2~,Z N μσ,则()0.6826P Z μσμσ-<≤+=,()220.9544P Z μσμσ-<≤+=.24.某班同学在假期进行社会实践活动,对[]25,55岁的人群随机抽取n 人进行了一次当前投资生活方式——“房地产投资”的调查,得到如下统计和各年龄段人数频率.......分布直方图:(Ⅰ)求n ,a ,p 的值;(Ⅱ)从年龄在[)4050,岁的“房地产投资”人群中采取分层抽样法抽取9人参加投资管理学习活动,其中选取3人作为代表发言,记选取的3名代表中年龄在[)4050,岁的人数为X ,求X 的分布列和期望EX .25.某校从学生文艺部6名成员(4男2女)中,挑选2人参加学校举办的文艺汇演活动. (1)求男生甲被选中的概率;(2)在已知男生甲被选中的条件下,女生乙被选中的概率;(3)在要求被选中的两人中必须一男一女的条件下,求女生乙被选中的概率.26.甲、乙两名运动员进行射击训练,已知他们击中的环数都稳定在7、8、9、10环,且每次射击成绩互不影响.根据以往的统计数据,甲、乙射击环数的频率分布条形图如下:若将频率视为概率,回答下列问题:(1)甲、乙各射击一次,求甲、乙同时击中10环的概率; (2)求甲射击一次,击中9环以上(含9环)的概率;(3)甲射击3次,X 表示这3次射击中击中9环以上(含9环)的次数,求X 的分布列及数学期望()E X .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先求出()E X ,利用方差的定义建立()()22=13D X a -,利用二次函数单调性判断出()D X 的变化.【详解】由题意:()1111333E X a b =⨯+⨯+⨯,∵2a b +=,∴()1E X =.∴()()()()()222221111=111123333D X a b a b -⨯+-⨯+-⨯=+-⨯ 又2a b +=,∴2b a =-,∴()()()()2222122=2=21=1333D X a b a a a +-⨯-+- ∴当01a <<时,()()22=13D X a -单调递减,即当()0,1a ∈内增大时()D X 减小. 故选:B2.B解析:B 【解析】1(80120)(80)(120)0.12P X P X P X -<<≤=≥== ,选B.3.A解析:A 【分析】甲在4局内(含4局)赢得比赛包含3种情况:①甲胜第1、2局;②乙胜第1局,甲胜2、3局;③甲胜第1局,乙胜第2局,甲胜第3、4局,由此可求得甲在4局以内(含4局)赢得比赛的概率. 【详解】由题意,甲在4局内(含4局)赢得比赛包含3种情况:①甲胜第1、2局,概率为211()3p =;②乙胜第1局,甲胜2、3局,概率为2221()33p =⨯; ③甲胜第1局,乙胜第2局,甲胜第3、4局,概率为23121()333p =⨯⨯, 所以甲在4局以内(含4局)赢得比赛的概率为22212112117()()()33333381p =+⨯+⨯⨯=. 故选:A. 【点睛】本题主要考查了概率的求法,以及相互独立事件的概率乘法公式和互斥事件的概率加法公式的应用,着重考查分类讨论思想,以及计算能力.4.A解析:A 【分析】直接利用二项分布公式计算得到答案.【详解】19,3X B ⎛⎫~ ⎪⎝⎭,则()=⨯=1933E X ,()1191233D X ⎛⎫=⨯⨯-= ⎪⎝⎭故选:A 【点睛】本题考查了二项分布,意在考查学生对于二项分布的理解.5.C解析:C 【分析】根据超几何分布的概率公式计算各种可能的概率,得出结果 【详解】由题意,知X 取0,1,2,X 服从超几何分布, 它取每个值的概率都符合等可能事件的概率公式,即P(X =0)=27210715C C =,P(X =1)=1173210715C C C =⋅,P(X =2)=23210115C C =, 于是P(X<2)=P(X =0)+P(X =1)=7714151515+= 故选C 【点睛】本题主要考查了运用超几何分布求概率,分别求出满足题意的情况,然后相加,属于中档题.6.C解析:C 【分析】由随机变量ξ服从正态分布()24,6N ,可得这组数据对应的正态曲线的对称轴4μ=,利用正态曲线的对称性,即可得到结论. 【详解】随机变量ξ服从正态分布()24,6N ,∴这组数据对应的正态曲线的对称轴4μ=,()()35P P ξξ∴≤=≥, ()50.89P ξ≤=,()510.890.11P ξ∴≥=-=, ()30.11P ξ∴≤=,故选C.【点睛】本题主要考查正态分布的性质,属于中档题.有关正态分布应用的题考查知识点较为清晰,只要熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系,问题就能迎刃而解.7.B解析:B 【解析】分析:正态总体的取值关于75x =对称,位于6486(,)之间的概率是0.6826,根据概率求出位于6486(,)这个范围中的个数,根据对称性除以2 得到要求的结果. 详解:正态总体的取值关于75x =对称,位于6486(,)之间的概率是(75117511)0.682?6P X -+=<<,则估计数学成绩在75分到86分之间的人数约为110000.682?63412⨯⨯≈人. 故选B .点睛:题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩X 关75X =于对称,利用对称写出要用的一段分数的频数,题目得解.8.D解析:D 【分析】先求数学期望,再求方差,最后根据方差函数确定单调性. 【详解】111()0122222p p E p ξ-=⨯+⨯+⨯=+, 2222111111()(0)(1)(2)2222224p p D p p p p p ξ-∴=--+--+--=-++, 1(0,1)2∈,∴()D ξ先增后减,因此选D. 【点睛】222111(),()(())().nnni i i i i i i i i E x p D x E p x p E ξξξξ=====-=-∑∑∑9.D解析:D 【解析】分析:由题意结合随机变量的性质整理计算即可求得最终结果. 详解:随机变量ξ满足()14E ξ-=,()14D ξ-=, 则:()214,14E D ξξ-=-=, 据此可得:3,4E D ξξ=-=. 本题选择D 选项.点睛:本题主要考查期望的数学性质,方差的数学性质等知识,意在考查学生的转化能力和计算求解能力.10.D解析:D 【解析】由于小球每次遇到黑色障碍物时,有一次向左和两次向右或两次向左和一次向右下落时,小球将落入A 袋,所以22123311113()C 1C 122224P A ⎛⎫⎛⎫⎛⎫⎛⎫=⋅⋅-+⋅⋅-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选D . 11.D解析:D 【解析】∵随机变量ξ服从正态分布2(2,)N σ,2μ=,得对称轴是2x =,(4)0.84P ξ=≤, ∴(4)(0)0.16P P ξξ≥=<=,∴(02)0.50.160.34P ξ≤≤=-=,故选D .12.C解析:C 【解析】因为()20,X B p ~,12p =,所以()20202020111222kkk k P X k C C -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当10k = 时20kC 取得最大值,故选C.二、填空题13.2【分析】列举出所有的可能出现的情况硬币4次都反面向上则青蛙停止时坐标为硬币3次反面向上而1次正面向上硬币2次反面向上而2次正面向上硬币1次反面向上而3次正面向上硬币4次都正面向上做出对应的坐标和概解析:2 【分析】列举出所有的可能出现的情况,硬币4次都反面向上,则青蛙停止时坐标为14x =-,硬币3次反面向上而1次正面向上,硬币2次反面向上而2次正面向上,硬币1次反面向上而3次正面向上,硬币4次都正面向上,做出对应的坐标和概率,算出期望. 【详解】所有可能出现的情况分别为硬币4次都反面向上,则青蛙停止时坐标为14x =-,此时概率1116p =; 硬币3次反面向上而1次正面向上,则青蛙停止时坐标为21x =-,此时概率33241141=22164p C ⎛⎫=⨯⨯= ⎪⎝⎭;硬币2次反面向上而2次正面向上,则青蛙停止时坐标为32x =,此时概率222341163=22168p C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭硬币1次反面向上而3次正面向上,则青蛙停止时坐标为45x =,此时概率341141141=22164p C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭;硬币4次都正面向上,则青蛙停止时坐标为58x =,此时标率405411216p C ⎛⎫=⨯= ⎪⎝⎭.1122334455()2E X x p x p x p x p x p ∴=++++=故答案为:2 【点睛】本题考查离散型随机变量的分布列和期望,考查学生分析问题的能力和计算求解能力,难度一般.14.80【分析】根据正态分布的对称性可求得即估计该校数学成绩不低于90分的人数【详解】因为X 近似服从正态分布所以根据正态分布的对称性可得所以该校数学成绩不低于90分的人数为故答案为:【点睛】本题主要考查解析:80 【分析】根据正态分布的对称性可求得(90)P X ≥,即估计该校数学成绩不低于90分的人数. 【详解】因为X 近似服从正态分布2(84,)N σ,(7884)0.3P X <≤=, 所以根据正态分布的对称性可得120.3(90)0.22P X -⨯≥==, 所以该校数学成绩不低于90分的人数为4000.280⨯=. 故答案为:80 【点睛】本题主要考查正态分布的对称性,属于基础题.15.-1【分析】根据中奖规则求出中奖的概率再求不中奖的概率根据期望公式求出期望【详解】根据题意:彩票可能的数字是000001002…999共1000种可能的情况所以购买一次彩票中奖的概率为不中奖的概率为解析:-1 【分析】根据中奖规则求出中奖的概率,再求不中奖的概率,根据期望公式求出期望. 【详解】根据题意:彩票可能的数字是000,001,002,…,999共1000种可能的情况, 所以购买一次彩票,中奖的概率为11000,不中奖的概率为9991000, 所以购买一张彩票的期望收益是1999100002110001000⨯+⨯-=-元. 故答案为:1- 【点睛】此题考查根据古典概型求概率再求期望,关键在于根据题意准确求出概率.16.【分析】利用概率之和为以及数学期望列方程组解出和的值最后利用方差的计算公式可求出的值【详解】由题意可得解得因此故答案为【点睛】本题考查随机分布列的性质以及随机变量的数学期望和方差的计算解题时要注意概解析:59【分析】利用概率之和为1以及数学期望列方程组解出a 和c 的值,最后利用方差的计算公式可求出()D ξ的值.【详解】由题意可得()11313a c E a c ξ⎧++=⎪⎪⎨⎪=-+=⎪⎩,解得1612a c ⎧=⎪⎪⎨⎪=⎪⎩,因此,()22211111151013633329D ξ⎛⎫⎛⎫⎛⎫=--⨯+-⨯+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故答案为59. 【点睛】本题考查随机分布列的性质以及随机变量的数学期望和方差的计算,解题时要注意概率之和为1这个隐含条件,其次就是熟悉随机变量数学期望和方差的公式,考查计算能力,属于中等题.17.4【解析】【分析】由题意求得随机变量的取值利用相互独立事件的概率公式求得相应的概率再由期望的计算公式即可求解数学期望【详解】由题意该同学解出题目的个数为随机变量的取值为则所以【点睛】本题主要考查了随解析:4 【解析】 【分析】由题意求得随机变量X 的取值,利用相互独立事件的概率公式,求得相应的概率,再由期望的计算公式,即可求解数学期望. 【详解】由题意,该同学解出题目的个数为随机变量X 的取值为0,1,2X =, 则P(X 0)0.20.40.08==⨯=,P(X 1)0.80.40.20.60.44==⨯+⨯=,P(X 2)0.80.60.48==⨯=.所以E(X)00.0810.4420.48 1.4=⨯+⨯+⨯=. 【点睛】本题主要考查了随机变量的分布列与数学期望的计算,其中解答中正确理解题意,利用相互独立事件的概率计算公式求得相应的概率是解答的关键,着重考查了推理与运算能力,属于基础题.18.3【分析】根据随机变量的概率之和为1即可求出【详解】根据随机变量的概率分布的性质可知故【点睛】本题主要考查了随机变量的概率分布的性质属于中档题解析:3 【分析】根据随机变量的概率之和为1,即可求出()30P X >. 【详解】根据随机变量的概率分布的性质,可知()()()101030301P X P X P X <+≤≤+>=, 故(30)10.30.40.3P X >=--=. 【点睛】本题主要考查了随机变量的概率分布的性质,属于中档题.19.7【解析】【分析】先根据二项分布得EX 再根据Y =2X +3得EY=2EX+3即得结果【详解】因为X ~B(1002)所以EX=10×02=2因此EY=2EX+3=7【点睛】本题考查二项分布期望公式考查基解析:7 【解析】 【分析】先根据二项分布得EX ,再根据Y =2X +3得 EY=2EX+3,即得结果. 【详解】因为X ~B (10,0.2),,所以EX =10×0.2=2,因此EY=2EX+3=7. 【点睛】本题考查二项分布期望公式,考查基本求解能力.20.552【解析】分析:由次独立重复试验的概率公式计算出射中01234次的概率得到得分的分布列再由期望公式得期望详解:设该运动员中弹数为ξ得分数为η则P(ξ=4)==01296P(ξ=3)==03456解析:552. 【解析】分析:由n 次独立重复试验的概率公式计算出射中0,1,2,3,4次的概率得到得分的分布列,再由期望公式得期望.详解:设该运动员中弹数为ξ,得分数为η,则P (ξ=4)=435⎛⎫ ⎪⎝⎭=0.129 6, P (ξ=3)=33432C ?·55⎛⎫ ⎪⎝⎭=0.345 6,P (ξ=2)=222432C ?·55⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=0.345 6,P (ξ=1)=31432C ?·55⎛⎫⎪⎝⎭=0.153 6,P (ξ=0)=425⎛⎫ ⎪⎝⎭=0.025 6. 由题意可知P (η)=P (ξ),所以E (η)=100×0.129 6+65×0.345 6+40×0.345 6+15×0.153 6+0×0.025 6=51.552.点睛:本题考查随机变量的分布列与期望.解题时关键是理解射击时命中n 次就是n 次独立重复试验,由此可由概率公式计算出概率,从而可得得分的分布列,由分布列的期望公式计算出期望.三、解答题21.(1)答案见解析,32;(2)14. 【分析】(1)由题意知X 的可能取值为0,1,2,3.分别求出随机变量取各值的概率,得出分布列,再由期望公式求出期望;(2)分乙盒中红球个数为0,为1,为2,为3时的概率,再得用概率的加法公式可得答案. 【详解】解:(1)由题意知X 的可能取值为0,1,2,3.()0333361020C C P X C ===,()1233369120C C P X C ===, ()2133369220C C P X C ===,()3033361320C C P X C ===, 所以X 的分布列为所以()199130123202020202E X =⨯+⨯+⨯+⨯=. (2)当乙盒中红球个数为0时,10P =, 当乙盒中红球个数为1时,291320640P =⨯=, 当乙盒中红球个数为2时,392320620P =⨯=, 当乙盒中红球个数为3时,413120640P =⨯=, 所以从乙盒中任取一球是红球的概率为123414P P P P +++=. 【点睛】本题考查离散型随机变量的分布列和数学期望,以及概率的加法公式,属于中档题. 22.(1)2627(2)见解析,2 【分析】(1)从该社区中任选1人,成绩是“优良”的概率为23,由此能求出在该社区老人中任选三人,至少有1人成绩是‘优良’的概率.(2)由题意得ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和期望. 【详解】解:(1)抽取的12人中成绩是优良的频率为23, 故从该校全体高二学生中任选1人,成绩是“优良”的概率是23, 设“在该校全体高二学生中任选3人,至少有1人成绩优良”为事件A ,则()33212611132727P A C ⎛⎫=-⨯-=-= ⎪⎝⎭. (2)由题意可知,X 的可能取值为0,1,2,3,()3431241022055C P X C ====,()12843124812122055C C P X C ====,()218431211228222055C C P X C ====,()383125614122055C P X C ====,所以X 的分布列为0123255555555EX =⨯+⨯+⨯+⨯=. 【点睛】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,注意排列组合知识的合理运用,属于中档题.23.(1)26.5;(2)①0.1359;②分布列详见解析,数学期望为2. 【分析】(1)根据频率分布直方图分别计算各组的频率,再计算平均值即可; (2)①直接由正态分布的性质及题目所给可得;②根据题意得1~4,2X B ⎛⎫ ⎪⎝⎭,根据二项分布的性质即可求得X 的分布列、期望值. 【详解】(1)根据频率分布直方图可得各组的频率为:(]0,10的频率为:0.010100.1⨯=;(]10,20的频率为:0.020100.2⨯=; (]20,30的频率为:0.030100.3⨯=; (]30,40的频率为:0.025100.25⨯=; (]40,50的频率为:0.015100.15⨯=,所以所抽取的100包速冻水饺该项质量指标值的样本平均数x 为50.1150.2250.3350.25450.1526.5x =⨯+⨯+⨯+⨯+⨯=.(2)①∵Z 服从正态分布()2,N μσ,且26.5μ=,11.95σ≈()38.4550.4P Z <<()()26.5211.9526.5211.9526.511.9526.511.95P Z P Z =-⨯<<+⨯--<<+ ()0.95440.682620.1359-÷==∴Z 落在()38.45,50.4内的概率是0.1359.②根据题意得每包速冻水饺的质量指标值位于(]10,30内的概率为0.20.30.5+=, 所以1~4,2X B ⎛⎫ ⎪⎝⎭,X 的可能取值分别为:0,1,2,3,4,()404110216P X C ⎛⎫=== ⎪⎝⎭,()41411124P X C ⎛⎫=== ⎪⎝⎭,()42413228P X C ⎛⎫=== ⎪⎝⎭, ()43411324P X C ⎛⎫=== ⎪⎝⎭, ()444114216P X C ⎛⎫=== ⎪⎝⎭,∴X 的分布列为:∴()422E X =⨯=. 【点睛】本题考查了统计的基础知识,正态分布,属于中档题.24.(Ⅰ)n =1000;a =60;p =0.65;(Ⅱ)分布列见解析,2EX = 【分析】(Ⅰ)由表格中的第一组数据可得年龄在[)25,30的总人数为200,再根据频率分布直方图求得总人数n ;由频率分布直方图求得[)40,45,[)30,35的人数,再根据表格求得a ,p ; (Ⅱ)先由分层抽样可得年龄在[)40,45之间6人,抽取年龄在[)45,50之间3人,则随机变量X 可能取到0,1,2,3,再由超几何分布的概率公式求得概率,即可得到分布列,并求得期望. 【详解】(Ⅰ)由题,年龄在[)25,30的总人数为1202000.6=, 根据频率分布直方图,总人数为200100050.04=⨯,即1000n =,年龄在[)40,45的人数为100050.03150⨯⨯=, 所以1500.460a =⨯=,因为年龄在[)30,35的人数的频率为()150.040.040.030.020.010.3-⨯++++=, 所以年龄在[)30,35的人数为10000.3300⨯=,所以1950.65300p == (Ⅱ)依题抽取年龄在[)40,45之间6人,抽取年龄在[)45,50之间3人, 所以随机变量X 可能取到0,1,2,3,()33391084C P X C ===,()12633918184C C P X C ===, ()21633945284C C P X C ===,()363920384C P X C ===,则X 的分布列为:所以0123284848484EX =⨯+⨯+⨯+⨯= 【点睛】本题考查频率分布直方图的应用,考查离散型随机变量的分布列和期望,考查分层抽样,考查数据处理能力. 25.(1)13;(2)15;(3)12.【分析】(1)将所有的基本事件一一列举出来,从中找出该事件所发生的基本事件,从而计算概率;(2)利用条件概率的公式即可计算结果; (3)与(2)解法相同. 【详解】(1)记4名男生为A ,B ,C ,D ,2名女生为a ,b , 从6名成员中挑选2名成员,有AB ,AC ,AD ,Aa ,Ab ,BC ,BD ,Ba , Bb ,CD ,Ca ,Cb ,Da ,Db ,ab 共有15种情况,,记“男生甲被选中”为事件M ,不妨假设男生甲为A事件M 所包含的基本事件数为AB ,AC ,AD ,Aa ,Ab 共有5种,故()51153P M ==. (2)记“男生甲被选中”为事件M ,“女生乙被选中”为事件N , 不妨设女生乙为b , 则()115P MN =,又由(1)知()13P M =,故()()()15P MN P N M P M ==. (3)记“挑选的2人一男一女”为事件S ,则()815P S =, “女生乙被选中”为事件N ,()415P SN =, 故()()()12P SN P N S P S ==. 【点睛】本题考查了等可能事件的概率,列举法求古典概型的概率,条件概率的计算,属于中档题. 26.(1) 0.1225;(2) 0.8(3)见解析. 【分析】(1)分别计算出甲乙各射击一次击中10环的概率,利用相互独立事件的概率公式计算即可; (2)甲射击一次,击中9环以上(含9环)即为甲射击一次,击中9环和甲射击一次,击中10环,利用互斥事件的概率公式即可得出结果;(3)由(2)可知甲射击一次,击中9环以上(含9环)的概率为0.8,可知(3,0.8)X B .利用公式计算即可得出结果. 【详解】(1) 设事件A 表示甲运动员射击一次,恰好击中10环, 设事件B 表示乙运动员射击一次,恰好击中10环, ()10.10.10.450.35P A =---=,()0.35P B =,所以甲、乙各射击一次,甲、乙同时击中10环即()0.350.350.1225P AB =⨯=.(2)设事件C 表示甲运动员射击一次,恰好击中9环以上(含9环),则()0.350.450.8P C =+=(3)由已知可得X 的可能取值为0,1,2,3,且(3,0.8)XB3(0)0.20.008P X ===,123(1)0.80.20.096P X C ==⨯=, 223(2)0.80.20.384P X C ==⨯=,3(3)0.80.512P X ===所以30.8 2.4E X =⨯= 【点睛】本题考查相互独立事件的概率,考查二项分布的分布列和数学期望,考查运用概率知识解决实际问题的能力和计算求解能力,难度一般.。
新北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(包含答案解析)(1)
![新北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(包含答案解析)(1)](https://img.taocdn.com/s3/m/c993ee87a98271fe900ef98c.png)
一、选择题1.在(1-x 3)(1+x )10的展开式中x 5的系数是( ) A .-297B .-252C .297D .2072.下列四个组合数公式:对,n k N ∈,约定0001C ==!,有(1)(0)!k k n nP C k n k =≤≤(2)(0)k n kn n C C k n -=≤≤ (3)11(1)k k n n k C C k n n--=≤≤ (4)111(1)kkk n n n C C C k n ---=+≤≤ 其中正确公式的个数是( ) A .4个 B .3个 C .2个 D .1个 3.有6个人排成一排拍照,其中甲和乙相邻,丙和丁不相邻的不同的排法有( )A .240种B .144种C .72种D .24种4.已知1021001210(12)...x a a x a x a x -=++++,则1231023...10a a a a ++++=( )A .20-B .15-C .15D .20 5.1180被9除的余数为( )A .1-B .1C .8D .8-6.如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”.现提供4种颜色给“弦图”的5个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有( )A .48种B .72种C .96种D .144种7.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究,设(0)a b m m >,,为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为(mod )a b m =.若012220202020202022...2a C C C C =++++,(mod8)a b =,则b 的值可以是( ) A .2015B .2016C .2017D .20188.已知8290129(3)(23)(1)(1)(1)x x a a x a x a x --=+-+-+⋅⋅⋅+-,则6a =( )A .1792-B .1792C .5376-D .53769.为支援湖北抗击新冠疫情,无锡市某医院欲从6名医生和4名护士中抽选3人(医生和护士均至少有一人)分配到A ,B ,C 三个地区参加医疗救援(每个地区一人),方案要求医生不能去A 地区,则分配方案共有( ) A .264种B .224种C .250种D .236种10.已知5250125(12)...x a a x a x a x +=++++,则512025...222a a a a ++++的值为( ) A .32B .1C .81D .6411.若()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为-1,则a 的值为( )A .1B .9C .-1或-9D .1或912.式子22223459C C C C ++++=( )A .83B .84C .119D .120二、填空题13.从编号为1,2,3,4,…,10的10个大小、形状都相同的小球中任取5个球.如果某两个球的编号相邻,那么称这两个球为一组“好球”,则任取的5个球中恰有两组“好球”的取法有_______种.(用数字作答)14.62x x ⎛⎫- ⎪⎝⎭展开式中常数项为________.15.西部五省,有五种颜色供选择涂色,要求每省涂一色,相邻省不同色,有__________种涂色方法.16.某学校组织劳动实习,其中两名男生和两名女生参加农场体验活动,体验活动结束后,农场主人与四名同学站一排合影留念.已知农场主人站在中间,两名男生不相邻,则不同的站法共有______种.17.设a 为非零常数,已知(x 21x +)6a x x ⎛⎫- ⎪⎝⎭的展开式中各项系数和为2,则展开式中常数项等于_____.18.六个人从左至右排成一行,最右端只能排成甲或乙,最左端不能排甲,则不同的排法共有________种(请用数字作答).19.设二项式11323nx x ⎛⎫+ ⎪⎝⎭展开式的各项系数和为t ,其二项式系数之和为h ,若272h t +=,则二项展开式中2x 项的系数为__________.20.二项式12312x x ⎛⎫- ⎪⎝⎭,则该展开式中的常数项是______. 三、解答题21.已知2()nx x-二项展开式中,第4项的二项式系数与第3项的二项式系数的比为8:3(1)求n 的值;(2)求展开式中3x 项的系数(3)计算式子01231010101010102481024C C C C C -+-++的值.22.我省某校要进行一次月考,一般考生必须考5门学科,其中语、数、英、综合这四科是必考科目,另外一门在物理、化学、政治、历史、生物、地理、英语2中选择.为节省时间,决定每天上午考两门,下午考一门学科,三天半考完.(1)若语、数、英、综合四门学科安排在上午第一场考试,则“考试日程安排表”有多少种不同的安排方法;(2)如果各科考试顺序不受限制;求数学、化学在同一天考的概率是多少? 23.江夏一中将要举行校园歌手大赛,现有3男3女参加,需要安排他们的出场顺序.(结果用数字作答.......) (1)如果3个女生都不相邻,那么有多少种不同的出场顺序?(2)如果女生甲在女生乙的前面(可以不相邻),那么有多少种不同的出场顺序? (3)如果3位男生都相邻,且女生甲不在第一个出场,那么有多少种不同的出场顺序? 24.从5本不同的科普书和4本不同的数学书中选出4本,送给4位同学,每人1本,问:(1)如果科普书和数学书各选2本,共有多少种不同的送法?(各问用数字作答) (2)如果科普书甲和数学书乙必须送出,共有多少种不同的送法? (3)如果选出的4本书中至少有3本科普书,共有多少种不同的送法? 25.把5件不同产品摆成一排.(1)若产品A 必须摆在正中间,排法有多少种?(2)若产品A 必须摆在两端,产品B 不能摆在两端的排法有多少种?(3)若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的排法有多少种? 26.已知数列是等差数列,且,,是展开式的前三项的系数.(1)求的值; (2)求展开式的中间项; (3)当时,用数学归纳法证明:.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:因为31010310(1)(1)(1)(1)x x x x x -+=+-+所以310(1)(1)x x -+展开式中的5x 的系数是10(1)x +的展开式的中5x 的系数减去10(1)x +的2x 的系数由二项式定理,10(1)x +的展开式的通项为110r r r T C x += 令=5r ,则10(1)x +的展开式的中5x 的系数为510C 令2r,则10(1)x +的展开式的中2x 的系数为210C所以5x 的系数是510C -210C 25245207=-= 故答案选D 考点:二项式定理.【易错点晴】()n a b +的展开式的二项式系数与该项的系数是两个不同的概念,前者只是指kn C ,它仅是与二项式的幂的指数n 及项数有关的组合数,而与a ,b 的值无关;而后者是指该项除字母外的部分,即各项的系数不仅与各项的二项式系数有关,而且也与a ,b 的系数有关.在求二项展开式特定项的系数时要充分注意这个区别.[学_科_2.A解析:A 【分析】分别将组合数和排列数写成阶乘的形式,计算每个等式的两边并判断等式是否成立. 【详解】A .()0!k k k n n nk k P P C k n P k ==≤≤,等式成立;B .()()!0!!!k k n nP n C k n k n k k ==≤≤-⨯,()()()()()()!!0!!!!!n k n k n nP n n Ck n n k k n k n n k n k --===≤≤-⨯---⨯-, 所以(0)kn kn n C C k n -=≤≤成立;C .()()()()1!!(1)!!!!1!k k n n n P k k k n C k n n n k n n k k n k k -=⋅=⋅=≤≤-⨯-⨯-,()()()()1111(1!1!!1)!1k n k n n P k n k k Ck n -----==-≤-≤⨯-,所以11(1)k k n n k C C k n n --=≤≤成立;D .()()()()()()1111111!1!!1!1!!!1!kk k k n n n n n n P P k k n k k Cn k k C--------=+=+=---⨯-⨯-+ ()()()()1!(1!!!)!!k n n n n k k C n k k n k k n k ⎡⎤-⎡⎤=-+==⎢⎥⎣⎦-⨯-⨯⎢≤⎥≤⎣⎦,所以111(1)k k k n n n C C C k n ---=+≤≤成立.故选A. 【点睛】本题考查排列数、组合数公式的运算化简,难度一般.注意排列组合中两个计算公式的使用:()()()!!,!!!!!n m mmn n nnP P n n P C n m n m m n m m ====---⨯. 3.B解析:B 【分析】甲和乙相邻,捆绑法,丙和丁不相邻用插空法,即先捆甲和乙,再与丙和丁外的两人共“3人”排列,再插空排丙和丁. 【详解】甲和乙相邻,捆绑在一起有22A 种,再与丙和丁外的两人排列有33A 种, 再排丙和丁有24A 种,故共有22A 33A 24A 144=种. 故选:B 【点睛】本题考查了排列中的相邻问题和不相邻问题,属于中档题.4.D解析:D 【分析】观察所求系数的和,可知原式两边求导,再赋值求解. 【详解】原式两边求导数,得()99212310201223...10x a a x a x a x --=++++当1x =时,123102023...10a a a a =++++. 故选:D 【点睛】本题考查二项式定理系数和,导数计算,重点考查转化的思想,属于中档题型.5.C解析:C 【分析】将1180转化为()11811-,利用二项式定理,即可得解. 【详解】()111180811=-()()()()2101101210111110911111111111818118118111C C C C C =⋅+⋅⋅-+⋅⋅-++⋅⋅-+⋅-1210111110911111111181818181C C C C =-⋅+⋅++⋅-1211109111181818111811C C =-⋅+⋅++⨯- 121110911118181811081811C C =-⋅+⋅++⨯+- 12111091111818181108180C C =-⋅+⋅++⨯+ 121110911118181811081728C C =-⋅+⋅++⨯++12111091111818181108172C C -⋅+⋅++⨯+可以被9整除,所以1180被9除的余数为8. 故选:C. 【点睛】本题考查利用二项式定理解决余数问题,将原式变形为()11811-是本题的解题关键,属于中档题.6.B解析:B 【分析】A 区域与其他区域都相邻,从A 开始分步进行其它区域填涂可解【详解】解:根据题意,如图,假设5个区域依次为A B C D E 、、、、,分4步分析: ①,对于A 区域,有4种涂法,②,对于B 区域,与A 相邻,有3种涂法, ③,对于C 区域,与A B 、 相邻,有2种涂法,④,对于D 区域,若其与B 区域同色,则E 有2种涂法,若D 区域与B 区域不同色,则E 有1种涂法,则D E 、 区域有2+1=3种涂色方法, 则不同的涂色方案共有4×3×2×3=72种; 故选: B .【点睛】本题考查两个计数原理的综合问题使用两个计数原理进行计数的基本思想:对需用两个计数原理解决的综合问题要“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.7.C解析:C 【分析】根据已知中a 和b 对模m 同余的定义,结合二项式定理,我们可以求出a 的值,结合(mod8)a b =,比照四个答案中的数字,即可求解.【详解】0122202020202020202022...2=(12)3a C C C C =+⋅+⋅++⋅+=,又201010012210101010101039(18)888C C C C ==+=+⋅+⋅⋅⋅⋅+⋅a ∴被8除得的余数为1,同理b 被8除得的余数也要为1,观察四个选项,可知选C. 故选:C 【点睛】本题考查的知识点是同余定理,其中正确理解a 和b 对模m 同余,是解答本题的关键,同时利用二项式定理求出a 的值,也很关键.8.D解析:D 【分析】将原式改写成88(3)(23)[2(1)][2(1)1]x x x x --=----,利用二项式定理解决系数问题即可得解. 【详解】88(3)(23)[2(1)][2(1)1]x x x x --=----290129(1)(1)(1)a a x a x a x =+-+-+⋅-+⋅⋅,所以26356882C 2C 2358417925376.a =⨯⨯+⨯=+= 故选:D 【点睛】此题考查二项式定理的理解辨析和应用,关键在于熟练掌握定理公式,根据公式处理系数关系.9.A解析:A 【分析】分类计数,考虑选取1名医生2名护士和选取2名医生1名护士两类情况求解. 【详解】当选取的是1名医生2名护士,共有126436C C =种选法,分配到A ,B ,C 三个地区参加医疗救援(每个地区一人),方案要求医生不能去A 地区,共有2224A =种,即一共364144⨯=种方案;当选取的是2名医生1名护士,共有216460C C =种选法,分配到A ,B ,C 三个地区参加医疗救援(每个地区一人),方案要求医生不能去A 地区,共有222A =种,即一共602120⨯=种方案.综上所述:分配方案共有264种. 故选:A 【点睛】此题考查分类计数原理和分步计数原理综合应用,涉及排列组合相关知识,综合性强.10.A解析:A 【分析】根据所求与已知的关系,令12x =,即可求得答案. 【详解】5250125(12)...x a a x a x a x +=++++,∴令12x =,即可得555120251...122322222a a a a ⎛⎫++++=+⨯== ⎪⎝⎭.故选:A 【点睛】本题考查二项式定理的应用,考查理解辨析能力与运算求解能力,属于基础题.11.D解析:D 【分析】根据题意分析常数项由()2x a +中的某项与511x ⎛⎫- ⎪⎝⎭中的某项项相乘所得,再二项式定理的通项公式求解即可. 【详解】由题可得,()2x a +中含2x 项与511x ⎛⎫- ⎪⎝⎭中含21x 项相乘可得常数项; ()2x a +中含x 项与511x ⎛⎫- ⎪⎝⎭中含1x 项相乘可得常数项; ()2x a +中的常数项与511x ⎛⎫- ⎪⎝⎭中的常数项相乘可得常数项.故()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 ()()()2134522122551112111010x C ax C a a a x x ⎛⎫⎛⎫⋅⋅⋅-+⋅⋅⋅-+⋅-=-+- ⎪ ⎪⎝⎭⎝⎭.故22101011090a a a a -+-=-⇒-+=,解得1a =或9a =. 故选:D 【点睛】本题主要考查了利用二项式定理,根据常数项求解参数的方法.需要根据题意分析常数项的所有可能组成,属于中档题.12.C解析:C 【分析】根据组合数的计算公式111rr r n n n C C C ++++=,化简运算,即可求解.【详解】由题意,根据组合数的计算公式111rr r n n n C C C ++++=,可得22223459C C C C ++++=32222334591C C C C C +++++-322244591C C C C =++++-32235591011119C C C C =+++-==-=.故选:C. 【点睛】本题主要考查了组合数的化简与运算,其中解答中熟记组合数的运算公式,准确运算是解答的关键,着重考查了计算能力.二、填空题13.120【分析】假定5个球排成一排5个小球之间有6个空位取空位的情况来达到使小球的编号连续的目的有两种情况:(1)有3个号码是连续;(2)分别有2组号码连续但这2组号码与另一个球的号码不相邻分别求组合解析:120 【分析】假定5个球排成一排,5个小球之间有6个空位,取空位的情况来达到使小球的编号连续的目的,有两种情况:(1)有3个号码是连续;(2)分别有2组号码连续,但这2组号码与另一个球的号码不相邻,分别求组合数,可得答案. 【详解】将5个小球排成一排,在5个小球中间有6个空位,5个小球的编号恰好有两组“好球”,分两种情况:(1)这5个球中有3个球的号码是连续的,另两个小球的号码的是间断的,3个小球的号码与另2个球的号码也不是连续的,有216460C C =,(2)这5个球中有2组球的号码分别连接,但这两组球的号码与另一个球的号码是不连续的,有126560C C =,故任取的5个球中恰有两组“好球”的取法有60+60120=种取法, 故答案为:120. 【点睛】本题考查组合知识,对于相邻问题和相间问题,常采用分析空位的方法,属于中档题.14.240【分析】先求出二项式的展开式的通项公式令的指数等于求出的值即可求得展开式中的常数项【详解】展开式的通项公式令所以的展开式的常数项为故答案为【点睛】本题主要考查二项展开式定理的通项与系数属于简单解析:240 【分析】先求出二项式6x⎛⎝的展开式的通项公式,令x 的指数等于0,求出r 的值,即可求得展开式中的常数项. 【详解】6x⎛- ⎝展开式的通项公式3662166(2),rr r r r r r T C x C x --+⎛==⨯-⨯ ⎝令36342r r -=⇒=,所以6x ⎛ ⎝的展开式的常数项为4462240C ⨯=,故答案为240. 【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C rn r rr n T ab -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.15.420【分析】根据题意分别分析5个省的涂色方法的数目进而由分步分类计数原理计算可得答案【详解】对于新疆有5种涂色的方法对于青海有4种涂色方法对于西藏有3种涂色方法对于四川:若与新疆颜色相同则有1种涂解析:420 【分析】根据题意,分别分析5个省的涂色方法的数目,进而由分步、分类计数原理,计算可得答案. 【详解】对于新疆有5种涂色的方法, 对于青海有4种涂色方法, 对于西藏有3种涂色方法,对于四川:若与新疆颜色相同,则有1种涂色方法,此时甘肃有3种涂色方法; 若四川与新疆颜色不相同,则四川只有2种涂色方法,此时甘肃有2种涂色方法;根据分步、分类计数原理,则共有5×4×3×(2×2+1×3)=420种方法. 故答案为420. 【点睛】本题考查分类、分步计数原理,对于计数原理的应用,解题的关键是分清要完成的事情分成几部分及如何分类,注意做到不重不漏.16.16【分析】根据正难则反原理可求男生相邻的情况再拿所有情况减去即可【详解】农场主在中间共有种站法农场主在中间两名男生相邻共有种站法故所求站法共有种故答案为:16【点睛】本题考查计数原理考查了正难则反解析:16 【分析】根据正难则反原理,可求男生相邻的情况,再拿所有情况减去即可. 【详解】农场主在中间共有4424A =种站法,农场主在中间,两名男生相邻共有222228A A ⋅=种站法, 故所求站法共有24816-=种. 故答案为:16 【点睛】本题考查计数原理,考查了正难则反原理,考查逻辑推理能力,属于中档题.17.240【分析】根据(x2)的展开式中各项系数和为2令x=1得a=2再利用展开式的通项公式求出展开式中常数项【详解】∵(x2)的展开式中各项系数和为2∴令x=1得a=2或a=0(舍)又的通项6﹣2r 为解析:240 【分析】根据(x 21x +)6a x x ⎛⎫- ⎪⎝⎭的展开式中各项系数和为2,令x =1得a =2,再利用展开式的通项公式,求出展开式中常数项. 【详解】∵(x 21x +)6a x x ⎛⎫- ⎪⎝⎭的展开式中各项系数和为2,∴令x =1得()6212a ⋅-=,a =2或a =0(舍).又6a x x ⎛⎫- ⎪⎝⎭的通项()6216(2)0126r r r r T C x r -+=-=,,,,,6﹣2r 为偶数,故6﹣2r =﹣2即r =4.∴2612()x x x x⎛⎫+- ⎪⎝⎭的展开式的常数项为446(2)240C -=. 故答案为:240. 【点睛】本题考查二项展开式的通项公式解决二项展开式的特定项问题;考查求展开式的各项系数和的常用方法是赋值法.18.【分析】分两种情况讨论:①甲在最右边;②乙在最右边分别计算出两种情况下的排法种数利用分类加法计数原理可求得结果【详解】分两种情况讨论:①甲在最右边则其他位置的安排没有限制此时排法种数为;②乙在最右边 解析:216【分析】分两种情况讨论:①甲在最右边;②乙在最右边.分别计算出两种情况下的排法种数,利用分类加法计数原理可求得结果. 【详解】分两种情况讨论:①甲在最右边,则其他位置的安排没有限制,此时排法种数为55A ; ②乙在最右边,甲在除了最左边和最右边以外的四个位置,再对剩下四个进行排列,此时,排法种数为1444C A .综上所述,不同的排法种数为514544216A C A +=. 故答案为:216. 【点睛】本题考查排列组合,解题的关键就是要对甲的位置分类讨论,考查计算能力,属于中等题.19.1【分析】给二项式中的赋值1求出展开式的各项系数和利用二项式系数之和公式求出再代入解方程求出的值从而得出二形式的表达式再求出二项式中项的系数即可【详解】令二项式中的为1得到各项系数之和为又二项式系数解析:1 【分析】给二项式中的x 赋值1,求出展开式的各项系数和t ,利用二项式系数之和公式求出h ,再代入272h t +=,解方程求出n 的值,从而得出二形式的表达式,再求出二项式中2x 项的系数即可. 【详解】令二项式中的x 为1得到各项系数之和为4=n t ,又二项式系数之和为2=n h , 因为272h t +=,,所以42272n n +=,解得4n =,所以41111332233nx x x x ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭, 所以它展开式的通项为443243-+-k kkkC x,要得到2x 项的系数,则需令4232-+=k k, 解得4k =,所以二项展开式中2x 项的系数为444431-=C .故答案为:1. 【点睛】本题主要考查二项式展开式的各项系数之和,二项式系数之和,二项展开式通项的应用,正确运用公式是解题关键.20.【分析】直接利用二项式定理计算得到答案【详解】二项式的展开式的通项为:取得到常数项为故答案为:【点睛】本题考查了二项式定理意在考查学生的计算能力和应用能力 解析:552-【分析】直接利用二项式定理计算得到答案. 【详解】二项式122x ⎛ ⎝的展开式的通项为:()41231212112121221rrr r r rrr xx T C C --+-⎛=-⋅ ⎝⎛⎫⎛⎫=⋅⋅ ⎪⎪⎝⎭⎝⎭,取9r =得到常数项为()1299129152512C -⎛⎫⋅- =-⎪⎝⎭. 故答案为:552-. 【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.三、解答题21.(1)10n =;(2)180;(3)1. 【解析】试题分析: 本题主要考查二项式定理的应用,二项展开式的通项公式,注意根据题意,分析所给代数式的特点,通过给二项式的x 赋值,求展开式的系数和,属于基础题.第一问,直接利用条件可得3283n n C C =,求得n 的值;第二问,在二项展开式的通项公式中,令x的幂指数等于3,求出r 的值,即可求得展开式中x 3项的系数.第三问,在10二项展开式中,令x=1,可得式子01231010101010102481024C C C C C -+-++的值.试题(1)由第4项的二项式系数与第3项的二项式系数的比为8:3,可得3283n n C C =,化简可得2833n -=,求得10n =.(2)由于n 二项展开式的通项公式为5110(2)r r rr T C x -+=-,令53r -=,求得2r,可得展开式中3x 项的系数为2210(2)180C -=. (3)由二项式定理可得105100(2)n r r rr C x -==-∑, 所以令x=1得01231010101010102481024C C C C C -+-++10(12)1=-=.考点:二项式定理的应用;二项式系数的性质. 22.(1)120960;(2)211. 【分析】(1)分布计算出语、数、英、综合四门学科安排在上午第一场和其余7门学科的安排方法,根据分步乘法计数原理计算可得结果;(2)分别计算出所有安排方法和数学、化学在同一天考的安排方法的种数,根据古典概型概率公式计算可得结果. 【详解】(1)语、数、英、综合四门学科安排在上午第一场,共有4424A =种排法; 其余7门学科共有775040A =种排法,∴“考试日程安排表”共有504024120960⨯=种不同的安排方法.(2)各科考试顺序不受限制时,共有1111A 种安排方法; 数学和化学在同一天考共有:2912929339A A C A A +种安排方法,∴数学、化学在同一天考的概率291292933911112362111011A A C A A P A ++⨯===⨯. 【点睛】本题考查排列组合计数问题、古典概型概率问题的求解,涉及到分类加法和分步乘法计数原理的应用,考查学生的分析和解决问题的能力. 23.(1)144;(2)360;(3)108 【分析】(1)根据题意,用插空法分2步进行分析:①、先将3名男生排成一排,②、男生排好后有4个空位,在4个空位中任选3个,安排3名女生,由分步计数原理计算可得答案; (2)根据题意,先不考虑甲乙的情况,将6人排成一排,又由女生甲在女生乙的前面和女生甲在女生乙的后面的排法是一样的,即可得答案;(3)根据题意,分3步进行分析:①、先将3名男生看成一个整体,考虑三人之间的顺序,②、将除之外的两名女生和三名男生的整体全排列,③、分析女生甲的安排方法,由分步计数原理计算可得答案. 【详解】(1)根据题意,分2步进行分析: ①先将3名男生排成一排,有33A 种情况,②男生排好后有4个空位,在4个空位中任选3个,安排3名女生,有34A 种情况,则有3334144A A ⨯=种不同的出场顺序;(2)根据题意,将6人排成一排,有66A 种情况,其中女生甲在女生乙的前面和女生甲在女生乙的后面的排法是一样的,则女生甲在女生乙的前面的排法有6622360A A =种;(3)根据题意,分3步进行分析:①先将3名男生看成一个整体,考虑三人之间的顺序,有33A 种情况, ②将除之外的两名女生和三名男生的整体全排列,有33A 种情况, ③女生甲不在第一个出场,则女生甲的安排方法有13C 种, 则有313333108A C A =种符合题意的安排方法. 【点睛】本题考查排列、组合的应用,考查逻辑推理能力、运算求解能力,求解时注意分步、分类计数原理的应用.24.(1)1440种(2)504种(3)1080种 【分析】(1)由题意,先从5本不同的科普书和4本不同的数学书中各选2本,再送给4位同学,可得结论;(2)科普书甲和数学书乙必须送出,从其余7本中选2本,再送给4位同学,可得结论;(3)选出的4本书中至少有3本科普书,包括3本科普书1本数学书、4本科普书,可得结论. 【详解】(1)从5本科普书中选2本有25C 种选法,从4数学书中选2本有24C 种选法,再把4本书给4位同学有44A 种,所以科普书和数学书各选2本,共有2245441440C C A =种不同的送法.(2)因为科普书甲和数学书乙必须送出,所以再从其余7本书选2本有27C 种,再把4本书给4位同学有44A 种,所以共有2474504C A =种不同的送法.(3)选出4本科普书有45C 种,选出3本科普书有3154C C 种,再把4本书给4位同学有44A 种,所以至少有3本科普书的送法为()431455441080C C C A +=种.【点睛】本题考查排列组合知识的运用,考查学生分析解决问题的能力,属于中档题.解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).25.(1)24种 (2)36种(3)36种【分析】(1)将A 放中间,其他全排列即可; (2)先排A,再排B,其他全排即可;(3)将AB 捆绑,进行排列,减去AC 相邻的情况即可. 【详解】(1)A 摆在正中间,其他4个产品进行全排列,故共有4424A =(种)排法. (2)分三步,第一步将产品A 摆在两端,有2种;第二步将产品B 摆在中间三个位置之一,有3种排法;第三步将余下的三件产品摆在余下三个位置,有33A 种排法,故共有332336A ⨯⨯=(种)排法.(3)将A ,B 捆绑在一起,有22A 种摆法,再将它们与其他3件产品全排列,有44A 种摆法,共有242448A A =(种)摆法,而A ,B ,C 三件在一起,且A ,B 相邻,A ,C 相邻有CAB ,BAC 两种情况,将这3件与剩下2件全排列,有33212A ⨯=(种)摆法,故A ,B 相邻,A ,C 不相邻的摆法有48-12=36(种). 【点睛】本题主要考查了排列问题,涉及相邻问题用捆绑,特殊元素优先排,正难则反的技巧,属于中档题. 26.(1)(2)(3)见证明【解析】 【分析】 (1)先写出展开式的通项,得到,,,根据数列是等差数列,列出等式,即可得出结果;(2)根据(1)的结果,确定中间项为第5项,进而可求出结果; (3)根据数学归纳法的一般步骤,直接证明即可. 【详解】解:(1)展开式的通项为,依题意,,,由可得(舍去)或.(2)所以展开式的中间项是第五项为:.(3)证:由(1),①当时,结论成立;当时,;②设当时,,则时,,由,可知,即.综上①②,当时,成立.【点睛】本题主要考查二项展开式以及数学归纳法,只需熟记二项式定理以及数学归纳法的一般步骤即可,属于常考题型.。
(常考题)北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(含答案解析)(1)
![(常考题)北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(含答案解析)(1)](https://img.taocdn.com/s3/m/39db67b733687e21ae45a980.png)
一、选择题1.2019年10月20日,第六届世界互联网大会发布了15项“世界互联网领先科技成果”,其中有5项成果均属于芯片领域.现有3名学生从这15项“世界互联网领先科技成果”中分别任选1项进行了解,且学生之间的选择互不影响,则恰好有1名学生选择“芯片领域”的概率为( ) A .49B .427C .1927D .481252.西大附中为了增强学生对传统文化的继承和发扬,组织了一场类似《诗词大会》的PK 赛,A 、B 两队各由4名选手组成,每局两队各派一名选手PK ,除第三局胜者得2分外,其余各胜者均得1分,每局的负者得0分.假设每局比赛A 队选手获胜的概率均为23,且各局比赛结果相互独立,比赛结束时A 队的得分高于B 队的得分的概率为( ) A .2027B .5281C .1627D .793.某学习小组有三名男生、三名女生共计六名同学,选出四人进行学业水平测试,这四人中所含女生人数记为η,则η的数学期望为( ) A .1B .32C .2D .34.已知随机变量ξ服从正态分布(1,2)N ,则(23)D ξ+=( ) A .4B .6C .8D .115.已知,a b 为实数,随机变量X ,Y 的分布列如下:若()(1)E Y P Y ==-,随机变量ξ满足XY ξ=,其中随机变量X ,Y 相互独立,则()E ξ取值范围的是( )A .3,14⎡⎤-⎢⎥⎣⎦B .1,018⎡⎤-⎢⎥⎣⎦C .1,118⎡⎤⎢⎥⎣⎦D .3,14⎡⎤⎢⎥⎣⎦6.已知19,3X B ⎛⎫~ ⎪⎝⎭,则()E X 、()D X 的值依次为( ). A .3,2B .2,3C .6,2D .2,67.甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为0.4,乙每次投篮命中的概率为0.6,而且不受其他次投篮结果的影响.设投篮的轮数为X ,若甲先投,则()P X k =等于( ) A .10.60.4k -⨯B .10.240.76k -⨯C .10.40.6k -⨯D .10.760.24k -⨯8.据统计,连续熬夜48小时诱发心脏病的概率为0.055 ,连续熬夜72小时诱发心脏病的概率为0.19 . 现有一人已连续熬夜48小时未诱发心脏病,则他还能继续连续熬夜24小时不诱发心脏病的概率为( ) A .67B .335C .1135D .0.199.当σ取三个不同值123,,σσσ时,正态曲线()20,N σ的图象如图所示,则下列选项中正确的是( )A .123σσσ<<B .132σσσ<<C .213σσσ<<D .321σσσ<<10.口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为( ). A .80243B .100243C .80729D .10072911.已知随机变量X 的分布列如表,其中a ,b ,c 为等差数列,若1()3E X =,则()D X 等于( )X 1- 0 1PabcA .49B .59C .13D .2312.已知随机变量X 的分布列为则E(6X +8)=( )A .13.2B .21.2C .20.2D .22.2二、填空题13.3月5日为“学雷锋纪念日”,某校将举行“弘扬雷锋精神做全面发展一代新人”知识竞赛,某班现从6名女生和3名男生中选出5名学生参赛,要求每人回答一个问题,答对得2分,答错得0分,已知6名女生中有2人不会答所有题目,只能得0分,其余4人可得2分,3名男生每人得2分的概率均为12,现选择2名女生和3名男生,每人答一题,则该班所选队员得分之和为6分的概率__________.14.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为45,35,25,且各轮问题能否正确回答互不影响,则该选手被淘汰的概率为_________.15.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层有6个乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用X 表示这6位乘客在第20层下电梯的人数,则(4)P X ==________.16.设在15个相同类型的产品中有2个是次品,每次任取1个,共取3次,并且每次取出后不放回,若以ξ表示取出次品的个数,则()E ξ=________. 17.已知某人每次投篮投中的概率均为13,计划投中3次则结束投篮,则此人恰好在第5次结束投篮的概率是__________.18.若随机变量~(2,)X B p ,随机变量~(3,)Y B p ,若4(2)9P X ==,则(21)E Y +的值为_______.19.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机抽取1个小球,记抽取到红球的个数为X,则随机变量X 的均值EX=_____.20.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以利用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用,设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为13,若甲、乙两人分别向该出版社投稿1篇,两人的稿件是否被录用相互独立,则两人中恰有1人的稿件被录用的概率为__________.三、解答题21.在全球抗击新冠肺炎疫情期间,我国医疗物资生产企业加班加点生产口罩.防护服、消毒水等防疫物品,保障抗疫一线医疗物资供应,在国际社会上赢得一片赞誉.我国某口罩生产厂商在加大生产的同时,狠抓质量管理,不定时抽查口罩质量,该厂质检人员从某日所生产的口罩中随机抽取了100个,将其质量指标值分成以下五组:[)100,110,[)110,120,[)120130,,[)130140,,[]140,150,得到如下频率分布直方图.(1)规定:口罩的质量指标值越高,说明该口罩质量越好,其中质量指标值低于130的为二级口罩,质量指标值不低于130的为一级口罩.现从样本口罩中利用分层抽样的方法随机抽取8个口罩,再从中抽取3个,记其中一级口罩个数为X ,求X 的分布列及数学期望;(2)在2020年“五一”劳动节前,甲计划在该型号口罩的某网络购物平台上参加A 店一个订单“秒杀”抢购,同时乙计划在该型号口罩的某网络购物平台上参加B 店一个订单“秒杀”抢购,其中每个订单均由()2,n n n *≥∈N 个该型号口罩构成.假定甲、乙两人在A ,B 两店订单“秒杀”成功的概率均为()212n +,记甲,乙两人抢购成功的订单总数量、口罩总数量分别为X ,Y .①求X 的分布列及数学期望()E X ;②当Y 的数学期望()E Y 取最大值时正整数n 的值.22.超市为了防止转基因产品影响民众的身体健康,要求产品在进入超市前必须进行两轮转基因检测,只有两轮都合格才能销售,否则不能销售.已知某产品第一轮检测不合格的概率为14,第二轮检测不合格的概率为19,两轮检测是否合格相互没有影响.(1)求该产品不能销售的概率;(2)如果产品可以销售,则每件产品可获利50元;如果产品不能销售,则每件产品亏损60元.已知一箱中有产品4件,记一箱产品获利X 元,求X 的分布列,并求出均值()E X . 23.从2016年到2019年的某城市方便面销量情况如图所示: 年份 2016 2017 2018 2019 时间代号t 1 2 3 4 年销量y (万包)462444404385(1)根据上表,求y 关于t 的线性回归方程y bt a =+.用所求回归方程预测2020年(5t =)方便面在该城市的年销量;(2)某媒体记者随机对身边的10位朋友做了一次调查,其中3位受访者认为方便面是健康食品.现从这10人中抽取3人进行深度访谈,记ξ表示随机抽取的3人认为方便面是健康食品的人数,求随机变量ξ的分布列及数学期望()E ξ.参考公式:回归方程:y bt a =+,其中121()()()niii ni i t t y y b t t ==--=-∑∑,a y bt =-.参考数据:41()()135.5iii t t y y =--=-∑.24.某单位选派甲、乙、丙三人组队参加知识竞赛,甲、乙、丙三人在同时回答一道问题时,已知甲答对的概率是34,甲、丙两人都答错的概率是112,乙、丙两人都答对的概率是14,规定每队只要有一人答对此题则该队答对此题. (1)求该单位代表队答对此题的概率;(2)此次竞赛规定每队都要回答10道必答题,每道题答对得20分,答错得10-分.若该单位代表队答对每道题的概率相等且回答任一道题的对错对回答其他题没有影响,求该单位代表队必答题得分的均值(精确到1分).25.在一次购物抽奖活动中,假设某10张券中有一等奖券2张,每张可获价值50元的奖品;有二等奖券2张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 元的概率分布列.26.如图,直角坐标系中,圆的方程为22111,(1,0),,,22x y A B C ⎛⎛+=-- ⎝⎭⎝⎭为圆上三个定点,某同学从A 点开始,用掷骰子的方法移动棋子,规定:①每掷一次骰子,把一枚棋子从一个定点沿圆弧移动到相邻下一个定点;②棋子移动的方向由掷骰子决定,若掷出骰子的点数为3的倍数,则按图中箭头方向移动;若掷出骰子的点数为不为3的倍数,则按图中箭头相反的方向移动.设掷骰子n 次时,棋子移动到A ,B ,C 处的概率分别为(),(),(),n n n P A P B P C 例如:掷骰子一次时,棋子移动到A ,B ,C 处的概率分别为111()0,()3P A P B ==,12()3P C =.(1)分别掷骰子二次,三次时,求棋子分别移动到A ,B ,C 处的概率;(2)掷骰子N 次时,若以X 轴非负半轴为始边,以射线OA ,OB ,OC 为终边的角的正弦值弦值记为随机变量n X ,求5X 的分布列和数学期望;【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题设分析知:芯片领域被选、不被选的概率分别为13、23,而3名学生选择互不影响,则选择芯片领域的学生数{0,1,2,3}X =,即X 服从二项分布,则有3321()()()33n n n P X n C -==即可求恰好有1名学生选择“芯片领域”的概率.【详解】由题意知,有3名学生且每位学生选择互不影响,从这15项“世界互联网领先科技成果”中分别任选1项,5项成果均属于芯片领域,则: 芯片领域被选的概率为:51153=;不被选的概率为:12133-=;而选择芯片领域的人数{0,1,2,3}X =,∴X 服从二项分布1~3(,3)X B ,3321()()()33nnn P X n C -==,那么恰好有1名学生选择“芯片领域”的概率为123214(1)()()339P X C ===. 故选:A. 【点睛】本题考查了二项分布,需要理解题设条件独立重复试验的含义,并明确哪个随机变量服从二项分布,结合二项分布公式求概率.2.A解析:A 【分析】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.利用独立重复试验的概率公式可求得所求事件的概率. 【详解】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.所以,比赛结束时A 队的得分高于B 队的得分的概率为43232432212122033333327P C C ⎛⎫⎛⎫⎛⎫=+⋅⋅+⋅⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:A. 【点睛】本题考查概率的求解,考查独立重复试验概率的求解,考查计算能力,属于中等题.3.C解析:C 【分析】根据题意可知随机变量η的可能取值有1、2、3,计算出随机变量η在不同取值下的概率,列出分布列,进而可求得η的数学期望. 【详解】由题意可知,随机变量η的可能取值有1、2、3,()1346115C P C η===,()223346325C C P C η===,()1346135C P C η===. 所以,随机变量η的分布列如下表所示:因此,随机变量η的数学期望为1232555E η=⨯+⨯+⨯=. 故选:C. 【点睛】本题考查随机变量数学期望的计算,一般要列出随机变量的分布列,考查计算能力,属于中等题.4.C解析:C【分析】由已知条件求得()2D ξ=,再由2(23)2()D D ξξ+=⨯,即可求解. 【详解】由题意,随机变量ξ服从正态分布(1,2)N ,可得()2D ξ=, 所以2(23)2()8D D ξξ+=⨯=. 故选:C . 【点睛】本题主要考查了正态分布曲线的特点及曲线所表示的意义,其中解答中熟记方差的求法是解答的关键,着重考查了计算能力.5.B解析:B 【分析】由()(1)E Y P Y ==-及1a b c ++=,可知13b a =-,2c a =;又因为0,,1a b c ≤≤,可求出103a ≤≤;由题意知1()6E a ξ=-,从而可求出()E ξ取值范围.【详解】解:由()(1)E Y P Y ==-知,a c a -+= ,即2c a = ,又1a b c ++= ,所以13b a =-;因为0,,1a b c ≤≤ ,所以0131021a a ≤-≤⎧⎨≤≤⎩ ,解得103a ≤≤.又()1110366E X =-++=- ,且X ,Y 相互独立,XY ξ=,所以()()()11(),0618E E XY E X E Y a ξ⎡⎤===-∈-⎢⎥⎣⎦. 故选:B. 【点睛】本题考查了数学期望,考查了分布列的性质,考查了推理能力和计算能力.本题的关键是由条件求出a 的取值范围.6.A解析:A 【分析】直接利用二项分布公式计算得到答案. 【详解】19,3X B ⎛⎫~ ⎪⎝⎭,则()=⨯=1933E X ,()1191233D X ⎛⎫=⨯⨯-= ⎪⎝⎭故选:A 【点睛】本题考查了二项分布,意在考查学生对于二项分布的理解.7.B解析:B 【分析】由题意知甲和乙投篮不受其他投篮结果的影响,本题是一个相互独立事件同时发生的概率,甲投篮的次数为X ,甲先投,则X k =表示甲第k 次甲投中篮球,而乙前1k -次没有投中,甲前1k -次也没有投中或者甲第k 次未投中,而乙第k 次投中篮球,根据公式写出结果. 【详解】甲和乙投篮不受其他投篮结果的影响,∴本题是一个相互独立事件同时发生的概率,每次投篮甲投中的概率为0.4,乙投中的概率为0.6,甲投篮的次数为X ,甲先投,则X k =表示甲第k 次投中篮球,而甲与乙前1k -次没有投中,或者甲第k 次未投中,而乙第k 次投中篮球. 根据相互独立事件同时发生的概率得到甲第k 次投中的概率:1110.40.60.40.240.4k k k ---⨯⨯=⨯;第k 次甲不中的情况应是10.40.60.6k k -⨯⨯,故总的情况是1110.240.40.240.60.60.240.76k k k ---⨯+⨯⨯=⨯. 故选B . 【点睛】本题考查相互独立事件同时发生的概率,是一个基础题,本题最大的障碍是理解X k =的意义,相互独立事件是指,两事件发生的概率互不影响,注意应用相互独立事件同时发生的概率公式.8.A解析:A 【解析】分析:首先设出题中的事件,然后由题意结合条件概率公式整理计算即可求得最终结果. 详解:设事件A 为48h 发病,事件B 为72h 发病, 由题意可知:()()0.055,0.19P A P B ==, 则()()0.945,0.81P A P B ==, 由条件概率公式可得:()()()()()0.816|0.9457P AB P B P B A P A P A ====. 本题选择A 选项.点睛:本题主要考查条件概率公式及其应用等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A【解析】分析:由题意结合正态分布图象的性质可知,σ越小,曲线越“瘦高”,据此即可确定123,,σσσ的大小.详解:由正态曲线的性质知,当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,所以1230σσσ<<<.本题选择A 选项.点睛:本题主要考查正态分布图象的性质,系数对正态分布图象的影响等知识,意在考查学生的转化能力和计算求解能力.10.A解析:A 【解析】每次摸球中奖的概率为114529C C 2059C 36==,由于是有放回地摸球,故3次摸球相当于3次独立重复实验,所以3次摸球恰有1次中奖的概率2135580C 199243P ⎛⎫=⨯⨯-= ⎪⎝⎭.故选A .点睛:判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()()1n kk kn p X k C p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.11.B解析:B 【详解】∵a ,b ,c 为等差数列,∴2b a c =+,∵1a b c ++=,1113E a c c a ξ=-⨯+⨯=-=,解得16a =,13b =,12c =,∴22215()()39DX E X EX a c ⎛⎫=-=+-= ⎪⎝⎭,故选B . 12.B解析:B 【解析】由题意知,E(X)=1×0.2+2×0.4+3×0.4=2.2,∴E(6X +8)=6E(X)+8=6×2.2+8=21.2.选B.二、填空题13.【分析】首先对事件进行分类分成女生0分男生6分或女生2分男生4分或女生4分男生2分女生的概率可以按照超几何概率求解男生按照独立重复求解概率【详解】依题意设该班所选队员得分之和为6分记为事件A 则可分为 解析:43120【分析】首先对事件进行分类,分成女生0分,男生6分,或女生2分,男生4分,或女生4分,男生2分,女生的概率可以按照超几何概率求解,男生按照独立重复求解概率. 【详解】依题意设该班所选队员得分之和为6分记为事件A ,则可分为下列三类:女生得0分男生得6分,设为事件1A ;女生得2分男生得4分,设为事件2A ;女生得4分男生得2分,设为事件3A ,则:()32321326112120C P A C C ⎛⎫=⨯= ⎪⎝⎭, ()211224232611241221205C C P A C C ⎛⎫⎛⎫=⨯== ⎪ ⎪⎝⎭⎝⎭,()22143326111832212020C P A C C ⎛⎫⎛⎫=⨯== ⎪⎪⎝⎭⎝⎭, ()()()()12343120P A P A P A P A =++=. 故答案为:43120【点睛】本题考查概率的应用问题,重点考查分类讨论,转化与化归的思想,熟练掌握概率类型,属于中档题型.本题的关键是对事件分类.14.【分析】设事件表示该选手能正确回答第轮的问题选手被淘汰考虑对立事件代入的值可得结果;【详解】记该选手能正确回答第轮的问题为事件则该选手被淘汰的概率:故答案为:【点睛】求复杂互斥事件概率的两种方法:(解析:101125【分析】设事件(1,2,3)i A i =表示“该选手能正确回答第i 轮的问题”,选手被淘汰,考虑对立事件,代入123(),(),()P A P A P A 的值,可得结果; 【详解】记“该选手能正确回答第i 轮的问题”为事件(1,2,3)i A i =,则()()()123432,,555P A P A P A ===.该选手被淘汰的概率:112123112123()()()()()()()P P A A A A A A P A P A A P A A A =++=++142433101555555125=+⨯+⨯⨯= 故答案为:101125【点睛】求复杂互斥事件概率的两种方法:(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和;(2)间接法:先求该事件的对立事件的概率,再由()1()P A P A =-求解.当题目涉及“至多”“至少”型问题时,多考虑间接法.15.【分析】根据次独立重复试验的概率公式进行求解即可【详解】解:考查一位乘客是否在第20层下电梯为一次试验这是次独立重复试验故即有123456故答案为:【点睛】本题主要考查次独立重复试验的概率的计算根据 解析:20243【分析】根据n 次独立重复试验的概率公式进行求解即可. 【详解】解:考查一位乘客是否在第20层下电梯为一次试验,这是6次独立重复试验, 故1~6,3X B ⎛⎫ ⎪⎝⎭.即有6612()()()33k kk P X k C -==⨯,0k =,1,2,3,4,5,6.42641220(4)()()33243P X C ∴==⨯=.故答案为:20243【点睛】本题主要考查n 次独立重复试验的概率的计算,根据题意确实是6次独立重复试验,是解决本题的关键,属于中档题.16.【分析】根据题意可知取出次品的个数可能的值为012利用排列组合知识求出对应的概率从而得到分布列代入数学期望公式求解即可【详解】由题意知取出次品的个数可能的值为012所以可得的分布列为: 0 1 2解析:25. 【分析】根据题意可知,取出次品的个数ξ可能的值为0、1、2,利用排列组合知识求出对应的概率,从而得到分布列,代入数学期望公式求解即可. 【详解】由题意知,取出次品的个数ξ可能的值为0、1、2,∴()0321331522035C C P C ξ===,()1221331512135C C P C ξ===, ()212133151235C C P C ξ===, 所以可得ξ的分布列为:则()0123535355E ξ=⨯+⨯+⨯=. 故答案为:25【点睛】本题考查离散型随机变量的分布列和数学期望;考查运算求解能力;正确列出随机变量的分布列是求解本题的关键;属于中档题.17.【分析】第五次结束投篮则前四次有两次投中且第五次投中根据独立重复试验的知识处理即可【详解】解:依题意恰好在第五次结束投篮则前四次有两次投中且第五次投中所以概率为:故答案为:【点睛】本题考查独立重复试 解析:881【分析】第五次结束投篮,则前四次有两次投中,且第五次投中,根据独立重复试验的知识处理即可. 【详解】解:依题意,恰好在第五次结束投篮, 则前四次有两次投中,且第五次投中, 所以概率为:22241118()(1)33381p C =⨯⨯-⨯=.故答案为:881. 【点睛】本题考查独立重复试验的知识,利用了二项分布求概率的公式.18.5【分析】根据随机变量和求出从而确定随机变量再用均值公式求解【详解】因为随机变量所以所以所以随机变量所以所以故答案为:5【点睛】本题主要考查了随机变量的二项分布还考查了运算求解的能力属于基础题解析:5 【分析】根据随机变量~(2,)X B p ,和2224(2)9===P X C p 求出p ,从而确定随机变量~(3,)Y B p ,再用均值公式求解.【详解】因为随机变量~(2,)X B p ,所以2224(2)9===P X C p 所以23p =所以随机变量2~(3,)3Y B , 所以()2==E Y np所以(21)2()15+=+=E Y E Y 故答案为:5 【点睛】本题主要考查了随机变量的二项分布,还考查了运算求解的能力,属于基础题.19.【分析】结合题意分别计算对应的概率计算期望即可【详解】列表:X 0 1 2 P 所以【点睛】本道题考查了数学期望计算方法结合题意即可属于中等难度的题解析:56【分析】结合题意,分别计算0,1,2x =对应的概率,计算期望,即可. 【详解】()112511665018C C P x C C ===,()111452116611118C C C P x C C +===,()11411166129C C P x C C === 列表:所以012181896EX =⨯+⨯+⨯= 【点睛】本道题考查了数学期望计算方法,结合题意,即可,属于中等难度的题.20.【分析】计算出每人的稿件能被录用的概率然后利用独立重复试验的概率公式可求得结果【详解】记事件甲的稿件被录用则因此甲乙两人分别向该出版社投稿篇则两人中恰有人的稿件被录用的概率为故答案为:【点睛】思路点 解析:3572【分析】计算出每人的稿件能被录用的概率,然后利用独立重复试验的概率公式可求得结果. 【详解】记事件:A 甲的稿件被录用,则()2212111522312P A C ⎛⎫⎛⎫=+⋅⋅= ⎪ ⎪⎝⎭⎝⎭,因此,甲、乙两人分别向该出版社投稿1篇,则两人中恰有1人的稿件被录用的概率为125735121272P C =⋅⋅=. 故答案为:3572. 【点睛】思路点睛:独立重复试验概率求法的三个步骤:(1)判断:依据n 次独立重复试验的特征,判断所给试验是否为独立重复试验; (2)分拆:判断所求事件是否需要分拆;(3)计算:就每个事件依据n 次独立重复试验的概率公式求解,最后利用互斥事件概率加法公式计算.三、解答题21.(1)分布列见解析;期望为34;(2)①分布列见解析;期望为()222n +;②n 的值为2. 【分析】(1)由题意,根据分层抽样,确定抽取的二级、一级口罩个数分别为6,2,得出X 的可能取值,求出对应的概率,即可得出分布列,从而可求出期望;(2)①先由题意,得到X 的可能取值,求出对应的概率,即可得出分布列,从而求出对应的期望;②根据题意,得到Y nX =,由(1)的结果,根据期望的运算性质,即可求出结果. 【详解】(1)由题意,样本中一级口罩和二级口罩的频率之比为:()()0.20.05:10.20.051:3+--=,按分层抽样抽取8个口罩,则其中二级、一级口罩个数分别为6,2.故X 的可能取值为0,1,2.()3062385014C C P X C ⋅===,()21623815128C C P X C ⋅===,()1262383228C C P X C ⋅===, 所以X 的分布列为所以()15330121428284E X =⨯+⨯+⨯=. (2)①由题知,X 的可能取值为0,1,2,()()221012P X n ⎛⎫==- ⎪ ⎪+⎝⎭,()()()221112122P X n n ⎛⎫==-⋅ ⎪ ⎪++⎝⎭, ()()4122P X n ==+,所以X 的分布列为所以()()()()()42222222112122E X n n n n ⎛⎫-⋅+ ⎪ ⎪++=⎝⎭++=. ②因为Y nX =,所以()()()22214424nE Y nE X n n n ===≤=+++, 当且仅当2n =时取等号,所以()E Y 取最大值时,n 的值为2. 【点睛】本题主要考查求离散型随机变量的分布列和期望,熟记离散型随机变量的分布列和期望的概念,以及期望的运算性质即可,属于常考题型. 22.(1)13;(2)分布列见解析,1533.【分析】(1)记“该产品不能销售”为事件A ,则1()1(191)(1)4P A =--⨯-,计算得到答案. (2)X 的取值为-240,-130,-20,90,200,计算概率得到分布列,计算均值得到答案. 【详解】(1)记“该产品不能销售”为事件A ,则11()1(1)(1)4193P A =--⨯-=, 所以该产品不能销售的概率为13. (2)依据题意的,X 的取值为-240,-130,-20,90,200,411(240)()381P X =-== ; 134128(130)()3381P X C =-==; 22241224(20)()()3381P X C =-== ;31341232(90)()()3381P X C ===;4216(200)()381P X ===.所以X 的分布列为:1()24013020902005381818181813E X =-⨯-⨯-⨯+⨯+⨯=. 【点睛】本题考查了概率的计算,分布列,均值,意在考查学生的计算能力和应用能力. 23.(1)27.1491.5y t =-+,356万包;(2)分布列详见解析,9()10E ξ=. 【分析】(1)直接利用回归方程公式计算得到答案.(2)ξ的可能值为0,1,2,3,计算概率得到分布列,再计算数学期望得到答案. 【详解】 (1) 2.5t =,462444404385423.754y +++==,()()()()4222221()1 2.52 2.53 2.54 2.55i i t t =-=-+-+-+-=∑,135.527.15b -==-,423.75(27.1) 2.5491.5a =--⨯=,所以27.1491.5y t =-+. 当5t =时,27.15491.5356y =-⨯+=.(2)依题意,10人中认为方便面是健康食品的有3人,ξ的可能值为0,1,2,3,所以37310C 7(0)C 24P ξ===;1237310C C 21(1)C 40P ξ===; 2137310C C 7(2)C 40P ξ===; 33310C 1(3)C 120P ξ===,故分布列为:()012324404012010E ξ=⨯+⨯+⨯+⨯=. 【点睛】本题考查了回归方程,分布列,数学期望,意在考查学生的计算能力和应用能力. 24.(1)9196(2)184 【分析】(1)根据已知条件列方程组解得甲、乙、丙答对的概率,再根据对立事件的概率公式可求得结果;(2)记X 为该单位代表队必答题答对的道数,Y 为必答题的得分,则91~10,96X B ⎛⎫ ⎪⎝⎭,30100Y X =-,根据二项分布的期望公式以及期望的性质可得结果.【详解】(1)记甲、乙、丙分别答对此题为事件A ,B ,C , 由已知,得3()4P A =,1[1()][1()]12P A P C --=, 2()3P C ∴=.又13()(),()48P B P C P B =∴=. ∴该单位代表队答对此题的概率为:332911[1()][1()][1()]111148396P P A P B P C ⎛⎫⎛⎫⎛⎫=----=--⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(2)记X 为该单位代表队必答题答对的道数,Y 为必答题的得分,则91~10,96X B ⎛⎫ ⎪⎝⎭, 91455()109648E X ∴=⨯=. 而()20101030100Y X X X =-⨯-=-,4551475()30()10030100184488E Y E X ∴=-=⨯-=≈. 【点睛】本题考查了对立事件的概率公式和独立事件的乘法公式,考查了二项分布的期望,属于中档题. 25.(1)23;(2)X 的分布列为(1)根据题意先求出该顾客没有中奖的概率,再根据与对立事件的概率和为1,即可得到该顾客中奖的概率.(2)根据题意得X 的取值可能为0,10,20,50,60,100,根据古典概率公式分别求出其概率,进而求出X 的概率分布列. 【详解】(1)该顾客获奖的概率为26210121=1=33C P C =--. (2)根据题意得,X 的取值可能为0,10,20,50,60,100()26210103C P X C ===,()112621041015C C P X C ⋅===,()2221012045C P X C ===,()112621045015C C P X C ⋅===,()112221046045C C P X C ⋅===,()22210110045C P X C ===. X 的分布列为本题主要考查古典概型事件的概率求解. 古典概型的特点:①有限性(所有可能出现的基本事件只有有限个);②等可能性(每个基本事件出现的可能性相等). 基本事件的特点:①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.26.(1)当掷骰子二次时,棋子移动到A ,B ,C 处的概率分别为441,,999;当掷骰子三次时,棋子移动到A ,B ,C 处的概率分别为124,,399;(2)分布列见解析,54-. 【分析】(1)由已知可得,当2n ≥时,11111212()()(),()()()3333n n n n n n P A P C P B P B P A P C ----=+=+,1112()()()33n n n P C P B P A --=+,取2,3n n ==,即可求解;(2)根据已知5X 的所有可能取值为0、555(),(),()P A P B P C 的概率,得出随机变量5X 的分布列,按期望公式,即可求出结论. 【详解】(1) 当掷骰子一次时11112()0()()33P A P B P C ===,, 当掷骰子二次时21121224()()()33999P A P B P C =+=+= 211121224()()()0333339P B P A P C =+=⨯+⋅= 211121()()()339P C P B P A =+= 当掷骰子三次时32221241191()()()333939273P A P B P C =+=⋅+⋅== 32212142162()()()333939279P B P A P C =+=⋅+⋅== 3221214244()()()3339399P C P B P A =+=⋅+⋅=(2) 依题意,5X 的所有可能取值为0-、54421(0)()()()33P X P A P B P C ===+ 3333212[()()(112[())]33]3333P A B A P C P P ++=+ 333441()()()999P A P C P B =++ 4144123093999981=⋅+⋅+⋅=,54412(()()()33P X P B P A P C ===+ 3333121212[()()][()()]333333P B P C P B P A =+++ 333414()()()999P B P C P A =++4214412499999381=⋅+⋅+⋅=5302427(()12818181P X P C =-==--= X ∴的分布列为22722754【点睛】 本题考查相互独立和互斥事件的概率求法、离散型随机变量的分布列和期望,理解概率间的关系是解题的关键,考查计算求解能力,属于中档题.。
(北师大版)大连市高中数学选修2-3第一章《计数原理》测试题(包含答案解析)
![(北师大版)大连市高中数学选修2-3第一章《计数原理》测试题(包含答案解析)](https://img.taocdn.com/s3/m/5a41f2fe76c66137ef0619a6.png)
一、选择题1.杨辉是我国南宋末年的一位杰出的数学家.在他著的《详解九章算法》一书中,画了一张表示二项式展开后的系数构成的三角形数阵(如图所示),称做“开方做法本源”,现在简称为“杨辉三角”,它是杨辉的一大重要研究成果.它比西方的“帕斯卡三角形”早了393年.若用i j a -表示三角形数阵的第i 行第j 个数,则1003a -=( )A .5050B .4851C .4950D .50002.10个人排队,其中甲、乙、丙、丁4人两两不相邻的排法A .5457A A 种 B .1010A -7474A A 种 C .6467A A 种D .6466A A 种3.下列四个组合数公式:对,n k N ∈,约定0001C ==!,有(1)(0)!kk n nP C k n k =≤≤(2)(0)k n kn n C C k n -=≤≤ (3)11(1)k k n n k C C k n n--=≤≤ (4)111(1)kkk n n n C C C k n ---=+≤≤ 其中正确公式的个数是( ) A .4个B .3个C .2个D .1个4.将红、黄、蓝三种颜色的三颗棋子分别放入33⨯方格图中的三个方格内,如图,要求任意两颗棋子不同行、不同列,则不同方法共有几种( )A .12B .16C .24D .365.若2020220200122020(12)x a a x a x a x -=+++⋯+,则下列结果不正确的是( )A .01220201a a a a +++⋯+=B .20201352019132a a a a -++++⋯+=C .20200242020132a a a a ++++⋯+=D .202012220201222a a a ++⋯+=- 6.从20名同学中选派3人分别参加数学、物理学科竞赛,要求每科竞赛都有人参加,而且每人只能参加一科竞赛.记不同的选派方式有n 种,则n 的计算式可以是( ) A .3203CB .3206CC .3202AD .3203A ÷7.5250125(21)(1)(1)(1)x a a x a x a x -=+-+-+⋯+-,则2a =( )A .40B .40-C .80D .80-8.有5位同学参加青少年科技创新大赛的3个不同项目,要求每位同学参加一个项目且每个项目至少有一位同学,则不同的参加方法种数为( ) A .80B .120C .150D .3609.甲、乙、丙、丁4人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是( ) A .840B .2226C .2100D .235210.5(3)(2)x x -+的展开式中3x 的系数为( ) A .10B .40-C .200D .24011.已知5250125(12)...x a a x a x a x +=++++,则512025...222a a a a ++++的值为( ) A .32 B .1 C .81D .6412.为抗击新冠病毒,某部门安排甲、乙、丙、丁、戊五名专家到三地指导防疫工作.因工作需要,每地至少需安排一名专家,其中甲、乙两名专家必须安排在同一地工作,丙、丁两名专家不能安排在同一地工作,则不同的分配方法总数为( ) A .18B .24C .30D .36二、填空题13.函数()y f x =的定义域D 和值域A 都是集合{12,3},的非空真子集,如果对于D 内任意的x ,总有()()x f x xf x ++的值是奇数,则满足条件的函数()y f x =的个数是_____;14.A ,B ,C ,D ,E ,F 六名同学参加一项比赛,决出第一到第六的名次.A ,B ,C 三人去询问比赛结果,裁判对A 说:“你和B 都不是第一名”;对B 说:“你不是最差的”;对C 说:“你比A ,B 的成绩都好”,据此回答分析:六人的名次有_____________种不同情况.15.有5本不同的书,全部借给3人,每人至少1本,共有______种不同的借法.16.6212x x ⎛⎫- ⎪⎝⎭的展开式中的常数项是_______________. 17.将编号为1,2,3,4,5,6,7的七个小球放入编号为1,2,3,4,5,6,7的七个盒中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为______.18.六位同学坐在一排,现让六位同学重新坐,恰有两位同学坐自己原来的位置,则不同的坐法有________种(用数字回答). 19.若212626xx C C -=,则x =__________.20.甲、乙、丙等7人排成一排,甲站最中间,乙丙相邻,且乙、丙与丁均不相邻,共有______种不同排法.(用数字作答)三、解答题21.用数字1,2,3,4,5组成没有重复数字的数,问 (1)能够组成多少个五位奇数? (2)能够组成多少个正整数?(3)能够组成多少个大于40000的正整数?22.若2nx⎛+ ⎝展开式的二项式系数之和是64.(1)求n 的值;(2)求展开式中的常数项.23.一场小型晚会有3个唱歌节目和2个相声节目,要求排出一个节目单. (1)2个相声节目要排在一起,有多少种排法? (2)2个相声节目彼此要隔开,有多少种排法?(3)第一个节目和最后一个节目都是唱歌节目,有多少种排法? (4)前3个节目中要有相声节目,有多少种排法? (要求:每小题都要有过程,且计算结果都用数字表示) 24.已知数列{}n a 的首项为1,记()()()()120122123, 111nn n n nn F x n a C x a C x x a C x x --=-+-+-()11111n n n nn n n n a C x x a C x --+++-+.(1)若数列{}n a 是公比为3的等比数列,求()1, 2020F -的值;(2)若数列{}n a 是公差为2的等差数列,求证:(), 2020F x 是关于x 的一次多项式.25.已知21nx x ⎛⎫- ⎪⎝⎭展开式的二项式系数的和比()732a b +展开式的二项式系数的和大128.(1)求n 的值.(2)求21nx x ⎛⎫- ⎪⎝⎭展开式中的系数最大的项和系数最小的项26.3名男生,4名女生,按照不同的要求排队,求不同的排队方案的方法种数.(要求每问要有适当的分析过程,列式并算出答案) (1)选其中5人排成一排;(2)排成前后两排,前排3人,后排4人; (3)全体站成一排,男、女各站在一起;(4)全体站成一排,男生不能站在一起; (5)全体站成一排,甲不站排头也不站排尾.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】依据二项展开式系数可知,得到第i 行第j 个数应为11j i C --,即可求得1003a -的值.【详解】依据二项展开式系数可知,第i 行第j 个数应为11j i C --, 故第100行第3个数为299999848512C ⨯== 故选:B . 【点睛】本题考查二项展开式的应用,其中解答中得出第i 行第j 个数应为11j i C --是解答的关键,着重考查推理与运算能力,属于基础题.2.C解析:C 【分析】不相邻问题采用“插空法”. 【详解】解:∵10个人排成一排,其中甲、乙、丙、丁4人两两不相邻排成一排, ∴采用插空法来解,另外六人,有66A 种结果,再在排列好的六人的七个空档里,排列甲、乙、丙、丁, 有47A 种结果,根据分步计数原理知共有66A •47A , 故选C . 【点睛】本题考查排列组合及简单计数问题,在题目中要求元素不相邻,这种问题一般采用插空法,先排一种元素,再在前面元素形成的空档,排列不相邻的元素.3.A解析:A 【分析】分别将组合数和排列数写成阶乘的形式,计算每个等式的两边并判断等式是否成立. 【详解】A .()0!k kk n n nk k P P C k n P k ==≤≤,等式成立;B .()()!0!!!k k n nP n C k n k n k k ==≤≤-⨯,()()()()()()!!0!!!!!n k n k n nP n n Ck n n k k n k n n k n k --===≤≤-⨯---⨯-, 所以(0)kn kn n C C k n -=≤≤成立;C .()()()()1!!(1)!!!!1!k k n n n P k k k n C k n n n k n n k k n k k -=⋅=⋅=≤≤-⨯-⨯-, ()()()()1111(1!1!!1)!1k n k n n P k n k k Ck n -----==-≤-≤⨯-,所以11(1)k k n n k C C k n n --=≤≤成立; D .()()()()()()1111111!1!!1!1!!!1!k k k k n n n n n n P P k k n k k Cn k k C--------=+=+=---⨯-⨯-+ ()()()()1!(1!!!)!!k n n n n k k C n k k n k k n k ⎡⎤-⎡⎤=-+==⎢⎥⎣⎦-⨯-⨯⎢≤⎥≤⎣⎦,所以111(1)k k k n n n C C C k n ---=+≤≤成立.故选A. 【点睛】本题考查排列数、组合数公式的运算化简,难度一般.注意排列组合中两个计算公式的使用:()()()!!,!!!!!n m mmn n nn P P n n P C n m n m m n m m ====---⨯. 4.D解析:D 【分析】直接利用乘法原理计算得到答案. 【详解】第一颗棋子有339⨯=种排法,第二颗棋子有224⨯=种排法,第三颗棋子有1种排法, 故共有94136⨯⨯=种排法. 故选:D. 【点睛】本题考查了乘法原理,意在考查学生的应用能力.5.B解析:B 【分析】令1x =,得到0120201a a a ++⋯+=,令1x =-,求得202001220203a a a a =-++⋯+,令0x =,求得01a =,进而逐项判定,即可求解.【详解】由题意,二项展开式2020220200122020(12)x a a x a x a x -=+++⋯+,令1x =,可得01220202020(12)1a a a a +++⋯+-==,①令1x =-,可得2020012202020203(123)a a a a a -=+-++⋯+=,②令0x =,可得20020(10)1a =-=,③由①-②,可得20201352019132a a a a -+++⋯+=, 由①+②,可得2020024*******a a a a ++++⋯+=, 令12x =,可得20202020120220201(12)12222a a a a +++⋯+=-⨯=, 所以202012220201222a a a ++⋯+=-. 综上可得,A 、C 、D 是正确的,B 是错误的. 故选:B. 【点睛】本题主要考查了二项展开式的系数问题的求解,其中解答中合理利用二项展开式的形式,合理赋值是解答的关键,着重考查推理与计算能力.6.B解析:B 【分析】先从20名同学中选派3人,再分为两类:第一类:2人参加数学,1人参加物理竞赛,第二类:1人参加数学,2人参加物理竞赛,结合分步计数原理,即可求解. 【详解】由题意,从20名同学中选派3人,共有320C 种不同的选法, 又由要求每科竞赛都有人参加,而且每人只能参加一科竞赛, 可分为两类:第一类:2人参加数学,1人参加物理竞赛,共有233C =中不同的选法; 第二类:1人参加数学,2人参加物理竞赛,共有133C =中不同的选法, 综上可得,不同的选派方式共有332020(33)6C C +⋅=⋅. 故选:B. 【点睛】本题主要考查了分步计数原理,以及排列、组合的综合应用,其中解答中选出3人后,合理分类求解是解答的关键,着重考查分析问题和解答问题的能力.7.A解析:A 【分析】易得[]55(21)2(1)1x x --=+,求出展开式通项后可得55152(1)rrr r T C x --+=⋅⋅-,令3r =可得出2a 的值. 【详解】由于[]55(21)2(1)1x x --=+,所以展开式的通项为:[]5551552(1)12(1)rrr r r r r T C x C x ---+=⋅-⋅=⋅⋅-,令3r =可得:322352(1)T C x =⋅⋅-,则3225240a C =⋅=. 故选:A . 【点睛】本题考查二项式定理的应用,解题关键是得出[]55(21)2(1)1x x --=+进而进行计算,考查逻辑思维能力和计算能力,属于常考题.8.C解析:C 【分析】根据题意,分清楚有两种情况,利用公式求得结果. 【详解】根据题意,可知有两种情况,一种是有三位同学去参加同一个项目,一种是有两个项目是两位同学参加,所以不同的参加方法种数为22333535332210310661502C C C A A A ⋅⨯⋅+⋅=⨯+⨯=种, 故选:C. 【点睛】该题考查的是有关排列组合的综合题,涉及到的知识点有分类计数加法计数原理,排列组合综合题,属于中档题目.9.B解析:B 【分析】分成三类:一类每个台阶站1人;二类一个台阶站2人,一个台阶1人,一个台阶1人;三类一个台阶站2人,一个台阶站2人,分类用加法原理可得. 【详解】每个台阶站1人有47840A =,一个台阶站2人,一个台阶1人,一个台阶1人有23471260C A , 一个台阶站2人,一个台阶站2人有273126A 所以共有840+1260+126=2226故选:B. 【点睛】本题考查使用两个计数原理进行计数的基本思想:对需用两个计数原理解决的综合问题要“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.10.B解析:B 【分析】首先将5(3)(2)x x -+拆开得到555((2)3(23))(2)x x x x x =+-+-+,得到5(3)(2)x x -+的展开式中3x 的系数与5(2)x +展开式中2x 项和3x 项的系数有关,化简求得结果. 【详解】555((2)3(23))(2)x x x x x =+-+-+,5(2)x +展开式中2x 项的系数为335280C ⋅=, 5(2)x +展开式中3x 项的系数为225240C ⋅=, 所以5(3)(2)x x -+的展开式中3x 的系数为8034040-⨯=-, 故选:B. 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求两个二项式乘积展开式的系数问题,在解题的过程中,注意分析与哪些项有关,属于简单题目.11.A解析:A 【分析】根据所求与已知的关系,令12x =,即可求得答案. 【详解】5250125(12)...x a a x a x a x +=++++,∴令12x =,即可得555120251...122322222a a a a ⎛⎫++++=+⨯== ⎪⎝⎭.故选:A 【点睛】本题考查二项式定理的应用,考查理解辨析能力与运算求解能力,属于基础题.12.C解析:C 【分析】由甲、乙两名专家必须安排在同一地工作,此时甲、乙两名专家看成一个整体即相当于一个人,所以相当于只有四名专家,先计算四名专家中有两名在同一地工作的排列数,再去掉丙、丁两名专家在同一地工作的排列数,即可得到答案. 【详解】因为甲、乙两名专家必须安排在同一地工作,此时甲、乙两名专家 看成一个整体即相当于一个人,所以相当于只有四名专家,先计算四名专家中有两名在同一地工作的排列数,即从四个中选二个和 其余二个看成三个元素的全排列共有:2343C A ⋅种; 又因为丙、丁两名专家不能安排在同一地工作,所以再去掉丙、丁两名专家在同一地工作的排列数有33A 种, 所以不同的分配方法种数有:23343336630C A A ⋅-=-= 故选:C 【点睛】本题考查了排列组合的应用,考查了间接法求排列组合应用问题,属于一般题.二、填空题13.【分析】化简得因此中至少一个为奇数再分两种情况讨论得解【详解】因为所以中至少一个为奇数定义域为的都可以有种;定义域为的函数所以有种;所以共种故答案为:29【点睛】关键点睛:解答本题有两个关键:其一是 解析:29【分析】化简得()()(1)(()1)1,x f x xf x x f x ++=++-因此(),f x x 中至少一个为奇数,再分两种情况讨论得解. 【详解】因为()()(1)(()1)1,x f x xf x x f x ++=++- 所以(),f x x 中至少一个为奇数,定义域为{1},{3},{1,3}的都可以,有3333=15++⨯种; 定义域为{}{}{}2,1,2,2,3的函数(2){1,3}f ∈, 所以有23223=14+⨯+⨯种; 所以共29种. 故答案为:29 【点睛】关键点睛:解答本题有两个关键:其一是分析出(),f x x 中至少一个为奇数,其二是合理分类讨论.14.【分析】根据裁判所说对的名次分两类:第一类是获最后一名再考虑且在前面最后排剩下3人;第二类是没有获得最后一名此时可同时考虑获得前5名根据加法原理即可得到答案【详解】根据裁判所说对的名次分两类:第一类 解析:180【分析】根据裁判所说,对A 的名次分两类:第一类是A 获最后一名,再考虑B ,C 且C 在B 前面,最后排剩下3人;第二类是A 没有获得最后一名,此时可同时考虑A ,B ,C 获得前5名,根据加法原理即可得到答案. 【详解】根据裁判所说,对A 的名次分两类:第一类是A 获最后一名,再考虑B ,C ,从前5名中选2两个名次给B ,C 且C 在B 前面有25C 种,最后排D ,E ,F 有33A 种,根据分步计数原理,共有235360C A =种;第二类是A 没有获得最后一名,此时可同时考虑A ,B ,C 获得前5名中的3个名次 且C 名次在A ,B 之前有3252C A 种,最后排D ,E ,F 有33A 种,根据分步计数原理, 共有323523120C A A =种;根据分类计数原理,六人的名次共有60120180+=种不同情况. 故答案为:180 【点睛】本题主要考查分类计数原理和分步计数原理,注意对同学A 进行分类讨论,属于中档题.15.150【分析】将5本不同的书分成满足题意的3组有113与221两种分别计算可得分成113与分成221时的分组情况种数相加可得答案【详解】解:将5本不同的书分成满足题意的3组有113与221两种分成1解析:150 【分析】将5本不同的书分成满足题意的3组有1,1,3与2,2,1两种,分别计算可得分成1、1、3与分成2、2、1时的分组情况种数,相加可得答案. 【详解】解:将5本不同的书分成满足题意的3组有1,1,3与2,2,1两种,分成1、1、3时,有3353C A 种分法,分成2、2、1时,有22353322C C A A 种分法,所以共有223335353322150C C C A A A +=种分法, 故答案为:150. 【点睛】本题考查组合、排列的综合运用,解题时,注意加法原理与乘法原理的使用.16.60【分析】由题意可得二项展开式的通项要求展开式的常数项只要令可求代入可求【详解】解:由题意可得二项展开式的通项为:令可得:此时即的展开式中的常数项为60故答案为:60【点睛】本题考查了二项展开式项解析:60 【分析】由题意可得,二项展开式的通项26161(2)()(1)2r r r rr T C x x-+=-=-61236rr r C x --,要求展开式的常数项,只要令1230r -=可求r ,代入可求 【详解】解:由题意可得,二项展开式的通项为: 2661231661(2)()(1)2r r r r r r rr T C x C x x---+=-=-,令1230r -=,可得:4r =,此时2456260T C ==,即6212x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为60. 故答案为:60. 【点睛】本题考查了二项展开式项的通项公式的应用,考查解题运算能力.17.315【分析】根据题意有且只有三个盒子的编号与放入的小球的编号相同再由排列组台及计数原理即可求解【详解】第一步:先确定三个盒子的编号与放入的小球的编号相同共种不同取法;第二步:再将剩下的个小球放入到解析:315 【分析】根据题意,有且只有三个盒子的编号与放入的小球的编号相同,再由排列组台及计数原理,即可求解. 【详解】第一步:先确定三个盒子的编号与放入的小球的编号相同,共3735C =种不同取法; 第二步:再将剩下的4个小球放入到4个盒子中,且小球编号与放入的小球的编号不相同,共()113219C C +=种不同放法;因而有且只有三个盒子的编号与放入的小球的编号相同的不同放法种数为359315⨯=种. 故答案为:315 【点睛】本题考查了排列组合及计数原理,考查理解辨析能力与运算求解能力,属中档题.18.135【分析】根据题意先确定2个人位置不变共有种选择再确定4个人坐4个位置但是不能坐原来的位置计算得到答案【详解】根据题意先确定2个人位置不变共有种选择再确定4个人坐4个位置但是不能坐原来的位置共有解析:135 【分析】根据题意先确定2个人位置不变,共有2615C =种选择,再确定4个人坐4个位置,但是不能坐原来的位置,计算得到答案. 【详解】根据题意先确定2个人位置不变,共有2615C =种选择.再确定4个人坐4个位置,但是不能坐原来的位置,共有33119⨯⨯⨯=种选择, 故不同的坐法有159135⨯=. 故答案为:135. 【点睛】本题考查了分步乘法原理,意在考查学生的计算能力和应用能力.19.1或9【分析】由再根据组合的互补性质可得即可解得的值【详解】解:由可得:解得:又根据组合的互补性质可得可得:解得:故答案为:1或9【点睛】本题考查了组合及组合数公式的应用掌握组合数的性质和组合数公式解析:1或9 【分析】由212626x x C C -=,再根据组合的互补性质可得26(21)2626x x C C --=,即可解得x 的值.【详解】解:由212626x x C C -=,可得:21x x =-,解得:1x =,又根据组合的互补性质可得26(21)2626x x C C --=,可得:26(21)x x =--,解得:9x =. 故答案为:1或9. 【点睛】本题考查了组合及组合数公式的应用,掌握组合数的性质和组合数公式是解题的关键.20.【分析】根据乙丙相邻所以捆在一起有种排法又因为乙丙与丁均不相邻且甲站最中间则剩余3人全排列从产生的4个空中选2个将乙丙与丁排列再用分类乘法计数原理求解【详解】因为乙丙相邻所以捆在一起有种排法又因为乙 解析:144【分析】根据乙丙相邻,所以捆在一起有22A 种排法,又因为乙、丙与丁均不相邻,且甲站最中间,则剩余3人全排列,从产生的4个空中选2个,将乙、丙与丁排列,再用分类乘法计数原理求解. 【详解】因为乙丙相邻,所以捆在一起有22A 种排法,又因为乙、丙与丁均不相邻,因为甲站最中间,则剩余3人全排列有33A 种排法,,从产生的4个空中选2个,将乙、丙与丁排列,有24A 种排法,所以共有232234144A A A ⨯⨯=种排法故答案为:144本题主要考查分类乘法计数原理,还考查了运算求解的能力,属于中档题.三、解答题21.(1)72;(2)325;(3)48; 【分析】(1)首先排个位,从3个奇数中选1个排在个位,再将其余4个数全排列即可; (2)根据题意,按数字的位数分5种情况讨论,求出每种情况下数字的数目,由加法原理计算可得答案;(3)大于40000的正整数,即最高位为4或5,其余数字全排列即可; 【详解】解:(1)首先排最个位数字,从1、3、5中选1个数排在个位有133A =种,其余4个数全排列有4424A =种,按照分步乘法计数原理可得有143472A A =个五位奇数; (2)根据题意,若组成一位数,有5种情况,即可以有5个一位数; 若组成两位数,有2520A =种情况,即可以有20个两位数; 若组成三位数,有3560A =种情况,即可以有60个三位数; 若组成四位数,有45120A =种情况,即可以有120个四位数; 若组成五位数,有55120A =种情况,即可以有120个五位数; 则可以有52060120120325++++=个正整数;(3)根据题意,若组成的数字比40000大的正整数,其首位数字为5或4,有2种情况; 在剩下的4个数,安排在后面四位,共有142448C A =种情况, 则有48个比40000大的正整数; 【点睛】本题考查排列组合的应用,涉及分步、分类计数原理的应用,属于基础题. 22.(1)6;(2)60 【分析】由二项式系数和求出指数n ,再写出展开式通项后可得常数项. 【详解】(1)由题意得,二项式系数之和为012264n n n n n n C C C C ++++==,6n ∴=;(2)通项公式为366622166(2)2r r rrrr r T C x xC x----+==,令3602r-=,得4r = ∴展开式中的常数项为4464256(2)60T C x x --==.该题主要考查二项式定理,在()na b +展开式中二项式系数为2n ,只与指数n 有关,求特定项时要注意通项的正确应用.23.(1)48;(2)72;(3)36;(4)108. 【分析】(1)将2个相声节目进行捆绑,与其它3个节目形成4个元素,利用捆绑法可求得排法种数;(2)将2个相声节目插入其它3个节目所形成的空中,利用插空法可求得排法种数; (3)第一个节目和最后一个节目都是唱歌节目,则3个节目排在中间,利用分步乘法计数原理可求得排法种数;(4)在5个节目进行全排的排法种数中减去前3个节目中没有相声节目的排法种数,由此可求得结果. 【详解】(1)将2个相声节目进行捆绑,与其它3个节目形成4个元素,然后进行全排, 所以,排法种数为242448A A =种;(2)将2个相声节目插入其它3个节目所形成的4个空中,则排法种数为323472A A =种; (3)第一个节目和最后一个节目都是唱歌节目,则其它3个节目排在中间,进行全排, 由分步乘法计数原理可知,排法种数为233336A A =种;(4)在5个节目进行全排的排法种数中减去前3个节目中没有相声节目的排法种数, 可得出前3个节目中要有相声节目的排法种数为53253212012108A A A -=-=. 【点睛】本题考查排列组合综合问题,考查捆绑法、插空法、分步乘法计数原理以及间接法的应用,考查计算能力,属于中等题. 24.(1)1(2)证明见解析; 【分析】(1)根据13-=n n a ,得到()()()()()1220012,313131nn n n nn F x n C x C x x C x x --=-+-+-()()()()()1113131312n n n nn nn n C x x C x x x x --++-+=-+=+求解.(2)易得21n a n =-,则(),F x n ()()()()()101222112114(1)12--=-++-++-+++nn n n n nn nn C x C x x C x n C xx ,再转化为(),F x n ()()10122211(1)--⎡⎤=-+-+-+++⎣⎦n n n n n n n n n C x C x x C x x C x ()11222212(1)n n n n n n n C x x C x x nC x --⎡⎤-+-++⎣⎦,利用二项式定理及组合数公式求解.【详解】(1)由题意得:13-=n n a ,∴()()()()()1220012,313131nn n n nn F x n C x C x x C x x --=-+-+-()()()()()1113131312n n nnn nn n C x x C x x x x --++-+=-+=+,∴()()20201,2020121F -=-=;(2)证明:若数列{}n a 是公差为2的等差数列,则21n a n =-.()()()()10111121,111---+=-+-++-+nn n n n nn n n n n n F x n a C x a C x x a C x x a C x ,()()()()()101222112114(1)12--=-++-++-+++nn n n n nn nn C x C x x C x n C x x ,()()10122211(1)--⎡⎤=-+-+-+++⎣⎦n n n n n n n n n C x C x x C x x C x()11222212(1)n n n n n n n C x x C x x nC x --⎡⎤-+-++⎣⎦,由二项式定理知,()()()10122211(1)11---+-+-=-+=⎡⎤⎣++⎦nn n n n nn n nnC x C x x C x x x x C x ,因为()()()()111!!!!1!!kk nn n n kC k n C k n k k n n k --⋅-=⋅=⋅=---,所以()1122212(1)---+-++n n n n n nn C x x C x nC x x ()112211111(1)------=-+-++n n n n n n n nC x x n x x nC x C()1012111111(1)n n n n n n n nx C x C x x C x -------=⎦-+-++⎡⎤⎣()11-=-+=⎡⎤⎣⎦n nx x x nx ,所以(),12F x n nx =+.(),202014040F x x =+.【点睛】本题主要考查二项式定理及其展开式以及组合数公式,等差数列,等比数列的通项公式,还考查了运算求解的能力,属于中档题.25.(1)8;(2)系数最大项,4570T x =,系数最小项656T x =-和7456T x =-【分析】(1)21nx x ⎛⎫- ⎪⎝⎭展开式的二项式系数和为2n ,()732a b +展开式的二项式系数和为72,根据条件可得到关于n 的等式求解出n 的值;(2)根据二项式系数的性质求得当r 为何值时,展开式的系数最大或最小,从而求解出对应的系数最大和最小的项. 【详解】(1)由条件可知:722128n -=,所以822n =,所以8n =;(2)因为21nx x ⎛⎫- ⎪⎝⎭的通项为:()163181r r rr T C x -+=⋅-⋅,由二项式系数的性质可知:当4r =时,21nx x ⎛⎫- ⎪⎝⎭展开式的系数最大,所以系数最大的项为4445870T C x x =⋅=, 当3r =或5时,21nx x ⎛⎫- ⎪⎝⎭展开式的系数最小,所以系数最小的项为3774856T C x x =-⋅=-和56856T C x x =-⋅=-. 【点睛】本题考查二项式定理的综合运用,难度一般.对于二项式系数kn C ,若n 为偶数时,中间一项2nn C 取得最大值;当n 为奇数时,中间两项1122,n n nnC C-+同时取得最大值.26.(1)2520;(2)5040;(3)288;(4)1440;(5)3600.【分析】相邻问题一般看作一个整体处理,利用捆绑法,不相邻问题一般用插空法,特殊位置优先考虑,即可求解. 【详解】解:(1)从7人中选其中5人排成一排,共有55752520C A =种排法; (2)排成前后两排,前排3人,后排4人,共有775040A =种排法; (3)全体站成一排,男、女各站在一起,属于相邻问题, 男生必须站在一起,则男生全排列,有33A 种排法, 女生必须站在一起,则女生全排列,有44A 种排法, 男生女生各看作一个元素,有22A 种排法;由分布乘法的计数原理可知,共有234234288A A A =种方法;(4)全体站成一排,男生不能站在一起,属于不相邻问题,先安排女生,有44A 种排法,把3个男生插在女生隔成的5个空位中,有35A 种排法, 由分布乘法的计数原理可知,共有43451440A A =种方法; (5)全体站成一排,男不站排头也不站排尾,则优先安排甲, 从除去排头和排尾的5个位置中安排甲,有15A 种排法, 再对剩余的6人进行全排列,有66A 种排法, 所以共有16563600A A =种方法. 【点睛】本题考查排列和组合的实际应用,涉及相邻和不相邻问题,利用了捆绑法、插空法和特殊位置优先考虑的方法,考查分析和计算能力.。
最新北师大版高中数学高中数学选修2-3第一章《计数原理》测试(有答案解析)
![最新北师大版高中数学高中数学选修2-3第一章《计数原理》测试(有答案解析)](https://img.taocdn.com/s3/m/d9ac0b3f49649b6649d7471d.png)
一、选择题1.将编号为1、2、3、4、5的5个小球全部放入A 、B 、C 三个盒子内,若每个盒子不空,且放在同一个盒子内的小球编号不相连,则不同的方法总数有( ) A .42B .36C .48D .602.4(12)x -的展开式中2x 的系数为( ) A .6B .24C .32D .483.从4名优秀学生中选拔参加池州一中数学、物理、化学三学科培优研讨会,要求每名学生至多被一学科选中,则每学科至少要选用一名学生的情况有( )种 A .24B .36C .48D .604.10个人排队,其中甲、乙、丙、丁4人两两不相邻的排法A .5457A A 种B .1010A -7474A A 种C .6467A A 种 D .6466A A 种5.在一个具有五个行政区域的地图上(如图),用四种颜色给这五个行政区着色,当相邻的区域不能用同一颜色时,则不同的着色方法共有( )A .72种B .84种C .180种D .390种6.数列129,,,a a a ⋅⋅⋅中,恰好有6个7,3个4,则不相同的数列的个数( ) A .69AB .39AC .39CD .36C7.如图,一环形花坛分成A 、B 、C 、D 四个区域,现有5种不同的花供选种,要求在每个区域里种1种花,且相邻的2个区域种不同的花,则不同的种法种数为( )A .96B .84C .260D .3208.现有甲、乙、丙三个盒子,其中每个盒子中都装有标号分别为1、2、3、4、5、6的六张卡片,现从甲、乙、丙三个盒子中依次各取一张卡片使得卡片上的标号恰好成等差数列的取法数为( ) A .14B .16C .18D .209.我省5名医学专家驰援湖北武汉抗击新冠肺炎疫情现把专家全部分配到A ,B ,C 三个集中医疗点,每个医疗点至少要分配1人,其中甲专家不去A 医疗点,则不同分配种数为( ) A .116B .100C .124D .9010.公元五世纪,数学家祖冲之估计圆周率π的值的范围是:3.1415926<π<3.1415927,为纪念祖冲之在圆周率的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.某小学教师为帮助同学们了解“祖率”,让同学们把小数点后的7位数字1,4,1,5,9,2,6进行随机排列,整数部分3不变,那么可以得到大于3.14的不同数字有( ) A .2280B .2120C .1440D .72011.若()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为-1,则a 的值为( ) A .1B .9C .-1或-9D .1或912.设2*012(12),(N )n n n x a a x a x a x n +=+++⋯⋯+∈若12728n a a a ++⋯+=,则展开式中二项式系数最大的项是( ) A .3160xB .260xC .4240xD .320x二、填空题13.现有不同的红球、黄球、绿球各两个排成一排,要求红球不相邻,黄球也不相邻,红球不在两端有__________种不同的排法.14.某一天上午的课程表要排入语文、数学、物理、体育共4节课,如果第一节不排体育,最后一节不排数学,那么共有排法_________种. (用数字作答)15.在一个正六边形的六个区域涂色(如图),要求同一区域同一种颜色,相邻的两块区域(有公共边)涂不同的颜色.现有5种不同的颜色可供选择,则有________种涂色方案.16.已知(12)n x -的展开式中,二项式系数的和为64,则它的二项展开式中,系数最大的是第__________项.17.在停课不停学期间,某校有四位教师参加三项不同的公益教学活动,每位教师任选一项,则每个项目都有该校教师参加的概率为________(结果用数值表示). 18.多项式()5122x x ⎛⎫++ ⎪⎝⎭的展开式中,含2x 项的系数是________. 19.已知2020200020190120192020(2)x a x a x a x a =++++,则()()2202420201352019a a a a a a a a -++++++++的值为________.20.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg lg a b -的不同值的个数是_____.三、解答题21.已知在332nx x -的展开式中,第6项为常数项.(1)求含2x 的项的系数; (2)求展开式中所有的有理项.22.从5名男生和4名女生中选出4人参加辩论比赛.(1)如果男生中的甲与女生中的乙至少要有1人在内,那么有多少种不同选法? (2)如果4个人中既有男生又有女生,那么有多少种不同选法? 23.已知1(2)4n x +的展开式前三项的三项式系数的和等于37 ,求: (1)展开式中二项式系数最大的项的系数. (2)展开式中系数最大的项.24.已知从331()2n x x-的展开式的所有项中任取两项的组合数是21 .(1)求展开式中所有二项式系数之和(用数字作答);(2)若32311()2n a x x x()+-展开式中的常数项为72,求a 的值. 25.从1到7的7个数字中取两个偶数和三个奇数组成没有重复数字的五位数. 试问:(1)能组成多少个不同的五位偶数? (2)五位数中,两个偶数排在一起的有几个?(3)两个偶数不相邻且三个奇数也不相邻的五位数有几个?(所有结果均用数值表示) 26.在杨辉三角形中,从第3行开始,除1以外,其它没一个数值是它肩上的两个数之和,这三角形数阵开头几行如图所示. (1)证明:111mm m n nn C C C ++++=;(2)求证:第m 斜列中(从右上到左下)的前K 个数之和一定等于第m +1斜列中的第K个数,即()11111*112212m m m m m m m m m m m k m k C C C C C C m m k N ------+++-+-++++⋯+=≥∈,,(3)在杨辉三角形中是否存在某一行,该行中三个相邻的数之比为3:8:14?若存在,试求出这三个数;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题解析:A 【分析】将编号为1、2、3、4、5的5个小球,根据小球的个数可分为1、1、3或1、2、2两组,再分配到3个盒子即可求出. 【详解】将编号为1、2、3、4、5的5个小球,根据小球的个数可分为1、1、3或1、2、2两组.①当三个盒子中的小球个数分别为1、1、3时,由于放在同一个盒子里的小球编号互不相连,故3个小球的编号只能是1、3、5的在一个盒子里,故只有一种分组方法, 再分配到三个盒子,此时共有336A =种分配方法;②当三个盒子中的小球个数分别为1、2、2时,由于放在同一个盒子里的小球编号互不相连,此时放2个小球的盒子中小球的编号分别为()1,3、()2,4或()1,3、()2,5或()1,4、()2,5或()1,4、()3,5或()1,5、()2,4或()2,4、()3,5,共6种,再分配到三个盒子中,此时,共有33636A =种. 综上所述,不同的放法种数为64362+=种. 故选:A. 【点睛】方法点睛:本题主要考查排列的应用,属于中档题.常见排列数的求法为: (1)相邻问题采取“捆绑法”; (2)不相邻问题采取“插空法”; (3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.2.B解析:B 【分析】利用二项展开式的通项可得14(2),0,1,2,3,4rrr T C x r +=-=,令2r 可求得结果.【详解】因为4(12)x -的第1r +项展开式14(2),0,1,2,3,4rrr T C x r +=-=, 令2r,则含2x 项系数为224(2)24C -=, 故选:B . 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有二项展开式通项的应用,项的系数,属于简单题目.解析:D 【分析】首先,根据题意,分析得出应该分两类情况,共选3人参加研讨会和4名学生都参加,之后各自应用分步计数原理求得结果,之后应用分类加法计数原理求得结果. 【详解】依题意,分两类情况:(1)每个学科选1人,共选3人参加研讨会, 从4名学生中选3名进行排列即可,有3424A =种情况; (2)4名学生都参加,则必然有2名学生参加同一学科的研讨会,先从4名学生中选2名看作一个整体,有246C =选法, 将这个整体与其他学生全排列即可,有336A =种排法, 根据分步计数原理,共有6636⨯=种情况,综上所述,根据分类计数原理可得,每学科至少 一名学生的情况有263460+=种, 故选:D. 【点睛】该题考查的是有关排列组合的综合题,涉及到的知识点有分类加法计数原理和分步乘法计数原理,属于简单题目.4.C解析:C 【分析】不相邻问题采用“插空法”. 【详解】解:∵10个人排成一排,其中甲、乙、丙、丁4人两两不相邻排成一排, ∴采用插空法来解,另外六人,有66A 种结果,再在排列好的六人的七个空档里,排列甲、乙、丙、丁, 有47A 种结果,根据分步计数原理知共有66A •47A , 故选C . 【点睛】本题考查排列组合及简单计数问题,在题目中要求元素不相邻,这种问题一般采用插空法,先排一种元素,再在前面元素形成的空档,排列不相邻的元素.5.A解析:A 【分析】可分2种情况讨论:若选3种颜色时,必须2,4同色且1,5同色;若4种颜色全用,只能2,4同色或1,5同色,其它不相同,从而可得结果.【详解】选用3种颜色时,必须2,4同色且1,5同色,与3进行全排列, 涂色方法有334324C A ⋅=种;4色全用时涂色方法:2,4同色或1,5同色,有2种情况, 涂色方法有142448C A ⋅=种,∴不同的着色方法共有482472+=种,故选A.【点睛】本题主要考查分步计数原理与分类计数原理的应用,属于简单题.有关计数原理的综合问题,往往是两个原理交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.6.C解析:C 【分析】把129,,,a a a ⋅⋅⋅看成9个位置,从这9个位置中,任取3个位置放4(或任取6个位置放7),即得不相同的数列的个数. 【详解】把129,,,a a a ⋅⋅⋅看成9个位置,从这9个位置中,任取3个位置放4(或任取6个位置放7),其余6个位置放7(或其余3个位置放4),有39C (或69C )种不同的取法. 每种取法放3个4都有一种方法,剩下的6个位置放6个7有1种方法. 所以不相同的数列共有39C (或69C )个. 故选:C . 【点睛】本题考查排列组合,属于基础题.7.C解析:C 【分析】按照A -B -C -D 的顺序种花,分A ,C 同色与不同色两种情况求解. 【详解】按照A -B -C -D 的顺序种花,当A ,C 同色时,541480⨯⨯⨯=种, 当A ,C 不同色时,5433180⨯⨯⨯=种, 所以共有260种. 故选:C 【点睛】本题主要考查涂色问题,还考查了分类讨论的思想和运算求解的能力,属于中档题.解析:C 【分析】根据题意,若取出的卡片上的标号恰好成等差数列分三种情况,一是标号相等时,即所得的等差数列的公差为0,二是所得的等差数列公差为1或-1,三是所得的等差数列的公差为2或-2时,分别求出其不同的取法,再求和. 【详解】根据题意,若取出的卡片上的标号恰好成等差数列分三种情况, 一是标号相等时,即全部为1、2、3、4、5、6时,有6种取法,二是所得的等差数列公差为1或-1,即1、2、3;3、2、1;…4、5、6;6、5、4等8种取法,三是所得的等差数列的公差为2或-2时,即1、3、5;5、3、1;…2、4、6;6、4、2等4种取法,所以共有68418++=种. 故选:C 【点睛】本题主要考查分类加法计算原理,还考查了分类讨论的思想和列举求解的能力,属于中档题.9.B解析:B 【分析】完成这件事情可分2步进行:第一步将5名医学专家分为3组;第二步将分好的3组分别派到三个医疗点,由分步计数原理计算即可得到答案. 【详解】根据已知条件,完成这件事情可分2步进行: 第一步:将5名医学专家分为3组①若分为3,1,1的三组,有3510C =种分组方法; ②若分为2,2,1的三组,有22532215C C A =种分组方法, 故有101525+=种分组方法.第二步:将分好的三组分别派到三个医疗点,甲专家不去A 医疗点,可分配到,B C 医疗点中的一个,有122C =种分配方法, 再将剩余的2组分配到其余的2个医疗点,有222A =种分配方法, 则有224⨯=种分配方法.根据分步计数原理,共有254100=⨯种分配方法. 故选:B . 【点睛】本题主要考查排列、组合的应用,同时考查分步计数原理,属于基础题.解析:A 【分析】整体上用间接法求解,先算出1,4,1,5,9,2,6这7位数字随机排列的种数,注意里面有两个1,多了22A 倍,要除去,再减去小于3.14的种数,小于3.14的数只有小数点前两位为11或12,其他全排列. 【详解】由于1,4,1,5,9,2,6这7位数字中有2个相同的数字1,故进行随机排列,可以得到的不同情况有7722A A , 而只有小数点前两位为11或12时,排列后得到的数字不大于3.14,故小于3.14的不同情况有552A ,故得到的数字大于3.14的不同情况有75752222280A A A -=. 故选:A 【点睛】本题主要考查数字的排列问题,还考查了理解辨析的能力,属于中档题.11.D解析:D 【分析】根据题意分析常数项由()2x a +中的某项与511x ⎛⎫- ⎪⎝⎭中的某项项相乘所得,再二项式定理的通项公式求解即可. 【详解】由题可得,()2x a +中含2x 项与511x ⎛⎫- ⎪⎝⎭中含21x 项相乘可得常数项; ()2x a +中含x 项与511x ⎛⎫- ⎪⎝⎭中含1x 项相乘可得常数项; ()2x a +中的常数项与511x ⎛⎫- ⎪⎝⎭中的常数项相乘可得常数项.故()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 ()()()2134522122551112111010x C ax C a a a x x ⎛⎫⎛⎫⋅⋅⋅-+⋅⋅⋅-+⋅-=-+- ⎪ ⎪⎝⎭⎝⎭.故22101011090a a a a -+-=-⇒-+=,解得1a =或9a =. 故选:D 【点睛】本题主要考查了利用二项式定理,根据常数项求解参数的方法.需要根据题意分析常数项的所有可能组成,属于中档题.12.A解析:A 【分析】由题意得,当1x =时,0123nn a a a a +⋯⋯+=++,利用二项展开式的通项公式求出0021n a C =⋅=,结合条件求得6n =,利用二项式系数的性质,得出二项式系数最大的项为 33362C x ⋅,即可求出结果. 【详解】解:由题可知,2012(12)nnn x a a x a x a x +=+++⋯⋯+, 当1x =时,0123nn a a a a +⋯⋯+=++,(12)n x +的展开式中,通项公式为:12r r rr nT C x +=, 则常数项对应的系数为:0a ,即0r =,得00021n a C =⋅=, 所以1231728n na a a =-+⋯=+⋯+,解得:6n =, 则6(12)x +展开式中二项式系数最大为:36C , 则二项式系数最大的项为: 333362160C x x ⋅=. 故选:A. 【点睛】本题考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,组合数的计算公式.二、填空题13.120【分析】用六个位置去放这六个球分步:第一步放红球第二步放黄球第三步放绿球然后由乘法原理计算【详解】6个球占据6个位置在这6个位置中间四个位置中选2个放红球有3种选法放法是剩下4个位置中只有2个解析:120 【分析】用六个位置去放这六个球,分步:第一步放红球,第二步放黄球,第三步放绿球.然后由乘法原理计算. 【详解】6个球占据6个位置,在这6个位置中间四个位置中选2个放红球,有3种选法,放法是223A ,剩下4个位置中只有2个是相邻的,选2个放黄球放法是2242A A -,最后还有两个位置放绿球有22A 种放法,因此共有方法数为222224223()120A A A A -=. 故答案为:120. 【点睛】关键点点睛:本题考查排列的应用,解题关键是确定完成事件的方法:分类还是分步?另外对特殊元素,特殊位置要优先考虑.本题中红球要不相邻又不能放在两端,因此我们设想有6个位置放这6个球,先放红球于中间4个位置中的两个,然后再放黄球,最后放绿球.分步完成,从而得出结论.14.14【分析】分析体育课在不在最后一节采用分类加法计数原理以及排列思想计算出对应的排法数【详解】当体育课在最后一节时此时另外节课可在其余位置任意排列故有种排法;当体育课不在最后一节时此时体育课只能在第解析:14 【分析】分析体育课在不在最后一节,采用分类加法计数原理以及排列思想计算出对应的排法数. 【详解】当体育课在最后一节时,此时另外3节课可在其余位置任意排列,故有33A 种排法; 当体育课不在最后一节时,此时体育课只能在第2节或第3节,故有112222A A A 种排法, 所以一共有:31123222+=14A A A A 种排法, 故答案为:14. 【点睛】方法点睛:本题考查分类加法计数原理与排列的综合应用,属于中档题.常见排列数的求法为:(1)相邻问题采取“捆绑法”; (2)不相邻问题采取“插空法”; (3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.15.4100【分析】分类讨论:三个区域用同一种颜色用2种颜色用3种颜色由分步计数原理可得结论【详解】考虑三个区域用同一种颜色共有方法数有考虑三个区域用2种颜色共有方法数有考虑三个区域用3种颜色共有方法数解析:4100 【分析】分类讨论:A 、C 、E 三个区域用同一种颜色,用2种颜色,用3种颜色,由分步计数原理可得结论. 【详解】考虑A 、C 、E 三个区域用同一种颜色,共有方法数有354320⨯=,考虑A 、C 、E 三个区域用2种颜色,共有方法数有(543)4332160⨯⨯⨯⨯⨯=, 考虑A 、C 、E 三个区域用3种颜色,共有方法数有33531620A ⨯=, 故总计有方法数320216016204100++=. 故答案为:4100. 【点睛】本题考查分类计数原理和分步计数原理,解题关键是确定完成事件的方法,是分类还是分步?本题完成涂色这个事件,采取的是先分类:按A 、C 、E 三个区域所用颜色数分三类,然后每类再分步,每类里先涂色A 、C 、E 三个区域,然后再涂色其它三个区域.16.5【分析】根据二项式系数和求出n 的值确定二项展开式的系数最大项在奇数项建立不等式求解即可【详解】由题意知解得由的展开式通项公式知二项展开式的系数最大项在奇数项设二项展开式中第项的系数最大则解得故其展解析:5 【分析】根据二项式系数和求出n 的值,确定二项展开式的系数最大项在奇数项,建立不等式求解即可. 【详解】由题意知,264n =,解得6n =,由(12)n x -的展开式通项公式16(2)rrr T C +=-知二项展开式的系数最大项在奇数项, 设二项展开式中第1r +项的系数最大,则22662266(2)(2)(2)(2)r r r r r r r r C C C C ++--⎧--⎨--⎩, 解得4r =,故其展开式中系数最大的项第5项. 故答案为: 5 【点睛】本题主要考查二项式定理的应用,涉及二项展开式中二项式系数和与系数和问题,容易出错.要正确区分这两个概念.17.【分析】根据题意先求出四位教师参加三项不同的公益教学活动每位教师任选一项的所有情况有种每个项目都有该校教师参加的情况有种即可求得相应的概率【详解】解:由于四位教师参加三项不同的公益教学活动每位教师任解析:49【分析】根据题意,先求出四位教师参加三项不同的公益教学活动,每位教师任选一项的所有情况有43种,每个项目都有该校教师参加的情况有2343C A ⋅种,即可求得相应的概率. 【详解】解:由于四位教师参加三项不同的公益教学活动,每位教师任选一项的情况有:433333⨯⨯⨯=(种),而每个项目都有该校教师参加的情况有:234336C A ⋅=(种), 则每个项目都有该校教师参加的概率为:436439=. 故答案为:49.【点睛】本题考查概率的计算和分步乘法的计数原理,以及排列组合的应用,考查分析计算能力.18.200【分析】根据题意由二项式定理可得的通项公式为令求出对应的值即可求解【详解】根据题意由二项式定理可得的通项公式为当时可得当时可得所以多项式的展开式中含的项为故多项式的展开式中含项的系数为故答案为解析:200 【分析】根据题意,由二项式定理可得,()52x +的通项公式为5152rrr r T C x -+=,令2,3r r ==,求出对应1r T +的值即可求解. 【详解】根据题意,由二项式定理可得,()52x +的通项公式为5152rrr r T C x -+=,当2r时,可得232235280T C x x ==,当3r =时,可得323345240T C x x ==, 所以多项式()5122x x ⎛⎫++ ⎪⎝⎭的展开式中,含2x 的项为232128040200x x x x⨯+⋅=, 故多项式()5122x x ⎛⎫++ ⎪⎝⎭的展开式中,含2x 项的系数为200. 故答案为:200 【点睛】本题考查利用二项式定理求二项展开式中某项的系数;考查运算求解能力;熟练掌握二项展开式的通项公式是求解本题的关键;属于中档题、常考题型.19.1【分析】令可得的值令可得的值相乘即可【详解】设令令故答案为:1【点睛】本题考查有关二项展开式项的系数和问题赋值法是解题的关键属于中档题解析:1 【分析】令1x =,可得()()02420201352019a a a a a a a a +++++++++的值,令1x =-,可得()()02420201352019a a a a a a a a ++++-++++的值,相乘即可.【详解】设02420201352019,A a a a a a a B a a +==+++++++,令20201,(1x A B ==+,令20201,(1x A B =-=-,()()2202420201352019a a a a a a a a -++++++++222020()()[(11A B A B A B =-=+-==.故答案为:1 【点睛】本题考查有关二项展开式项的系数和问题,赋值法是解题的关键,属于中档题.20.【分析】因为所以从这五个数中每次取出两个不同的数分别为共可得到的不同值的个数可看作共可得到多少个不同的数【详解】解:首先从这五个数中任取两个不同的数排列共种排法因为所以从这五个数中每次取出两个不同的 解析:18【分析】 因为lg lg lgaa b b-=,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg lg a b -的不同值的个数可看作共可得到多少个不同的数a b. 【详解】解:首先从1,3,5,7,9这五个数中任取两个不同的数排列,共2520A =种排法, 因为3913=,1339=, 所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b , 共可得到lg lg a b -的不同值的个数为:20218-=, 故答案为:18. 【点睛】本题考查了排列组合及简单的计数问题,属于基础题.三、解答题21.(1)454;(2)答案见解析. 【详解】2311()2n rr r r nT C x-+=- (1)25=0103n n -⨯∴= 102=223r r -∴=2210145()24C ∴-= (2)1022,5,83rZ r -∈∴= 展开式中所有的有理项为2222558821010102145163145()()()24282256x C x C C x x----=,=,= 22.(1)91种;(2)120种. 【分析】(1)用间接法分析,先计算在9人中任选4人的选法数,再排除其中“甲乙都没有入选”的选法数,即可得答案;(2)用间接法分析,先计算在9人中任选4人的选法数,再排除其中“只有男生”和“只有女生”的选法数,即可得答案. 【详解】(1)先在9人中任选4人,有49126C =种选法, 其中甲乙都没有入选,即从其他7人中任选4人的选法有4735C =种, 则甲与女姓中的乙至少要有1人在内的选法有1263591-=种.(2)先在9人中任选4人,有49126C =种选法,其中只有男生的选法有455C =种,只有女生的选法有441C =种,则4人中必须既有男生又有女生的选法有12651120--=种. 【点睛】本题主要考查了组合的应用,间接法,逻辑推理能力和数学运算能力,属中档题. 23.(1)358(2) 8782T x =,8892T x =. 【分析】(1)由题设条件,求得8n =,得到二项式81(2)4x +展开式中第5项的二项式系数最大,利用二项式的通项,即可求解;(2)设二项展开式的第r 项的系数最大,列出不等式组,求得78r ≤≤,得到展开式中系数最大的项为第8项及第9项,即可求解. 【详解】 (1)由1(2)4n x +的展开式前三项的三项式系数的和等于37, 即01237n n n C C C ++=,解得8n =,即二项式81(2)4x +,所以展开式中第5项的二项式系数最大,因此由444444581703524168T C x x x ⎛⎫=⋅⋅== ⎪⎝⎭可知此项的系数为358. (2)设二项展开式的第r 项的系数最大,则891188871188112244112244r rr rr r r rr r r r C C C C ------++⎧⎛⎫⎛⎫⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得78r ≤≤,所以展开式中系数最大的项为第8项及第9项,即177787881224T C x x ⎛⎫=⋅= ⎪⋅⎝⎭,088888981224T C x x ⎛⎫=⋅⋅= ⎪⎝⎭. 【点睛】本题主要考查二项式定理的通项的应用,属于中档试题,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C rn r rr n T ab -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项式定理的应用. 24.(1)64;(2)1- 【分析】(1)由二项式n 的展开式,共有1n +项,得到2121nC +=,解得6n =, 进而可求解展开式的二项式系数的和;(2)由2211n n n a a x x +=+(,求得二项式n 的展开式的通项,确定出3k =或0k =,代入即可求解.【详解】(1)由题意可得,二项式n 的展开式,共有1n +项,则2121n C +=,解得6n =, 所以展开式中所有二项式系数之和为6264=.(2)由2211n n n a a x x +=+(,则n的通项为6263+1661(()2kkkkk k k T C C x --==-⋅,其中0,1,,6k =,令6203kk -==或2,截得3k =或0k =, 所以展开式中的常数项为3306617()22a C C ⋅-+=,解1a =-. 【点睛】本题主要考查了二项展开式的通项的应用,以及二项式系数问题,其中解答中熟记二项展开式的通项和二项展开式的系数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.25.(1)576;(2)576;(3)144 【分析】(1)根据先取后排的原则,从1到7的七个数字中取两个偶数和三个奇数,然后进行排列;(2)利用捆绑法把两个偶数捆绑在一起,再和另外三个奇数进行全排列;(3)利用插空法,先排两个偶数,再从两个偶数形成的3个间隔中,插入三个奇数,问题得以解决. 【详解】(1)偶数在末尾,五位偶数共有23413442C C A A =576个.(2)五位数中,偶数排在一起的有23423442C C A A =576个.(3)两个偶数不相邻且三个奇数也不相邻的五位数有23233423C C A A =144.【点睛】本题主要考查了数字的组合问题,相邻问题用捆绑,不相邻用插空,属于中档题. 26.(1)见解析(2)见解析(3)45,120,210 【分析】(1)化成阶乘处理即可.(2)将这列数表示出来,利用(1)的结论即可得到.(3)假设存在第n 行的第r-1,r ,r+1个数满足这三个数之比为3:8:14,列方程求r ,若n ,r 为不小于2的正整数,即为所求. 【详解】 解:(1)1mm n n C C ++=()!!!n m n m -+()()!1!1!n m n m +--=()()()!11!!n m m n m ++-+()()()!1!!n n m m n m -+-=()()()!11!!n m n m m n m ++-+-=()()()()1!1!11!n m n m +⎡⎤++-+⎣⎦=11m n C ++. 所以原式成立. (2)由(1)得111mm m n n n C C C ++++=左边=1111122mm m m m m mm m m k C C C C C ----+++-++++⋯+ =1111122mm m m m m m m k C C C C ---++++-+++⋯+ =…=122m m m k m k C C -+-+-+ =1mm k C +-=右边∴原命题成立(3)设在第n 行的第r -1,r ,r +1个数满足3:8:14 即113814r rr n n nC C C -+=::::解的{103n r ==∴三个数依次为45,120,210 【点睛】本题考查了二项式定理的性质,组合数的性质的证明,主要考查组合数的计算,考查观察、归纳、总结的能力.属于中档题.。
北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(含答案解析)
![北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(含答案解析)](https://img.taocdn.com/s3/m/126ad68325c52cc58ad6be07.png)
一、选择题1.将甲、乙、丙、丁四位辅导老师分配到A 、B 、C 、D 四个班级,每个班级一位老师,且甲不能分配到A 班,丁不能分配到B 班,则共有分配方案的种数为( ) A .10 B .12 C .14 D .24 2.在(1-x 3)(1+x )10的展开式中x 5的系数是( )A .-297B .-252C .297D .2073.某班某天上午有五节课,需安排的科目有语文,数学,英语,物理,化学,其中语文和英语必须连续安排,数学和物理不得连续安排,则不同的排课方法数为( ) A .60B .48C .36D .244.为深入贯彻实施党中央布置的“精准扶贫”计划,某地方党委政府决定安排5名党员干部到4个贫困村驻村扶贫,每个贫困村至少分配1名党员干部,则不同的分配方案共有( ) A .264种B .480种C .240种D .720种5.某校高二年级共有六个班,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( ) A .2264A CB .22642A CC .2264A AD .262A6.“岂曰无衣,与子同袍”,“山川异域,风月同天”.自新冠肺炎疫情爆发以来,全国各省争相施援湖北,某医院组建了由7位援助专家组成的医疗队,按照3人、2人、2人分成了三个小组,负责三个不同病房的医疗工作,则不同的安排方案共有( ) A .105种 B .210种 C .630种 D .1260种 7.有5本不同的书,分给三位同学,每人至少一本,则不同的分法数为( )A .120B .150C .240D .3008.甲乙和其他2名同学合影留念,站成两排两列,且甲乙两人不在同一排也不在同一列,则这4名同学的站队方法有( ) A .8种B .16种C .32种D .64种9.5(3)(2)x x -+的展开式中3x 的系数为( ) A .10B .40-C .200D .24010.已知8290129(3)(23)(1)(1)(1)x x a a x a x a x --=+-+-+⋅⋅⋅+-,则6a =( )A .1792-B .1792C .5376-D .537611.现有甲、乙、丙三个盒子,其中每个盒子中都装有标号分别为1、2、3、4、5、6的六张卡片,现从甲、乙、丙三个盒子中依次各取一张卡片使得卡片上的标号恰好成等差数列的取法数为( ) A .14B .16C .18D .2012.为支援湖北抗击新冠疫情,无锡市某医院欲从6名医生和4名护士中抽选3人(医生和护士均至少有一人)分配到A ,B ,C 三个地区参加医疗救援(每个地区一人),方案要求医生不能去A 地区,则分配方案共有( ) A .264种B .224种C .250种D .236种二、填空题13.62x x ⎛⎫- ⎪⎝⎭展开式中常数项为________.14.用红、黄、蓝、绿四种颜色给图中五个区域进行涂色,要求相邻区域所涂颜色不同,共有______种不同的涂色方法.(用数字回答)15.七位同事(四男三女)轮值办公室每周的清洁工作,每人轮值一天,其中男同事甲必须安排周日清洁,且三位女同事任何两位的安排不能连在一起,则不同的安排方法种数是_______(用数字作答)16.6人排成一排合影,甲乙相邻但乙丙不相邻,共有____(用数字)种不同的排法. 17.某校在高二年级开设选修课,其中数学选修课开四个班.选课结束后,有四名同学要求改修数学,但每班至多可再接收2名同学,那么不同的分配方案有______(用数字作答)18.若6(1)2xx x ⎛+- ⎝展开式中的常数项是60,则实数a 的值为_____. 19.二项式1232x x ⎛ ⎝,则该展开式中的常数项是______. 20.若多项式()()()10112110110112111x x a a x a x a x +=+++++++,则10a =______.三、解答题21.将8本不同的书,全部分给小赵、小钱、小孙、小李四人,在下列不同的情形下,分别有多少种不同的分法?(写出必要的数学式,结果用数字作答.) (1)每人分得2本;(2)有1人分得5本,其余3人各分得1本.22.将7名应届师范大学毕业生分配到3所中学任教.(最后结果用数字表示) (1)4个人分到甲学校,2个人分到乙学校,1个人分到丙学校,有多少种不同的分配方案?(2)一所学校安排4个人,一所学校安排2个人,一所学校1个人,有多少种不同的分配方案?(3)其中有两所学校都各安排3个人,另一所学校安排1个人,有多少种不同的分配方案?23.已知1(21)n x ++展开式的二项式系数和比(31)n x -展开式的偶数项的二项式系数和大48,求22nx x ⎛⎫- ⎪⎝⎭的展开式中: (1)二项式系数最大的项; (2)系数的绝对值最大的项.24.用0,1,2,3,4这五个数字组成无重复数字的自然数. (1)在组成的五位数中,所有奇数的个数有多少? (2)在组成的五位数中,数字1和3相邻的个数有多少? (3)在组成的五位数中,若从小到大排列,30124排第几个? 25.设(,)(1)n f x n x =+,*n N ∈. (1)设260126(,6)f x a a x a x a x =++++,求0246a a a a +++的值;(2)求12320192019201920192019232019C C C C +++⋯+的值; (3)*n N ∈,化简01122310144444n n n n n n n n n n C C C C C -----++++.26.已知. (1)若,求及的值;(2)若,求最大的系数;(3)定义,若化简.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分为甲分配到B 班和甲不分配到B 班两种情况来讨论分配方案种数,利用分类加法计数原理计算可得结果. 【详解】将分配方案分为甲分配到B 班和甲不分配到B 班两种情况: ①甲分配到B 班:有336A =种分配方案; ②甲不分配到B 班:有1122228A A A =种分配方案; 由分类加法计数原理可得:共有6814+=种分配方案. 故选:C . 【点睛】方法点睛:本题主要考查排列数的应用.常见求法有:(1)相邻问题采取“捆绑法”; (2)不相邻问题采取“插空法”; (3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.2.D解析:D 【解析】试题分析:因为31010310(1)(1)(1)(1)x x x x x -+=+-+所以310(1)(1)x x -+展开式中的5x 的系数是10(1)x +的展开式的中5x 的系数减去10(1)x +的2x 的系数由二项式定理,10(1)x +的展开式的通项为110r r r T C x += 令=5r ,则10(1)x +的展开式的中5x 的系数为510C 令2r,则10(1)x +的展开式的中2x 的系数为210C所以5x 的系数是510C -210C 25245207=-= 故答案选D 考点:二项式定理.【易错点晴】()n a b +的展开式的二项式系数与该项的系数是两个不同的概念,前者只是指kn C ,它仅是与二项式的幂的指数n 及项数有关的组合数,而与a ,b 的值无关;而后者是指该项除字母外的部分,即各项的系数不仅与各项的二项式系数有关,而且也与a ,b 的系数有关.在求二项展开式特定项的系数时要充分注意这个区别.[学_科_3.D解析:D 【分析】由排列组合中的相邻问题与不相邻问题得:不同的排课方法数为22222324A A A =,得解. 【详解】先将语文和英语捆绑在一起,作为一个新元素处理,再将此新元素与化学全排,再在3个空中选2个空将数学和物理插入即可, 即不同的排课方法数为22222324A A A =, 故选:D . 【点睛】本题考查了排列组合中的相邻问题与不相邻问题,属中档题.4.C解析:C 【分析】先从5个党员干部里选2个,再从4个贫困村里选1个接受选出的2个党员,剩下的3名党员分配给3个贫困村,即得解.【详解】先从5个党员干部里选2个,有25C 种方法,再从4个贫困村里选1个接受选出的2个党员,有14C 种方法,剩下的3名党员分配给3个贫困村,有33A 种方法.所以共有213543240C C A =种方法.故选:C. 【点睛】本题主要考查排列组合的综合应用,意在考查学生对这些知识的理解掌握水平.5.B解析:B 【分析】先将4名学生均分成两组,注意重合的部分要去掉,再从6个班级中选出2个班进行排列,最后根据分步计数原理得到合要求的安排方法数. 【详解】解:先将4名学生均分成两组方法数为2412C , 再分配给6个年级中的2个分配方法数为26A ,∴根据分步计数原理合要求的安排方法数为224612C A .故选:B . 【点睛】本题先考查的是平均分组问题,是一个易出错的问题,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.6.C解析:C 【分析】先对7名专家进行分组,然后进行全排列即可得解. 【详解】7位援助专家组成的医疗队,按照3人、2人、2人分成三个小组,负责三个不同病房的医疗工作,不同法人安排方法有:3223742322630C C C A A ⋅⋅⋅=(种). 故选:C. 【点睛】本题考查分堆与分配的问题,考查逻辑思维能力和分析能力,属于常考题.7.B解析:B 【分析】由题意,分“其中1人3本,另2人每人一本”、“其中1人一本,另2人每人2本”两种情况讨论,由分类计数原理结合排列、组合的知识即可得解. 【详解】有5本不同的书,分给三位同学,每人至少一本,分两种情况:①其中1人3本,另2人每人一本,有311352132260C C C A A ⋅=种; ②其中1人一本,另2人每人2本,有122354232290C C C A A ⋅=种. 所以不同的分法有6090150+=种. 故选:B . 【点睛】本题考查了计数原理的应用,考查了运算求解能力与分类讨论思想,属于中档题.8.A解析:A 【分析】根据题意,分3步进行讨论:先在4个位置中任选一个安排甲,再安排乙,最后将剩余的2个人,安排在其余的2个位置,分别求出每一步的情况数目,由分步计数原理计算可得答案. 【详解】根据题意,分3步进行讨论:1、先安排甲,在4个位置中任选一个即可,有14C 4=种选法;2、在与甲所选位置不在同一排也不在同一列只有一个位置,安排乙,即1种选法;3、将剩余的2个人,安排在其余的2个位置,有222A =种安排方法; 则这4名同学的站队方法有4128⨯⨯=种; 故选:A . 【点睛】本题主要考查排列、组合的综合应用,注意要优先分析受到限制的元素,属于中档题.9.B解析:B 【分析】首先将5(3)(2)x x -+拆开得到555((2)3(23))(2)x x x x x =+-+-+,得到5(3)(2)x x -+的展开式中3x 的系数与5(2)x +展开式中2x 项和3x 项的系数有关,化简求得结果. 【详解】555((2)3(23))(2)x x x x x =+-+-+,5(2)x +展开式中2x 项的系数为335280C ⋅=, 5(2)x +展开式中3x 项的系数为225240C ⋅=,所以5(3)(2)x x -+的展开式中3x 的系数为8034040-⨯=-, 故选:B. 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求两个二项式乘积展开式的系数问题,在解题的过程中,注意分析与哪些项有关,属于简单题目.10.D解析:D 【分析】将原式改写成88(3)(23)[2(1)][2(1)1]x x x x --=----,利用二项式定理解决系数问题即可得解. 【详解】88(3)(23)[2(1)][2(1)1]x x x x --=---- 290129(1)(1)(1)a a x a x a x =+-+-+⋅-+⋅⋅,所以26356882C 2C 2358417925376.a =⨯⨯+⨯=+= 故选:D 【点睛】此题考查二项式定理的理解辨析和应用,关键在于熟练掌握定理公式,根据公式处理系数关系.11.C解析:C 【分析】根据题意,若取出的卡片上的标号恰好成等差数列分三种情况,一是标号相等时,即所得的等差数列的公差为0,二是所得的等差数列公差为1或-1,三是所得的等差数列的公差为2或-2时,分别求出其不同的取法,再求和. 【详解】根据题意,若取出的卡片上的标号恰好成等差数列分三种情况, 一是标号相等时,即全部为1、2、3、4、5、6时,有6种取法,二是所得的等差数列公差为1或-1,即1、2、3;3、2、1;…4、5、6;6、5、4等8种取法,三是所得的等差数列的公差为2或-2时,即1、3、5;5、3、1;…2、4、6;6、4、2等4种取法,所以共有68418++=种. 故选:C 【点睛】本题主要考查分类加法计算原理,还考查了分类讨论的思想和列举求解的能力,属于中档题.12.A解析:A 【分析】分类计数,考虑选取1名医生2名护士和选取2名医生1名护士两类情况求解. 【详解】当选取的是1名医生2名护士,共有126436C C =种选法,分配到A ,B ,C 三个地区参加医疗救援(每个地区一人),方案要求医生不能去A 地区,共有2224A =种,即一共364144⨯=种方案;当选取的是2名医生1名护士,共有216460C C =种选法,分配到A ,B ,C 三个地区参加医疗救援(每个地区一人),方案要求医生不能去A 地区,共有222A =种,即一共602120⨯=种方案.综上所述:分配方案共有264种. 故选:A 【点睛】此题考查分类计数原理和分步计数原理综合应用,涉及排列组合相关知识,综合性强.二、填空题13.240【分析】先求出二项式的展开式的通项公式令的指数等于求出的值即可求得展开式中的常数项【详解】展开式的通项公式令所以的展开式的常数项为故答案为【点睛】本题主要考查二项展开式定理的通项与系数属于简单解析:240 【分析】 先求出二项式6x⎛ ⎝的展开式的通项公式,令x 的指数等于0,求出r 的值,即可求得展开式中的常数项. 【详解】6x⎛- ⎝展开式的通项公式3662166(2),rr r r r r r T C x C x --+⎛==⨯-⨯ ⎝令36342r r -=⇒=,所以6x ⎛ ⎝的展开式的常数项为4462240C ⨯=,故答案为240. 【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C rn r rr n T ab -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.14.240【分析】根据分步计数原理与分类计数原理列出每一步骤及每种情况计算即可【详解】从开始涂色有4种方法有3种方法①若与涂色相同则共有种涂色方法;②若与涂色不相同则有2种涂色方法当涂色相同时有3种涂色解析:240 【分析】根据分步计数原理与分类计数原理,列出每一步骤及每种情况,计算即可. 【详解】从A 开始涂色,A 有4种方法,B 有3种方法, ①若E 与B 涂色相同,则,C D 共有23A 种涂色方法; ②若E 与B 涂色不相同,则E 有2种涂色方法,当,C E 涂色相同时,D 有3种涂色方法;当,C E 涂色不相同时,C 有2种涂法,D 有2种涂色方法.共有()2343432322240A ⨯⨯+⨯⨯⨯+⨯=种涂色方法.故答案为:240. 【点睛】本题考查排列组合,考查两种计数原理的应用,属于中档题.15.144【分析】优先安排男同事甲在星期日轮值有1种再安排其余3位男同事作全排列有最后安排女同事插在三个男同事中有最后根据分步用乘法的原理得:【详解】解:第一步:先安排男同事甲在星期日轮值有1种第二步:解析:144 【分析】优先安排男同事甲在星期日轮值有1种,再安排其余3位男同事作全排列有33A ,最后安排女同事插在三个男同事中有34A ,最后根据分步用乘法的原理得:331A ⨯34144A =. 【详解】解:第一步:先安排男同事甲在星期日轮值有1种, 第二步:其余3位男同事作全排列有33A ,第三步:因为三位女同事任何两位的安排不能连在一起,所以后3位女同事插空安排有34A ,分步完成共有方法种数为:1⨯33A 34144A =. 故答案为:144. 【点睛】本题主要考查分步计数原理与排列,属于中档题.16.192【分析】先将甲乙两人捆绑在一起看成一个人且内部自排再与除丙外的其他人排列最后将丙插空放入保证与乙不相邻即可【详解】第一步:甲乙相邻共有种排法;第二步:将甲乙看成一个人与除丙外的其他人排列共有:解析:192 【分析】先将甲乙两人捆绑在一起看成一个人且内部自排,再与除丙外的其他3人排列,最后将丙插空放入,保证与乙不相邻即可.【详解】第一步:甲乙相邻,共有222A=种排法;第二步:将甲乙看成一个人,与除丙外的其他3人排列,共有:4424A=种排法;第三步:将丙插空放入,保证与乙不相邻,共有:144A=种排法;根据分步计数原理可得,共有2244192⨯⨯=种排法.故答案为: 192【点睛】本题主要考查有限制条件的排列问题,属于中档题.解有限制条件的排列问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确,分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终,同时需掌握有限制条件的排列问题的求解方法.17.【分析】由题意分三种情况讨论:①每个班接收1名同学;②其中一个班接收2名其余两个班各接收1名;③其中两个班不接收另两个班各接收2名由分类计数原理结合排列组合的知识计算即可得解【详解】由题意满足要求的解析:204【分析】由题意,分三种情况讨论:①每个班接收1名同学;②其中一个班接收2名,其余两个班各接收1名;③其中两个班不接收,另两个班各接收2名,由分类计数原理结合排列、组合的知识,计算即可得解.【详解】由题意,满足要求的情况可分为三种:①每个班接收1名同学,分配方案共有4424A=种;②其中一个班接收2名,其余两个班各接收1名,分配方案共有2133423422144C C ACA⋅⋅⋅=种;③其中两个班不接收,另两个班各接收2名,分配方案共有224436C C⋅=种;所以不同的分配方案有2414436204++=种.故答案为:204.【点睛】本题考查了计数原理的综合应用,考查了运算求解能力与分类讨论思想,属于中档题. 18.【分析】先得到的通项公式为若得到常数项当取1时令当取x时令解得再根据常数项为60求解【详解】因为的通项公式为若得到常数项当取1时令当取x时令解得或(舍)所以因为展开式的常数项为60所以解得故答案为:解析:2±【分析】先得到62x ⎛- ⎝的通项公式为1r T +=36626(1)2rr r r r C a x --+-⨯⨯⨯⨯,若得到常数项,当(1)x +取1时,令3602r -=,当(1)x +取x 时,令3612r -=-,解得r ,再根据常数项为60求解. 【详解】因为62x ⎛- ⎝的通项公式为16(1)rr r T C +=-⨯⨯636626(1)22rrr r r r r x C a x ---+⎛⎫⨯=-⨯⨯⨯⨯ ⎪⎝⎭, 若得到常数项,当(1)x +取1时,令3602r -=,当(1)x +取x 时,令3612r -=-, 解得4r =或143r =(舍), 所以4r =,因为6(1)2x x ⎛+⋅- ⎝展开式的常数项为60, 所以446446(1)260C a -+-⨯⨯⨯=,解得2a =±. 故答案为:2± 【点睛】本题主要考查二项式展开式的通项公式以及常数项的应用,还考查了运算求解的能力,属于中档题.19.【分析】直接利用二项式定理计算得到答案【详解】二项式的展开式的通项为:取得到常数项为故答案为:【点睛】本题考查了二项式定理意在考查学生的计算能力和应用能力 解析:552-【分析】直接利用二项式定理计算得到答案. 【详解】二项式122x ⎛ ⎝的展开式的通项为:()41231212112121221rrr r r rrr xx T C C --+-⎛=-⋅ ⎝⎛⎫⎛⎫=⋅⋅ ⎪ ⎪⎝⎭⎝⎭,取9r =得到常数项为()1299129152512C -⎛⎫⋅- =-⎪⎝⎭. 故答案为:552-. 【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.20.【分析】由二项式定理及其展开式通项公式得展开式的通项为令解得则得解【详解】由展开式的通项为令解得则故答案为:【点睛】本题考查了二项式定理及其展开式通项公式意在考查学生对这些知识的理解掌握水平 解析:22-【分析】由二项式定理及其展开式通项公式得111122[(1)1]x x =+-展开式的通项为111112(1)(1)r r r r T C x -+=+-,令1110r -=,解得1r =,则110112(1)22a C =⨯-=-,得解.【详解】由111122[(1)1]x x =+-展开式的通项为111112(1)(1)rr r r T C x -+=+-, 令1110r -=,解得1r =,则110112(1)22a C =⨯-=-, 故答案为:22-. 【点睛】本题考查了二项式定理及其展开式通项公式,意在考查学生对这些知识的理解掌握水平.三、解答题21.(1)2520;(2)1344. 【分析】(1)将8本不同的书依次分给小赵、小钱、小孙、小李四人,每人2本,利用组合数原理可求得分法种数;(2)先选定一人分得5本,其余3本每人1本,利用分步乘法计数原理可求得分法种数. 【详解】(1)将8本不同的书依次分给小赵、小钱、小孙、小李四人,每人2本, 由组合数原理可知,不同的分法种数为222286422520C C C C =种; (2)先选定一人分得5本,其余3本每人1本,由分步乘法计数原理可知,不同的分法种数为5138431344C C A =种. 【点睛】本题考查排列组合综合问题,考查了平均分组以及分步乘法计数原理的应用,考查计算能力,属于中等题.22.(1)105种(2)630种(3)420种(1)利用组合的知识求解(2)先不均匀分组,再分配到学校即可求解(3)先不均匀分组,再分配即可 【详解】(1)421731105C C C ⋅⋅=(种) (2)42137313630C C C A ⋅⋅⋅=(种)(3)3313741322420C C C A A =(种) 【点睛】本题考查分组分配问题,注意是否为均匀分组,是易错题 23.(1)8064-;(2)415360x --. 【分析】(1)分别求出11)n +展开式的二项式系数和,(31)n x -展开式的偶数项的二项式系数和,利用两者差48列方程,解方程求出n 的值,22nx x ⎛⎫- ⎪⎝⎭二项式系数最大项为第1n +,即可求解;(2)设第1k +项系数绝对值最大,化简二项展开式的通项公式,利用系数绝对值最大项比前后两项的系数绝对值都大列不等式组,解不等式组求得k 的取值范围,由此求得k 的值 【详解】(1)依题意112248,232,5n n n n +--==∴=, 102x x ⎛⎫- ⎪⎝⎭的展开式中第6项二项式系数最大, 即5556102()8064T C x x=-=-;(2)设第1k +项的系数的绝对值最大,则10102110102()(1)2k k k k kk k k T C xC x x--+=⋅⋅-=-⋅⋅⋅, 1110101110102222k k k k k k k k C C C C --++⎧⋅≤⋅∴⎨⋅≥⋅⎩,得110101101022k k k k C C C C -+⎧≤∴⎨≥⎩, 即2221202k k k k -≥⎧⎨+≥-⎩,1922,733k k ∴≤≤∴=, 所以系数的绝对值最大的是第8项,即77744810(1)215360T C x x --=-⋅⋅=-.【点睛】本题考查二项式系数和、二项式系数最大项、系数绝对值最大项,考查计算求解能力,属24.(1)36个(2)36个(2)49个 【解析】 【分析】(1)先排个位数,方法数有12C 种,然后排万位数,方法数有13C 种,剩下百位、十位和千位任意排,方法数有33A 种,再按分步乘法计数原理即可求得种类数.(2)把数字1和3捆绑在一起,则相当于有4个位置,最高位不为0,其余位置任意排; (3)计算出比30124小的五位数的情况,即可知道30124排第几个. 【详解】(1)在组成的五位数中,所有奇数的个数有113233=236=36C C A ⨯⨯个; (2)在组成的五位数中,数字1和3相邻的个数有21323323636A C A =⨯⨯=个; (3)要求在组成的五位数中,要求得从小到大排列,30124排第几个,则计算出比30124小的五位数的情况,比30124小的五位数,则万位为1或2,其余位置任意排,即142422448C A =⨯=,故在组成的五位数中比30124小的数有48个,所以在组成的五位数中,若从小到大排列,30124排第49个. 【点睛】本小题主要考查简单的排列组合问题,主要是数字的排列.要注意的问题主要是有特殊条件或者特殊要求的,要先排特殊位置或优先考虑特殊要求.如本题中,第一问要求是奇数,那么就先排个位.由于数字的万位不能为零,故第二考虑的是万位,本小题属于基础题. 25.(1)32.(2)201820192⨯.(3)54n.【分析】(1)利用赋值法求解,令1x =和1x =-,两式相加可得;(2)利用11k k n n kC nC --=可求;(3)结合式子特点构造(41)n +可求. 【详解】(1)令1x =,得60126264a a a a +++⋯+== ① 令1x =-,得01260a a a a -+-⋯+= ② ①+②得024632a a a a +++=;(2)因为11k k n n kC nC --=所以12320192019201920192019232019C C C C ++++=()12201820182018201820182019C C C C ++++201820192=⨯;(3)01122310144444n n n n n n n n n n C C C C C -----+++⋯++011221144444n n n n nn n nnnC C C CC ---⎡⎤=+++++⎣⎦15(41)44nn=+=. 【点睛】本题主要考查二项式定理的应用,结合组合数的性质,侧重考查数学解题模型的构建能力. 26.(1)(2)(3)【解析】 【分析】(1)由赋值法得到相应的数值;(2)将参数值代入表达式得到其通项公式为,由不等式,可得到,进而得到;(3)按照组合数的展开公式,分组求和即可. 【详解】 (1)若,,令,则, 令,则所以.(2)若,其通项公式为,由不等式解得,且,∴.所以.(3)若,【点睛】本题考查二项式定理的应用,以及组合数公式的相关运算,考查推理能力与计算能力,属于中等题。
北师大版高中数学高中数学选修2-3第一章《计数原理》检测(含答案解析)(1)
![北师大版高中数学高中数学选修2-3第一章《计数原理》检测(含答案解析)(1)](https://img.taocdn.com/s3/m/d0e2266284868762cbaed583.png)
一、选择题1.若21299m m C C --=且m N +∈;则()21mx -的展开式4x 的系数是( ) A .4- B .6-C .6D .42.从0,1,2,3,…,9中选出三个不同数字组成一个三位数,其中能被3整除的三位数个数为( ) A .252B .216C .162D .2283.如图,在杨辉三角形中,斜线l 的上方从 1 按箭头所示方向可以构成一个“锯齿形”的数列: 1,3,3,4,6,5,10,...,记此数列的前n 项之和为n S ,则 21S 的值为( )A .66B .153C .295D .3614.45(1)(1)x x -的展开式中,4x 的系数为( ) A .-40B .10C .40D .455.从20名同学中选派3人分别参加数学、物理学科竞赛,要求每科竞赛都有人参加,而且每人只能参加一科竞赛.记不同的选派方式有n 种,则n 的计算式可以是( ) A .3203CB .3206CC .3202AD .3203A ÷6.5250125(21)(1)(1)(1)x a a x a x a x -=+-+-+⋯+-,则2a =( )A .40B .40-C .80D .80-7.有5位同学参加青少年科技创新大赛的3个不同项目,要求每位同学参加一个项目且每个项目至少有一位同学,则不同的参加方法种数为( ) A .80B .120C .150D .3608.5名师生站成一排照相留念,其中教师1人,男生2人,女生2人,则两名女生相邻而站的概率是( ) A .15B .25C .35D .459.用6个字母,,,,,A B C a b c 编拟某种信号程序(大小写有区别),把这6个字母全部排列如图所示的表格中,每个字母必须使用且只使用一次,不同的排列方式表示不同的信号,如果恰有一对字母(同一个字母的大小写)排到同一列的上下格位置,那么称此信号为“微错号”,则不同的“微错号”的总数为( )A .144B .288C .432D .57610.为抗击新冠病毒,某部门安排甲、乙、丙、丁、戊五名专家到三地指导防疫工作.因工作需要,每地至少需安排一名专家,其中甲、乙两名专家必须安排在同一地工作,丙、丁两名专家不能安排在同一地工作,则不同的分配方法总数为( ) A .18B .24C .30D .3611.若()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为-1,则a 的值为( ) A .1B .9C .-1或-9D .1或912.设2*012(12),(N )n n n x a a x a x a x n +=+++⋯⋯+∈若12728n a a a ++⋯+=,则展开式中二项式系数最大的项是( ) A .3160xB .260xC .4240xD .320x二、填空题13.某一天上午的课程表要排入语文、数学、物理、体育共4节课,如果第一节不排体育,最后一节不排数学,那么共有排法_________种. (用数字作答)14.在一个正六边形的六个区域涂色(如图),要求同一区域同一种颜色,相邻的两块区域(有公共边)涂不同的颜色.现有5种不同的颜色可供选择,则有________种涂色方案.15.七位同事(四男三女)轮值办公室每周的清洁工作,每人轮值一天,其中男同事甲必须安排周日清洁,且三位女同事任何两位的安排不能连在一起,则不同的安排方法种数是_______(用数字作答)16.已知数列{}n a 共有21项,且11a =, 2115a =,11(1,2,3,,20)k k a a k +-==,则满足条件的不同数列{}n a 有______个.17.已知423401234(21)(1)(1)(1)(1)x a a x a x a x a x -=++++++++,则1234a a a a +++=___________.18.在(20162x 的二项展开式中,含x 的奇次幂的项之和为S ,当2x S =________.19.二项式122x ⎛ ⎝,则该展开式中的常数项是______. 20.某宿舍楼同寝室8名同学站成一排照相,甲、乙、丙三人相邻,乙不站在队列两端,则不同的排法种数为__________.(用数字作答)三、解答题21.现有5名男生和2名女生站成一排照相.(列式并算出结果) (1)两女生相邻,有多少种不同的站法?(2)女生甲不在左端,女主乙不在右端,有多少种不同的站法? (3)女生甲要在女生乙的右方(可以不相邻)有多少种不同的站法?22.已知()22nn N x +⎫∈⎪⎭的展开式中第二项与第三项的二项式系数之和为36. (1)求n 的值;(2)求展开式中二项式系数最大的项.23.设整数4n >,记f (x ,y )=()1nx +. (1)若令f (x ,1)=2012n n a a xa x a x .求:①0a ; ②01223(1)n a a a n a .(2)若f (x ,y )的展开式中4n x -与xy 两项的系数相等,求n 的值. 24.设(,)(1)n f x n x =+,*n N ∈. (1)设260126(,6)f x a a x a x a x =++++,求0246a a a a +++的值;(2)求12320192019201920192019232019C C C C +++⋯+的值; (3)*n N ∈,化简01122310144444n n n n n n n n n n C C C C C -----++++.25.现在有6副互不相同的手套打乱了放在一起.(1)从中选取4只,求4只恰好能凑出1副手套的取法数; (2)从中选取5只,求5只中至少能凑出1副手套的取法数.26.已知8件不同的产品中有3件次品,现对它们一一进行测试,直至找到所有次品. (1)若在第5次测试时找到最后一件次品,则共有多少种不同的测试方法? (2)若至多测试5次就能找到所有次品,则共有多少种不同的测试方法?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】 先根据21299m m C C --=求出4m =,再代入()21mx -,直接根据()na b +的展开式的第1r +项为1C r n r rr n T a b -+= ,即可求出展开式4x 的系数.【详解】 因为21299m m C C --=且m N +∈所以21294m m m -+-=⇒=()421x -展开式的第1r + 项为214()rr r TC x +=-展开式中4x 的系数为246C = 故选C 【点睛】本题考查二项式展开式,属于基础题.2.D解析:D 【分析】根据题意将10个数字分成三组:即被3除余1的有1,4,7;被3除余2的有2,5,8;被3整除的有3,6,9,0,若要求所得的三位数被3整除,则可以分类讨论:每组自己全排列,每组各选一个,再利用排列与组合的知识求出个数,进而求出答案. 【详解】解:将10个数字分成三组,即被3除余1的有{1,4,7},被3除余2的有{2,5,8},被3整除的有{3,6,9,0}.若要求所得的三位数被3整除,则可以分类讨论:①三个数字均取自第一组{1,4,7}中,或均取自第二组{2,5,8}中,有33212A =个; ②若三个数字均取自第三组{3,6,9,0},则要考虑取出的数字中有无数字0,共有324318A A -=个;③若三组各取一个数字,第三组中不取0,有11133333162C C C A ⋅⋅⋅=个, ④若三组各取一个数字,第三组中取0,有112332236C C A ⋅⋅⋅=个, 这样能被3整除的数共有12+18+162+36228=个. 故选:D. 【点睛】本题考查分类计数原理和排列组合知识,如何分类是关键,属于中档题.3.D解析:D 【解析】试题分析:观察杨辉三角结合其中数的来源,可得到这个数列的通项公式.n a 当n 为偶数时,42n n a +=;当n 为奇数时,0212322233551,3,6,C C C C C C ======,所以()()232138n n n n a C +++==,所以21S =()()()()22221352124620124622224622758a a a a a a a a ⎡⎤+++++++++=++++++++++⎣⎦()122423112475286753618⎡⎤=⨯⨯+⨯+=+=⎣⎦,故选D. 考点:归纳推理与数列求和.4.D解析:D 【分析】求出41)中的有理项,再求出5(1)x -中的相应项后,按多项式乘法法则计算. 【详解】441)(1=展开式通项公式为2144rr rr r T C C x +==,所以0,2,4r =时,该项为有理项,x 的指数分别为0,1,2,55(1)(1)x x -=-展开式通项公式为515(1)kk k k T C x -+=-, 所以所求4x 的系数为04232423454545(1)(1)(1)45C C C C C C ⨯-+⨯-+⨯-=, 故选:D . 【点睛】本题考查二项式定理,掌握二项展开式通项公式是解题关键,对两个二项相乘,注意多项式乘法法则的应用.5.B解析:B 【分析】先从20名同学中选派3人,再分为两类:第一类:2人参加数学,1人参加物理竞赛,第二类:1人参加数学,2人参加物理竞赛,结合分步计数原理,即可求解. 【详解】由题意,从20名同学中选派3人,共有320C 种不同的选法, 又由要求每科竞赛都有人参加,而且每人只能参加一科竞赛, 可分为两类:第一类:2人参加数学,1人参加物理竞赛,共有233C =中不同的选法; 第二类:1人参加数学,2人参加物理竞赛,共有133C =中不同的选法, 综上可得,不同的选派方式共有332020(33)6C C +⋅=⋅. 故选:B.【点睛】本题主要考查了分步计数原理,以及排列、组合的综合应用,其中解答中选出3人后,合理分类求解是解答的关键,着重考查分析问题和解答问题的能力.6.A解析:A 【分析】易得[]55(21)2(1)1x x --=+,求出展开式通项后可得55152(1)rrr r T C x --+=⋅⋅-,令3r =可得出2a 的值. 【详解】由于[]55(21)2(1)1x x --=+,所以展开式的通项为:[]5551552(1)12(1)rrr r r r r T C x C x ---+=⋅-⋅=⋅⋅-,令3r =可得:322352(1)T C x =⋅⋅-,则3225240a C =⋅=. 故选:A . 【点睛】本题考查二项式定理的应用,解题关键是得出[]55(21)2(1)1x x --=+进而进行计算,考查逻辑思维能力和计算能力,属于常考题.7.C解析:C 【分析】根据题意,分清楚有两种情况,利用公式求得结果. 【详解】根据题意,可知有两种情况,一种是有三位同学去参加同一个项目,一种是有两个项目是两位同学参加,所以不同的参加方法种数为22333535332210310661502C C C A A A ⋅⨯⋅+⋅=⨯+⨯=种, 故选:C. 【点睛】该题考查的是有关排列组合的综合题,涉及到的知识点有分类计数加法计数原理,排列组合综合题,属于中档题目.8.B解析:B 【分析】这是一个古典概型,先确定5名师生站成一排站法数,记“两名女生相邻而站”为事件A , 两名女生站在一起,视为一个元素与其余3个人全排,计算出事件A 共有不同站法数,再代入公式求解. 【详解】5名师生站成一排共有55120A=种站法,记“两名女生相邻而站”为事件A,两名女生站在一起有222A=种,视为一个元素与其余3个人全排,有4424A=种排法,则事件A共有不同站法242448A A⋅=种,所以()482 1205p A==,两名女生相邻而站的概率是2 5 .故选:B【点睛】本题主要考查古典概型的概率,还考查了理解辨析,运算求解的能力,属于中档题.9.B解析:B【分析】根据题意,分三步进行分析:(1)先确定排到同一列的上下各位置的一对字母,由分步计数原理可得其放法数目;(2)确定好第一组数据,剩下两组数据对应四个表格,分析方法(1),则可确定第二组字母的放法数目;(3)剩最后一组字母放入最后两个位置,由排列公式即可得其放法数目.最后由分步计数原理计算即可得出答案.【详解】根据题意分析,分三步进行:(1)先选定排列到同一列上下格位置的一对字母,有3种情况,再将其放入表格中,有3种情况,再考虑这一对字母的顺序有2种不同的顺序;(2)再分析第二对字母,假设(1)中选定的为,A a,则剩下的两组字母中选一组有2种情况,再将其放入表格中有2种不同结果,再考虑这一对字母的顺序有2种不同的顺序;(3)最后一对字母放入最后两个位置有2种不同的排法.所以共有3322222288⨯⨯⨯⨯⨯⨯=个“微错号”.故选:B.【点睛】本题主要考查计数原理,解题的关键是弄清题目中排列的方法.10.C解析:C【分析】由甲、乙两名专家必须安排在同一地工作,此时甲、乙两名专家看成一个整体即相当于一个人,所以相当于只有四名专家,先计算四名专家中有两名在同一地工作的排列数,再去掉丙、丁两名专家在同一地工作的排列数,即可得到答案.【详解】因为甲、乙两名专家必须安排在同一地工作,此时甲、乙两名专家看成一个整体即相当于一个人,所以相当于只有四名专家,先计算四名专家中有两名在同一地工作的排列数,即从四个中选二个和其余二个看成三个元素的全排列共有:2343C A ⋅种; 又因为丙、丁两名专家不能安排在同一地工作,所以再去掉丙、丁两名专家在同一地工作的排列数有33A 种, 所以不同的分配方法种数有:23343336630C A A ⋅-=-= 故选:C 【点睛】本题考查了排列组合的应用,考查了间接法求排列组合应用问题,属于一般题.11.D解析:D 【分析】根据题意分析常数项由()2x a +中的某项与511x ⎛⎫- ⎪⎝⎭中的某项项相乘所得,再二项式定理的通项公式求解即可. 【详解】由题可得,()2x a +中含2x 项与511x ⎛⎫- ⎪⎝⎭中含21x 项相乘可得常数项; ()2x a +中含x 项与511x ⎛⎫- ⎪⎝⎭中含1x 项相乘可得常数项; ()2x a +中的常数项与511x ⎛⎫- ⎪⎝⎭中的常数项相乘可得常数项.故()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 ()()()2134522122551112111010x C ax C a a a x x ⎛⎫⎛⎫⋅⋅⋅-+⋅⋅⋅-+⋅-=-+- ⎪ ⎪⎝⎭⎝⎭.故22101011090a a a a -+-=-⇒-+=,解得1a =或9a =. 故选:D 【点睛】本题主要考查了利用二项式定理,根据常数项求解参数的方法.需要根据题意分析常数项的所有可能组成,属于中档题.12.A解析:A 【分析】由题意得,当1x =时,0123nn a a a a +⋯⋯+=++,利用二项展开式的通项公式求出0021n a C =⋅=,结合条件求得6n =,利用二项式系数的性质,得出二项式系数最大的项为 33362C x ⋅,即可求出结果.解:由题可知,2012(12)nnn x a a x a x a x +=+++⋯⋯+, 当1x =时,0123nn a a a a +⋯⋯+=++,(12)n x +的展开式中,通项公式为:12r r rr nT C x +=, 则常数项对应的系数为:0a ,即0r =,得00021n a C =⋅=, 所以1231728n na a a =-+⋯=+⋯+,解得:6n =, 则6(12)x +展开式中二项式系数最大为:36C , 则二项式系数最大的项为: 333362160C x x ⋅=. 故选:A. 【点睛】本题考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,组合数的计算公式.二、填空题13.14【分析】分析体育课在不在最后一节采用分类加法计数原理以及排列思想计算出对应的排法数【详解】当体育课在最后一节时此时另外节课可在其余位置任意排列故有种排法;当体育课不在最后一节时此时体育课只能在第解析:14 【分析】分析体育课在不在最后一节,采用分类加法计数原理以及排列思想计算出对应的排法数. 【详解】当体育课在最后一节时,此时另外3节课可在其余位置任意排列,故有33A 种排法; 当体育课不在最后一节时,此时体育课只能在第2节或第3节,故有112222A A A 种排法, 所以一共有:31123222+=14A A A A 种排法, 故答案为:14. 【点睛】方法点睛:本题考查分类加法计数原理与排列的综合应用,属于中档题.常见排列数的求法为:(1)相邻问题采取“捆绑法”; (2)不相邻问题采取“插空法”; (3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.14.4100【分析】分类讨论:三个区域用同一种颜色用2种颜色用3种颜色由分步计数原理可得结论【详解】考虑三个区域用同一种颜色共有方法数有考虑三个区域用2种颜色共有方法数有考虑三个区域用3种颜色共有方法数【分析】分类讨论:A 、C 、E 三个区域用同一种颜色,用2种颜色,用3种颜色,由分步计数原理可得结论. 【详解】考虑A 、C 、E 三个区域用同一种颜色,共有方法数有354320⨯=,考虑A 、C 、E 三个区域用2种颜色,共有方法数有(543)4332160⨯⨯⨯⨯⨯=, 考虑A 、C 、E 三个区域用3种颜色,共有方法数有33531620A ⨯=, 故总计有方法数320216016204100++=. 故答案为:4100. 【点睛】本题考查分类计数原理和分步计数原理,解题关键是确定完成事件的方法,是分类还是分步?本题完成涂色这个事件,采取的是先分类:按A 、C 、E 三个区域所用颜色数分三类,然后每类再分步,每类里先涂色A 、C 、E 三个区域,然后再涂色其它三个区域.15.144【分析】优先安排男同事甲在星期日轮值有1种再安排其余3位男同事作全排列有最后安排女同事插在三个男同事中有最后根据分步用乘法的原理得:【详解】解:第一步:先安排男同事甲在星期日轮值有1种第二步:解析:144 【分析】优先安排男同事甲在星期日轮值有1种,再安排其余3位男同事作全排列有33A ,最后安排女同事插在三个男同事中有34A ,最后根据分步用乘法的原理得:331A ⨯34144A =.【详解】解:第一步:先安排男同事甲在星期日轮值有1种, 第二步:其余3位男同事作全排列有33A ,第三步:因为三位女同事任何两位的安排不能连在一起,所以后3位女同事插空安排有34A ,分步完成共有方法种数为:1⨯33A 34144A =. 故答案为:144. 【点睛】本题主要考查分步计数原理与排列,属于中档题.16.【分析】转化条件得或求出满足的个数再利用组合的知识即可得解【详解】或设满足的个数为解得结合组合的应用满足要求的数列有个故答案为:【点睛】本题考查了数列递推公式的应用考查了组合的应用与转化化归思想属于解析:1140【分析】转化条件得11k k a a +-=或11k k a a +-=-,求出满足11k k a a +-=的个数,再利用组合的知识即可得解. 【详解】11k k a a +-=, ∴11k k a a +-=或11k k a a +-=-,设满足11k k a a +-=的个数为x ,()()()211212*********a a a a a a a a -=-+-+⋅⋅⋅+-=, ∴()()20114x x +-⋅-=,解得17x =,结合组合的应用,满足要求的数列有20217301140C C ==个. 故答案为:1140. 【点睛】本题考查了数列递推公式的应用,考查了组合的应用与转化化归思想,属于中档题.17.【分析】取得出再取得出最后由得出答案【详解】取得出取得出则故答案为:【点睛】本题主要考查了二项式定理与数列求和的应用属于中档题 解析:80-【分析】取0x =,得出012341a a a a a ++++=,再取1x =-,得出081a =,最后由1234012340a a a a a a a a a a +++++++=-得出答案.【详解】取0x =,得出401234()11a a a a a -=+++=+ 取1x =-,得出4013)8(a -==则012341234018180a a a a a a a a a a ++++++=--=-+= 故答案为:80- 【点睛】本题主要考查了二项式定理与数列求和的应用,属于中档题.18.【分析】设分别将和代入二者作差整理后即可求解【详解】设则当时;当时作差可得即则故答案为:【点睛】本题考查二项式定理的应用考查展开式中部分项的系数和 解析:30232-【分析】设(201620162015012016x a x a x a =+++,分别将x x =,二者作差,整理后即可求解. 【详解】设(201620162015012016x a x a x a =+++,则当x =时,201620150120160a a a+++=;当x =,2016201530240120162a a a -++=,作差可得20151302412015222a a ++=-,即302422S =-,则30232S =-,故答案为:30232- 【点睛】本题考查二项式定理的应用,考查展开式中部分项的系数和.19.【分析】直接利用二项式定理计算得到答案【详解】二项式的展开式的通项为:取得到常数项为故答案为:【点睛】本题考查了二项式定理意在考查学生的计算能力和应用能力 解析:552-【分析】直接利用二项式定理计算得到答案. 【详解】二项式122x ⎛ ⎝的展开式的通项为: ()41231212112121221rrr r r rrr xx T C C --+-⎛=-⋅ ⎝⎛⎫⎛⎫=⋅⋅ ⎪ ⎪⎝⎭⎝⎭,取9r =得到常数项为()1299129152512C -⎛⎫⋅- =-⎪⎝⎭. 故答案为:552-. 【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.20.3840【分析】将甲乙丙三人捆绑在一起先不考虑乙的特殊性算出一个总数再考虑乙在队列两端算出一个总数相减既为答案【详解】将甲乙丙三人捆绑在一起三人间的排列共有种可能这个整体与剩下的5名同学全排列共有种解析:3840 【分析】将甲、乙、丙三人捆绑在一起,先不考虑乙的特殊性算出一个总数,再考虑乙在队列两端算出一个总数,相减既为答案. 【详解】将甲、乙、丙三人捆绑在一起,三人间的排列共有336A =种可能,这个整体与剩下的5名同学全排列共有66654321720A 种可能,所以不考虑乙的特殊性共有67204320⨯=种可能;当乙从队列前后两端任选一个位置站位有122C =种可能,此时甲乙两人间有222A =种可能,剩下的5名同学全排列有55120A =种可能,所以乙在队列两端共有22120480种可能;故甲、乙、丙三人相邻,乙不站在队列两端,不同的排法种数为43204803840种.故答案为:3840 【点睛】本题考查排列组合中的捆绑法与特殊元素优先考虑法解决站位排法问题,属于中档题.三、解答题21.(1)1440;(2)3720;(3)2520 【分析】(1)把两女生捆绑作为一个元素与5名男生进行排列;(2)先把7人全排列,然后减去女生甲在左端的排列数及女生乙在右端的排列数,同时加上女生甲在左端同时女生乙在右端的排列数;(3)女生甲要么在乙的左端,要么在乙的右端,因此只要用全排列除以2即得. 【详解】(1) 26261440A A = (2) 76576523720A A A -+=(3)77125202A = 【点睛】方法点睛:本题主要考查排列的应用,属于中档题.常见排列数的求法为: (1)相邻问题采取“捆绑法”; (2)不相邻问题采取“插空法”; (3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数. 22.(1)8;(2)611120x ⋅. 【分析】(1)由条件利用二项式系数的性质求得n 的值;(2)首先求出二项式展开式的通项,进而得到展开式中二项式系数最大的项. 【详解】(1)由题意知,第二项的二项式系数为1n C ,第三项的二项式系数为2n C ,1236n n C C ∴+=,得2720n n +-=,(9)(8)0n n ∴+-=得8n =或9n =-(舍去).(2)822x ⎫⎪⎭的通项公式为: 858218822(1)2kkkkk k k k T C C x x --+⎛⎫=-=- ⎪⎝⎭, 又由8n =知第5项的二项式系数最大,此时5611120T x =⋅. 【点睛】本题第一问考查二项式系数的性质,第二问考查二项式系数最大的项,熟记二项式展开式的通项为解题的关键,属于中档题. 23.(1)①01a =②1(1)2n n (2)51n =【分析】(1)①利用赋值法,令0x =,即可求出;②利用倒序相加求和法,以及二项式系数的性质即可求出;(2)由()()(),11nnf x y x x ⎡⎤=+=+⎣⎦,利用二项式定理可知,4n x -项仅出现在4r =时的展开式()4441n n C x -中,可求得4n x -项系数,再利用xy 项仅出现在()111n n nCx --的展开式中,可求得xy 项系数,即可列式求解.【详解】(1)① 因为f (x ,1)=()1nx +=0122n nn n n n C C x C x C x .所以01a =. ② 由① 得,01201223(1)23(1)nnn n n n a a a n a C C C n C设T =01223(1)n nnnn C C C n C ,则T =210(1)32nnnnnn C C C C . 两式相加得,012(1)()(1)2n n nnn T n C C C n ,所以1(1)2n T n ,即01223(1)n a a a n a =1(1)2n n .(2)因为()()11nnrr n rnr x C x -=+=∑,其中4n x -项仅出现在4r =时的展开式()4441n n C x -中,4n x -项系数为()441n C -;而xy 项仅出现在1=-r n 时的展开式()111n n nCx --中,xy 项系数为()3122121n n n n C C ----,因此有()()4341221121n n n n n C C C ----=-,注意到4n >,化简得()33148n n --=-⋅,故只能是n 为奇数且348n -=.解得51n =. 【点睛】本题主要考查二项式定理的应用,赋值法,倒序相加求和法的应用,以及利用指定项的系数求参数,意在考查学生的数学运算能力,属于中档题.24.(1)32.(2)201820192⨯.(3)54n.【分析】(1)利用赋值法求解,令1x =和1x =-,两式相加可得;(2)利用11k k n n kC nC --=可求;(3)结合式子特点构造(41)n +可求. 【详解】(1)令1x =,得60126264a a a a +++⋯+== ① 令1x =-,得01260a a a a -+-⋯+= ② ①+②得024632a a a a +++=;(2)因为11k k n n kC nC --=所以12320192019201920192019232019C C C C ++++=()12201820182018201820182019C C C C ++++201820192=⨯;(3)01122310144444n n n n n n n n n n C C C C C -----+++⋯++011221144444n n n n nn n n nnC C C CC ---⎡⎤=+++++⎣⎦15(41)44nn=+=. 【点睛】本题主要考查二项式定理的应用,结合组合数的性质,侧重考查数学解题模型的构建能力. 25.(1)240.(2)600. 【解析】 【分析】(1)先选出1副手套,再从剩余5副手套中各抽取2副手套, 每副手套再抽1只,利用概率计算公式求解即可;(2)先求6副手套中抽取5只的所有取法,减去都没有成双的,即为至少能凑出1副手套的取法. 【详解】(1)根据题意只需先选出1副手套,再从剩余5副手套中各抽取2副手套, 每副手套再抽1只所以有12116522240C C C C =种取法.(2)从6副手套中抽取5只共有512792C =种取法, 5只手套都没有成双的有511111622222192C C C C C C =种取法, 所以5只中至少能凑出1副手套的取法数为792-192=600. 【点睛】本题考查概率公式的应用,注意乘法公式的应用是解决本题的关键. 26.(1)720种(2)936种【分析】(1)由题意可知前四次中有两件次品两件正品,第五次为次品,所以选出排列即可. (2)至多五次能找到,包括检测3次都是次品,检测四次测出3件次品,检测五次测出3件次品或着检测五次全是正品,剩下的为次品,以此求出每种情况求和可得结果. 【详解】解:(1)若在第五次检测出最后一件次品,则前四次中有两件次品两件正品,第五次为次品.则不同的检测方法共有412445720C A A =种.(2)检测3次可测出3件次品,不同的测试方法有336A =种 检测4次可测出3件次品,不同的测试方法有13253390C A A =种;检测5次测出3件次品,分为两类:一类是恰好第5次测到次品,一类是前5次测到都是正品,不同的测试方法共有41524455840C A A A +=种.所以共有936种测试方法 【点睛】本题考查排列组合的实际应用,考查分步计数的原理以及学生处理实际问题的能力,最后一次的问题一定要注意最后一次是确定的事件,本题属于中档题.。
新北师大版高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)(1)
![新北师大版高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)(1)](https://img.taocdn.com/s3/m/91b30f20a1c7aa00b42acbb9.png)
一、选择题1.将编号为1、2、3、4、5的5个小球全部放入A 、B 、C 三个盒子内,若每个盒子不空,且放在同一个盒子内的小球编号不相连,则不同的方法总数有( ) A .42B .36C .48D .602.4(12)x -的展开式中2x 的系数为( ) A .6B .24C .32D .483.()()4221x x x -+-的展开式中x 项的系数为( )A .9-B .5-C .7D .84.733x x ⎛⎫- ⎪ ⎪⎝⎭展开式中含32x -的项是( ) A .第8项 B .第7项 C .第6项 D .第5项5.从0,1,2,3,…,9中选出三个不同数字组成一个三位数,其中能被3整除的三位数个数为( ) A .252 B .216 C .162 D .228 6.把4个不同的小球全部放人3个不同的盒子中,使每个盒子都不空的放法总数为( )A .1333C AB .3242C AC .132442C C CD .2343C A7.将红、黄、蓝三种颜色的三颗棋子分别放入33⨯方格图中的三个方格内,如图,要求任意两颗棋子不同行、不同列,则不同方法共有几种( )A .12B .16C .24D .368.45(1)(1)x x -的展开式中,4x 的系数为( ) A .-40B .10C .40D .459.设()929012913x a a x a x a x -=+++⋅⋅⋅+,则0129a a a a +++⋅⋅⋅+的值为( ) A .94B .93C .92D .92-10.若10521001210(1)(1)(1)x x a a x a x a x -=+-+-+⋅⋅⋅+-,则5a 为( ) A .251B .250C .252D .24911.包括甲、乙、丙3人的7名同学站成一排拍纪念照,其中丙站中间,甲不站在乙的左边,且不与乙相邻,则不同的站法有( ) A .240种B .252种C .264种D .288种12.若()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为-1,则a 的值为( ) A .1 B .9 C .-1或-9 D .1或9二、填空题13.在一个正六边形的六个区域涂色(如图),要求同一区域同一种颜色,相邻的两块区域(有公共边)涂不同的颜色.现有5种不同的颜色可供选择,则有________种涂色方案.14.在二项式251x )x-(的展开式中,含4x 的项的系数是________. 15.设2122101221(1)x a a x a x a x -=+++,则1011a a += .16.已知522()ax x-的展开式中1x -的系数为40-,则实数a =____ 17.如图所示的五个区域中,中心区E 域是一幅图画,现要求在其余四个区域中涂色.........,有四种颜色可供选择.要求每个区域只涂一种颜色且相邻区域所涂颜色不同,则不同的涂色方法种数为______.18.若1121101211(21)x a a x a x a x +=+++⋅⋅⋅+,则2202101311()()a a a a a a ++⋅⋅⋅+-++⋅⋅⋅+=________19.如图,用5种不同的颜色给图中A ,B ,C ,D 四块区域涂色,若相邻区域不能涂同一种颜色,则不同的涂法共有__________种.20.甲、乙、丙等7人排成一排,甲站最中间,乙丙相邻,且乙、丙与丁均不相邻,共有______种不同排法.(用数字作答)三、解答题21.若2nx x ⎛+ ⎝展开式的二项式系数之和是64.(1)求n 的值;(2)求展开式中的常数项.22.将7名应届师范大学毕业生分配到3所中学任教.(最后结果用数字表示) (1)4个人分到甲学校,2个人分到乙学校,1个人分到丙学校,有多少种不同的分配方案?(2)一所学校安排4个人,一所学校安排2个人,一所学校1个人,有多少种不同的分配方案?(3)其中有两所学校都各安排3个人,另一所学校安排1个人,有多少种不同的分配方案?23.在二项式()12nx +的展开式中,(1)若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(最后结果用算式表达,不用计算出数值)(2)若展开式前三项的二项式系数的和等于79,求展开式中系数最大的项.(最后结果用算式表达,不用计算出数值)24.我校学生会进行换届选举,共选举出7名学生会委员,其中甲、乙、丙是上一届的委员,现对7名成员进行如下分工.(1)若学生会正、副主席两职位只能由甲、乙、丙三人选两人担任,则有多少种不同的分工方法;(2)若甲不担任学生会主席,乙不能担任组织委员,则有多少种不同的分工方法?25.已知21n x ⎛⎫+ ⎪⎝⎭,i 是虚数单位,0x >,n ∈+N . (1)如果展开式中的倒数第3项的系数是-180,求n 的值; (2)对(1)中的n ,求展开式中系数为正实数的项.26.一个盒子中装有大小相同的小球n 个,在小球上分别标有1,2,3…,n 的号码,已知从盒子中随机取出两个球,两球号码的最大值为n 的概率为14. (Ⅰ)盒子中装有几个小球?(Ⅱ)现从盒子中随机地取出4个球,记所取4个球的号码中,连续自然数的个数的最大值为随机变量X (如取标号分别为2,4,6,8的小球时1X =;取标号分别为1,2,4,6的小球时2X =;取标号分别为1,2,3,5的小球时3X =),求(2)P X =的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A将编号为1、2、3、4、5的5个小球,根据小球的个数可分为1、1、3或1、2、2两组,再分配到3个盒子即可求出. 【详解】将编号为1、2、3、4、5的5个小球,根据小球的个数可分为1、1、3或1、2、2两组.①当三个盒子中的小球个数分别为1、1、3时,由于放在同一个盒子里的小球编号互不相连,故3个小球的编号只能是1、3、5的在一个盒子里,故只有一种分组方法, 再分配到三个盒子,此时共有336A =种分配方法;②当三个盒子中的小球个数分别为1、2、2时,由于放在同一个盒子里的小球编号互不相连,此时放2个小球的盒子中小球的编号分别为()1,3、()2,4或()1,3、()2,5或()1,4、()2,5或()1,4、()3,5或()1,5、()2,4或()2,4、()3,5,共6种,再分配到三个盒子中,此时,共有33636A =种. 综上所述,不同的放法种数为64362+=种. 故选:A. 【点睛】方法点睛:本题主要考查排列的应用,属于中档题.常见排列数的求法为: (1)相邻问题采取“捆绑法”; (2)不相邻问题采取“插空法”; (3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.2.B解析:B 【分析】利用二项展开式的通项可得14(2),0,1,2,3,4rrr T C x r +=-=,令2r 可求得结果.【详解】因为4(12)x -的第1r +项展开式14(2),0,1,2,3,4rrr T C x r +=-=, 令2r,则含2x 项系数为224(2)24C -=, 故选:B . 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有二项展开式通项的应用,项的系数,属于简单题目.3.A解析:A将()()4221x x x -+-化简为:2444(1)(1)2(1)x x x x x --+--,写出4(1)x -二项展开式的通项公式(4)14(1)rr r r T C x -+=⋅-,即可求得答案.【详解】()()42244421(1)(1)2(1)x x x x x x x x -+---+-=-4(1)x -二项展开式的通项公式(4)14(1)r r r r T C x -+=⋅-24(1)x x -中不含x 项,无需求解.4(1)x x --中含x 项,即当4r =时(44444)(1)x C xx --⋅⋅=--42(1)x -中含x 项,即当3r =时(43)34328(1)C x x -⋅=-- ∴ ()()4221x x x -+-的展开式中x 项9x -故选:A. 【点睛】本题考查求二项式展开式中常数项,解题关键是掌握二项展开式的通项公式,考查分析能力和计算能力,属基础题.4.C解析:C 【分析】根据二项展开式的通项公式,求得含32x -项对应的r 即可得到结论. 【详解】解:7⎫⎝展开式的通项公式为:()21172722217713133rr r r r r r T C x x C x ---+⎛⎫⎛⎫=⋅⋅-⋅=-⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭; 令73522r r -=-⇒=; 故展开式中含32x -的项是第6项. 故选:C. 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.5.D解析:D 【分析】根据题意将10个数字分成三组:即被3除余1的有1,4,7;被3除余2的有2,5,8;被3整除的有3,6,9,0,若要求所得的三位数被3整除,则可以分类讨论:每组自己全排列,每组各选一个,再利用排列与组合的知识求出个数,进而求出答案. 【详解】解:将10个数字分成三组,即被3除余1的有{1,4,7},被3除余2的有{2,5,8},被3整除的有{3,6,9,0}.若要求所得的三位数被3整除,则可以分类讨论:①三个数字均取自第一组{1,4,7}中,或均取自第二组{2,5,8}中,有33212A =个; ②若三个数字均取自第三组{3,6,9,0},则要考虑取出的数字中有无数字0,共有324318A A -=个;③若三组各取一个数字,第三组中不取0,有11133333162C C C A ⋅⋅⋅=个, ④若三组各取一个数字,第三组中取0,有112332236C C A ⋅⋅⋅=个, 这样能被3整除的数共有12+18+162+36228=个. 故选:D. 【点睛】本题考查分类计数原理和排列组合知识,如何分类是关键,属于中档题.6.D解析:D 【分析】利用捆绑法选择两个球看成整体,再全排列得到答案. 【详解】选择两个球看成整体,共有24C 种取法,再把三个球放入三个盒子中,有33A 种放法,故共有2343C A 种放法. 故选:D. 【点睛】本题考查了排列和组合的应用,意在考查学生的应用能力,利用捆绑法是解题的关键.7.D解析:D 【分析】直接利用乘法原理计算得到答案. 【详解】第一颗棋子有339⨯=种排法,第二颗棋子有224⨯=种排法,第三颗棋子有1种排法, 故共有94136⨯⨯=种排法. 故选:D. 【点睛】本题考查了乘法原理,意在考查学生的应用能力.8.D解析:D 【分析】求出41)中的有理项,再求出5(1)x -中的相应项后,按多项式乘法法则计算. 【详解】441)(1=展开式通项公式为2144r r rr r T C C x +==,所以0,2,4r =时,该项为有理项,x 的指数分别为0,1,2,55(1)(1)x x -=-展开式通项公式为515(1)kk k k T C x -+=-, 所以所求4x 的系数为04232423454545(1)(1)(1)45C C C C C C ⨯-+⨯-+⨯-=, 故选:D . 【点睛】本题考查二项式定理,掌握二项展开式通项公式是解题关键,对两个二项相乘,注意多项式乘法法则的应用.9.A解析:A 【分析】由()913x -的展开式的通项为()193rrr T C x +=-,可得10a <,30a <,50a <,70a <,90a <,则01290123456789a a a a a a a a a a a a a a +++⋅⋅⋅+=-+-+-+-+-,再令1x =-即可得解; 【详解】解:因为()929012913x a a x a x a x -=+++⋅⋅⋅+,()913x -的展开式的通项为()193rr r T C x +=-,所以10a <,30a <,50a <,70a <,90a <,所以01290123456789a a a a a a a a a a a a a a +++⋅⋅⋅+=-+-+-+-+- 令1x =-得901234567894a a a a a a a a a a -+-+-+-+-= 所以901294a a a a +++⋅⋅⋅+= 故选:A 【点睛】本题考查赋值法求二项式展开式的系数和的问题,属于中档题.10.A解析:A 【分析】根据题意,5a 是展开式中()51x -的系数,因此将等式左边变形为关于1x -的二项式,再求()51x -的系数. 【详解】由题意,()()1051051111x x x x -=-+--+, 又()()()()10109011010101011111x C x C x C x -+=⋅-+⋅-++⋅-,()()()()55401555511111x C x C x C x -+=⋅-+⋅-++⋅-,因为,()()()21010501210111x x a a x a x a x -=+-+-+⋅⋅⋅+-,即55101251a C =-=.故选:A. 【点睛】本题考查了二项式定理中展开式的系数,关键是将已知等价变形,得到关于()1nx -的二项式,属于基础题.11.C解析:C 【分析】先排甲、乙、丙外的4人,再对甲、乙、丙三人分类讨论即可得解. 【详解】先排甲、乙、丙外的4人,有44A 种排法,再排甲、乙2人,有两类方法: 一类是甲、乙2人插空,又甲排在乙的左边,然后丙排在中间, 故有4245240A C =种不同的站法;另一类是把甲、乙、丙按乙、丙、甲的顺序插入中间,有44A 种不同的站法, 所以共有264种不同的站法. 故选:C 【点睛】此题考查计数原理的应用,利用排列组合相关知识解决排位问题,需要熟练掌握计数原理相关知识.12.D解析:D 【分析】根据题意分析常数项由()2x a +中的某项与511x ⎛⎫- ⎪⎝⎭中的某项项相乘所得,再二项式定理的通项公式求解即可. 【详解】由题可得,()2x a +中含2x 项与511x ⎛⎫- ⎪⎝⎭中含21x 项相乘可得常数项;()2x a +中含x 项与511x ⎛⎫- ⎪⎝⎭中含1x 项相乘可得常数项; ()2x a +中的常数项与511x ⎛⎫- ⎪⎝⎭中的常数项相乘可得常数项.故()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 ()()()2134522122551112111010x C ax C a a a x x ⎛⎫⎛⎫⋅⋅⋅-+⋅⋅⋅-+⋅-=-+- ⎪ ⎪⎝⎭⎝⎭.故22101011090a a a a -+-=-⇒-+=,解得1a =或9a =. 故选:D 【点睛】本题主要考查了利用二项式定理,根据常数项求解参数的方法.需要根据题意分析常数项的所有可能组成,属于中档题.二、填空题13.4100【分析】分类讨论:三个区域用同一种颜色用2种颜色用3种颜色由分步计数原理可得结论【详解】考虑三个区域用同一种颜色共有方法数有考虑三个区域用2种颜色共有方法数有考虑三个区域用3种颜色共有方法数解析:4100 【分析】分类讨论:A 、C 、E 三个区域用同一种颜色,用2种颜色,用3种颜色,由分步计数原理可得结论. 【详解】考虑A 、C 、E 三个区域用同一种颜色,共有方法数有354320⨯=,考虑A 、C 、E 三个区域用2种颜色,共有方法数有(543)4332160⨯⨯⨯⨯⨯=, 考虑A 、C 、E 三个区域用3种颜色,共有方法数有33531620A ⨯=, 故总计有方法数320216016204100++=. 故答案为:4100. 【点睛】本题考查分类计数原理和分步计数原理,解题关键是确定完成事件的方法,是分类还是分步?本题完成涂色这个事件,采取的是先分类:按A 、C 、E 三个区域所用颜色数分三类,然后每类再分步,每类里先涂色A 、C 、E 三个区域,然后再涂色其它三个区域.14.10【解析】分析:先根据二项展开式的通项公式求含的项的项数再确定对应项系数详解:所以令得即含的项的系数是点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项可依据条件写出第项再由特解析:10【解析】分析:先根据二项展开式的通项公式求含4x 的项的项数,再确定对应项系数. 详解:251031551()()(1)rrr r r r r T C x C x x--+=-=- , 所以令1034r -=得2r,即含4x 的项的系数是225(1)=10.C -点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第1r +项,再由特定项的特点求出r 值即可. (2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.15.0【分析】就是展开式中的系数利用通项公式求解即可【详解】展开式通项为所以故答案为0【点睛】本题主要考查二项展开式定理的通项与系数属于简单题二项展开式定理的问题也是高考命题热点之一关于二项式定理的命题解析:0 【分析】1011,a a 就是21(1)x -展开式中1011,x x 的系数,利用通项公式求解即可.【详解】21(1)x -展开式通项为21121(1)r rr r T C x -+=-, 111111102121(1)a C C =⋅-=-1010101111212121(1)a C C C =⋅-==所以1111101121210a a C C +=-+=, 故答案为0. 【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C rn r rr n T ab -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.16.【分析】利用二项式定理写出二项展开式的通项公式令的幂指数为求出的值利用其系数为得到关于的方程解方程即可求解【详解】由二项式定理可得二项展开式的通项公式为令解得所以的展开式中的系数为解得故答案为:【点 解析:1-【分析】利用二项式定理写出522()ax x-二项展开式的通项公式,令x 的幂指数为1-,求出r 的值,利用其系数为40-得到关于a 的方程,解方程即可求解.【详解】由二项式定理可得,522()ax x -二项展开式的通项公式为()()5553155222rrr r r r r r T C ax C a x x ---+⎛⎫=⋅⋅-=⋅-⋅⋅ ⎪⎝⎭,令531r -=-,解得2r ,所以522()ax x-的展开式中1x -的系数为()2235240C a ⋅-⋅=-,解得1a =-. 故答案为:1- 【点睛】本题考查利用二项式定理由二项展开式中某项的系数求参数;考查运算求解能力;利用二项式定理写出二项展开式的通项公式是求解本题的关键;属于中档题、常考题型.17.84【分析】按照选取的颜色个数分类:(1)用四种颜色涂色颜色都不同;(2)用三种颜色或同色;(3)用两种颜色涂色同色同色根据分类甲法原理即可求出结论【详解】分三种情况:(1)用四种颜色涂色有种涂法;解析:84 【分析】按照选取的颜色个数分类:(1)用四种颜色涂色,,,,A B C D 颜色都不同;(2)用三种颜色,,A C 或,B D 同色;(3)用两种颜色涂色,,A C 同色,,B D 同色,根据分类甲法原理,即可求出结论. 【详解】 分三种情况:(1)用四种颜色涂色,有4424A =种涂法; (2)用三种颜色涂色,有34248A =种涂法; (3)用两种颜色涂色,有2412A =种涂法; 所以共有涂色方法24481284++=. 故答案为:84 【点睛】本题考查排列和分类加法原理的应用,合理分类是解题的关键,属于中档题.18.【分析】利用赋值法求二项式展开式系数和令则可得的值令则可得的值从而得解;【详解】解:因为令得令得则故答案为:【点睛】本题考查利用赋值法求二项式展开式的系数和的问题属于中档题 解析:177147-【分析】利用赋值法求二项式展开式系数和,令1x =则,可得01211a a a a +++⋅⋅⋅+的值,令1x =-则,可得01231011a a a a a a -+-+⋅⋅⋅+-的值,从而得解;【详解】解:因为1121101211(21)x a a x a x a x +=+++⋅⋅⋅+令1x =得11012113a a a a +++⋅⋅⋅+=,令1x =-得()110123101111a a a a a a -+-+⋅⋅⋅+-=-=-则2202101311()()a a a a a a ++⋅⋅⋅+-++⋅⋅⋅+[][]0210131102101311()()()()a a a a a a a a a a a a =++⋅⋅⋅++++⋅⋅⋅+⋅++⋅⋅⋅+-++⋅⋅⋅+()1131=⨯-177147=-故答案为:177147- 【点睛】本题考查利用赋值法求二项式展开式的系数和的问题,属于中档题.19.180【分析】根据题意可知不相邻区域可以同色则可以分类讨论区域A 和区域D 同色与不同色结合排列公式进行求解即可【详解】能够涂相同颜色的只有AD 若AD 同色则只需要选择3种颜色即可此时有种;若AD 不同色则解析:180 【分析】根据题意可知,不相邻区域可以同色,则可以分类讨论区域A 和区域D 同色与不同色,结合排列公式进行求解即可. 【详解】能够涂相同颜色的只有A ,D .若A ,D 同色,则只需要选择3种颜色即可, 此时有35=60A 种;若A ,D 不同色,则只需要选择4种颜色即可, 此时有45=120A 种. 共有60120180+=种. 故答案为:180. 【点睛】本题主要考查涂色问题,分类加法计数原理,排列数的计算,考查了计算能力,属于中档题.20.【分析】根据乙丙相邻所以捆在一起有种排法又因为乙丙与丁均不相邻且甲站最中间则剩余3人全排列从产生的4个空中选2个将乙丙与丁排列再用分类乘法计数原理求解【详解】因为乙丙相邻所以捆在一起有种排法又因为乙 解析:144【分析】根据乙丙相邻,所以捆在一起有22A 种排法,又因为乙、丙与丁均不相邻,且甲站最中间,则剩余3人全排列,从产生的4个空中选2个,将乙、丙与丁排列,再用分类乘法计数原理求解.【详解】因为乙丙相邻,所以捆在一起有22A 种排法,又因为乙、丙与丁均不相邻,因为甲站最中间,则剩余3人全排列有33A 种排法,,从产生的4个空中选2个,将乙、丙与丁排列,有24A 种排法,所以共有232234144A A A ⨯⨯=种排法故答案为:144 【点睛】本题主要考查分类乘法计数原理,还考查了运算求解的能力,属于中档题.三、解答题21.(1)6;(2)60 【分析】由二项式系数和求出指数n ,再写出展开式通项后可得常数项. 【详解】(1)由题意得,二项式系数之和为012264nn n n n n C C C C ++++==,6n ∴=;(2)通项公式为366622166(2)2r r rrrr r T C x xC x----+==,令3602r-=,得4r = ∴展开式中的常数项为4464256(2)60T C x x--==.【点睛】该题主要考查二项式定理,在()na b +展开式中二项式系数为2n ,只与指数n 有关,求特定项时要注意通项的正确应用.22.(1)105种(2)630种(3)420种 【分析】(1)利用组合的知识求解(2)先不均匀分组,再分配到学校即可求解(3)先不均匀分组,再分配即可 【详解】(1)421731105C C C ⋅⋅=(种) (2)42137313630C C C A ⋅⋅⋅=(种)(3)3313741322420C C C A A =(种) 【点睛】本题考查分组分配问题,注意是否为均匀分组,是易错题23.(1) 当7n =时,最大项系数为3372C 和4472C ;当14n =时最大项系数为77142C .(2)88122C . 【分析】(1)由456,,n n n C C C 成等差数列可求出14n =或7,进而可求出展开式中二项式系数最大的项的系数;(2)由01279n n n C C C ++=可求出12n =,令1112121112122222k k k k k kk k C C C C ++--⎧≥⎨≥⎩可求出8k ,从而可求其系数. 【详解】解:展开式中第1k +项为()122kk k k kk n n T C x C x +==.(1) 则第5项、第6项与第7项的二项式系数为456,,n n n C C C 成等差数列,则5462n n n C C C =+,即()()()!!!25!5!4!4!6!6!n n n n n n =+---,即221980n n -+=,解得14n =或7.当7n =时,二项式系数最大项为45,T T ,此时系数为3372C 和4472C . 当14n =时,二项式系数最大项为8T ,此时系数为77142C .(2) 前三项的二项式系数为012,,n n n C C C ,其和为79.即01279n n n C C C ++=,即()11792n n n -++=,整理得,21560n n +-=,解得12n =或13-(舍去).设展开式中第1k +项系数最大,即1112121112122222k k k k k k k k C C C C ++--⎧≥⎨≥⎩,解得,232633k ≤≤, 因为k ∈N ,所以8k ,即展开式中第9项系数最大,系数为88122C . 【点睛】本题考查了二项式定理,考查了二项式系数最值问题,考查了系数的最值问题,考查了等差中项的应用.本题的关键是由已知条件求出n 的值.本题的易错点是混淆了二项式系数和系数的概念.24.(1)720;(2)3720. 【分析】(1)由学生会正、副主席两职位只能由甲乙丙三人中选出两人担任,利用排列、组合计算即可;(2)甲不担任学生会主席,乙不担任组织委员,可用间接法计算,即可求解. 【详解】(1)由题意,学生会正、副主席两职位只能由甲乙丙三人中选出两人担任, 则有225325720C A A =种不同的分工.(2)甲不担任学生会主席,乙不担任组织委员,则有76576523720A A A -+=种不同的分工.【点睛】本题主要考查了排列、组合及其简单的计数原理的应用,其中解答中认真审题,合理利用排列数、组合数的公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.25.(1)10n =(2)311520T =,1073360T x -=,2011T x -=.【解析】 【分析】(1)由题意得到关于n 的方程,解方程可得n 的值;(2)结合(1)中求得的n 的值,得到展开式的通项公式,然后整理计算可得展开式中系数为正实数的项. 【详解】(1)由已知,得-22(2)180n n C i =-,即24180n C =,所以2900n n --=, 又n ∈+N ,解得10n =. (2)展开式的通项为5510210211010(2)(2)k k kkk kk TC xi xC i x----+==,因为系数为正实数,且{0,1,2,,10}k ∈,所以2,6,10k =.代入通项公式可得所求的项为311520T =,1073360T x -=,2011T x -=.【点睛】本题主要考查二项式展开式的通项公式及其应用,分类讨论的数学思想,复数的运算法则等知识,意在考查学生的转化能力和计算求解能力. 26.(Ⅰ)8个;(Ⅱ)4(2)7P X ==. 【分析】(Ⅰ)由题意计算出两球号码的最大值为n 的情况共有11n C -种,利用古典概型概率公式可得11214n n C C -=,即可得解; (Ⅱ)由题意,未被选中的4个小球会形成5个空位(包括两端),取出的小球相当于要插入这些空位中(可以多个小球插入同一空位),将2X =分为“4个小球仅有2个小球的编号连续”和“4个小球有2个小球的编号连续,另外2个小球的编号也连续”两种情况分类计算,最后由古典概型概率公式即可得解. 【详解】(Ⅰ)从盒子中随机取出两个球,两球号码的最大值为n 的情况共有11n C -种,则11214n n C C -=,解得8n =, 所以盒中共有8个小球;(Ⅱ)由题意,未被选中的4个小球会形成5个空位(包括两端),取出的小球相当于要插入这些空位中(可以多个小球插入同一空位),2X =表示取出的4个小球的编号连续的个数的最大值为2,可分为两类:①4个小球仅有2个小球的编号连续,则要在5个空位中选出三个,其中一个放入2个小球,所以共有取法315330C C ⋅=种;②4个小球有2个小球的编号连续,另外2个小球的编号也连续,则只需在5个空位中选出两个,所以共有取法2510C =种; 综上,4830104(2)7P X C +===. 【点睛】本题考查了计数原理的综合应用及古典概型概率的求解,考查了转化化归思想与分类讨论思想,属于中档题.。
北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(有答案解析)(1)
![北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(有答案解析)(1)](https://img.taocdn.com/s3/m/a24367ff55270722182ef72a.png)
一、选择题1.将编号为1、2、3、4、5的5个小球全部放入A 、B 、C 三个盒子内,若每个盒子不空,且放在同一个盒子内的小球编号不相连,则不同的方法总数有( )A .42B .36C .48D .602.4(12)x -的展开式中2x 的系数为( ) A .6B .24C .32D .483.某城市有3 个演习点同时进行消防演习,现将5 个消防队分配到这3 个演习点,若每个演习点至少安排1 个消防队,则不同的分配方案种数为( ) A .150B .240C .360D .5404.如图,在杨辉三角形中,斜线l 的上方从 1 按箭头所示方向可以构成一个“锯齿形”的数列: 1,3,3,4,6,5,10,...,记此数列的前n 项之和为n S ,则 21S 的值为( )A .66B .153C .295D .3615.某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为 A .14 B .16 C .20 D .48 6.1180被9除的余数为( )A .1-B .1C .8D .8-7.若5个人按原来站的位置重新站成一排,恰有一人站在自己原来的位置上的概率为( ) A .34B .14C .18D .388.现有甲、乙、丙、丁、戌5人参加社区志愿者服务活动,每人从事团购、体温测量、进出人员信息登记、司机四项工作之一,每项工作至少有一人参加.若甲、乙不会开车但能从事其他三项工作,丙、丁、戌都能胜任四项工作,则不同安排方案的种数是( ) A .234B .152C .126D .1089.为支援湖北抗击新冠疫情,无锡市某医院欲从6名医生和4名护士中抽选3人(医生和护士均至少有一人)分配到A ,B ,C 三个地区参加医疗救援(每个地区一人),方案要求医生不能去A 地区,则分配方案共有( ) A .264种B .224种C .250种D .236种10.5名同学分别报名参加学校的足球队、篮球队、乒乓球队,每人限报其中的一个运动队,则不同的报名方法的种数为( ) A .35 B .53 C .35AD .35C11.将20名学生任意分成甲、乙两组,每组10人,其中2名学生干部恰好被分在不同组内的概率为( )A .192181020C C CB .1921810202C C C C .1921910202C C C D .192191020C C C12.五声音阶是中国古乐的基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徽、羽,如果用上这五个音阶,排成一个五音阶音序,且宫、羽不相邻,且位于角音阶的同侧,可排成的不同音序有( ) A .20种B .24种C .32种D .48种二、填空题13.6x ⎛⎝展开式中常数项为________.14.高三一班里七名身高不同的女生拍毕业照,摄影师要求她们排成一排, 身高由矮到高,再由高到矮(最高的女生站在正中间).这七位女生的排队姿态有________种.15.在二项式12312x x ⎛⎫+ ⎪⎝⎭的展开式中,该二项展开式中系数最大的项为___________.16.若1121101211(21)x a a x a x a x +=+++⋅⋅⋅+,则2202101311()()a a a a a a ++⋅⋅⋅+-++⋅⋅⋅+=________17.6人排成一排合影,甲乙相邻但乙丙不相邻,共有____(用数字)种不同的排法.18.已知423401234(21)(1)(1)(1)(1)x a a x a x a x a x -=++++++++,则1234a a a a +++=___________.19.6212x x ⎛⎫- ⎪⎝⎭的展开式中的常数项是_______________. 20.有6个人分成两排就座,每排3人,若甲和乙必须在同一排且相邻,则有__________种不同的坐法.三、解答题21.将8本不同的书,全部分给小赵、小钱、小孙、小李四人,在下列不同的情形下,分别有多少种不同的分法?(写出必要的数学式,结果用数字作答.) (1)每人分得2本;(2)有1人分得5本,其余3人各分得1本.22.现有2位男生和3位女生共5位同学站成一排.(用数字作答) (1)若2位男生相邻且3位女生相邻,则共有多少种不同的排法? (2)若男女相间,则共有多少种不同的排法?(3)若男生甲不站两端,女生乙不站最中间,则共有多少种不同的排法?23.男运动员6名,女运动员4名,其中男女队长各1名.选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名; (2)至少有1名女运动员; (3)队长中至少有1人参加; (4)既要有队长,又要有女运动员.24.在()*22nn N x ⎫∈⎪⎭的展开式中. (1)若第五项的系数与第三项的系数的比是10:1,求展开式中各项系数的和; (2)若其展开式前三项的二项式系数和等于79,求展开式中含x 的项.25.已知二项式1nx ⎫⎪⎪⎝⎭()n *∈N 的二项展开式中所有奇数项的二项式系数之和为128. (1)求12nx ⎛⎫+ ⎪ ⎪⎝⎭的展开式中的常数项;(2)在 (1+x )+(1+x )2+(1+x )3+(1+x )4+…+(1+x )2n + 的展开式中,求3x 项的系数.(结果用数字作答)26.把5件不同产品摆成一排.(1)若产品A 必须摆在正中间,排法有多少种?(2)若产品A 必须摆在两端,产品B 不能摆在两端的排法有多少种?(3)若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的排法有多少种?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】将编号为1、2、3、4、5的5个小球,根据小球的个数可分为1、1、3或1、2、2两组,再分配到3个盒子即可求出. 【详解】将编号为1、2、3、4、5的5个小球,根据小球的个数可分为1、1、3或1、2、2两组.①当三个盒子中的小球个数分别为1、1、3时,由于放在同一个盒子里的小球编号互不相连,故3个小球的编号只能是1、3、5的在一个盒子里,故只有一种分组方法,再分配到三个盒子,此时共有336A =种分配方法;②当三个盒子中的小球个数分别为1、2、2时,由于放在同一个盒子里的小球编号互不相连,此时放2个小球的盒子中小球的编号分别为()1,3、()2,4或()1,3、()2,5或()1,4、()2,5或()1,4、()3,5或()1,5、()2,4或()2,4、()3,5,共6种,再分配到三个盒子中,此时,共有33636A =种.综上所述,不同的放法种数为64362+=种. 故选:A. 【点睛】方法点睛:本题主要考查排列的应用,属于中档题.常见排列数的求法为: (1)相邻问题采取“捆绑法”; (2)不相邻问题采取“插空法”; (3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.2.B解析:B 【分析】利用二项展开式的通项可得14(2),0,1,2,3,4r rr T C x r +=-=,令2r可求得结果.【详解】因为4(12)x -的第1r +项展开式14(2),0,1,2,3,4r r r T C x r +=-=,令2r,则含2x 项系数为224(2)24C -=,故选:B . 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有二项展开式通项的应用,项的系数,属于简单题目.3.A解析:A 【解析】试题分析:由题意得,把5个消防队分成三组,可分为1,1,3,1,2,2两类方法,(1)分为1,1,3,共有1135432210C C C A =种不同的分组方法;(2)分为1,2,2,共有1225422215C C C A =种不同的分组方法;所以分配到三个演习点,共有33(1015)150A +⨯=种不同的分配方案,故选A .考点:排列、组合的应用.【方法点晴】本题主要考查了以分配为背景的排列与组合的综合应用,解答的关键是根据“每个演习点至少要安排1个消防队”的要求,明确要将5个消防队分为1,1,3,1,2,2的三组是解得关键,着重考查了分析问题和解答问题的能力,属于中档试题,本题的解答中,先将5个消防队分为三组,则分配到三个演习点,然后根据分步计数原理,即可得到答案.4.D解析:D 【解析】试题分析:观察杨辉三角结合其中数的来源,可得到这个数列的通项公式.n a 当n 为偶数时,42n n a +=;当n 为奇数时,0212322233551,3,6,C C C C C C ======,所以()()232138n n n n a C +++==,所以21S =()()()()22221352124620124622224622758a a a a a a a a ⎡⎤+++++++++=++++++++++⎣⎦()122423112475286753618⎡⎤=⨯⨯+⨯+=+=⎣⎦,故选D. 考点:归纳推理与数列求和.5.B解析:B 【解析】由间接法得32162420416C C C -⋅=-=,故选B .6.C解析:C 【分析】将1180转化为()11811-,利用二项式定理,即可得解. 【详解】()111180811=-()()()()210111210111110911111111111818118118111C C C C C =⋅+⋅⋅-+⋅⋅-++⋅⋅-+⋅-1210111110911111111181818181C C C C =-⋅+⋅++⋅- 1211109111181818111811C C =-⋅+⋅++⨯- 121110911118181811081811C C =-⋅+⋅++⨯+- 12111091111818181108180C C =-⋅+⋅++⨯+ 121110911118181811081728C C =-⋅+⋅++⨯++12111091111818181108172C C -⋅+⋅++⨯+可以被9整除,所以1180被9除的余数为8. 故选:C.【点睛】本题考查利用二项式定理解决余数问题,将原式变形为()11811-是本题的解题关键,属于中档题.7.D解析:D 【分析】分两步分析:①先从5个人中选1人,其位置不变,有155C =种,②对于剩下的四个人,因为每个人都不能站在自己原来的位置上,有9种,恰有一人站在自己原来的位置上包含的基本事件数为45,再求出事件总数,按照古典概型概率公式即可求解. 【详解】5个人站成一排的基本事件的总数为55A , 5个人按原来站的位置重新站成一排, 恰有一人站在自己原来的位置, 先从5个人中选1人,其位置不变,有155C =种,对于剩下的四个人,因为每个人都不能站在自己原来的位置上, 因此第一个人有3种站法, 被站位置的那个人也有3种站法, 最后两人只有1种站法,故不同的调换方法有53345⨯⨯=, 所以所求事件的概率为4531208=. 故选:D. 【点睛】本题考查古典概型的概率,利用分步乘法原理和排列是解题的关键,属于中档题.8.C解析:C 【分析】分情况进行讨论,先计算“甲乙一起参加除了开车的三项工作之一”有多少种情况,再计算“甲和乙分别承担一份工作,丙、丁、戌三人中有两人承担同一份工作”和“甲或乙与丙、丁、戌三人中的一人承担同一份工作”的情况,相加即得. 【详解】由题,分情况讨论,甲乙一起参加除了开车的三项工作之一:133318C A =种;甲乙不同时参加一项工作,又分为两种情况:①甲和乙分别承担一份工作,丙、丁、戌三人中有两人承担同一份工作,有:222323323236C A A =⨯⨯⨯=种;②甲或乙与丙、丁、戌三人中的一人承担同一份工作:2112332272A C C A =种.由分类计数原理,可得共有183672126++=种. 故选:C 【点睛】本题考查计数原理,考查学生的逻辑推理能力.9.A解析:A 【分析】分类计数,考虑选取1名医生2名护士和选取2名医生1名护士两类情况求解. 【详解】当选取的是1名医生2名护士,共有126436C C =种选法,分配到A ,B ,C 三个地区参加医疗救援(每个地区一人),方案要求医生不能去A 地区,共有2224A =种,即一共364144⨯=种方案;当选取的是2名医生1名护士,共有216460C C =种选法,分配到A ,B ,C 三个地区参加医疗救援(每个地区一人),方案要求医生不能去A 地区,共有222A =种,即一共602120⨯=种方案.综上所述:分配方案共有264种. 故选:A 【点睛】此题考查分类计数原理和分步计数原理综合应用,涉及排列组合相关知识,综合性强.10.B解析:B 【分析】把不同的报名方法可分5步完成,结合分步计数原理,即可求解. 【详解】由题意,不同的报名方法可分5步完成: 第一步:第一名同学报名由3种方法 第二步:第二名同学报名由3种方法 第三步:第三名同学报名由3种方法 第四步:第四名同学报名由3种方法 第五步:第五名同学报名由3种方法根据分步乘法计数原理,共有5333333⨯⨯⨯⨯=种方法. 故选:B. 【点睛】本题主要考查了分步计数原理的应用,其中解答中认真审题,合理分步求解是解答的关键,着重考查了分析问题和解答问题的能力.11.A解析:A【分析】由题意知本题是一个古典概型,先求出事件发生的总个数,再求出满足要求的事件个数,再根据古典概型的概率公式即可得出结果. 【详解】由题意知本题是一个古典概型,试验发生的所有事件是20名学生平均分成两组共有1020C 种结果, 而满足条件的事件是2名学生干部恰好被分在不同组内共有19218C C 中结果,根据古典概型的概率公式得192181020=C C P C . 故选:A. 【点睛】本题主要考查古典概型和组合问题,属于基础题.12.C解析:C 【分析】根据角所在的位置,分两类:角排在一或五;角排在二或四.根据分类计数原理和排列组合的知识可得. 【详解】若角排在一或五,有22232A A =24种;若角排在二或四,有22222A A 8=.根据分类计数原理可得,共有24832+=种. 故选:C . 【点睛】本题考查排列组合和计数原理,属于基础题.二、填空题13.240【分析】先求出二项式的展开式的通项公式令的指数等于求出的值即可求得展开式中的常数项【详解】展开式的通项公式令所以的展开式的常数项为故答案为【点睛】本题主要考查二项展开式定理的通项与系数属于简单解析:240 【分析】先求出二项式6x⎛ ⎝的展开式的通项公式,令x 的指数等于0,求出r 的值,即可求得展开式中的常数项. 【详解】6x⎛- ⎝展开式的通项公式3662166(2),rr r r r r r T C x C x --+⎛==⨯-⨯ ⎝令36342r r -=⇒=,所以6x ⎛ ⎝的展开式的常数项为4462240C ⨯=,故答案为240. 【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.14.20【分析】因为最高的女生站在正中间因此只需要考虑最高的女生的左边或者右边即可因为当最高女生的左边(或右边)确定好后其右边(或左边)也就确定了由此计算出七位女生排队的方法数【详解】由题意可知当最高的解析:20 【分析】因为最高的女生站在正中间,因此只需要考虑最高的女生的左边或者右边即可,因为当最高女生的左边(或右边)确定好后,其右边(或左边)也就确定了,由此计算出七位女生排队的方法数. 【详解】由题意可知,当最高的女生站在正中间,此时只需要排好左右两边,第一步:先排左边,有3620C =种排法,第二步:再排右边,此时另外三人按从高到低排列,只有1种排法,所以总的排法数为:36120C ⨯=种.故答案为20. 【点睛】本题考查分步乘法原理以及排列组合的简单应用,难度一般.利用排列组合的方法解答计数问题时,要活用分步乘法和分类加法计数原理.15.【分析】先求出展开式通项得出系数要使展开式中系数最大只需该项系数不小于前一项系数也不小于后一项系数建立关于项数的不等式求解即可【详解】二项式的展开式通项为若第系数最大需满足即整理得解得所以该二项展开 解析:20126720x【分析】先求出展开式通项,得出系数,要使展开式中系数最大,只需该项系数不小于前一项系数,也不小于后一项系数,建立关于项数r 的不等式,求解即可. 【详解】二项式12312x x ⎛⎫+ ⎪⎝⎭的展开式通项为31212364112121(2)()2r r r r r rr T C x C x x ---+==,0,1,2,12r =,若第1r +系数最大,需满足1213112121211112122222r r r r r r r r C C C C -----+⎧≥⎨≥⎩,即12!212!!(12)!(1)!(13)!212!12!!(12)!(1)!(11)!r r r r r r r r ⨯⎧≥⎪---⎪⎨⨯⎪≥⎪-+-⎩, 整理得121321121r r r r ⎧≥⎪⎪-⎨⎪≥⎪-+⎩,解得1013,,433r r N r ≤≤∈∴=, 8420205122126720T C x x ==,所以该二项展开式中系数最大的项为20126720x . 故答案为:20126720x . 【点睛】本题考查二项展开式定理的应用,熟记通项是解题的关键,考查计算求解能力,属于中档题.16.【分析】利用赋值法求二项式展开式系数和令则可得的值令则可得的值从而得解;【详解】解:因为令得令得则故答案为:【点睛】本题考查利用赋值法求二项式展开式的系数和的问题属于中档题 解析:177147-【分析】利用赋值法求二项式展开式系数和,令1x =则,可得01211a a a a +++⋅⋅⋅+的值,令1x =-则,可得01231011a a a a a a -+-+⋅⋅⋅+-的值,从而得解;【详解】解:因为1121101211(21)x a a x a x a x +=+++⋅⋅⋅+ 令1x =得11012113a a a a +++⋅⋅⋅+=,令1x =-得()110123101111a a a a a a -+-+⋅⋅⋅+-=-=-则2202101311()()a a a a a a ++⋅⋅⋅+-++⋅⋅⋅+[][]0210131102101311()()()()a a a a a a a a a a a a =++⋅⋅⋅++++⋅⋅⋅+⋅++⋅⋅⋅+-++⋅⋅⋅+()1131=⨯-177147=-故答案为:177147- 【点睛】本题考查利用赋值法求二项式展开式的系数和的问题,属于中档题.17.192【分析】先将甲乙两人捆绑在一起看成一个人且内部自排再与除丙外的其他人排列最后将丙插空放入保证与乙不相邻即可【详解】第一步:甲乙相邻共有种排法;第二步:将甲乙看成一个人与除丙外的其他人排列共有:【分析】先将甲乙两人捆绑在一起看成一个人且内部自排,再与除丙外的其他3人排列,最后将丙插空放入,保证与乙不相邻即可. 【详解】第一步:甲乙相邻,共有222A =种排法;第二步:将甲乙看成一个人,与除丙外的其他3人排列,共有:4424A =种排法; 第三步:将丙插空放入,保证与乙不相邻,共有:144A =种排法;根据分步计数原理可得,共有2244192⨯⨯=种排法. 故答案为: 192 【点睛】本题主要考查有限制条件的排列问题,属于中档题.解有限制条件的排列问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确,分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终,同时需掌握有限制条件的排列问题的求解方法.18.【分析】取得出再取得出最后由得出答案【详解】取得出取得出则故答案为:【点睛】本题主要考查了二项式定理与数列求和的应用属于中档题 解析:80-【分析】取0x =,得出012341a a a a a ++++=,再取1x =-,得出081a =,最后由1234012340a a a a a a a a a a +++++++=-得出答案.【详解】取0x =,得出401234()11a a a a a -=+++=+ 取1x =-,得出4013)8(a -==则012341234018180a a a a a a a a a a ++++++=--=-+= 故答案为:80- 【点睛】本题主要考查了二项式定理与数列求和的应用,属于中档题.19.60【分析】由题意可得二项展开式的通项要求展开式的常数项只要令可求代入可求【详解】解:由题意可得二项展开式的通项为:令可得:此时即的展开式中的常数项为60故答案为:60【点睛】本题考查了二项展开式项解析:60 【分析】由题意可得,二项展开式的通项26161(2)()(1)2r r r rr T C x x-+=-=-61236rr r C x --,要求展开式的常数项,只要令1230r -=可求r ,代入可求解:由题意可得,二项展开式的通项为: 2661231661(2)()(1)2r r r r r r rr T C x C x x---+=-=-,令1230r -=,可得:4r =,此时2456260T C ==,即6212x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为60. 故答案为:60. 【点睛】本题考查了二项展开式项的通项公式的应用,考查解题运算能力.20.【分析】先把甲和乙捆在一起再进行分组再排列即可得答案【详解】先进行分组并保证甲和乙在一起共有种再进行排列∴共有故答案为:【点睛】本题考查排列数的应用考查逻辑推理能力运算求解能力求解时注意先捆绑再分组 解析:192【分析】先把甲和乙捆在一起,再进行分组,再排列即可得答案. 【详解】先进行分组,并保证甲和乙在一起,共有14C 4=种,再进行排列,∴共有113423(22)192N C C A =⋅⋅⨯⋅=.故答案为:192. 【点睛】本题考查排列数的应用,考查逻辑推理能力、运算求解能力,求解时注意先捆绑、再分组、再排列的思路.三、解答题21.(1)2520;(2)1344. 【分析】(1)将8本不同的书依次分给小赵、小钱、小孙、小李四人,每人2本,利用组合数原理可求得分法种数;(2)先选定一人分得5本,其余3本每人1本,利用分步乘法计数原理可求得分法种数. 【详解】(1)将8本不同的书依次分给小赵、小钱、小孙、小李四人,每人2本, 由组合数原理可知,不同的分法种数为222286422520C C C C =种; (2)先选定一人分得5本,其余3本每人1本,由分步乘法计数原理可知,不同的分法种数为5138431344C C A =种. 【点睛】本题考查排列组合综合问题,考查了平均分组以及分步乘法计数原理的应用,考查计算能力,属于中等题.22.(1)24(2)12(3)60 【分析】(1)相邻问题利用捆绑法; (2)若男女相间,则用插空法;(3)若男生甲不站两端,女生乙不站最中间,则利用间接法. 【详解】解:(1)利用捆绑法,可得共有22322324A A A =种不同的排法;(2)利用插空法,可得共有232312A A =种不同的排法;(3)利用间接法,可得共有54135423360A A C A -+=种不同的排法.【点睛】本题考查排列组合及简单的计数问题,涉及间接法和捆绑,插空等方法的应用,属于中档题.23.(1)120;(2)246;(3)196;(4)191. 【分析】(1)本题是一个分步计数问题,第一步计算选3名男运动员选法数,第二步计算选2名女运动员的选法数,再利用乘法原理得到结果.(2)利用对立事件,“至少有1名女运动员”的对立事件为“全是男运动员”,得到从10人中任选5人的选法数,再得到全是男运动员选法数,相减即可.(3)分三类讨论求解,第一类“只有男队长”,第二类“只有女队长”,第三类 “男女队长都入选”,然后相加即可.(4)分两类讨论求解,第一类,当有女队长时,其他人选法任意,第二类不选女队长,必选男队长,其中要减去不含女运动员的选法,然后相加即可. 【详解】(1)分两步完成,首先选3名男运动员,有3620C =种选法,再选2名女运动员,有246C =种选法,共有3264120C C ⋅=种选法.(2)“至少有1名女运动员”的对立事件为“全是男运动员”,从10人中任选5人,有510252C =种选法,全是男运动员有566C =种选法,所以“至少有1名女运动员”的选法有55106246-=C C 种选法. (3)“只有男队长”的选法有48C 种,“只有女队长”的选法有48C 种,“男女队长都入选”的选法有38C 种,所以队长中至少有1人参加的选法共有43882196C C +=种;(4)当有女队长时,其他人选法任意,共有49C 种,不选女队长,必选男队长,共有48C 种,其中不含女运动员的选法有45C 种,此时共有4485C C -种,所以既要有队长,又要有女运动员的选法共有444985191C C C +-=种.【点睛】本题主要考查分步,分类计数原理以及组合的分配问题,还考查了理解辨析和运算求解的能力,属于中档题. 24.(1)1(2)3264T x = 【分析】(1)由展开式中第五项的系数与第三项的系数的比是10:1,求得8n =.再令1x =得各项系数的和.(2)依题意可得01279n n n C C C ++=,即可求出n ,得到通项,再令5612r -=,即可得解; 【详解】解:(1)()*22nn N x ⎫∈⎪⎭展开式的通项为()521222rn rn rr rr r nn T CC x x --+⎛⎫=-=- ⎪⎝⎭由题意知,第五项系数为()442n C -,第三项的系数为()222n C -,则有4422(2)10(2)1n n C C -=-,化简得25240n n --=, 解得8n =或3n =-(舍去). 令1x =得各项系数的和为()8121-=.(2)∵01279n n n C C C ++=,∴21560n n +-=.∴12n =或13n =-(舍去).通项公式561221121222()(2)r r rr r rr T C C x x--+=-=-, 令5612r -=,则2r ,故展开式中含x 的项为22312(2)264T C x x =-=.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题. 25.(1)3716T =; (2)330 【分析】二项展开式中所有项的系数和为2n ,奇数项的二项式系数和应为所有项系数和的一半,即21282n= ,可求得8n =. (1)写出该二项式展开式的通项,令x 的指数为零,即可求解;(2)由二项式定理知3x 在3(1)x +,4(1)x +,,10(1)x +中均存在,故3x 的系数为3334341011330C C C C +++==.【详解】 解:所有奇数项的二项式系数之和为128,21282n∴=,解得8n =.(1)81)2x+的第1r +项为8488318811(()()22rr r r r rr T C C x x ---+==,令8403r-=,得2r ,则常数项为238617216T C =⋅=; (2)23410(1)(1)(1)(1)++(1)x x x x x ++++++++展开式中3x 的系数为:33343334104410C C C C C C +++=+++4335510C C C =+++411330C ==.【点睛】本题考查了二项式定理及其应用,组合数的性质,属于中档题. 26.(1)24种 (2)36种(3)36种 【分析】(1)将A 放中间,其他全排列即可; (2)先排A,再排B,其他全排即可;(3)将AB 捆绑,进行排列,减去AC 相邻的情况即可. 【详解】(1)A 摆在正中间,其他4个产品进行全排列,故共有4424A =(种)排法.(2)分三步,第一步将产品A 摆在两端,有2种;第二步将产品B 摆在中间三个位置之一,有3种排法;第三步将余下的三件产品摆在余下三个位置,有33A 种排法,故共有332336A ⨯⨯=(种)排法.(3)将A ,B 捆绑在一起,有22A 种摆法,再将它们与其他3件产品全排列,有44A 种摆法,共有242448A A =(种)摆法,而A ,B ,C 三件在一起,且A ,B 相邻,A ,C 相邻有CAB ,BAC 两种情况,将这3件与剩下2件全排列,有33212A ⨯=(种)摆法,故A ,B 相邻,A ,C 不相邻的摆法有48-12=36(种). 【点睛】本题主要考查了排列问题,涉及相邻问题用捆绑,特殊元素优先排,正难则反的技巧,属于中档题.。
北师大版高中数学高中数学选修2-3第一章《计数原理》测试(有答案解析)
![北师大版高中数学高中数学选修2-3第一章《计数原理》测试(有答案解析)](https://img.taocdn.com/s3/m/ead63f0d9b89680202d8253c.png)
一、选择题1.将编号为1、2、3、4、5的5个小球全部放入A 、B 、C 三个盒子内,若每个盒子不空,且放在同一个盒子内的小球编号不相连,则不同的方法总数有( )A .42B .36C .48D .602.二项式51(2)x x-的展开式中含3x 项的系数是 A .80 B .48 C .−40 D .−803.设()22201221nn n x x a a x a x a x ++=++++,则022n a a a 的值是( )A .()1312n- B .1312nC .3nD .31n +4.设()929012913x a a x a x a x -=+++⋅⋅⋅+,则0129a a a a +++⋅⋅⋅+的值为( ) A .94B .93C .92D .92-5.某科技小组有四名男生两名女生.现从中选出三名同学参加比赛,其中至少有一名女生入选的不同选法种数为( ) A .36CB .1225C CC .12212424C C C C + D .36A6.甲、乙、丙、丁4人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是( ) A .840B .2226C .2100D .23527.我们把各位数字之和为6的四位数称为“六合数”(如2013是“六合数”),则“六合数”中首位为3的“六合数”共有( ) A .18个 B .15个 C .10个 D .9个8.有4个不同的小球放入3个盒子中,每个盒子至少放一个小球,则不同的放法共有( ) A .12种 B .18种 C .24种 D .36种 9.由1,2,3,4,5组成没有重复数字,含2和5且2与5不相邻的四位数的个数是( ) A .120B .84C .60D .3610.安排3人完成5项不同工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式种数为( ) A .60B .150C .180D .24011.我省5名医学专家驰援湖北武汉抗击新冠肺炎疫情现把专家全部分配到A ,B ,C 三个集中医疗点,每个医疗点至少要分配1人,其中甲专家不去A 医疗点,则不同分配种数为( ) A .116 B .100C .124D .9012.41(1)x x++的展开式中常数项为( )A .18B .19C .20D .21二、填空题13.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为__________. 14.设()28210012101(43)(21)(21)(21)x x a a x a x a x +-=+-+-++-,则1210a a a ++⋯+= ________.15.已知()()()()2*01211...1nnn x a a x a x a x n N =+++++++∈对任意的x ∈R 恒成立,若450a a +=,则n =______.16.设2012(1)n n n x a a x a x a x +=++++,*4,n n N ≥∈.已知23242a a a =(1)求n 的值.(2)设(12)2n a b +=+,其中*,a b N ∈,求222a b -的值.17.某班共有40学生.某次考试中,甲、乙、丙3位同学的成绩都在班级前10名.甲的成绩比乙高,乙的成绩比丙高,全班没有并列名次.如果把甲、乙的成绩排名依次作为横坐标x 、纵坐标y ,那么这样的点坐标(),x y 共有_________个.18.把6张不同的充值卡分给4位同学,每人至少1张,有_________种分法19.6212x x ⎛⎫- ⎪⎝⎭的展开式中的常数项是_______________. 20.某单位拟安排6位员工在今年6月14号至16号(某节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值16号,乙不值14号,则不同的安排方法共有____________种.三、解答题21.用0、1、2、3、4这五个数字组成无重复数字的自然数. (1)在组成的三位数中,求所有偶数的个数;(2)在组成的三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如301、423等都是“凹数”,试求“凹数”的个数. 22.设整数4n >,记f (x ,y )=()21nx y +-. (1)若令f (x ,1)=2012n n a a xa x a x .求:①0a ; ②01223(1)n a a a n a .(2)若f (x ,y )的展开式中4n x -与xy 两项的系数相等,求n 的值. 23.已知,n ∈N *.(1)设f (x )=a 0+a 1x +a 2x 2+…+a n x n ,①求a 0+a 1+a 2+…+a n ;②若在a 0,a 1,a 2,…,a n 中,唯一的最大的数是a 4,试求n 的值; (2)设f (x )=b 0+b 1(x +1)+b 2(x +1)2+…+b n (x +1)n ,求.24.已知数列{}n a 的首项为1,记()()()()120122123, 111nn n n nn F x n a C x a C x x a C x x --=-+-+-()11111n n n nn n n n a C x x a C x --+++-+.(1)若数列{}n a 是公比为3的等比数列,求()1, 2020F -的值;(2)若数列{}n a 是公差为2的等差数列,求证:(), 2020F x 是关于x 的一次多项式.25.已知n 为给定的正整数,设201223nn n x a a x a x a x ⎛⎫+=++++ ⎪⎝⎭,x ∈R .(1)若4n =,求01,a a 的值;(2)若13x =,求0()nkk k n k a x =-∑的值.26.(1)把6本不同的书分给4位学生,每人至少一本,有多少种方法? (2)由0,1,2,3,4,5这6个数字组成没有重复数字的四位偶数由多少个?(3)某旅行社有导游9人,其中3人只会英语,4人只会日语,其余2人既会英语,也会日语,现从中选6人,其中3人进行英语导游,另外3人进行日语导游,则不同的选择方法有多少种?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】将编号为1、2、3、4、5的5个小球,根据小球的个数可分为1、1、3或1、2、2两组,再分配到3个盒子即可求出. 【详解】将编号为1、2、3、4、5的5个小球,根据小球的个数可分为1、1、3或1、2、2两组.①当三个盒子中的小球个数分别为1、1、3时,由于放在同一个盒子里的小球编号互不相连,故3个小球的编号只能是1、3、5的在一个盒子里,故只有一种分组方法,再分配到三个盒子,此时共有336A =种分配方法;②当三个盒子中的小球个数分别为1、2、2时,由于放在同一个盒子里的小球编号互不相连,此时放2个小球的盒子中小球的编号分别为()1,3、()2,4或()1,3、()2,5或()1,4、()2,5或()1,4、()3,5或()1,5、()2,4或()2,4、()3,5,共6种,再分配到三个盒子中,此时,共有33636A =种.综上所述,不同的放法种数为64362+=种. 故选:A. 【点睛】方法点睛:本题主要考查排列的应用,属于中档题.常见排列数的求法为: (1)相邻问题采取“捆绑法”; (2)不相邻问题采取“插空法”; (3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.2.D解析:D 【解析】512x x ⎛⎫- ⎪⎝⎭展开式的通项公式为:()()55521551C 212C rr r r r rr r T x x x ---+⎛⎫=-=- ⎪⎝⎭, 令523r -=,1r =,所求系数为145C 280-=-,故选D .3.B解析:B 【分析】本题可以通过利用二项展开式的系数关系,采用赋值法将x 分别赋值为1、1-,然后通过运算即可得出结果. 【详解】()22201221nn n x x a a x a x a x ++=++++, 令1x =,01223n na a a a ①,令1x =-,01221n a a a a ②,(①+②)02212312nna a a ,【点睛】本题考查二项展开式的相关运算,可通过赋值法进行计算,考查计算能力,考查化归与转化思想,是中档题.4.A解析:A 【分析】由()913x -的展开式的通项为()193rrr T C x +=-,可得10a <,30a <,50a <,70a <,90a <,则01290123456789a a a a a a a a a a a a a a +++⋅⋅⋅+=-+-+-+-+-,再令1x =-即可得解; 【详解】解:因为()929012913x a a x a x a x -=+++⋅⋅⋅+,()913x -的展开式的通项为()193rr r T C x +=-,所以10a <,30a <,50a <,70a <,90a <,所以01290123456789a a a a a a a a a a a a a a +++⋅⋅⋅+=-+-+-+-+-令1x =-得901234567894a a a a a a a a a a -+-+-+-+-=所以901294a a a a +++⋅⋅⋅+= 故选:A 【点睛】本题考查赋值法求二项式展开式的系数和的问题,属于中档题.5.C解析:C 【分析】分只有一名女生入选和有二名女生入选两种情况,结合分步乘法计数原理以及分类加法计数原理,即可得出答案. 【详解】当只有一名女生入选时,先选1名女生,有12C 种,再选2名男生,有24C 种,则根据分步乘法计数原理可知,有1224C C 种当有二名女生入选时,选选2名女生,有22C 种,再选1名男生,有14C 种,则根据分步乘法计数原理可知,有2124C C 种所以从中选出三名同学参加比赛,其中至少有一名女生入选的不同选法种数为12212424C C C C +故选:C本题主要考查了组合的应用,涉及了分步乘法计数原理以及分类加法计数原理的应用,属于中档题.6.B解析:B 【分析】分成三类:一类每个台阶站1人;二类一个台阶站2人,一个台阶1人,一个台阶1人;三类一个台阶站2人,一个台阶站2人,分类用加法原理可得. 【详解】每个台阶站1人有47840A =,一个台阶站2人,一个台阶1人,一个台阶1人有23471260C A , 一个台阶站2人,一个台阶站2人有273126A所以共有840+1260+126=2226 故选:B. 【点睛】本题考查使用两个计数原理进行计数的基本思想:对需用两个计数原理解决的综合问题要“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.7.C解析:C 【分析】首位数字是3,则后三位数字之和为3,按一个为3,两个和为3及三个和为3进行分类排列可得. 【详解】由题知后三位数字之和为3,当一个位置为3时有003,030,300三个;当两个位置和为3时有336A =个,;当三个位置和为3时只有111一个,一共有10个.故选:C 【点睛】本题考查求解排列问题.其主要方法: 直接法:把符合条件的排列数直接列式计算. 优先法:优先安排特殊元素或特殊位置.捆绑法:把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列. 插空法:对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中.8.D解析:D 【分析】先把小球分3组共有24C 种分法,再将3组小球全排列,放入对应3个盒子即可.根据题意,分2步安排,第一步,把4个小球分成3组,其中1组2只,剩余2组各1只,分组方法有246C =种,第二步,把这3组小球全排列,对应3个盒子,有336A =种,根据分步计数原理可得所有的不同方法共有6636⨯=种. 故选:D 【点睛】本题主要考查了计数原理,排列与组合的应用,属于中档题.9.D解析:D 【分析】由题可知四位数中含2和5,且2与5不相邻,所以1,3,4选2个并全排列有23A 种,再在两个元素中形成的三个空中插入2与5有23A 种,即可得出结果. 【详解】由题可得四位数中含2和5,所以2与5都选,又2与5不相邻,所以1,3,4选2个并全排列有23A 种,再在两个元素中形成的三个空中插入2与5有23A 种,所以共有223336⨯=A A 种.故选:D. 【点睛】本题主要考查插空法排列问题.10.B解析:B 【分析】根据题意,分2步进行分析:①、分两种情况讨论将5项工作分成3组的情况数目,②、将分好的三组全排列,对应3名志愿者,由分步计数原理计算可得答案. 【详解】解:根据题意,分2步进行分析: ①、将5项工作分成3组,若分成1、1、3的三组,有3115212210C C C A =种分组方法, 若分成1、2、2的三组,有2215312215C C C A =种分组方法, 则将5项工作分成3组,有101525+=种分组方法;②、将分好的三组全排列,对应3名志愿者,有336A =种情况,则有256150⨯=种不同的分组方法; 故选:B .本题考查排列、组合的应用,注意分组时要进行分类讨论,属于中档题.11.B解析:B 【分析】完成这件事情可分2步进行:第一步将5名医学专家分为3组;第二步将分好的3组分别派到三个医疗点,由分步计数原理计算即可得到答案. 【详解】根据已知条件,完成这件事情可分2步进行: 第一步:将5名医学专家分为3组①若分为3,1,1的三组,有3510C =种分组方法;②若分为2,2,1的三组,有22532215C C A =种分组方法, 故有101525+=种分组方法.第二步:将分好的三组分别派到三个医疗点,甲专家不去A 医疗点,可分配到,B C 医疗点中的一个,有122C =种分配方法, 再将剩余的2组分配到其余的2个医疗点,有222A =种分配方法,则有224⨯=种分配方法.根据分步计数原理,共有254100=⨯种分配方法. 故选:B . 【点睛】本题主要考查排列、组合的应用,同时考查分步计数原理,属于基础题.12.B解析:B 【分析】 41(1)x x ++展开式的141()r r r T C x x +=+,(0r =,1,⋯,4).1()r x x+的通项公式:211()k r k k k r k k r r T C x C x x--+==,令2r k =,进而得出.【详解】 解:41(1)x x ++展开式的141()r r r T C x x+=+,(0r =,1,⋯,4). 1()r x x +的通项公式:211()k r k k k r k k r r T C x C x x--+==,令2r k =,可得:0k =时,0r =;1k =时,2r ,2k =时,4r =.41(1)x x∴++展开式中常数项21424244119C C C C =+⨯+⨯=. 故选:B . 【点睛】本题考查了二项式定理的通项公式及其应用,考查了推理能力与计算能力,属于中档题.二、填空题13.【分析】将一班位同学捆绑在一起形成一个大元素与其它班位同学形成个元素然后再将二班位同学插空利用排列组合思想以及古典概型的概率公式可求得所求事件的概率【详解】将一班位同学捆绑在一起形成一个大元素与其它 解析:120【分析】将一班3位同学捆绑在一起,形成一个大元素,与其它班5位同学形成6个元素,然后再将二班2位同学插空,利用排列组合思想以及古典概型的概率公式可求得所求事件的概率. 【详解】将一班3位同学捆绑在一起,形成一个大元素,与其它班5位同学形成6个元素,然后再将二班2位同学插空,由分步乘法计数原理以及古典概型的概率公式可知,所求事件的概率为3623671010120A A A A =. 故答案为:120. 【点睛】本题考查捆绑法与插空法的应用,同时也考查了利用古典概型的概率公式求事件的概率,考查计算能力,属于中等题.14.【分析】因为分别令和即可求得答案【详解】令原式化为令得故答案为:【点睛】本题主要考查了多项式展开式系数和解题关键是掌握求多项式系数和的解题方法考查了分析能力和计算能力属于中档题解析:34【分析】因为()()()()()8210201210143212121x x a a x a x a x +-=+-+-++-,分别令1x =和12x =,即可求得答案. 【详解】()()()()()8210201210143212121xx a a x a x a x +-=+-+-++-令1x =.∴原式化为012102a a a a =++++.令12x =,得054a =,∴121053244a a a +++=-=. 故答案为: 34. 【点睛】本题主要考查了多项式展开式系数和,解题关键是掌握求多项式系数和的解题方法,考查了分析能力和计算能力,属于中档题.15.【分析】先由赋值法求出再利用二项式定理以及展开式的通项公式求即可【详解】因为令则即因为由展开式的通项为得:所以解得故答案为:【点睛】本题考查了二项式展开式的通项需熟记公式属于中档题 解析:9【分析】先由赋值法求出0a ,再利用二项式定理以及展开式的通项公式求n 即可. 【详解】因为()()()()2*01211...1nnn x a a x a x a x n N =+++++++∈,令1x =-,则()01na =-,即()()011n a n ⎧⎪=⎨-⎪⎩为偶数为奇数,因为450a a +=,由()11nn x x ⎡⎤=-++⎣⎦展开式的通项为()()111n rrrr n T C x -+=-+得: ()()4545110n n n n C C ---+-=,所以45n n C C =,解得9n =. 故答案为:9 【点睛】本题考查了二项式展开式的通项,需熟记公式,属于中档题.16.(1)(2)【分析】(1)根据二项展开式定理得出建立关于的方程求解即可;(2)由而结合二项展开式定理可得即可求解【详解】(1)依题意整理得(2)当时偶数项含有【点睛】本题考查二项展开式定理的应用熟记解析:(1)5n =(2)1- 【分析】(1)根据二项展开式定理,得出234,,a a a ,建立关于n 的方程,求解即可;(2)由222(a b a a -=+-,而(1n a +=+,结合二项展开式定理可得(1n a -=-. 【详解】(1)依题意324324,,n n n a C a C a C ===23242a a a =⋅2(1)(2)(1)(1)(2)(3)232124321n n n n n n n n n ------⎡⎤=⨯⨯⎢⎥⨯⨯⨯⨯⨯⎣⎦整理得2332n n --=,5n ∴=(2) 当5n =时,5(1a +=+502233445555555(12)C C C C C C +=++++,5(1a ∴=-22552(1(11a b ∴-==-【点睛】本题考查二项展开式定理的应用,熟记公式是解题的关键,考查计算求解能力,属于中档题.17.120【分析】设丙的成绩排名为则将所求问题转化为从小于等于10的正整数中选取3个数最大那个数为最小那个数为即可【详解】设丙的成绩排名为由题意所求问题相当于从小于等于10的正整数中选取3个数最大那个数解析:120 【分析】设丙的成绩排名为z ,则110x y z ≤<<≤,将所求问题转化为从小于等于10的正整数中选取3个数,最大那个数为z ,最小那个数为x 即可. 【详解】设丙的成绩排名为z ,由题意,110x y z ≤<<≤,所求问题相当于从小于等于10的正整数中选取3个数,最大那个数为z ,最小那个数为x ,则共有3101120C ⋅=种,故甲、乙的 成绩排名依次作为横坐标x 、纵坐标y ,那么这样的点坐标(),x y 共有120个. 故答案为:120 【点睛】本题考查排列组合的综合应用,考查学生转化与化归思想,是一道中档题.18.1560【分析】分4位同学分得的卡数为1113和1122两种情况讨论即可【详解】分两类:第一类:当4位同学分得的卡数为1113时共有种;第二类:当4位同学分得的卡数为1122时共有种由加法原理知共有解析:1560 【分析】分4位同学分得的卡数为1,1,1,3和1,1,2,2两种情况讨论即可. 【详解】 分两类:第一类:当4位同学分得的卡数为1,1,1,3时,共有3464480C A =种;第二类:当4位同学分得的卡数为1,1,2,2时,共有221146421422221080C C C C A A A =种, 由加法原理,知共有1560种不同分法. 故答案为:1560 【点睛】本题考查排列与组合中的部分均匀分组问题,考查学生逻辑推理能力,数学运算能力,是一道中档题.19.60【分析】由题意可得二项展开式的通项要求展开式的常数项只要令可求代入可求【详解】解:由题意可得二项展开式的通项为:令可得:此时即的展开式中的常数项为60故答案为:60【点睛】本题考查了二项展开式项解析:60 【分析】由题意可得,二项展开式的通项26161(2)()(1)2r r r rr T C x x-+=-=-61236rr r C x --,要求展开式的常数项,只要令1230r -=可求r ,代入可求 【详解】解:由题意可得,二项展开式的通项为: 2661231661(2)()(1)2r r r r r r rr T C x C x x---+=-=-,令1230r -=,可得:4r =,此时2456260T C ==,即6212x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为60. 故答案为:60. 【点睛】本题考查了二项展开式项的通项公式的应用,考查解题运算能力.20.42【分析】根据题意不同的安排方法的数目等于所有排法减去甲值16号或乙值14号的排法数再加上甲值16号且乙值14号的排法进而计算可得答案【详解】解:根据题意不同的安排方法的数目为:所有排法减去甲值1解析:42 【分析】根据题意,不同的安排方法的数目等于所有排法减去甲值16号或乙值14号的排法数,再加上甲值16号且乙值14号的排法,进而计算可得答案. 【详解】解:根据题意,不同的安排方法的数目为:所有排法减去甲值16号或乙值14号的排法数,再加上甲值16号且乙值14号的排法,即221211645443242C C C C C C -⨯+=, 故答案为:42. 【点睛】本题考查组合数公式的运用,注意组合与排列的不同以及各种排法间的关系,避免重复、遗漏.三、解答题21.(1)30;(2)20. 【分析】(1)对个数是否为0进行分类讨论,结合分步乘法计数原理和分类加法计数原理可求得结果;(2)对十位数字进行分类讨论,结合“凹数”的定义与分类加法计数原理可求得结果. 【详解】(1)偶数分为二类:若个位数0,则共有2412A =个;若个位数是2或4,则首位数不能为0,则共有23318⨯⨯=个; 所以,符合条件的三位偶数的个数为121830+=; (2)“凹数”分三类:若十位是0,则有2412A =个;若十位是1,则有236A =个;若十位是2,则有222A =个;所以,符合条件的“凹数”的个数为126220++=. 【点睛】本题考查数字的排列问题,考查了分类加法计数原理和分步乘法计数原理的应用,考查计算能力,属于中等题. 22.(1)①01a =②1(1)2n n (2)51n =【分析】(1)①利用赋值法,令0x =,即可求出;②利用倒序相加求和法,以及二项式系数的性质即可求出;(2)由()()(),11nnf x y x x ⎡⎤=+=+⎣⎦,利用二项式定理可知,4n x -项仅出现在4r =时的展开式()4441n nC x-中,可求得4n x -项系数,再利用xy 项仅出现在()111n n n C x --的展开式中,可求得xy 项系数,即可列式求解.【详解】(1)① 因为f (x ,1)=()1n x +=0122n nn n n n C C x C x C x .所以01a =. ② 由① 得,01201223(1)23(1)nnn n n n a a a n a C C C n C设T =01223(1)n nnnn C C C n C ,则T =210(1)32nnnnn n C C C C .两式相加得,012(1)()(1)2n n nnn T n C C C n ,所以1(1)2n T n ,即01223(1)n a a a n a =1(1)2n n .(2)因为()()2121nnrr n rn r x y C xy -=+-=-∑,其中4n x -项仅出现在4r =时的展开式()44421n nC x y --中,4n x -项系数为()441nC -;而xy 项仅出现在1=-r n 时的展开式()1121n n nCx y ---中,xy 项系数为()3122121n n n n C C ----,因此有()()4341221121n n n n n C C C ----=-,注意到4n >,化简得()33148n n --=-⋅,故只能是n 为奇数且348n -=.解得51n =. 【点睛】本题主要考查二项式定理的应用,赋值法,倒序相加求和法的应用,以及利用指定项的系数求参数,意在考查学生的数学运算能力,属于中档题. 23.(1)①;②n =12或13;(2)(2n +1﹣2﹣n )【解析】 【分析】(1)①可令x =1,代入计算可得所求和;②可得f (x )=(x +2)n =(2+x )n 的通项公式,a r 最大即为a r ≥a r ﹣1,且a r ≥a r +1,化简计算,结合不等式的解,可得所求值; (2)由f (x )=[1+(x +1)]n ,可得b r =C ,r =0,1,…,n ,推得,再由二项式定理,计算可得所求和. 【详解】解:(1)①由(x +2)n =a 0+a 1x +a 2x 2+…+a n x n , 可令x =1,可得3n =a 0+a 1+a 2+…+a n , 即a 0+a 1+a 2+…+a n =3n ; ②f (x )=(x +2)n =(2+x )n , 可得a r2n ﹣r x r ,r =0,1,…,n ,若在a 0,a 1,a 2,…,a n 中,a r 最大,可得,即为,化为,由于r =4时为a 4唯一的最大值,可得n =12,13;(2)由f (x )=b 0+b 1(x +1)+b 2(x +1)2+…+b n (x +1)n , 且f (x )=[1+(x +1)]n ,可得b r =C ,r =0,1,…,n , 则,由••,则(C)(2n +1﹣2﹣n ).【点睛】本题考查二项式定理,考查赋值法求系数和,考查组合数的性质.解题关键是掌握二项式展开式通项公式,在展开式中第项系数为,则由可得系数最大项的项数.24.(1)1(2)证明见解析; 【分析】(1)根据13-=n n a ,得到()()()()()1220012,313131nn n n nn F x n C x C x x C x x --=-+-+-()()()()()1113131312n nnnn nn n C x x C x x x x --++-+=-+=+求解.(2)易得21n a n =-,则(),F x n ()()()()()101222112114(1)12--=-++-++-+++nn n n n nn nn C x C x x C x n C xx ,再转化为(),F x n ()()10122211(1)--⎡⎤=-+-+-+++⎣⎦n n n n n n n n n C x C x x C x x C x ()11222212(1)n n n n n n n C x x C x x nC x --⎡⎤-+-++⎣⎦,利用二项式定理及组合数公式求解.【详解】(1)由题意得:13-=n n a ,∴()()()()()1220012,313131nn n n nn F x n C x C x x C x x --=-+-+-()()()()()1113131312n n nnn nn n C x x C x x x x --++-+=-+=+,∴()()20201,2020121F -=-=;(2)证明:若数列{}n a 是公差为2的等差数列,则21n a n =-.()()()()10111121,111---+=-+-++-+nn n n n nn n n n n n F x n a C x a C x x a C x x a C x ,()()()()()101222112114(1)12--=-++-++-+++nn n n n nn nn C x C x x C x n C x x ,()()10122211(1)--⎡⎤=-+-+-+++⎣⎦n n n n n n n n n C x C x x C x x C x()11222212(1)n n n n n n n C x x C x x nC x --⎡⎤-+-++⎣⎦,由二项式定理知,()()()10122211(1)11---+-+-=-+=⎡⎤⎣++⎦n n n n n n n n nnC x C x x C x x x x C x , 因为()()()()111!!!!1!!kk n n n n kC k n C k n k k n n k --⋅-=⋅=⋅=---,所以()1122212(1)---+-++n n n n n nn C x x C x nC x x()1012211111(1)------=-+-++n n n n n n nnC x x n x x nC x C ()112111111(1)n n n n n n n nx C x C x x C x -------=⎦-+-++⎡⎤⎣()11-=-+=⎡⎤⎣⎦n nx x x nx ,所以(),12F x n nx =+.(),202014040F x x =+.【点睛】本题主要考查二项式定理及其展开式以及组合数公式,等差数列,等比数列的通项公式,还考查了运算求解的能力,属于中档题. 25.(1)01681a =,13227a =.(2)23n 【分析】(1)利用二项式定理可求出0a 和1a 的值;(2)利用组合数公式得出11k k n n kC nC --=,可得出()00121213333n kk n kkn nnk k k k n n k k k n k a x nC nC --===⎛⎫⎛⎫⎛⎫⎛⎫-=- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑,然后利用二项式定理即可求得答案. 【详解】(1)因为4n =,所以0404216C ()381a ==,1314232C ()327a ==;(2)当13x =时,21C ()()33k k n k k k n a x -=, 又因为11!(1)!C C !()!(1)!()!kk n n n n k kn n k n k k n k ---===---, 当1n =时,011022()C ()33nk k k n k a x =-==∑;当2n ≥时,0021()()C ()()33nnkk n k kk n k k n k a x n k -==-=-∑∑012121C ()()C ()()3333nn k n k k k n k knn k k n k --===-∑∑ 1112121()C ()()3333n n k n k kn k n n ---==+-∑ 1111121C ()()333n k n k k n k n n ----==-∑11212()3333n n n n -=-+=,当1n =时,也符合.所以0()nkk k n k a x =-∑的值为23n .【点睛】本题考查二项式定理求指定项的系数,同时也考查了利用二项式定理化简求值,解题的关键就是二项展开式通项和二项式定理的逆用,考查计算能力,属于中等题. 26.(1)1560;(2)156;(3)92. 【解析】 【分析】(1)分为3,1,1,1和2,2,1,1两类分别计算,加和得到结果;(2)分为个位是0和个位不是0两类分别计算,加和得到结果;(3)分为只会英语的人中选了3人作英语导游、选了2人作英语导游和选了1人作英语导游三类分别计算,加和得到结果. 【详解】(1)把6本不同的书分给4位学生,每人至少一本,有3,1,1,1和2,2,1,1两类分配方式为3,1,1,1时,共有:3114632433480C C C A A ⋅=种分法 分配方式为2,2,1,1时,共有:2214642422221080C C C A A A ⋅=种分法 由分类加法计数原理可得,共有:48010801560+=种分法(2)若个位是0,共有:3560A =个若个位不是0,共有:11224496C C A =个由分类加法计数原理可得,共有:6096156+=个(3)若只会英语的人中选了3人作英语导游,共有:3620C =种选法若只会英语的人中选了2人作英语导游,共有:12323560C C C =种选法若只会英语的人中选了1人作英语导游,共有:133412C C =种选法++=种选法由分类加法计数原理可得,共有:20601292【点睛】本题考查排列组合的综合应用问题,涉及到分组分配问题、元素位置有限制的排列组合问题等知识,关键是能够根据题目的要求进行合理的分类,最终通过分类加法计数原理得到结果.。
北师大版高中数学高中数学选修2-3第一章《计数原理》检测卷(答案解析)(1)
![北师大版高中数学高中数学选修2-3第一章《计数原理》检测卷(答案解析)(1)](https://img.taocdn.com/s3/m/340a70b7f01dc281e43af0bf.png)
一、选择题1.4(12)x -的展开式中2x 的系数为( )A .6B .24C .32D .482.从4名优秀学生中选拔参加池州一中数学、物理、化学三学科培优研讨会,要求每名学生至多被一学科选中,则每学科至少要选用一名学生的情况有( )种 A .24B .36C .48D .603.73⎛⎫ ⎝展开式中含32x -的项是( ) A .第8项B .第7项C .第6项D .第5项4.为深入贯彻实施党中央布置的“精准扶贫”计划,某地方党委政府决定安排5名党员干部到4个贫困村驻村扶贫,每个贫困村至少分配1名党员干部,则不同的分配方案共有( ) A .264种B .480种C .240种D .720种5.从5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A 不参加物理、化学竞赛,则不同的参赛方案种数为( ) A .720B .360C .72D .以上都不对6.若10521001210(1)(1)(1)x x a a x a x a x -=+-+-+⋅⋅⋅+-,则5a 为( ) A .251B .250C .252D .2497.若(2)n x -的展开式中二项式系数最大的项只有第6项,则展开式的各项系数的绝对值...之和为( ) A .111B .102C .103D .1138.二项式n的展开式中第13项是常数项,则n =( )A .18B .21C .20D .309.我们把各位数字之和为6的四位数称为“六合数”(如2013是“六合数”),则“六合数”中首位为3的“六合数”共有( ) A .18个B .15个C .10个D .9个10.某医院计划从3名医生,9名护士中选派5人参加湖北新冠肺炎疫情狙击战,要求选派的5人中至少要有2名医生,则不同的选派方法有( ) A .495种B .288种C .252种D .126种11.我省5名医学专家驰援湖北武汉抗击新冠肺炎疫情现把专家全部分配到A ,B ,C 三个集中医疗点,每个医疗点至少要分配1人,其中甲专家不去A 医疗点,则不同分配种数为( ) A .116B .100C .124D .9012.若()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为-1,则a 的值为( )A .1B .9C .-1或-9D .1或9二、填空题13.现有不同的红球、黄球、绿球各两个排成一排,要求红球不相邻,黄球也不相邻,红球不在两端有__________种不同的排法.14.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为 . 15.已知(12)n x -的展开式中,二项式系数的和为64,则它的二项展开式中,系数最大的是第__________项.16.有5本不同的书,全部借给3人,每人至少1本,共有______种不同的借法. 17.从0、2、4中取一个数字,从1、3、5中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是______(用数字作答)18.四色猜想是近代数学难题之一,四色猜想的内容是:“任何一张地图最多用四种颜色就能使具有共同边界的国家着上不同的颜色”,如图,一张地图被分成了五个区域,每个区域只使用一种颜色,现有4种颜色可供选择(四种颜色不一定用完),则满足四色猜想的不同涂色种数为__________19.某中学安排,,,A B C D 四支小队去3所不同的高校参观,上午每支小队各参观一所高校,下午A 小队有事返回学校,其余三支小队继续参观.要求每支小队上下午参观的高校不能相同,且每所高校上午和下午均有小队参观,则不同的安排有_____种.20.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg lg a b -的不同值的个数是_____.三、解答题21.已知(nx x二项展开式中,第4项的二项式系数与第3项的二项式系数的比为8:3(1)求n 的值;(2)求展开式中3x 项的系数(3)计算式子01231010101010102481024C C C C C -+-++的值.22.某中学将要举行校园歌手大赛,现有4男3女参加,需要安排他们的出场顺序.(结.果用数字作答......) (1)如果3个女生都不相邻,那么有多少种不同的出场顺序?(2)如果3位女生都相邻,且男生甲不在第一个出场,那么有多少种不同的出场顺序?23.已知二项式312nx x ⎛⎫+ ⎪ ⎪⎝⎭()n *∈N 的二项展开式中所有奇数项的二项式系数之和为128. (1)求312nx x ⎛⎫+ ⎪ ⎪⎝⎭的展开式中的常数项;(2)在 (1+x )+(1+x )2+(1+x )3+(1+x )4+…+(1+x )2n + 的展开式中,求3x 项的系数.(结果用数字作答)24.已知2n m x x ⎛⎫+ ⎪⎝⎭(m 是正实数)的展开式中前3项的二项式系数之和等于37. (1)求n 的值;(2)若展开式中含1x项的系数等于112,求m 的值. 25.在AOB ∠的OA 边上有4个异于O 点的点,OB 边上有5个异于O 点的点,以这10个点(含O 点)为顶点,能得到多少个不同的三角形? 26.已知. (1)若,求及的值;(2)若,求最大的系数;(3)定义,若化简.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用二项展开式的通项可得14(2),0,1,2,3,4rrr T C x r +=-=,令2r 可求得结果.【详解】因为4(12)x -的第1r +项展开式14(2),0,1,2,3,4rrr T C x r +=-=, 令2r,则含2x 项系数为224(2)24C -=, 故选:B . 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有二项展开式通项的应用,项的系数,属于简单题目.2.D解析:D【分析】首先,根据题意,分析得出应该分两类情况,共选3人参加研讨会和4名学生都参加,之后各自应用分步计数原理求得结果,之后应用分类加法计数原理求得结果. 【详解】依题意,分两类情况:(1)每个学科选1人,共选3人参加研讨会, 从4名学生中选3名进行排列即可,有3424A =种情况; (2)4名学生都参加,则必然有2名学生参加同一学科的研讨会,先从4名学生中选2名看作一个整体,有246C =选法, 将这个整体与其他学生全排列即可,有336A =种排法, 根据分步计数原理,共有6636⨯=种情况,综上所述,根据分类计数原理可得,每学科至少 一名学生的情况有263460+=种, 故选:D. 【点睛】该题考查的是有关排列组合的综合题,涉及到的知识点有分类加法计数原理和分步乘法计数原理,属于简单题目.3.C解析:C 【分析】根据二项展开式的通项公式,求得含32x -项对应的r 即可得到结论. 【详解】解:73⎛⎫- ⎝展开式的通项公式为:()21172722217713133rr r r r rr T C x x C x ---+⎛⎫⎛⎫=⋅⋅-⋅=-⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭; 令73522r r -=-⇒=; 故展开式中含32x -的项是第6项. 故选:C. 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.4.C解析:C 【分析】先从5个党员干部里选2个,再从4个贫困村里选1个接受选出的2个党员,剩下的3名党员分配给3个贫困村,即得解. 【详解】先从5个党员干部里选2个,有25C 种方法,再从4个贫困村里选1个接受选出的2个党员,有14C 种方法,剩下的3名党员分配给3个贫困村,有33A 种方法.所以共有213543240C C A =种方法.故选:C. 【点睛】本题主要考查排列组合的综合应用,意在考查学生对这些知识的理解掌握水平.5.C解析:C 【分析】因为A 不参加物理、化学竞赛,它是一个特殊元素,故对A 参加不参加竞赛进行讨论,利用分类的思想方法解决,最后结果结合加法原理相加即可. 【详解】 解:根据题意,若选出4人中不含A ,则有44A 种;若选出4人中含有A ,则有313423C C A 种. 4313442372A C C A ∴+=.故选:C . 【点睛】本题主要考查排列、组合及简单计数问题,解排列、组合及简单计数问题时遇到特殊元素时,对特殊元素要优先考虑,属于中档题.6.A解析:A 【分析】根据题意,5a 是展开式中()51x -的系数,因此将等式左边变形为关于1x -的二项式,再求()51x -的系数. 【详解】由题意,()()1051051111x x x x -=-+--+, 又()()()()10109011010101011111x C x C x C x -+=⋅-+⋅-++⋅-,()()()()55401555511111x C x C x C x -+=⋅-+⋅-++⋅-,因为,()()()21010501210111x x a a x a x a x -=+-+-+⋅⋅⋅+-,即55101251a C =-=.故选:A.【点睛】本题考查了二项式定理中展开式的系数,关键是将已知等价变形,得到关于()1nx -的二项式,属于基础题.7.C解析:C 【分析】根据二项展开式中只有第6项的二项式系数最大知10n =,再令1x =-即可求得可得展开式的各项系数的绝对值之和. 【详解】根据题意知(2)n x -的展开式共有11项,10n ∴=,1001001919910101010101022(2)2C x C x C x x x C =-+-+-,令1x =-可得展开式的各项系数的绝对值之和为103. 故选:C 【点睛】本题考查二项展开式各项的系数和,属于中档题.8.D解析:D 【分析】直接利用二项式定理计算得到答案. 【详解】二项式n的展开式中第13项1210121212313nn n n T C C x --⎛== ⎝, 令1003n-=,得30n =. 故选:D. 【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.9.C解析:C 【分析】首位数字是3,则后三位数字之和为3,按一个为3,两个和为3及三个和为3进行分类排列可得. 【详解】由题知后三位数字之和为3,当一个位置为3时有003,030,300三个;当两个位置和为3时有336A =个,;当三个位置和为3时只有111一个,一共有10个. 故选:C 【点睛】本题考查求解排列问题.其主要方法: 直接法:把符合条件的排列数直接列式计算. 优先法:优先安排特殊元素或特殊位置.捆绑法:把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列. 插空法:对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中.10.B解析:B 【分析】题意分两种情况,①选派2名医生,3名护士,②选派3名医生,2名护士,分别计算,再根据分类加法计算原理计算可得; 【详解】解:依题意分两种情况,①选派2名医生,3名护士,则有2339252C C =(种); ②选派3名医生,2名护士,则有323936C C =(种);按照分类加法计算原理可知,一共有2332393936252288C C C C +=+=(种). 故选:B 【点睛】本题考查简单的组合问题,分类加法计算原理,属于中档题.11.B解析:B 【分析】完成这件事情可分2步进行:第一步将5名医学专家分为3组;第二步将分好的3组分别派到三个医疗点,由分步计数原理计算即可得到答案. 【详解】根据已知条件,完成这件事情可分2步进行: 第一步:将5名医学专家分为3组①若分为3,1,1的三组,有3510C =种分组方法; ②若分为2,2,1的三组,有22532215C C A =种分组方法, 故有101525+=种分组方法.第二步:将分好的三组分别派到三个医疗点,甲专家不去A 医疗点,可分配到,B C 医疗点中的一个,有122C =种分配方法, 再将剩余的2组分配到其余的2个医疗点,有222A =种分配方法, 则有224⨯=种分配方法.根据分步计数原理,共有254100=⨯种分配方法. 故选:B . 【点睛】本题主要考查排列、组合的应用,同时考查分步计数原理,属于基础题.12.D解析:D 【分析】根据题意分析常数项由()2x a +中的某项与511x ⎛⎫- ⎪⎝⎭中的某项项相乘所得,再二项式定理的通项公式求解即可. 【详解】由题可得,()2x a +中含2x 项与511x ⎛⎫- ⎪⎝⎭中含21x 项相乘可得常数项; ()2x a +中含x 项与511x ⎛⎫- ⎪⎝⎭中含1x 项相乘可得常数项; ()2x a +中的常数项与511x ⎛⎫- ⎪⎝⎭中的常数项相乘可得常数项.故()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 ()()()2134522122551112111010x C ax C a a a x x ⎛⎫⎛⎫⋅⋅⋅-+⋅⋅⋅-+⋅-=-+- ⎪ ⎪⎝⎭⎝⎭.故22101011090a a a a -+-=-⇒-+=,解得1a =或9a =. 故选:D 【点睛】本题主要考查了利用二项式定理,根据常数项求解参数的方法.需要根据题意分析常数项的所有可能组成,属于中档题.二、填空题13.120【分析】用六个位置去放这六个球分步:第一步放红球第二步放黄球第三步放绿球然后由乘法原理计算【详解】6个球占据6个位置在这6个位置中间四个位置中选2个放红球有3种选法放法是剩下4个位置中只有2个解析:120 【分析】用六个位置去放这六个球,分步:第一步放红球,第二步放黄球,第三步放绿球.然后由乘法原理计算. 【详解】6个球占据6个位置,在这6个位置中间四个位置中选2个放红球,有3种选法,放法是223A ,剩下4个位置中只有2个是相邻的,选2个放黄球放法是2242A A -,最后还有两个位置放绿球有22A 种放法,因此共有方法数为222224223()120A A A A -=.故答案为:120. 【点睛】关键点点睛:本题考查排列的应用,解题关键是确定完成事件的方法:分类还是分步?另外对特殊元素,特殊位置要优先考虑.本题中红球要不相邻又不能放在两端,因此我们设想有6个位置放这6个球,先放红球于中间4个位置中的两个,然后再放黄球,最后放绿球.分步完成,从而得出结论.14.【分析】利用间接法计算取3张卡片的总数然后分别计算取3张同色2张红色的方法数最后做差可得结果【详解】由题可知:16张取3张卡片的所有结果为取到3张都是同色的结果数为取到2张都是红色的结果数为故答案为 解析:472【分析】利用间接法,计算取3张卡片的总数,然后分别计算取3张同色,2张红色的方法数,最后做差,可得结果. 【详解】由题可知:16张取3张卡片的所有结果为316C 取到3张都是同色的结果数为344C 取到2张都是红色的结果数为14212C C ⋅2112331644C 4C C C 5601672472-=--=-⋅.故答案为:472 【点睛】本题考查组合的应用,巧用间接法,审清题意,细心计算,属基础题.15.5【分析】根据二项式系数和求出n 的值确定二项展开式的系数最大项在奇数项建立不等式求解即可【详解】由题意知解得由的展开式通项公式知二项展开式的系数最大项在奇数项设二项展开式中第项的系数最大则解得故其展解析:5 【分析】根据二项式系数和求出n 的值,确定二项展开式的系数最大项在奇数项,建立不等式求解即可. 【详解】由题意知,264n =,解得6n =,由(12)n x -的展开式通项公式16(2)rrr T C +=-知二项展开式的系数最大项在奇数项, 设二项展开式中第1r +项的系数最大,则22662266(2)(2)(2)(2)r r r r r r r r C C C C ++--⎧--⎨--⎩, 解得4r =,故其展开式中系数最大的项第5项.故答案为: 5【点睛】本题主要考查二项式定理的应用,涉及二项展开式中二项式系数和与系数和问题,容易出错.要正确区分这两个概念.16.150【分析】将5本不同的书分成满足题意的3组有113与221两种分别计算可得分成113与分成221时的分组情况种数相加可得答案【详解】解:将5本不同的书分成满足题意的3组有113与221两种分成1解析:150【分析】将5本不同的书分成满足题意的3组有1,1,3与2,2,1两种,分别计算可得分成1、1、3与分成2、2、1时的分组情况种数,相加可得答案.【详解】解:将5本不同的书分成满足题意的3组有1,1,3与2,2,1两种,分成1、1、3时,有3353C A种分法,分成2、2、1时,有22353322C CAA种分法,所以共有223335353322150C CC A AA+=种分法,故答案为:150.【点睛】本题考查组合、排列的综合运用,解题时,注意加法原理与乘法原理的使用.17.【分析】由题意分为从024中取一个数字0从024中取一个数字不是0分类由分步乘法计数原理结合排列组合的知识即可得解【详解】由题意要从024中取一个数字从135中取两个数字组成无重复数字的三位数可以分解析:48【分析】由题意分为从0、2、4中取一个数字0,从0、2、4中取一个数字不是0分类,由分步乘法计数原理结合排列、组合的知识即可得解.【详解】由题意,要从0、2、4中取一个数字,从1、3、5中取两个数字,组成无重复数字的三位数,可以分成两种情况:第一种,当从0、2、4中取一个数字0,而从1、3、5中任选两个数字时,组成无重复数字的三位数有21232212C C A⋅⋅=个;第二种,当从0、2、4中取一个数字不是0,而从1、3、5中任选两个数字时,组成无重复数字的三位数有12323336C C A⋅⋅=个;综上,所有不同的三位数的个数是123648+=.故答案为:48.【点睛】本题考查了计数原理的应用,考查了运算求解能力与分类讨论思想,属于中档题.18.96【分析】设五个区域分别为其中与与与不相邻根据题意可用四种或三种颜色进行涂色由分类加法原理和分步乘法原理即可求解【详解】设五个区域分别为依题意由公共边的两个区域颜色不同用四种颜色进行涂色则有两个区解析:96 【分析】设五个区域分别为,,,,A B C D E ,其中A 与C ,A 与E ,B 与E 不相邻,根据题意,可用四种或三种颜色进行涂色,由分类加法原理和分步乘法原理,即可求解. 【详解】设五个区域分别为,,,,A B C D E , 依题意由公共边的两个区域颜色不同, 用四种颜色进行涂色则有两个区域颜色相同, 可以是A 与C ,A 与E ,B 与E 同色, 有涂色方法44372A =;或用三种颜色涂色,则有2组颜色同色,为A 与C 同色,B 与E 同色,有涂色方法3424A =, 根据分类加法原理,共有涂色方法722496+=. 故答案为:96.【点睛】本题考查 “染色”问题,计数原理的应用,合理的分类和分步是解题的关键,属于中档题.19.【分析】本题属于分组分配问题可按上午参观时A 是否与其他小队分在一组进行讨论分上下午两步安排参观即可得出答案【详解】若与中的某一支小队分在一组上午有种参观方法下午参观时三支小队不去各自上午参观的高校有解析:【分析】本题属于分组分配问题,可按上午参观时A 是否与其他小队分在一组进行讨论,分上下午两步安排参观,即可得出答案. 【详解】若A 与B 、C 、D 中的某一支小队分在一组,上午有1333C A ⋅种参观方法, 下午参观时B 、C 、D 三支小队不去各自上午参观的高校,有2种方法, 故有1333236C A ⋅⋅=种;若B 、C 、D 中某两支队分在一组,上午有2333C A ⋅种参观方法, 下午再安排时,也有2种方法, 故有2333236C A ⋅⋅=种. 所以一共有363672+=种. 故答案为:72. 【点睛】本题考查考查分组分配问题,注意其中的分类分步,属于中档题.20.【分析】因为所以从这五个数中每次取出两个不同的数分别为共可得到的不同值的个数可看作共可得到多少个不同的数【详解】解:首先从这五个数中任取两个不同的数排列共种排法因为所以从这五个数中每次取出两个不同的 解析:18【分析】 因为lg lg lgaa b b-=,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg lg a b -的不同值的个数可看作共可得到多少个不同的数a b. 【详解】解:首先从1,3,5,7,9这五个数中任取两个不同的数排列,共2520A =种排法, 因为3913=,1339=, 所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b , 共可得到lg lg a b -的不同值的个数为:20218-=, 故答案为:18. 【点睛】本题考查了排列组合及简单的计数问题,属于基础题.三、解答题21.(1)10n =;(2)180;(3)1. 【解析】试题分析: 本题主要考查二项式定理的应用,二项展开式的通项公式,注意根据题意,分析所给代数式的特点,通过给二项式的x 赋值,求展开式的系数和,属于基础题.第一问,直接利用条件可得3283n n C C =,求得n 的值;第二问,在二项展开式的通项公式中,令x的幂指数等于3,求出r 的值,即可求得展开式中x 3项的系数.第三问,在10二项展开式中,令x=1,可得式子01231010101010102481024C C C C C -+-++的值.试题(1)由第4项的二项式系数与第3项的二项式系数的比为8:3,可得3283n n C C =,化简可得2833n -=,求得10n =. (2)由于n 二项展开式的通项公式为5110(2)r r rr T C x -+=-,令53r -=,求得2r,可得展开式中3x 项的系数为2210(2)180C -=. (3)由二项式定理可得105100(2)n r r rr C x -==-∑, 所以令x=1得01231010101010102481024C C C C C -+-++10(12)1=-=.考点:二项式定理的应用;二项式系数的性质.22.(1)1440;(2)576. 【分析】(1)采用 “插空法”, 先排4名男生,形成5个空档,将3名女生插入其中,由此可得; (2)3名女生捆绑作为一个人,优先排男生甲,然后其他人全排列. 【详解】(1)采用 “插空法”,先排4名男生,有44A 种,形成5个空档,将3名女生插入其中,有35A 种,最后由分步乘法计数原理可得,共有43451440A A ⋅=种不同的出场顺序.(2)3名女生捆绑有33A 种,然后优先排男生甲有4种选择,其余可以进行全排列44A ,所以共有3434·4A A =576. 【点睛】本题考查排列的综合应用,考查“相邻”与“不相邻”问题.排列时,相邻问题用捆绑法,不相邻问题用插空法. 23.(1)3716T =; (2)330 【分析】二项展开式中所有项的系数和为2n ,奇数项的二项式系数和应为所有项系数和的一半,即21282n= ,可求得8n =. (1)写出该二项式展开式的通项,令x 的指数为零,即可求解; (2)由二项式定理知3x 在3(1)x +,4(1)x +,,10(1)x +中均存在,故3x 的系数为3334341011330C C C C +++==.【详解】 解:所有奇数项的二项式系数之和为128,21282n∴=,解得8n =.(1)81()2x+的第1r +项为8488318811(()()22rr r r r rr T C C x x ---+==,令8403r-=,得2r ,则常数项为238617216T C =⋅=; (2)23410(1)(1)(1)(1)++(1)x x x x x ++++++++展开式中3x 的系数为:33343334104410C C C C C C +++=+++4335510C C C =+++411330C ==.【点睛】本题考查了二项式定理及其应用,组合数的性质,属于中档题. 24.(1)8n =(2)2m = 【分析】(1)由01237n n n C C C ++=,求解即可得出; (2)根据展开式的通项,即可得出m 的值. 【详解】 (1)01237n n n C C C ++=,2720n n ∴+-=,解得9n =-(舍)8n =(2)28m x ⎛+⎝的展开式的通项为()18225168288rrrr r r C C mx x m x -+---⎛⎫⋅ ⎪⎝⎭= 当6r =时是含1x项,所以268112m C =,解得2m = 【点睛】本题主要考查了已知指定项的系数求参数,属于中档题. 25.90 【分析】根据三种情况分别利用组合公式可得对应情况下能组成的三角形的个数,再根据分类计数加法原理,将三种情况能组成三角形的个数相加,可得答案. 【详解】解:由题意可分三种情况考虑:①O 为顶点的三角形,另外两个顶点分别在OA OB、上,共有:114520C C=个;②O不为顶点的三角形,两个顶点分别在OB上,一个顶点在OA上,共有:124540C C=个;③O不为顶点的三角形,两个顶点分别在OA上,一个顶点在OB上,共有:214530C C=个;故可得:一共有20403090++=不同的三角形.【点睛】本题主要考查几何中的排列组合问题,属于基础题型,注意分情况进行讨论后利用分类计数原理相加.26.(1)(2)(3)【解析】【分析】(1)由赋值法得到相应的数值;(2)将参数值代入表达式得到其通项公式为,由不等式,可得到,进而得到;(3)按照组合数的展开公式,分组求和即可.【详解】(1)若,,令,则,令,则所以.(2)若,其通项公式为,由不等式解得,且,∴.所以.(3)若,【点睛】本题考查二项式定理的应用,以及组合数公式的相关运算,考查推理能力与计算能力,属于中等题。
北师大高中数学选修2-3精练:第一章计数原理1-1Word版含答案
![北师大高中数学选修2-3精练:第一章计数原理1-1Word版含答案](https://img.taocdn.com/s3/m/5476d79faef8941ea76e05d3.png)
模块复习课MOKUAIFUXIKE第1课时计数原理A组1.从3名男同学和2名女同学中选1人主持本班某次主题班会,不同选法种数为()A.6B.5C.3D.2解析:由分类加法计数原理知总方法数为3+2=5(种).答案:B2.4位同学从甲、乙、丙3门课程中各选修1门,则恰有2人选修课程甲的不同选法有()A.12种B.24种C.30种D.36种解析:分三步,第一步先从4位同学中选2人选修课程甲,共有种不同选法;第二步给第3位同学选课程,有2种选法;第三步给第4位同学选课程,也有2种不同选法.故共有2×2=24(种).答案:B3.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种解析:若最左端排甲,其他位置共有=120(种)排法;若最左端排乙,最右端共有4种排法,其余4个位置有=24(种)排法,所以共有120+4×24=216(种)排法.答案:B4.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种解析:共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有=66(种).答案:D5.(1+2x)3(1-x)4展开式中x项的系数为()A.10B.-10C.2D.-2解析:(1+2x)3(1-x)4展开式中的x项的系数为两个因式相乘而得到,即第一个因式的常数项和一次项分别乘以第二个因式的一次项与常数项,它为(2x)0(-x)1+(2x)114(-x)0,其系数为(-1)+2=-4+6=2.答案:C6.把5件不同产品摆成一排.若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.解析:记5件产品为A,B,C,D,E,A,B相邻视为一个元素,先与D,E排列,有种方法;再将C插入,仅有3个空位可选,共有=2×6×3=36(种)不同的摆法.答案:367.将数字1,2,3,4填入标号为1,2,3,4的四个方格中,每格填一个数,则每个方格的标号与所填数字均不相同的填法有种.解析:编号为1的方格内填数字2,共有3种不同填法;编号为1的方格内填数字3,共有3种不同填法;编号为1的方格内填数字4,共有3种不同填法.于是由分类加法计数原理,得共有3+3+3=9(种)不同的填法.答案:98的展开式中第五项和第六项的二项式系数最大,则第四项为.解析:由已知条件第五项和第六项二项式系数最大,得n=9,展开式的第四项为T4= ()6答案:9.导学号43944059电视台在“欢乐在今宵”节目中拿出两个信箱,其中放着竞猜中成绩优秀的观众来信,甲箱中有30封,乙箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两箱中各确定一名幸运观众,有多少种不同结果?解分两类:(1)幸运之星在甲箱中抽,选定幸运之星,再在两箱内各抽一名幸运观众,有30×29×20=17 400(种).(2)幸运之星在乙箱中抽取,有20×19×30=11 400(种).共有不同结果17 400+11 400=28 800(种).B组1.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.24解析:先把三把椅子隔开摆好,它们之间和两端有4个位置,再把三人带椅子插放在四个位置,共有=24种放法,故选D.答案:D2.使(n∈N+)的展开式中含有常数项的最小的n为()A.4B.5C.6D.7解析:T r+1=(3x)n-r3n-r,当T r+1是常数项时,n-r=0,当r=2,n=5时成立.答案:B3.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有种(用数字作答).解析:第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法.第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:先选学习委员有4种选法,再选体育委员有3种选法.由分步乘法计数原理可得,不同的选法共有3×4×3=36(种).答案:364.在的展开式中,x2的系数为.解析:由题意知T r+1=x6-r x6-2r令6-2r=2,可得r=2.故所求x2的系数为答案:5.在(2x-3y)10的展开式中,求:(1)二项式系数的和;(2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和;(4)奇数项系数和与偶数项系数和.解(1)二项式系数的和为+…+=210.(2)令x=y=1,各项系数和为(2-3)10=(-1)10=1.(3)奇数项的二项式系数和为+…+=29,偶数项的二项式系数和为+…+=29.(4)令x=y=1,得到a0+a1+a2+…+a10=1,①令x=1,y=-1(或x=-1,y=1),得a0-a1+a2-a3+…+a10=510,②①+②得2(a0+a2+…+a10)=1+510,∴奇数项系数和为;①-②得2(a1+a3+…+a9)=1-510,∴偶数项系数和为6.导学号43944060男运动员6名,女运动员4名,其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.解(1)第一步:选3名男运动员,有种选法.第二步:选2名女运动员,有种选法.共有=120(种)选法.(2)法一至少有1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男.由分类加法计数原理可得总选法数为=246(种).法二“至少有1名女运动员”的反面为“全是男运动员”,可用间接法求解.从10人中任选5人有种选法,其中全是男运动员的选法有种.所以“至少有1名女运动员”的选法为=246(种).(3)法一(直接法)可分类求解:“只有男队长”的选法为;“只有女队长”的选法为;“男、女队长都入选”的选法为;所以共有2=196(种)选法.法二(间接法)从10人中任选5人有种选法.其中不选队长的方法有种.所以“至少有1名队长”的选法为=196(种).(4)当有女队长时,其他人任意选,共有种选法.不选女队长时,必选男队长,共有种选法,其中不含女运动员的选法有种,所以不选女队长时的选法共有种选法.所以既有队长又有女运动员的选法共有=191(种).。
最新北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(包含答案解析)(1)
![最新北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(包含答案解析)(1)](https://img.taocdn.com/s3/m/b04fc038c1c708a1294a441d.png)
一、选择题1.将编号为1、2、3、4、5的5个小球全部放入A 、B 、C 三个盒子内,若每个盒子不空,且放在同一个盒子内的小球编号不相连,则不同的方法总数有( ) A .42B .36C .48D .602.二项式51(2)x x-的展开式中含3x 项的系数是A .80B .48C .−40D .−803.电影院一排10个位置,甲、乙、丙三人去看电影,要求他们坐在同一排,那么他们每人左右两边都有空位且甲坐在中间的坐法的种数为( ) A .40B .36C .32D .204.排一张5个独唱和3个合唱的节目单,如果合唱不排两头,且任何两个合唱不相邻,则这种事件发生的概率是( ) A .14B .1144C .18D .1145.如图,在杨辉三角形中,斜线l 的上方从 1 按箭头所示方向可以构成一个“锯齿形”的数列: 1,3,3,4,6,5,10,...,记此数列的前n 项之和为n S ,则 21S 的值为( )A .66B .153C .295D .3616.某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为 A .14 B .16 C .20 D .48 7.有6个人排成一排拍照,其中甲和乙相邻,丙和丁不相邻的不同的排法有( ) A .240种B .144种C .72种D .24种8.为深入贯彻实施党中央布置的“精准扶贫”计划,某地方党委政府决定安排5名党员干部到4个贫困村驻村扶贫,每个贫困村至少分配1名党员干部,则不同的分配方案共有( ) A .264种 B .480种C .240种D .720种9.设()22201221nn n x x a a x a x a x ++=++++,则022n a a a 的值是( )A .()1312n- B .1312nC .3nD .31n +10.某校高二年级共有六个班,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( ) A .2264A CB .22642A CC .2264A AD .262A11.某科技小组有四名男生两名女生.现从中选出三名同学参加比赛,其中至少有一名女生入选的不同选法种数为( ) A .36CB .1225C CC .12212424C C C C +D .36A12.已知5250125(12)...x a a x a x a x +=++++,则512025 (222)a a a a ++++的值为( ) A .32 B .1 C .81D .64二、填空题13.若9m x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数为84,则m =_________.14.如图给三棱柱ABC DEF -的顶点染色,定义由同一条棱连接的两个顶点叫相邻顶点,规定相邻顶点不得使用同一种颜色,现有4种颜色可供选择,则不同的染色方法有_________________.15.从编号为1,2,3,4,…,10的10个大小、形状都相同的小球中任取5个球.如果某两个球的编号相邻,那么称这两个球为一组“好球”,则任取的5个球中恰有两组“好球”的取法有_______种.(用数字作答) 16.设2012(1)nn n x a a x a x a x +=++++,*4,n n N ≥∈.已知23242a a a =(1)求n 的值.(2)设(12)2n a b =+*,a b N ∈,求222a b -的值.17.将编号为1,2,3,4,5,6,7的七个小球放入编号为1,2,3,4,5,6,7的七个盒中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为______. 18.多项式()5122x x ⎛⎫++ ⎪⎝⎭的展开式中,含2x 项的系数是________.19.若多项式()()()10112110110112111x x a a x a x a x +=+++++++,则10a =______.20.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg lg a b -的不同值的个数是_____.三、解答题21.(1)某旅行社有导游9人,其中3人只会英语,4人只日语,其余2人既会英语,也会日语,现从中选6人,其中3人进行英语导游,另外3人进行日语导游,则不同的选择方法有多少种?(2)一批零件共有100个,次品率为10%,每次从其中任取一个零件,取出的零件不再放回去:求第三次才取得合格格品的概率.22.在二项式6212x x ⎛⎫+ ⎪⎝⎭的展开式中. (1)求该二项展开式中含3x 项的系数; (2)求该二项展开式中系数最大的项.23.从6名运动员中选4人参加4×100米接力赛,在下列条件下,各有多少种不同的排法?(1)甲、乙两人必须入选且跑中间两棒; (2)甲不跑第一棒且乙不跑第四棒.24.江夏一中将要举行校园歌手大赛,现有3男3女参加,需要安排他们的出场顺序.(结果用数字作答.......) (1)如果3个女生都不相邻,那么有多少种不同的出场顺序?(2)如果女生甲在女生乙的前面(可以不相邻),那么有多少种不同的出场顺序? (3)如果3位男生都相邻,且女生甲不在第一个出场,那么有多少种不同的出场顺序? 25.(1)把6个不同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法? (2)把6个不同的小球放入4个相同的箱子中,每个箱子都不空,共有多少种放法? (3)把6个相同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法? (4)把6个相同的小球放入4个相同的箱子中,每个箱子都不空,共有多少种放法? 26.用0,1,2,3,4这五个数字,可以组成没有重复数字的: (1)三位偶数有多少个?(2)能被3整除的三位数有多少个? (3)可以组成多少个比210大的三位数?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A【分析】将编号为1、2、3、4、5的5个小球,根据小球的个数可分为1、1、3或1、2、2两组,再分配到3个盒子即可求出. 【详解】将编号为1、2、3、4、5的5个小球,根据小球的个数可分为1、1、3或1、2、2两组.①当三个盒子中的小球个数分别为1、1、3时,由于放在同一个盒子里的小球编号互不相连,故3个小球的编号只能是1、3、5的在一个盒子里,故只有一种分组方法, 再分配到三个盒子,此时共有336A =种分配方法;②当三个盒子中的小球个数分别为1、2、2时,由于放在同一个盒子里的小球编号互不相连,此时放2个小球的盒子中小球的编号分别为()1,3、()2,4或()1,3、()2,5或()1,4、()2,5或()1,4、()3,5或()1,5、()2,4或()2,4、()3,5,共6种,再分配到三个盒子中,此时,共有33636A =种. 综上所述,不同的放法种数为64362+=种. 故选:A. 【点睛】方法点睛:本题主要考查排列的应用,属于中档题.常见排列数的求法为: (1)相邻问题采取“捆绑法”; (2)不相邻问题采取“插空法”; (3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.2.D解析:D 【解析】512x x ⎛⎫- ⎪⎝⎭展开式的通项公式为:()()55521551C 212C rr r r r rr r T x x x ---+⎛⎫=-=- ⎪⎝⎭, 令523r -=,1r =,所求系数为145C 280-=-,故选D .3.A解析:A 【分析】根据题意,先排好7个空座位,注意空座位是相同的,其中6个空位符合条件,将3人插入6个空位中,注意甲必须在三人中间,然后再排乙,丙,最后用分步计数原理求解. 【详解】除甲、乙、丙三人的座位外,还有7个座位,它们之间共可形成六个空,三人从6个空中选三位置坐上去有36C 种坐法, 又甲坐在中间,所以乙、丙有22A 种方法,所以他们每人左右两边都有空位且甲坐在中间的坐法有36C 2240A ⋅=种. 故选:A . 【点睛】本题主要考查排列组合的实际应用,还考查了分析问题的能力,属于中档题.4.D解析:D 【分析】首先计算所有可能的排法有88A ,再由于合唱节目不能相邻,先排列独唱节目,共有55A 种结果,合唱节目不能排在两头,在五个独唱节目形成的除去两头之外的四个空中选三个位置排列,共有34A 种结果,最后根据古典概率的概率计算公式计算出结果. 【详解】解:排一张5个独唱和3个合唱的节目单一共有8840320A =种,记合唱不排两头,且任何两个合唱不相邻的为事件M ,则由于合唱节目不能相邻,先排列独唱节目,共有55A 种结果,合唱节目不能排在两头,在五个独唱节目形成的除去两头之外的四个空中选三个位置排列,共有34A 种结果,根据分布乘法计数原理可得一共有53542880A A ⋅=种根据古典概型的概率公式得()288014032014P M == 故选:D 【点睛】本题考查古典概型的概率计算问题,分步计数原理,考查元素的不相邻问题,一般解决不相邻问题时,采用插空法,属于基础题.5.D解析:D 【解析】试题分析:观察杨辉三角结合其中数的来源,可得到这个数列的通项公式.n a 当n 为偶数时,42n n a +=;当n 为奇数时,0212322233551,3,6,C C C C C C ======,所以()()232138n n n n a C +++==,所以21S =()()()()22221352124620124622224622758a a a a a a a a ⎡⎤+++++++++=++++++++++⎣⎦()122423112475286753618⎡⎤=⨯⨯+⨯+=+=⎣⎦,故选D. 考点:归纳推理与数列求和.6.B解析:B 【解析】由间接法得32162420416C C C -⋅=-=,故选B .7.B解析:B 【分析】甲和乙相邻,捆绑法,丙和丁不相邻用插空法,即先捆甲和乙,再与丙和丁外的两人共“3人”排列,再插空排丙和丁. 【详解】甲和乙相邻,捆绑在一起有22A 种,再与丙和丁外的两人排列有33A 种, 再排丙和丁有24A 种,故共有22A 33A 24A 144=种. 故选:B 【点睛】本题考查了排列中的相邻问题和不相邻问题,属于中档题.8.C解析:C 【分析】先从5个党员干部里选2个,再从4个贫困村里选1个接受选出的2个党员,剩下的3名党员分配给3个贫困村,即得解. 【详解】先从5个党员干部里选2个,有25C 种方法,再从4个贫困村里选1个接受选出的2个党员,有14C 种方法,剩下的3名党员分配给3个贫困村,有33A 种方法.所以共有213543240C C A =种方法.故选:C. 【点睛】本题主要考查排列组合的综合应用,意在考查学生对这些知识的理解掌握水平.9.B解析:B 【分析】本题可以通过利用二项展开式的系数关系,采用赋值法将x 分别赋值为1、1-,然后通过运算即可得出结果. 【详解】()22201221nn n x x a a x a x a x ++=++++,令1x =,01223n na a a a ①,令1x =-,01221n a a a a ②,(①+②)02212312nna a a , 故选:B . 【点睛】本题考查二项展开式的相关运算,可通过赋值法进行计算,考查计算能力,考查化归与转化思想,是中档题.10.B解析:B 【分析】先将4名学生均分成两组,注意重合的部分要去掉,再从6个班级中选出2个班进行排列,最后根据分步计数原理得到合要求的安排方法数. 【详解】解:先将4名学生均分成两组方法数为2412C , 再分配给6个年级中的2个分配方法数为26A ,∴根据分步计数原理合要求的安排方法数为224612C A .故选:B . 【点睛】本题先考查的是平均分组问题,是一个易出错的问题,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.11.C解析:C 【分析】分只有一名女生入选和有二名女生入选两种情况,结合分步乘法计数原理以及分类加法计数原理,即可得出答案. 【详解】当只有一名女生入选时,先选1名女生,有12C 种,再选2名男生,有24C 种,则根据分步乘法计数原理可知,有1224C C 种当有二名女生入选时,选选2名女生,有22C 种,再选1名男生,有14C 种,则根据分步乘法计数原理可知,有2124C C 种所以从中选出三名同学参加比赛,其中至少有一名女生入选的不同选法种数为12212424C C C C +故选:C 【点睛】本题主要考查了组合的应用,涉及了分步乘法计数原理以及分类加法计数原理的应用,属于中档题.12.A解析:A 【分析】根据所求与已知的关系,令12x =,即可求得答案. 【详解】5250125(12)...x a a x a x a x +=++++,∴令12x =,即可得555120251...122322222a a a a ⎛⎫++++=+⨯== ⎪⎝⎭.故选:A 【点睛】本题考查二项式定理的应用,考查理解辨析能力与运算求解能力,属于基础题.二、填空题13.【分析】由题意二项式展开式的通项为结合题意求得进而得到关于的方程即可求解【详解】求得二项式的展开式的通项为当解得此时所以解得故答案为:【点睛】求二项展开式的特定项问题实质时考查通项的特点一般需要建立解析:1-. 【分析】由题意,二项式展开式的通项为9219(1)r r r rr T m C x -+=-⋅⋅,结合题意,求得3r =,进而得到关于m 的方程,即可求解. 【详解】求得二项式9m x x ⎛⎫- ⎪⎝⎭的展开式的通项为992199()(1)r r r r r r rr m T C x m C x x --+=-=-⋅⋅,当923r -=,解得3r =,此时333349(1)T m C x =-⋅⋅,所以3339(1)84m C -⋅⋅=,解得1m =-. 故答案为:1-. 【点睛】求二项展开式的特定项问题,实质时考查通项1C rn r rr n T ab -+=的特点,一般需要建立方程求得r 的值,再将r 的值代入通项求解,同时注意r 的取值范围(0,1,2,,r n =).14.【分析】首先先给染色再按分类和分步给染色计算染色方法【详解】首先先给顶点染色有种方法再给顶点染色①若它和点染同一种颜色点和点染相同颜色点就有2种方法若点和点染不同颜色则点有2种方法点也有1种方法则的 解析:264【分析】首先先给,,A B C 染色,再按分类和分步,给,,D E F 染色,计算染色方法. 【详解】首先先给顶点,,A B C 染色,有3424A =种方法,再给顶点D 染色,①若它和点B 染同一种颜色,点E 和点C 染相同颜色,点F 就有2种方法,若点E 和点C 染不同颜色,则点E 有2种方法,点F 也有1种方法,则,,D E F 的染色方法一共有2214+⨯=种方法,②若点D 和点B 染不同颜色,且与点C 颜色不同,则点D 有1种方法,点E 与点C 颜色不同,则点E 有1种方法,则点F 有1种方法,此时有1种方法;若最后E 与C 相同,则F 有2种方法,则共有2种方法;点D 与点C 颜色相同,则点D 有1种方法,则点E 有2种方法,则点F 有2种方法,共有224⨯=种方法,所以点D 和点B 染不同,颜色共有1247++=种方法,所以点,,D E F 的染色方法一共有4711+=种,所以共有2411264⨯=种方法. 故答案为:264 【点睛】关键点点睛:本题重点考查涂色问题,涂色问题的一个关键点是分步里面有分类,所以分类清楚是关键.15.120【分析】假定5个球排成一排5个小球之间有6个空位取空位的情况来达到使小球的编号连续的目的有两种情况:(1)有3个号码是连续;(2)分别有2组号码连续但这2组号码与另一个球的号码不相邻分别求组合解析:120 【分析】假定5个球排成一排,5个小球之间有6个空位,取空位的情况来达到使小球的编号连续的目的,有两种情况:(1)有3个号码是连续;(2)分别有2组号码连续,但这2组号码与另一个球的号码不相邻,分别求组合数,可得答案. 【详解】将5个小球排成一排,在5个小球中间有6个空位,5个小球的编号恰好有两组“好球”,分两种情况:(1)这5个球中有3个球的号码是连续的,另两个小球的号码的是间断的,3个小球的号码与另2个球的号码也不是连续的,有216460C C =,(2)这5个球中有2组球的号码分别连接,但这两组球的号码与另一个球的号码是不连续的,有126560C C =,故任取的5个球中恰有两组“好球”的取法有60+60120=种取法, 故答案为:120. 【点睛】本题考查组合知识,对于相邻问题和相间问题,常采用分析空位的方法,属于中档题.16.(1)(2)【分析】(1)根据二项展开式定理得出建立关于的方程求解即可;(2)由而结合二项展开式定理可得即可求解【详解】(1)依题意整理得(2)当时偶数项含有【点睛】本题考查二项展开式定理的应用熟记解析:(1)5n =(2)1- 【分析】(1)根据二项展开式定理,得出234,,a a a ,建立关于n 的方程,求解即可;(2)由222(a b a a -=+-,而(1n a =+可得(1n a =-. 【详解】(1)依题意324324,,n n n a C a C a C ===23242a a a =⋅2(1)(2)(1)(1)(2)(3)232124321n n n n n n n n n ------⎡⎤=⨯⨯⎢⎥⨯⨯⨯⨯⨯⎣⎦整理得2332n n --=,5n ∴=(2) 当5n =时,5(1a =+502233445555555(12)C C C C C C +=++++5(1a ∴=-22552(1(11a b ∴-==-【点睛】本题考查二项展开式定理的应用,熟记公式是解题的关键,考查计算求解能力,属于中档题.17.315【分析】根据题意有且只有三个盒子的编号与放入的小球的编号相同再由排列组台及计数原理即可求解【详解】第一步:先确定三个盒子的编号与放入的小球的编号相同共种不同取法;第二步:再将剩下的个小球放入到解析:315 【分析】根据题意,有且只有三个盒子的编号与放入的小球的编号相同,再由排列组台及计数原理,即可求解. 【详解】第一步:先确定三个盒子的编号与放入的小球的编号相同,共3735C =种不同取法; 第二步:再将剩下的4个小球放入到4个盒子中,且小球编号与放入的小球的编号不相同,共()113219C C +=种不同放法;因而有且只有三个盒子的编号与放入的小球的编号相同的不同放法种数为359315⨯=种.故答案为:315 【点睛】本题考查了排列组合及计数原理,考查理解辨析能力与运算求解能力,属中档题.18.200【分析】根据题意由二项式定理可得的通项公式为令求出对应的值即可求解【详解】根据题意由二项式定理可得的通项公式为当时可得当时可得所以多项式的展开式中含的项为故多项式的展开式中含项的系数为故答案为解析:200 【分析】根据题意,由二项式定理可得,()52x +的通项公式为5152rrr r T C x -+=,令2,3r r ==,求出对应1r T +的值即可求解. 【详解】根据题意,由二项式定理可得,()52x +的通项公式为5152rrr r T C x -+=,当2r时,可得232235280T C x x ==,当3r =时,可得323345240T C x x ==, 所以多项式()5122x x ⎛⎫++ ⎪⎝⎭的展开式中,含2x 的项为232128040200x x x x⨯+⋅=, 故多项式()5122x x ⎛⎫++ ⎪⎝⎭的展开式中,含2x 项的系数为200. 故答案为:200 【点睛】本题考查利用二项式定理求二项展开式中某项的系数;考查运算求解能力;熟练掌握二项展开式的通项公式是求解本题的关键;属于中档题、常考题型.19.【分析】由二项式定理及其展开式通项公式得展开式的通项为令解得则得解【详解】由展开式的通项为令解得则故答案为:【点睛】本题考查了二项式定理及其展开式通项公式意在考查学生对这些知识的理解掌握水平 解析:22-【分析】由二项式定理及其展开式通项公式得111122[(1)1]x x =+-展开式的通项为111112(1)(1)r r r r T C x -+=+-,令1110r -=,解得1r =,则110112(1)22a C =⨯-=-,得解.【详解】由111122[(1)1]x x =+-展开式的通项为111112(1)(1)rr r r T C x -+=+-, 令1110r -=,解得1r =,则110112(1)22a C =⨯-=-, 故答案为:22-. 【点睛】本题考查了二项式定理及其展开式通项公式,意在考查学生对这些知识的理解掌握水平.20.【分析】因为所以从这五个数中每次取出两个不同的数分别为共可得到的不同值的个数可看作共可得到多少个不同的数【详解】解:首先从这五个数中任取两个不同的数排列共种排法因为所以从这五个数中每次取出两个不同的 解析:18【分析】 因为lg lg lgaa b b-=,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg lg a b -的不同值的个数可看作共可得到多少个不同的数a b. 【详解】解:首先从1,3,5,7,9这五个数中任取两个不同的数排列,共2520A =种排法, 因为3913=,1339=, 所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b , 共可得到lg lg a b -的不同值的个数为:20218-=, 故答案为:18. 【点睛】本题考查了排列组合及简单的计数问题,属于基础题.三、解答题21.(1)92;(2)91078. 【分析】(1)通过分类的方式,求得每一类别的情况,最后利用分类加法计数原理求解即可;(2)分别计算出第一次,第二次取次品的概率和第三次取合格品的概率,第三次取合格品的概率为三者之积. 【详解】(1)若只会英语的人中选了3人作英语导游,共有3620C =种情况; 若只会英语的人中选了2人作英语导游,共有12323560C C C =种情况; 若只会英语的人中选了1人作英语导游,共有133412C C =种情况; 由分类加法计数原理可得,共有:20601292++=种情况, 综上:不同的选择方法有92种; (2)由题意知:次品总数为10个,合格品总数为90个, 第一次取的一定是次品,概率为10110010=;第二次取的一定是次品,概率为919911=; 第三次取的一定是合格品,概率为90459849=; 所以第三次才取得合格格品的概率为114591011491078⨯⨯=. 综上:第三次才取得合格格品的概率为91078. 【点睛】本题主要考查了排列组合,考查了分类加法计数原理和分步乘法计数原理.属于中档题. 22.(1)160;(2)6240x . 【分析】(1)在通项公式中,令x 的幂指数等于3,求得r 的值,可得含3x 项的系数.(2)根据61766615662222r r r rr r r rC C C C ----+-⎧≥⎨≥⎩,求得r 的值,可得结论. 【详解】(1)二项展开式中,通项公式为6123162r rr r T C x --+=,令1233r -=,求得3r =,故含3x 项的系数为3362160C =.(2)设第1r +项的系数最大,由61766615662222r r r r r r r rC C C C ----+-⎧≥⎨≥⎩,解得4733r ≤≤,故2r故该二项展开式中系数最大的项为2466362240T C x x == 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题.23.(1)24,(2)252. 【分析】(1)分两步,第一步,排甲乙两人,有222A =种排法,第二步,从剩下4人选出两人来跑第一棒和第四棒,有2412A =种排法,即可得出答案(2)以乙跑不跑第一棒分成两类,第一类,乙跑第一棒,有131560A A =种排法,第二类,乙不跑第一棒,有112444192A A A =种排法,即可得出答案. 【详解】(1)因为甲、乙两人必须入选且跑中间两棒所以可分两步,第一步,排甲乙两人,有222A =种排法第二步,从剩下4人选出两人来跑第一棒和第四棒,有2412A =种排法 所以共有21224⨯=种排法 (2)以乙跑不跑第一棒分成两类第一类,乙跑第一棒,有131560A A=种排法第二类,乙不跑第一棒,有112444192A A A=种排法所以共有60192252+=种排法【点睛】本题考查的是分步和分类计数原理、排列,属于基础题.24.(1)144;(2)360;(3)108【分析】(1)根据题意,用插空法分2步进行分析:①、先将3名男生排成一排,②、男生排好后有4个空位,在4个空位中任选3个,安排3名女生,由分步计数原理计算可得答案;(2)根据题意,先不考虑甲乙的情况,将6人排成一排,又由女生甲在女生乙的前面和女生甲在女生乙的后面的排法是一样的,即可得答案;(3)根据题意,分3步进行分析:①、先将3名男生看成一个整体,考虑三人之间的顺序,②、将除之外的两名女生和三名男生的整体全排列,③、分析女生甲的安排方法,由分步计数原理计算可得答案.【详解】(1)根据题意,分2步进行分析:①先将3名男生排成一排,有33A种情况,②男生排好后有4个空位,在4个空位中任选3个,安排3名女生,有34A种情况,则有3334144A A⨯=种不同的出场顺序;(2)根据题意,将6人排成一排,有66A种情况,其中女生甲在女生乙的前面和女生甲在女生乙的后面的排法是一样的,则女生甲在女生乙的前面的排法有6622360AA=种;(3)根据题意,分3步进行分析:①先将3名男生看成一个整体,考虑三人之间的顺序,有33A种情况,②将除之外的两名女生和三名男生的整体全排列,有33A种情况,③女生甲不在第一个出场,则女生甲的安排方法有13C种,则有313333108A C A=种符合题意的安排方法.【点睛】本题考查排列、组合的应用,考查逻辑推理能力、运算求解能力,求解时注意分步、分类计数原理的应用.25.(1)1560种(2)65种(3)10种(4)2种【分析】(1)6个不同的小球放入4个不同的箱子,每个箱子至少一个小球,先把6个小球分组,有两种分法,再放入4个不同的箱子,即可得到结论;(2)6个不同的小球放入4个不同的箱子,每个箱子至少一个小球,先把6个小球分组,有两种分法,再放入4个相同的箱子,即可得到结论;(3)6个相同的小球放入4个不同的箱子,每个箱子至少一个小球,利用插板法; (4)把6个相同的小球放入4个相同的箱子中,每个箱子至少一个小球,故可以首先每个箱子放入1个小球,还剩下2个小球,则只有两种结果. 【详解】解:(1)6个不同的小球放入4个不同的箱子,每个箱子至少一个小球,先把6个小球分组,有两种分法:2、2、1、1;3、1、1、1;再放入4个不同的箱子,故不同的方法共有22113464216422221560C C C C C A A A ⎛⎫+= ⎪⎝⎭(种) (2)6个不同的小球放入4个不同的箱子,每个箱子至少一个小球,先把6个小球分组,有两种分法:2、2、1、1;3、1、1、1;再放入4个相同的箱子,故不同的方法共有2211364216222265C C C C C A A +=(种) (3)6个相同的小球放入4个不同的箱子,每个箱子至少一个小球,则采用插板法,在5个空中插入3块板,则不同的方法共有3510C =(种) (4)把6个相同的小球放入4个相同的箱子中,每个箱子至少一个小球,故可以首先每个箱子放入1个小球,还剩下2个小球,则这2个小球,只有两种结果,即两个在一个箱子中,或两个小球分别在一个箱子中,故只有2种放法. 【点睛】本题考查排列组合知识,考查学生分析解决问题的能力,属于中档题. 26.(1)30;(2)20;(3)32 【分析】(1)考虑个位是0时,个位是2时,个位是4时,三种情况计算得到答案.(2)能被3整除的三位数的数字组成共有:0,1,2;0,2,4;1,2,3;2,3,4四种情况,分别计算得到答案.(3)考虑百位是2时,百位是3时,百位是4时,三种情况,分别计算得到答案. 【详解】(1)个位是0时,有2412A =个;个位是2时,有339⨯=个;个位是4时,有339⨯=个.故共有30个三位偶数.(2)能被3整除的三位数的数字组成共有:0,1,2;0,2,4;1,2,3;2,3,4四种情况. 共有:12123322223320C A C A A A ⨯+⨯++=个.(3)当百位是2时,共有112328A A ⨯+=个;当百位是3时,共有2412A =个;当百位是4时,共有2412A =个; 故共有32个. 【点睛】本题考查了排列组合的应用,分类计算是常用的数学方法,需要熟练掌握.。
最新北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(答案解析)(1)
![最新北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(答案解析)(1)](https://img.taocdn.com/s3/m/92dace7cdaef5ef7bb0d3c1d.png)
一、选择题1.22nx x ⎛⎫- ⎪⎝⎭展开式中只有第六项的二项式系数最大,则展开式中的常数项是( ) A .180B .90C .180-D .90-2.已知数列{}n a ,{1,0,1},1,2,3,4,5,6i a i ∈-=.满足条件“12345603a a a a a a ≤+++++≤”的数列个数为( )个. A .160 B .220 C .221 D .233 3.1180被9除的余数为( )A .1-B .1C .8D .8-4.将红、黄、蓝三种颜色的三颗棋子分别放入33⨯方格图中的三个方格内,如图,要求任意两颗棋子不同行、不同列,则不同方法共有几种( )A .12B .16C .24D .365.5250125(21)(1)(1)(1)x a a x a x a x -=+-+-+⋯+-,则2a =( )A .40B .40-C .80D .80-6.某科技小组有四名男生两名女生.现从中选出三名同学参加比赛,其中至少有一名女生入选的不同选法种数为( ) A .36CB .1225C CC .12212424C C C C + D .36A7.袋中有大小相同的四个白球和三个黑球,从中任取两个球,两球同色的概率为( ) A .47B .37C .27D .8218.5(3)(2)x x -+的展开式中3x 的系数为( ) A .10B .40-C .200D .2409.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究,设(0)a b m m >,,为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为(mod )a b m =.若012220202020202022...2a C C C C =++++,(mod8)a b =,则b 的值可以是( ) A .2015B .2016C .2017D .201810.包括甲、乙、丙3人的7名同学站成一排拍纪念照,其中丙站中间,甲不站在乙的左边,且不与乙相邻,则不同的站法有( ) A .240种B .252种C .264种D .288种11.为支援湖北抗击新冠疫情,无锡市某医院欲从6名医生和4名护士中抽选3人(医生和护士均至少有一人)分配到A ,B ,C 三个地区参加医疗救援(每个地区一人),方案要求医生不能去A 地区,则分配方案共有( ) A .264种B .224种C .250种D .236种12.为抗击新冠病毒,某部门安排甲、乙、丙、丁、戊五名专家到三地指导防疫工作.因工作需要,每地至少需安排一名专家,其中甲、乙两名专家必须安排在同一地工作,丙、丁两名专家不能安排在同一地工作,则不同的分配方法总数为( ) A .18B .24C .30D .36二、填空题13.若02sin c (s )o a x x dx π=-⎰,则6a x ⎛ ⎝的展开式中常数项为_________. 14.在二项式12312x x ⎛⎫+ ⎪⎝⎭的展开式中,该二项展开式中系数最大的项为___________.15.七位同事(四男三女)轮值办公室每周的清洁工作,每人轮值一天,其中男同事甲必须安排周日清洁,且三位女同事任何两位的安排不能连在一起,则不同的安排方法种数是_______(用数字作答)16.若1121101211(21)x a a x a x a x +=+++⋅⋅⋅+,则2202101311()()a a a a a a ++⋅⋅⋅+-++⋅⋅⋅+=________17.已知423401234(21)(1)(1)(1)(1)x a a x a x a x a x -=++++++++,则1234a a a a +++=___________.18.设2012(1)n n n x a a x a x a x +=++++,*4,n n N ≥∈.已知23242a a a =(1)求n 的值.(2)设(1n a +=+,其中*,a b N ∈,求222a b -的值.19.有4位同学和2位教师一起合影.若教师不能坐在两端,也不坐在一起,则有_________种坐法.20.将编号为1,2,3,4,5,6,7的七个小球放入编号为1,2,3,4,5,6,7的七个盒中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为______.三、解答题21.已知n二项展开式中,第4项的二项式系数与第3项的二项式系数的比为8:3(1)求n 的值;(2)求展开式中3x 项的系数(3)计算式子01231010101010102481024C C C C C -+-++的值.22.已知()22nn N x +⎫∈⎪⎭的展开式中第二项与第三项的二项式系数之和为36.(1)求n 的值;(2)求展开式中二项式系数最大的项.23.某校阅览室的一个书架上有6本不同的课外书,有5个学生想阅读这6本书,在同一时间内他们到这个书架上取书.(1)求每个学生只取1本书的不同取法种数;(2)求每个学生最少取1本书,最多取2本书的不同取法种数; (3)求恰有1个学生没取到书的不同取法种数.24.某幼儿园举办“yue ”主题系列活动——“悦”动越健康亲子运动打卡活动,为了解小朋友坚持打卡的情况,对该幼儿园所有小朋友进行了调查,调查结果如下表:(2)若从打卡21天的小朋友中任选2人交流心得,求选到男生和女生各1人的概率.25.在()*3,nn n N ≥∈的展开式中,第2,3,4项的二项式系数依次成等差数列.(1)求n 的值;(2)求展开式中含2x 的项.26.2名女生、4名男生排成一排,求: (1)2名女生不相邻的不同排法共有多少种?(2)女生甲必须排在女生乙的左边(不一定相邻)的不同排法共有多少种?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用二项式系数的对称性求得10n =,然后写出二项展开式的通项,令x 的指数为零,求出参数的值,代入通项即可得解. 【详解】22nx ⎫⎪⎭展开式中只有第六项的二项式系数最大,10n ∴=,故22nx ⎫⎪⎭展开式的通项公式为()5105211010222rrr rrr T C C x x --+⎛⎫=⋅-=-⋅ ⎪⎭⋅⋅⎝, 令5502r -=,解得2r ,所以展开式中的常数项为22102180C ⨯=.故选:A. 【点睛】本题考查利用二项式定理求指定项的系数,同时也考查了利用二项式系数的对称性求参数,考查计算能力,属于中等题.2.D解析:D 【分析】由已知可得||i a 只能取0或1,结合限制条件,对||0i a =的个数进行分类,可分为6个,5个,4个和3个,按照组合和分步乘法计数原理求出各类的个数,即可求出结论. 【详解】因为{1,0,1},1,2,3,4,5,6i a i ∈-=,所以||i a 只能取0或1, 而12345603a a a a a a ≤+++++≤,所以123456,,,,,a a a a a a 中出现0的个数可以是6个、5个、4个、3个, 若出现6个0,则数列为常数列,共有1个常数列,若出现5个0,则出现一个||1,1i i a a ==±有两种取法,共有16212C ⨯=, 若出现4个0,则出现两个||1i a =,共有226215460C ⨯=⨯=, 若出现3个0,则出现三个||1i a =,共有3362208160C ⨯=⨯=,综上所述,数列的个数为11260160233+++=. 故选:D. 【点睛】本题考查两个计数原理和组合的实际应用问题,理解题意合理分类是解题的关键,属于中档题.3.C解析:C 【分析】将1180转化为()11811-,利用二项式定理,即可得解. 【详解】()111180811=-()()()()2101101210111110911111111111818118118111C C C C C =⋅+⋅⋅-+⋅⋅-++⋅⋅-+⋅-1210111110911111111181818181C C C C =-⋅+⋅++⋅-1211109111181818111811C C =-⋅+⋅++⨯-121110911118181811081811C C =-⋅+⋅++⨯+- 12111091111818181108180C C =-⋅+⋅++⨯+ 121110911118181811081728C C =-⋅+⋅++⨯++12111091111818181108172C C -⋅+⋅++⨯+可以被9整除,所以1180被9除的余数为8. 故选:C. 【点睛】本题考查利用二项式定理解决余数问题,将原式变形为()11811-是本题的解题关键,属于中档题.4.D解析:D 【分析】直接利用乘法原理计算得到答案. 【详解】第一颗棋子有339⨯=种排法,第二颗棋子有224⨯=种排法,第三颗棋子有1种排法, 故共有94136⨯⨯=种排法. 故选:D. 【点睛】本题考查了乘法原理,意在考查学生的应用能力.5.A解析:A 【分析】易得[]55(21)2(1)1x x --=+,求出展开式通项后可得55152(1)rrr r T C x --+=⋅⋅-,令3r =可得出2a 的值. 【详解】由于[]55(21)2(1)1x x --=+,所以展开式的通项为:[]5551552(1)12(1)rrr r r r r T C x C x ---+=⋅-⋅=⋅⋅-,令3r =可得:322352(1)T C x =⋅⋅-,则3225240a C =⋅=.故选:A . 【点睛】本题考查二项式定理的应用,解题关键是得出[]55(21)2(1)1x x --=+进而进行计算,考查逻辑思维能力和计算能力,属于常考题.6.C解析:C 【分析】分只有一名女生入选和有二名女生入选两种情况,结合分步乘法计数原理以及分类加法计数原理,即可得出答案. 【详解】当只有一名女生入选时,先选1名女生,有12C 种,再选2名男生,有24C 种,则根据分步乘法计数原理可知,有1224C C 种当有二名女生入选时,选选2名女生,有22C 种,再选1名男生,有14C 种,则根据分步乘法计数原理可知,有2124C C 种所以从中选出三名同学参加比赛,其中至少有一名女生入选的不同选法种数为12212424C C C C +故选:C 【点睛】本题主要考查了组合的应用,涉及了分步乘法计数原理以及分类加法计数原理的应用,属于中档题.7.B解析:B 【分析】根据题意可知,所选的两个球均为白球或黑球,利用组合计数原理与古典概型的概率公式可求得所求事件的概率. 【详解】由题意可知,所选的两个球均为白球或黑球,由古典概型的概率公式可知,所求事件的概率为22432737C C P C +==. 故选:B. 【点睛】本题考查古典概型概率的计算,涉及组合计数原理的应用,考查计算能力,属于中等题.8.B解析:B 【分析】首先将5(3)(2)x x -+拆开得到555((2)3(23))(2)x x x x x =+-+-+,得到5(3)(2)x x -+的展开式中3x 的系数与5(2)x +展开式中2x 项和3x 项的系数有关,化简求得结果. 【详解】555((2)3(23))(2)x x x x x =+-+-+,5(2)x +展开式中2x 项的系数为335280C ⋅=, 5(2)x +展开式中3x 项的系数为225240C ⋅=,所以5(3)(2)x x -+的展开式中3x 的系数为8034040-⨯=-, 故选:B. 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求两个二项式乘积展开式的系数问题,在解题的过程中,注意分析与哪些项有关,属于简单题目.9.C解析:C 【分析】根据已知中a 和b 对模m 同余的定义,结合二项式定理,我们可以求出a 的值,结合(mod8)a b =,比照四个答案中的数字,即可求解.【详解】0122202020202020202022...2=(12)3a C C C C =+⋅+⋅++⋅+=,又201010012210101010101039(18)888C C C C ==+=+⋅+⋅⋅⋅⋅+⋅a ∴被8除得的余数为1,同理b 被8除得的余数也要为1,观察四个选项,可知选C. 故选:C 【点睛】本题考查的知识点是同余定理,其中正确理解a 和b 对模m 同余,是解答本题的关键,同时利用二项式定理求出a 的值,也很关键.10.C解析:C 【分析】先排甲、乙、丙外的4人,再对甲、乙、丙三人分类讨论即可得解. 【详解】先排甲、乙、丙外的4人,有44A 种排法,再排甲、乙2人,有两类方法: 一类是甲、乙2人插空,又甲排在乙的左边,然后丙排在中间,故有4245240A C =种不同的站法;另一类是把甲、乙、丙按乙、丙、甲的顺序插入中间,有44A 种不同的站法, 所以共有264种不同的站法. 故选:C 【点睛】此题考查计数原理的应用,利用排列组合相关知识解决排位问题,需要熟练掌握计数原理相关知识.11.A【分析】分类计数,考虑选取1名医生2名护士和选取2名医生1名护士两类情况求解. 【详解】当选取的是1名医生2名护士,共有126436C C =种选法,分配到A ,B ,C 三个地区参加医疗救援(每个地区一人),方案要求医生不能去A 地区,共有2224A =种,即一共364144⨯=种方案;当选取的是2名医生1名护士,共有216460C C =种选法,分配到A ,B ,C 三个地区参加医疗救援(每个地区一人),方案要求医生不能去A 地区,共有222A =种,即一共602120⨯=种方案.综上所述:分配方案共有264种. 故选:A 【点睛】此题考查分类计数原理和分步计数原理综合应用,涉及排列组合相关知识,综合性强.12.C解析:C 【分析】由甲、乙两名专家必须安排在同一地工作,此时甲、乙两名专家看成一个整体即相当于一个人,所以相当于只有四名专家,先计算四名专家中有两名在同一地工作的排列数,再去掉丙、丁两名专家在同一地工作的排列数,即可得到答案. 【详解】因为甲、乙两名专家必须安排在同一地工作,此时甲、乙两名专家 看成一个整体即相当于一个人,所以相当于只有四名专家,先计算四名专家中有两名在同一地工作的排列数,即从四个中选二个和其余二个看成三个元素的全排列共有:2343C A ⋅种;又因为丙、丁两名专家不能安排在同一地工作,所以再去掉丙、丁两名专家在同一地工作的排列数有33A 种,所以不同的分配方法种数有:23343336630C A A ⋅-=-=故选:C 【点睛】本题考查了排列组合的应用,考查了间接法求排列组合应用问题,属于一般题.二、填空题13.240【分析】求定积分得值在二项展开式的通项公式中令的幂指数为0求出r 的值即可得到常数项【详解】展开式的通项公式为令即的展开式中常数项是故答案为:240【点睛】本题考查定积分的计算和二项式定理的应用【分析】求定积分得a 值,在二项展开式的通项公式中令x 的幂指数为0,求出r 的值,即可得到常数项. 【详解】002sin cos (2cos sin )(|()20)(20)4a x x dx x x ππ=-=--=----=⎰,∴64x ⎛ ⎝展开式的通项公式为(()6366216614C 4C rr rrr rrr T xx ---+⎛⎫=-= ⎪⎝⎭,令3602r-=,即4r =.∴64x ⎛ ⎝的展开式中,常数项是()4644641C =240--, 故答案为:240. 【点睛】本题考查定积分的计算和二项式定理的应用,利用二项展开式的通项公式求展开式中某项的系数是解题关键.14.【分析】先求出展开式通项得出系数要使展开式中系数最大只需该项系数不小于前一项系数也不小于后一项系数建立关于项数的不等式求解即可【详解】二项式的展开式通项为若第系数最大需满足即整理得解得所以该二项展开 解析:20126720x【分析】先求出展开式通项,得出系数,要使展开式中系数最大,只需该项系数不小于前一项系数,也不小于后一项系数,建立关于项数r 的不等式,求解即可. 【详解】二项式12312x x ⎛⎫+ ⎪⎝⎭的展开式通项为31212364112121(2)()2r r r r r rr T C x C x x ---+==,0,1,2,12r =,若第1r +系数最大,需满足1213112121211112122222r r r r r r r r C C C C -----+⎧≥⎨≥⎩,即12!212!!(12)!(1)!(13)!212!12!!(12)!(1)!(11)!r r r r r r r r ⨯⎧≥⎪---⎪⎨⨯⎪≥⎪-+-⎩, 整理得121321121r r r r ⎧≥⎪⎪-⎨⎪≥⎪-+⎩,解得1013,,433r r N r ≤≤∈∴=, 8420205122126720T C x x ==,所以该二项展开式中系数最大的项为20126720x . 故答案为:20126720x . 【点睛】本题考查二项展开式定理的应用,熟记通项是解题的关键,考查计算求解能力,属于中档题.15.144【分析】优先安排男同事甲在星期日轮值有1种再安排其余3位男同事作全排列有最后安排女同事插在三个男同事中有最后根据分步用乘法的原理得:【详解】解:第一步:先安排男同事甲在星期日轮值有1种第二步:解析:144 【分析】优先安排男同事甲在星期日轮值有1种,再安排其余3位男同事作全排列有33A ,最后安排女同事插在三个男同事中有34A ,最后根据分步用乘法的原理得:331A ⨯34144A =.【详解】解:第一步:先安排男同事甲在星期日轮值有1种, 第二步:其余3位男同事作全排列有33A ,第三步:因为三位女同事任何两位的安排不能连在一起,所以后3位女同事插空安排有34A ,分步完成共有方法种数为:1⨯33A 34144A =.故答案为:144. 【点睛】本题主要考查分步计数原理与排列,属于中档题.16.【分析】利用赋值法求二项式展开式系数和令则可得的值令则可得的值从而得解;【详解】解:因为令得令得则故答案为:【点睛】本题考查利用赋值法求二项式展开式的系数和的问题属于中档题 解析:177147-【分析】利用赋值法求二项式展开式系数和,令1x =则,可得01211a a a a +++⋅⋅⋅+的值,令1x =-则,可得01231011a a a a a a -+-+⋅⋅⋅+-的值,从而得解;【详解】解:因为1121101211(21)x a a x a x a x +=+++⋅⋅⋅+ 令1x =得11012113a a a a +++⋅⋅⋅+=,令1x =-得()110123101111a a a a a a -+-+⋅⋅⋅+-=-=-则2202101311()()a a a a a a ++⋅⋅⋅+-++⋅⋅⋅+[][]0210131102101311()()()()a a a a a a a a a a a a =++⋅⋅⋅++++⋅⋅⋅+⋅++⋅⋅⋅+-++⋅⋅⋅+()1131=⨯-177147=-故答案为:177147- 【点睛】本题考查利用赋值法求二项式展开式的系数和的问题,属于中档题.17.【分析】取得出再取得出最后由得出答案【详解】取得出取得出则故答案为:【点睛】本题主要考查了二项式定理与数列求和的应用属于中档题 解析:80-【分析】取0x =,得出012341a a a a a ++++=,再取1x =-,得出081a =,最后由1234012340a a a a a a a a a a +++++++=-得出答案.【详解】取0x =,得出401234()11a a a a a -=+++=+ 取1x =-,得出4013)8(a -==则012341234018180a a a a a a a a a a ++++++=--=-+= 故答案为:80- 【点睛】本题主要考查了二项式定理与数列求和的应用,属于中档题.18.(1)(2)【分析】(1)根据二项展开式定理得出建立关于的方程求解即可;(2)由而结合二项展开式定理可得即可求解【详解】(1)依题意整理得(2)当时偶数项含有【点睛】本题考查二项展开式定理的应用熟记解析:(1)5n =(2)1- 【分析】(1)根据二项展开式定理,得出234,,a a a ,建立关于n 的方程,求解即可;(2)由222(a b a a -=+-,而(1n a +=+,结合二项展开式定理可得(1n a -=-. 【详解】(1)依题意324324,,n n n a C a C a C ===23242a a a =⋅2(1)(2)(1)(1)(2)(3)232124321n n n n n n n n n ------⎡⎤=⨯⨯⎢⎥⨯⨯⨯⨯⨯⎣⎦整理得2332n n --=,5n ∴=(2) 当5n =时,5(1a +=+502233445555555(12)C C C C C C +=++++,5(1a ∴=-22552(1(11a b ∴-==-【点睛】本题考查二项展开式定理的应用,熟记公式是解题的关键,考查计算求解能力,属于中档题.19.144【分析】先排4位同学将教师插入4位同学产生的3个空位中再由乘法原理即可得到答案【详解】先排4位同学共有种不同排法由于教师不能坐在两端也不坐在一起将2位老师插入4位同学产生的3个空位中共种不同排解析:144 【分析】先排4位同学,将教师插入4位同学产生的3个空位中,再由乘法原理即可得到答案. 【详解】先排4位同学共有44A 种不同排法,由于教师不能坐在两端,也不坐在一起,将2位老师插 入4位同学产生的3个空位中,共23A 种不同排法,由乘法原理,共有4243144A A =种不同排 法.故答案为:144 【点睛】本题考查排列的实际应用,涉及到特殊元素分析法,考查学生的逻辑推理能力,是一道中档题.20.315【分析】根据题意有且只有三个盒子的编号与放入的小球的编号相同再由排列组台及计数原理即可求解【详解】第一步:先确定三个盒子的编号与放入的小球的编号相同共种不同取法;第二步:再将剩下的个小球放入到解析:315 【分析】根据题意,有且只有三个盒子的编号与放入的小球的编号相同,再由排列组台及计数原理,即可求解. 【详解】第一步:先确定三个盒子的编号与放入的小球的编号相同,共3735C =种不同取法;第二步:再将剩下的4个小球放入到4个盒子中,且小球编号与放入的小球的编号不相同,共()113219C C +=种不同放法;因而有且只有三个盒子的编号与放入的小球的编号相同的不同放法种数为359315⨯=种. 故答案为:315 【点睛】本题考查了排列组合及计数原理,考查理解辨析能力与运算求解能力,属中档题.三、解答题21.(1)10n =;(2)180;(3)1. 【解析】试题分析: 本题主要考查二项式定理的应用,二项展开式的通项公式,注意根据题意,分析所给代数式的特点,通过给二项式的x 赋值,求展开式的系数和,属于基础题.第一问,直接利用条件可得3283n n C C =,求得n 的值;第二问,在二项展开式的通项公式中,令x的幂指数等于3,求出r 的值,即可求得展开式中x 3项的系数.第三问,在10二项展开式中,令x=1,可得式子01231010101010102481024C C C C C -+-++的值.试题(1)由第4项的二项式系数与第3项的二项式系数的比为8:3,可得3283n n C C =,化简可得2833n -=,求得10n =. (2)由于n 二项展开式的通项公式为5110(2)r r rr T C x -+=-,令53r -=,求得2r,可得展开式中3x 项的系数为2210(2)180C -=.(3)由二项式定理可得105100(2)n r r rr C x -==-∑, 所以令x=1得01231010101010102481024C C C C C -+-++10(12)1=-=.考点:二项式定理的应用;二项式系数的性质. 22.(1)8;(2)611120x⋅. 【分析】(1)由条件利用二项式系数的性质求得n 的值;(2)首先求出二项式展开式的通项,进而得到展开式中二项式系数最大的项. 【详解】(1)由题意知,第二项的二项式系数为1n C ,第三项的二项式系数为2n C ,1236n n C C ∴+=,得2720n n +-=,(9)(8)0n n ∴+-=得8n =或9n =-(舍去).(2)822x ⎫⎪⎭的通项公式为:858218822(1)2k kk k k k kkT C C xx--+⎛⎫=-=-⎪⎝⎭,又由8n=知第5项的二项式系数最大,此时5611120Tx=⋅.【点睛】本题第一问考查二项式系数的性质,第二问考查二项式系数最大的项,熟记二项式展开式的通项为解题的关键,属于中档题.23.(1)720(2)2520(3)7800【分析】(1)直接利用排列公式得到答案.(2)将情况分为:每个学生只取1本书;一个学生取2本书,其余学生每人取一本书这两种情况,分别计算相加得到答案.(3)将情况分为:1个学生取3本书,3个学生每人取1本书,1个学生取0本书; 2个学生每人取2本书,2个学生每人取1本书,1个学生取0本书,计算得到答案.【详解】(1)每个学生只取1本书的不同取法种数为56720A=种.(2)每个学生最少取1本书,最多取2本书分两种情况:第一种,每个学生只取1本书,取法为56A;第二种,一个学生取2本书,其余学生每人取一本书.确定取2本书的学生有15C种方法,这个学生取哪2本书有26C种方法,其余4个学生取剩下的4本书且每人一本有44A种方法,故一个学生取2本书,其余学生每人取一本书取法为124564C C A.所以,每个学生最少取1本书,最多取2本书的不同取法为5124656472018002520A C C A+=+=种.(3)恰有1个学生没取到书分两种情况:第一种,1个学生取3本书,3个学生每人取1本书,1个学生取0本书,取法种数为3565C A.第二种,2个学生每人取2本书,2个学生每人取1本书,1个学生取0本书,取法种数为22564522C CAA.所以恰有1个学生没取到书的不同取法种数为2222355356464655652222(2045)1207800C C C CC A A C AA A⎛⎫+=+=+⨯=⎪⎝⎭种.【点睛】本题考查了排列组合公式的应用,意在考查学生的应用能力和理解能力.24.(1)19;(2)35【分析】(1)求出所有男生打卡天数总和再除以男生人数即平均打卡天数;(2)打卡21天的小朋友中男生2人,女生3人,任选2人交流心得,求出基本事件总数和选到男生和女生各1人所包含的基本事件个数即可求解概率. 【详解】(1)男生平均打卡的天数1731851932072121935372x ⨯+⨯+⨯+⨯+⨯==++++.(2)男生打卡21天的2人记为a ,b ,女生打卡21天的3人记为c ,d ,e ,则从打卡21天的小朋友中任选2人的情况有(),a b ,(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,(),c d ,(),c e ,(),d e ,共10种,其中男生和女生各1人的情况有(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,共6种.故所求概率63105P ==. 【点睛】此题考查求平均数和古典概率,关键在于准确求出打卡天数总和以及根据计数原理求出基本事件个数. 25.(1)7(2)2214x 【分析】(1)因为展开式中第2,3,4项的二项式系数依次成等差数列,可得:1322n n n C C C +=,整理得,29140n n -+=,即可求得n 的值;(2)当7n =时,7展开式的第1r +项为1441371(1)2rr r r r T C x +-=-⋅⋅,令14324r-=,即可求得含2x 的项. 【详解】(1)因为展开式中第2,3,4项的二项式系数依次成等差数列,1322n n n C C C +=,整理得,29140n n -+=,即()()270n n --=, 又3n ≥,*n N ∈,∴n 的值为7.(2)当7n =时,7展开式的第1r +项为 171743741(1)2r r rr r r r r T C C x-+-⎛==-⋅⋅ ⎝,其中07r ≤≤且r N ∈. 令14324r-=,得2r ,∴2222372121(1)24T C x x =-⋅⋅=, ∴展开式中含2x 的项为2214x . 【点睛】本题解题关键是掌握二项式通项公式,掌握二项式的基础知识,考查了分析能力和计算能力,属于中档题.26.(1)480种(2)360种 【分析】(1)不相邻问题利用插空法法;(2)女生顺序已定,先排女生,再排男生,最后根据分步乘法计算原理计算可得; 【详解】解:(1)2名女生不相邻的排列可以分成2步完成: 第一步 将4名男生排成一排,有44A 种排法;第二步 排2名女生.由于2名女生不相邻,可以在每2名男生之间及两端共5个位置中选出2个排2名女生,有25A 种排法.根据分步计数原理,不同的排法种数是42452420480A A =⨯=.(2)女生甲必须排在女生乙左边的排列可以分成2步完成:第一步:排2名女生,女生的顺序已经确定,这2名女生的排法种数为从6个位置中选出2个位置的组合数,即为26C ;第二步:排4名男生.将4名男生在剩下的4个位置上进行排列的方法数有44A 种.根据分步计数原理,不同的排法种数是24641524360C A =⨯=.答:分别有480和360种不同的排法. 【点睛】本题考查简单的排列组合问题,属于中档题.。
(常考题)北师大版高中数学高中数学选修2-3第一章《计数原理》测试(包含答案解析)(1)
![(常考题)北师大版高中数学高中数学选修2-3第一章《计数原理》测试(包含答案解析)(1)](https://img.taocdn.com/s3/m/066a5304f61fb7360a4c659b.png)
一、选择题1.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则任意选取一名学生,该生成绩不高于80的概率为( ) A .0.05B .0.1C .0.15D .0.22.一批产品(数量很大)中,次品率为13,现连续地抽取4次,其次品数记为X ,则()E X 等于( )A .13B .23C .89D .433.孔子曰“三人行,必有我师焉.”从数学角度来看,这句话有深刻的哲理,古语说三百六十行,行行出状元,假设有甲、乙、丙三人中每一人,在每一行业中胜过孔圣人的概率为1%,那么甲、乙、丙三人中至少一人在至少一行业中胜过孔圣人的概率为( )(参考数据:3600.990.03≈,3600.010≈,30.970.912673≈) A .0.0027%B .99.9973%C .0D .91.2673%4.设1~(10,)B p ξ,2~(10,)B q ξ,且14pq >,则“()()12E E ξξ>”是“()()12D D ξξ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.设随机变量X 服从正态分布()0,9N ,则()36P X <<=( )(附:若()2~,X N μσ,则()0.6826P X μσμσ-<<+≈,(2)0.9544P X μσμσ+<<+=)A .0.0456B .0.1359C .0.2718D .0.31746.已知随机变量,X Y 的分布列如下:若成等差数列,则下列结论一定成立的是()A .()()D X Y D >B .()() E X E Y =C .()()E X E Y < D .()()D X Y D =7.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动.设所选3人中女生人数为ξ,则数学期望E ξ=( )A .1B .45C .75D .28.体育课上定点投篮项目测试规则:每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止.每次投中与否相互独立,某同学一次投篮投中的概率为p ,若该同学本次测试合格的概率为0.784,则p =( )A . 0.4B .0.6C .0.1D .0.29.某班学生的考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是( ) A .15B .310C .12D .3510.有10件产品,其中3件是次品,从中任取两件,若X 表示取得次品的个数,则P (X <2)等于 A .715B .815C .1415D .111.三个元件123,,T T T 正常工作的概率分别为123,,234,且是相互独立的.如图,将23,T T 两个元件并联后再与1T 元件串联接入电路,则电路不发生故障的概率是( )A .1124B .2324C .14D .173212.根据以往数据统计,某酒店一商务房间1天有客人入住的概率为45,连续2天有客人入住的概率为35,在该房间第一天有客人入住的条件下,第二天也有客人入住的概率为( ) A .13B .12C .35D .34二、填空题13.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层有6个乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用X 表示这6位乘客在第20层下电梯的人数,则(4)P X ==________.14.甲、乙两名射击运动员一次射击命中目标的概率分别是0.7,0.6,且每次射击命中与否相互之间没有影响,求:(1)甲射击三次,第三次才命中目标的概率;(2)甲、乙两人在第一次射击中至少有一人命中目标的概率; (3)甲、乙各射击两次,甲比乙命中目标的次数恰好多一次的概率.15.已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止.若检测一台机器的费用为1000元,则所需检测费的均值为___________16.已知随机变量ξ服从正态分布()21,N σ,若(3)0.0442P ξ>=,则(13)P ξ≤≤=________.17.甲、乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3:1的比分获胜的概率为______. 18.随机变量X 服从正态分布()2~10,X N σ,()12P X m >=,1(8)0P X n ≤≤=,则21m n+的最小值为_____. 19.某篮球运动员投中篮球的概率为23,则该运动员“投篮3次至多投中1次”的 概率是__________.(结果用分数表示)20.已知随机变量2~(1,)N ξσ,且(1)0.1P ξ≤-=,(23)0.15P ξ≤≤=,则(02)P ξ≤≤=_______.三、解答题21.某款游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次,若出现一次音乐获得1分,若出现两次音乐获得2分,若出现三次音乐获得5分,若没有出现音乐则扣15分(即获得15-分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为X ,求X 的分布列. (2)玩三盘此游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的人发现,若干盘游戏后,与最初的得分相比,得分没有增加反而减少了.请你分析得分减少的原因.22.已知一个袋子里有形状一样仅颜色不同的6个小球,其中白球2个,黑球4个.现从中随机取球,每次只取一球.()1若每次取球后都放回袋中,求事件“连续取球四次,至少取得两次白球”的概率; ()2若每次取球后都不放回袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X 次,求随机变量X 的分布列与期望.23.某大型工厂有5台大型机器,在1个月中,1台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修.每台机器出现故障的概率为12.已知1名工人每月只有维修1台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得10万元的利润,否则将亏损3万元.该工厂每月需支付给每名维修工人1.5万元的工资.(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有2名维修工人,求工厂每月能正常运行的概率; (2)已知该厂现有4名维修工人.(ⅰ)记该厂每月获利为X 万元,求X 的分布列与数学期望;(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘1名维修工人? 24.抛掷一枚质地均匀的硬币2次,记正面朝上的次数为X . (1)求随机变量X 的分布列;(2)若随机变量21Y X =+,求随机变量Y 均值、方差.25.某企业有甲、乙两个研发小组,他们研究新产品成功的概率分别为34和35,现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立. (1)求恰好有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获得利润120万元,不成功则会亏损50万元;若新产品B 研发成功,企业可获得利润100万元,不成功则会亏损40万元,求该企业获利ξ万元的分布列和期望.26.2020年寒假是特殊的寒假,因为抗击疫情全体学生只能在家进行网上在线学习,为了研究学生在网上学习的情况,某学校在网上随机抽取120名学生对线上教育进行调查,其中男生与女生的人数之比为11:13,其中男生30人对于线上教育满意,女生中有15名表示对线上教育不满意.(1)完成22⨯列联表,并回答能否有99%的把握认为对“线上教育是否满意与性别有关”;8名学生中抽取3名学生,作线上学习的经验介绍,其中抽取男生的个数为ξ,求出ξ的分布列及期望值.参考公式:附:22()()()()()n ad bc K a b a c b d c d -=++++【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】1(80120)(80)(120)0.12P X P X P X -<<≤=≥== ,选B.2.D解析:D 【分析】根据独立重复试验的条件,转化成4次的独立重复试验,利用二项分布期望的计算公式,即可求解. 【详解】由题意,一批产品数量很大,其中次品率为13,现连续地抽取4次, 可以看出是4次的一个独立重复试验,可得随机变量X 服从二项分布,即1(4,)3X B ,所以()14433E X =⨯=. 故选:D . 【点睛】本题主要考查了独立重复试验,以及二项分布的期望的计算,其中解答熟记独立重复试验的条件,掌握独立重复试验中随机变量服从二项分布是解答的关键,着重考查了分析问题和解答问题的能力.3.B解析:B 【分析】先求出一个人在所有行业中都不能胜过孔圣人的概率,再求出三个人在所有行业中都不能胜任孔圣人的概率,用1减去此概率即为所求. 【详解】一个人三百六十行全都不如孔圣人的概率为3600.990.03≈,三个人三百六十行都不如孔圣人的概率为30.030.000027=,所以至少一人在至少一行业中胜过孔圣人的概率为10.0000270.99997399.9973%-==.故选:B . 【点睛】本题考查相互独立事件的概率乘法公式,考查至多至少问题用对立事件解决的方法,属于4.C解析:C 【分析】根据二项分布的期望和方差公式,可知()110E p ξ=,()210E q ξ=,那么()()12E E ξξ>等价于1010p q >,即p q >,并且()()1101D p p ξ=-,()()2101D q q ξ=-,则()()12D D ξξ>等价于()()101101pp q q -<-,即()()11p p q q -<-,分情况讨论,看这两个条件是否可以互相推出即得. 【详解】由题得,()110E p ξ=,()210E q ξ=,故()()12E E ξξ>等价于1010p q >,即p q >. 又()()1101D p p ξ=-,()()2101D q q ξ=-,故()()12D D ξξ>等价于()()101101p p q q -<-,即()()11p p q q -<-.若p q >,因为14pq >,说明12p >,且()()211124p p p p pq +-⎛⎫-<=< ⎪⎝⎭,故1p q -<,故有1122p q ->-.若12q <,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,若12q ≥,则自然有11022p q ->->,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭即()()11p p q q -<-.若()()11p p q q -<-,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,又因为()()1114p p q q pq -<-≤<,1p q -<,即1122p q ->-.若102p -≤,则与221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭矛盾,故12p >,若12q ≤,则自然有p q >,若12q >,则由221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭知1122p q ->-,即p q >. 所以是充要条件.故选:C 【点睛】本题综合的考查了离散型随机变量期望方差和不等式,属于中档题.5.B解析:B由随机变量X 符合正态分布()0,9N ,得0μ=,3σ=,则所求(36)P X <<,即为(2)P X μσμσ+<<+,根据3σ原则,以及正态曲线的对称性即可求值.【详解】因为随机变量X 符合正态分布()0,9N ,则0μ=,3σ=, 所以(36)(2)P X P X μσμσ<<=+<<+, 由()0.6826P X μσμσ-<<+≈,()220.9544P X μσμσ-<<+=,以及正态曲线的对称性,可知()00.3413P X μσ<<+≈,(02)0.4772P X μσ<<+=,则(36)0.47720.34130.1359P X <<=-=. 故选:B. 【点睛】本题考查了正态分布曲线的对称性,两个变量μ和σ的应用,3σ原则,属于中档题.6.D解析:D 【分析】,,a b c 成等差数列,即2b a c =+,结合1a b c ++=,计算出()()()(), ,,E E Y D X X D Y ,由此判断出正确结论.【详解】由于,,a b c 成等差数列,故2b a c =+①,另根据分布列的知识可知1a b c ++=②.由①②得12,33b c a ==-. 所以()2243232333E X a b c a a a =++=++-=+, ()2282332333E Y a b c a a a ⎛⎫=++=++-=- ⎪⎝⎭,由于484224333a a a ⎛⎫+--=-+ ⎪⎝⎭正负无法确定,故()() ,E X E Y 大小无法比较. ()222444322212333D X a a a b a c ⎛⎫⎛⎫⎛⎫=--⋅+--⋅+--⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2225211222233333a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-⋅+-⋅++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ()222888122232333D Y a a a b a c ⎛⎫⎛⎫⎛⎫=-+⋅+-+⋅+-+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2225211222233333a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-⋅+-⋅++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故()()D X Y D =. 故选D. 【点睛】本小题主要考查根据随机变量分布列计算数学期望和方差,考查等差中项的性质,考查运算求解能力,属于中档题.7.A解析:A 【解析】 【分析】随机变量随机ξ的所有可能的取值为0,1,2.分别求出其对应的概率,列出分布列,求期望即可. 【详解】随机变量ξ的所有可能的取值为0,1,2,P (ξ=0)30423615C C C ==,()214236315C C P C ξ===, ()124236125C C P C ξ===, 所有随机变量ξ的分布列为:所以ξ的期望()0121555E ξ=⨯+⨯+⨯= ,故选A . 【点睛】本题考查了离散型随机变量的期望,属于中档题.8.A解析:A 【解析】 【分析】根据合格的情况列方程:()()2110.784p p p p p +-+-=,解方程求出结果. 【详解】由题意可得:()()2110.784p p p p p +-+-= 整理可得:()()22212330.784p p p p p pp -+-+=-+=解得:0.4p = 本题正确选项:A【点睛】本题考查概率的求法,考查对立事件概率计算公式、相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.9.A解析:A 【分析】由题意设这个班有100人,则数学不及格有15人,语文不及格有5人,都不及格的有3人,则数学不及格的人里头有3人语文不及格,由此能求出已知一学生数学不及格,他语文也不及格的概率. 【详解】由题意设这个班有100人,则数学不及格有15人,语文不及格有5人,都不及格的有3人, 则数学不及格的人里头有3人语文不及格,∴已知一学生数学不及格,则他语文也不及格的概率为31155p ==,故选A . 【点睛】本题主要考查概率的求法,设这个班有100人可使得该问题更加直观明了,属于基础题.10.C解析:C 【分析】根据超几何分布的概率公式计算各种可能的概率,得出结果 【详解】由题意,知X 取0,1,2,X 服从超几何分布, 它取每个值的概率都符合等可能事件的概率公式,即P(X =0)=27210715C C =,P(X =1)=1173210715C C C =⋅,P(X =2)=23210115C C =, 于是P(X<2)=P(X =0)+P(X =1)=7714151515+= 故选C 【点睛】本题主要考查了运用超几何分布求概率,分别求出满足题意的情况,然后相加,属于中档题.11.A解析:A 【分析】若电路不发生故障,则满足1T 正常工作,23T T ,至少有一个正常工作 【详解】记1T 正常工作为事件A记2T 正常工作为事件B 记3T 正常工作为事件C 则()12P A =,()23P B =,()34P C = 电路不发生故障,则满足1T 正常工作,23T T ,至少有一个正常工作 则23T T ,至少有一个正常工作,概率为()1231111113412P P BC ⎛⎫⎛⎫=-=--⨯-= ⎪ ⎪⎝⎭⎝⎭则电路不发生故障的概率1111121224P =⨯= 故选A 【点睛】本题主要考查了概率知识及实际应用能力,考查了相互独立事件同时发生的概率的计算,关键是确定不发生故障时满足的条件.12.D解析:D 【分析】首先设出所求的概率为P ,根据题中的条件,可以列出P 所满足的等量关系式,从而求得相应的结果. 【详解】设第二天也有客人入住的概率为P ,根据题意有43=55P ⋅,解得34P =,故选D.【点睛】该题考查的是有关两个事件同时发生的概率问题,也可以看做是有关条件概率的问题,在解题的过程中,需要正确应用公式求得结果.二、填空题13.【分析】根据次独立重复试验的概率公式进行求解即可【详解】解:考查一位乘客是否在第20层下电梯为一次试验这是次独立重复试验故即有123456故答案为:【点睛】本题主要考查次独立重复试验的概率的计算根据 解析:20243【分析】根据n 次独立重复试验的概率公式进行求解即可. 【详解】解:考查一位乘客是否在第20层下电梯为一次试验,这是6次独立重复试验,故1~6,3X B ⎛⎫ ⎪⎝⎭.即有6612()()()33k kk P X k C -==⨯,0k =,1,2,3,4,5,6.42641220(4)()()33243P X C ∴==⨯=.故答案为:20243【点睛】本题主要考查n 次独立重复试验的概率的计算,根据题意确实是6次独立重复试验,是解决本题的关键,属于中档题.14.(1);(2)088;(3)【分析】(1)甲第三次才命中目标为事件且三次射击相互独立利用独立重复试验概率计算公式即可求得答案;(2)求该事件的反面的概率用1减其即可;(3)设甲在两次射击命中目标i 次解析:(1)0.063;(2)0.88;(3)0.3024. 【分析】(1)“甲第三次才命中目标”为事件123A A A ,且三次射击相互独立,利用独立重复试验概率计算公式即可求得答案;(2)求该事件的反面的概率,用1减其即可;(3)设“甲在两次射击命中目标i 次”为事件(0,1,2)i M i =,“乙在两次射击命中目标i 次”为事件(0,1,2)i N i =,则事件“甲、乙各射击两次,甲比乙命中目标次数恰好多一次”可表示为1021M N M N +,用独立重复试验概率计算公式即可求得答案. 【详解】记“甲第i 次射击命中目标”为事件i A ,“乙第i 次射击命中目标”为事件i B ,依题意得()0.7i P A =,()0.6i P B =,且i A ,i B (1,2,3i =)相互独立.(1)“甲第三次才命中目标”为事件123A A A ,且三次射击相互独立,()()123123()()0.30.30.70.063P A A A P A P A P A ∴==⨯⨯=.答:甲第三次才命中目标的概率为0.063.(2)“甲、乙两人在第一次射击中至少有一人命中目标”为事件C .()11()1()10.30.40.88P C P A P B =-⋅=-⨯=.答:甲、乙两人在第一次射击中至少有一人命中目标的概率为0.88. (3)设“甲在两次射击命中目标i 次”为事件(0,1,2)i M i =, “乙在两次射击命中目标i 次”为事件(0,1,2)i N i =,事件“甲、乙各射击两次,甲比乙命中目标次数恰好多一次”可表示为1021M N M N +,且10M N ,21M N 为互斥事件,∴所求的概率为()()()10211021P M N M N P M N P M N +=+()()()()12211021220.70.30.40.70.60.4P M P N P M P N C C =+=⨯⨯⨯+⨯⨯⨯0.06720.23520.3024=+=答:甲、乙各射击两次,甲比乙命中目标的次数恰好多一次的概率为0.3024. 【点睛】本题考查独立重复试验中的概率计算问题,属于中档题.15.3500【分析】设检测机器所需检测费为则的可能取值为200030004000分别求出相应的概率由此能求出所需检测费的均值【详解】设检测的机器的台数为则的所有可能取值为234所以所需的检测费用的均值为解析:3500 【分析】设检测机器所需检测费为X ,则X 的可能取值为2000,3000,4000,分别求出相应的概率,由此能求出所需检测费的均值. 【详解】设检测的机器的台数为X ,则X 的所有可能取值为2,3,4.1123223233522513133(2000),(3000),(4000)1101010105A C A A A P X P X P X A A +========--=所以所需的检测费用的均值为()133200030004000350010105E X =⨯+⨯+⨯=. 故答案为: 3500. 【点睛】本题考查离散型随机变量的分布列和均值,考查学生分析问题的能力,难度一般.16.4558【分析】随机变量服从正态分布根据对称性可求得的值再根据概率的基本性质可求得【详解】因为所以故所以故答案为:04558【点睛】本题考查了正态分布曲线的对称性属于基础题解析:4558 【分析】随机变量ξ服从正态分布()21,N σ,(3)0.0442P ξ>=,根据对称性可求得(1)P ξ<-的值,再根据概率的基本性质,可求得(13)P ξ≤≤. 【详解】因为(3)0.0442P ξ>=, 所以(1)0.0442P ξ<-=,故(13)1(3)(1)0.9116P P P ξξξ-≤≤=->-<-=. 所以(13)0.4558P ξ≤≤=. 故答案为:0.4558.本题考查了正态分布曲线的对称性,属于基础题.17.【分析】前三局乙获胜一场计算得到概率【详解】根据题意知:前三局乙获胜一场故故答案为:【点睛】本题考查了概率的计算意在考查学生的理解应用能力 解析:827【分析】前三局,乙获胜一场,计算得到概率. 【详解】根据题意知:前三局,乙获胜一场,故3131283327p C ⎛⎫=⨯⨯=⎪⎝⎭ 故答案为:827【点睛】本题考查了概率的计算,意在考查学生的理解应用能力.18.【分析】根据正态分布的对称性得到再利用均值不等式计算的最小值【详解】随机变量服从正态分布∴由得又∴且则当且仅当即时等号成立∴的最小值为故答案为【点睛】本题考查了正态分布的计算均值不等式的运用综合性较解析:6+【分析】根据正态分布的对称性,得到12m n +=,再利用均值不等式计算21m n+的最小值. 【详解】随机变量X 服从正态分布210(),X N σ~,∴1(10)2P X ≥=, 由1(8)0P X n ≤≤=,得1(10)2P X n ≤≤=, 又()12P X m >=, ∴12m n +=,且0m >,0n >,则2121(22)m n m n m n ⎛⎫+=++= ⎪⎝⎭6626=+=+当且仅当42n m m n =,即22m =,12n =时等号成立. ∴21m n+的最小值为6+.故答案为6+.本题考查了正态分布的计算,均值不等式的运用,综合性较强,需要同学们熟练掌握各个知识点.19.【分析】投篮3次至多投中1次包括只投中一次和全部没有投中由投篮3次至多投中1次的概率是求得结果【详解】:投篮3次至多投中1次包括只投中一次和全部没有投中故投篮3次至多投中1次的概率是故答案为【点睛】解析:727. 【分析】“投篮3次至多投中1次”包括只投中一次,和全部没有投中,由“投篮3次至多投中1次”的概率是223333121()()333C C ⋅⋅+⋅ 求得结果. 【详解】:“投篮3次至多投中1次”包括只投中一次,和全部没有投中,故“投篮3次至多投中1次”的概率是2233331217()()33327C C ⋅⋅+⋅=, 故答案为727. 【点睛】本题考查n 次独立重复实验中恰好发生k 次的概率,等可能事件的概率.20.【解析】【分析】利用随机变量关于对称结合已知求出结果【详解】随机变量满足图象关于对称则故答案为【点睛】本题考查了正态分布由正态分布的对称性即可计算出结果 解析:0.5【解析】 【分析】利用随机变量()2~1N ξσ,,关于1x =对称,结合已知求出结果【详解】随机变量满足()2~1N ξσ,,∴图象关于1x =对称()10.1P ξ≤-=,()30.1P ξ∴≥=则()()()120.5?23?30.50.150.10.25P P P ξξξ≤≤=-≤≤-≥=--= ()020.5P ξ∴≤≤=故答案为0.5 【点睛】本题考查了正态分布,由正态分布的对称性即可计算出结果三、解答题21.(1)答案见解析;(2)511512;(3)答案见解析. 【分析】(1)根据击鼓三次,出现一次音乐获得1分,若出现两次音乐获得2分,若出现三次音乐获得5分,若没有出现音乐则扣15分,得到X 可能的取值为1,2,5,15-,然后分别求得其相应概率,列出分布列;(2)设“第i 盘游戏没有出现音乐”为事件(1,2,3)i A i =,根据每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立得到()()()1231(15)8P A P A P A P X ====-=,然后利用对立事件的概率求解.(3)根据(1)的结论,算出随机变量X 的数学期望即可. 【详解】(1)X 可能的取值为1,2,5,15-根据题意,有1213113(1)1228P X C ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,2123113(2)1228P X C ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,3033111(5)1228P X C ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,33111(15)1228P X C ⎛⎫⎛⎫=-=⨯⨯-= ⎪ ⎪⎝⎭⎝⎭.所以X 的分布列为:(2)设“第i 盘游戏没有出现音乐”为事件i , 则()()()1231(15)8P A P A P A P X ====-=. 所以“三盘游戏中至少有一盘出现音乐”的概率为()3123115111118512512P A A A ⎛⎫-=-=-= ⎪⎝⎭. 因此,玩三盘游戏至少有一盘出现音乐的概率是511512(3)由(1)知,随机变量X 的数学期望为331111251588888EX =⨯+⨯+⨯-⨯=-. 这表明,获得分数X 的均值为负.因此,多次游戏之后分数减少的可能性更大. 【点睛】本题主要考查离散型随机变量的分布列和期望的应用以及独立事件和对立事件的概率求法,还考查了运算求解的能力,属于中档题. 22.(1);(2)随机变量X 的分布列见解析,期望为133. 【分析】(1)可从正面计算取得两次、三次、四次白球的概率和,也可以用1减去取得一次、两次白球的概率,而四次取球中每次是否取得白球相互独立,只需用组合数即可得到相应概率;(2)注意取出的球不放回,因此最多取5次白球就会被取完,故X =2,3,4,5,分别计算对应的概率,写出分布列,进而可求出期望. 【详解】(1)记随机变量ξ表示连续取球四次,取得白球的次数,则ξ~B (4,13) 则P (ξ>1)=1-P (ξ=0)-P (ξ=1)=1-00411344121211()()()()333327C C -=(2)随机变量X 的取值分别为2,3,4,5∴P (X =2)=2226115C C =,P (X =3)=11242612415C C C ⨯= P (X =4)=1224361135C C C ⨯=,P (X =5)=134244446635C C C C C += ∴随机变量X 的分布列为 X 2345P115 215 15 35∴随机变量X 的期望为:1313()23451515553E X =⨯+⨯+⨯+⨯= 考点:古典概型,相互独立事件,随机变量的分布列与期望 23.(1)12;(2)(ⅰ)139532;(ⅱ)不应该.【分析】(1)根据相互独立事件的概率公式计算出事故机器不超过2台的概率即可; (2)(i )求出X 的可能取值及其对应的概率,得出X 的分布列和数学期望;(ⅱ)求出有5名维修工人时的工厂利润,得出结论. 【详解】解:(1)因为该工厂只有2名维修工人,故要使工厂正常运行,最多只有2台大型机器出现故障.∴该工厂正常运行的概率为:51422355111111()C ()C ()()222222+⋅+⋅=⋅⋅. (2)(i )X 的可能取值有31,44,511(31)()232P X ===,131(44)13232P X ==-=.∴X 的分布列为:∴ 3144323232EX =⨯+⨯=. (ⅱ)若工厂再招聘一名维修工人,则工厂一定能正常运行, 工厂所获利润为510 1.5542.5⨯-⨯=万元, 因为139542.532>, ∴该厂不应该再招聘1名维修工人. 【点睛】本题考查了相互独立事件的概率计算,离散型随机变量的分布列与数学期望计算,属于中档题.24.(1)分布列见解析;(2)()3E Y =,()2D Y = 【分析】(1)根据抛掷一枚质地均匀的硬币2次,则正面朝上的次数X 可能取值为0,1,2,然后利用独立重复实验求出相应的概率列出分布列.(2)根据(1)利用期望与方差公式求得随机变量X 的期望与方差,然后由()()()2121E Y E X E X =+=+,()()()214D Y D X D X =+=求解.【详解】随机变量X 的取值可以为0,1,2.211(0)24P X ⎛⎫=== ⎪⎝⎭;()212111C 22P X ⎛⎫==⨯=⎪⎝⎭;22211(2)C 24P X ⎛⎫==⨯= ⎪⎝⎭;.因此,随机变量X 的分布列为:1110121424EX =⨯+⨯+⨯=.()()()22211110111214242DX =-⨯+-⨯+-⨯=.∴()()()21213E Y E X E X =+=+=, ∴()()()2142D Y D X D X =+==. 【点睛】本题主要考查离散型随机变量的分布列及期望与方差,还考查了运算求解的能力,属于中档题. 25.(1)920;(2)见解析,121.5万元. 【分析】(1)设恰好有一种新产品研发成功为事件A ,利用相互独立与互斥事件的概率计算公式可得P (A );(2)由题可得设企业可获得利润为ξ,则ξ的取值有﹣90,50,80,220.利用相互独立试验同时发生的概率计算方法分别得到每种情况的概率,列出分布列,算出期望即可. 【详解】解:(1)设恰好有一种新产品研发成功为事件A ,则 P (A )=(134-)3354⨯+⨯(135)920=;(2)由题可得设企业可获得利润为ξ,则ξ的取值有﹣90,50,80,220. 由独立试验的概率计算公式可得,P (ξ=0)=(134-)(135)110=,P (ξ=50)33314520⎛⎫=-⨯=⎪⎝⎭, P (ξ=80)33314510⎛⎫=⨯-= ⎪⎝⎭, P (ξ=220)3394520=⨯=, ∴ξ的分布列如下:则数学期望E (ξ)9010=-⨯+50802010⨯+⨯+22020⨯=121.5万元. 【点睛】本题主要考查离散型随机变量的分布列与均值的计算,考查了学生的运算求解能力. 26.(1)填表见解析;有99%的把握认为对“线上教育是否满意与性别有关”(2)分布列见解析,期望为98. 【分析】(1)根据所给数据可得列联表,然后计算2K 可得;(2)由分层抽样可知男生抽3人,女生抽5人,ξ的可能取值为0,1,2,3,并且ξ服从超几何分布,计算出概率得分布列,再由期望公式计算出期望. 【详解】解:(1)因为男生人数为:11120551113⨯=+, 所以女生人数为1205565-=, 于是可完成2×2列联表,如下:根据列联表中的数据,得到K 的观测值22120(30152550)960 6.713 6.63555658040143K ⨯⨯-⨯==≈>⨯⨯⨯,所以有99%的把握认为对“线上教育是否满意与性别有关”. (2)由(1)可知男生抽3人,女生抽5人,依题可知ξ的可能取值为0,1,2,3,并且ξ服从超几何分布,33538()(0,1,2,3)k k C C P k k C ξ-===,即 35385((0)28C P C ξ===,21533815(1)28C C P C ξ===12533815(2)56C C P C ξ===,33381(3)56C P C ξ===.可得分布列为可得()0123282856568E ξ=⨯+⨯+⨯+⨯=.【点睛】本题考查独立性检验,考查分层抽样,考查随机变量的概率分布列和数学期望,解题难点是确定随机变量 服从超几何分布,从而易计算概率.。
(常考题)北师大版高中数学高中数学选修2-3第一章《计数原理》检测题(有答案解析)(1)
![(常考题)北师大版高中数学高中数学选修2-3第一章《计数原理》检测题(有答案解析)(1)](https://img.taocdn.com/s3/m/64905df002020740bf1e9ba6.png)
一、选择题1.设01a <<,2a b +=,随机变量X 的分布列如表:则当()0,1a ∈内增大时( )A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大2.一批产品(数量很大)中,次品率为13,现连续地抽取4次,其次品数记为X ,则()E X 等于( )A .13B .23C .89D .433.已知离散型随机变量X 的分布列为则D (X )的最大值是( ) A .29B .59C .89D .2094.先后投掷骰子(骰子的六个面分别标有1、2、3、4、5、6个点)两次落在水平桌面后,记正面朝上的点数分别为,x y ,设事件A 为“x y +为偶数”,事件B 为“x y 、中有偶数,且x y ≠”,则概率()P B A =( ) A .13B .12C .14D .255.设1~(10,)B p ξ,2~(10,)B q ξ,且14pq >,则“()()12E E ξξ>”是“()()12D D ξξ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.在如图所示的正方形中随机投掷1000个点,则落入阴影(曲线为正态分布(0,1)N 的密度曲线)的点的个数的估计值为( )(附:若2~(,)X N μσ,则()0.6826P X μσμσ-<+=,(22)0.9544P X μσμσ-<+=)A .239B .272C .341D .4777.已知离散型随机变量X 的分布列如图:则均值E (X )与方差D (X )分别为( )A .1.4,0.2B .0.44,1.4C .1.4,0.44D .0.44,0.28.已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布()2,N μσ ,则()68.26%P μσξμσ-<<+= ,()2295.44%P μσξμσ-<<+=.)A .4.56%B .13.59%C .27.18%D .31.74%9.三个元件123,,T T T 正常工作的概率分别为123,,234,且是相互独立的.如图,将23,T T 两个元件并联后再与1T 元件串联接入电路,则电路不发生故障的概率是( )A .1124B .2324C .14D .173210.将一枚质地均匀的硬币抛掷四次,设X 为正面向上的次数,则()03P X <<等于( ) A .18B .38C .58D .7811.设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,( )ξ0 12P12p- 122pA .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大 D .()D ξ先增大后减小12.已知随机变量X 的分布列为则E(6X +8)=( ) A .13.2B .21.2C .20.2D .22.2二、填空题13.如图所示,已知一个系统由甲、乙、丙、丁4个部件组成,当甲、乙都正常工作,或丙、丁都正常工作时,系统就能正常工作.若每个部件的可靠性均为()01r r <<,而且甲、乙、丙、丁互不影响,则系统的可靠度为___________.14.《史记·卷六十五·孙子吴起列传第五》中记载了“田忌赛马”的故事.齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现规定每场比赛从双方的马匹中随机各选取一匹进行比试,若有优势的马一定获胜,且每场比赛相互独立,则采取三局两胜制齐王获胜的概率为________. 15.为响应国家号召,打赢脱贫致富攻坚战,武汉大学团队带领湖北省大悟县新城镇熊湾村村民建立有机、健康、高端、绿色的蔬菜基地,并策划“生产、运输、销售”一体化的直销供应模式,据统计,当地村民两年时间成功脱贫.蔬菜种植基地将采摘的有机蔬菜以每份三斤称重并保鲜分装,以每份10元的价格销售到生鲜超市,每份15元的价格卖给顾客,如果当天前8小时卖不完,则超市通过促销以每份5元的价格卖给顾客(根据经验,当天能够把剩余的有机蔬菜都低价处理完毕,且处理完毕后,当天不再进货).该生鲜超市统计了100天有机蔬菜在每天的前8小时内的销售量(单位:份),制成如下表格(注:*,x y N ∈,且30x y +=).若以100天记录的频率作为每日前8小时销售量发生的概率,该生鲜超市当天销售有机蔬菜利润的期望值为决策依据,若购进17份比购进18份的利润的期望值大,则x 的最小值是________. 前8小时内销售量 15 16 17 18 19 20 21 频数10x16161513y16.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,比赛停止时一共已打ξ局,则ξ的期望值()Eξ=______.17.若随机变量3~34X B⎛⎫⎪⎝⎭,, 则方差()D x=____________.18.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机抽取1个小球,记抽取到红球的个数为X,则随机变量X的均值EX=_____.19.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层有5个乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用X表示这5位乘客在第20层下电梯的人数,则P(X=4)=________.20.设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1,则随机变量ξ的分布列为________.三、解答题21.甲、乙两人组成“明日之星队”参加“疫情防控与生命健康”趣味知识竞赛. 每轮竞赛由甲、乙各答一道题目,已知甲每轮答对的概率为34,乙每轮答对的概率为45.在每轮答题中,甲和乙答对与否互不影响,各轮结果也互不影响.(1)求甲在两轮答题中,答对一道题目的概率;(2)求“明日之星队”在两轮答题中,答对三道题目的概率.22.已知一个袋子里有形状一样仅颜色不同的6个小球,其中白球2个,黑球4个.现从中随机取球,每次只取一球.()1若每次取球后都放回袋中,求事件“连续取球四次,至少取得两次白球”的概率;()2若每次取球后都不放回袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X次,求随机变量X的分布列与期望.23.2019年由袁隆平团队研发的第三代杂交水稻10月21日至22日首次公开测产,经测产专家组评定,最终亩产为1046.3公斤,第三代杂交水稻的综合优势可以推动我国的水稻生产向更加优质、高产、绿色和可持续方向发展.某企业引进一条先进的食品生产线,计划以第三代杂交水稻为原料进行深加工,创建一个新产品,已知该产品的质量以某项指标值([70,100])k k∈为衡量标准,其质量指标的等级划分如表:90100k8590k<8085k<7580k<7075k<废品合格良好优秀良好为了解该产品的生产效益,该企业先进行试生产,从中随机抽取了1000件产品,测量了每件产品的指标值,得到产品质量指标值k 的频率分布直方图如图.(1)若从质量指标值不小于85的产品中利用分层抽样的方法抽取7件产品,并采集相关数据进行分析,然后从这7件产品中任取3件产品,求质量指标值[90k ∈,95)的件数X 的分布列及数学期望;(2)若将频率视为概率,从该产品中有放回地随机抽取3件产品,记“抽出的产品中至少有1件为合格或合格以上等级“为事件A ,求事件A 发生的概率;(3)若每件产品的质量指标值k 与利润y (单位:元)的关系如表所示(14):t << 质量指标值k90100k 8590k < 8085k < 7580k < 7075k <利润y (元)t e - t2t 4t 3t请问生产该产品能否盈利?若不能,试说明理由;若能,试确定t 为何值时,利润达到最大(参考数值:20.7ln ≈,3 1.1ln ≈,5 1.6)ln ≈.24.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标Z 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s . ①利用该正态分布,求()187.8212.2P Z <<;②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间()187.8,212.2的产品件数.已知X 服从二项分布(),B n p ,利用①的结果,求()E X .15012.2若()2,Z N μσ~则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=.25.从2016年到2019年的某城市方便面销量情况如图所示: 年份 2016 2017 2018 2019 时间代号t 1 2 3 4 年销量y (万包)462444404385(1)根据上表,求y 关于t 的线性回归方程y bt a =+.用所求回归方程预测2020年(5t =)方便面在该城市的年销量;(2)某媒体记者随机对身边的10位朋友做了一次调查,其中3位受访者认为方便面是健康食品.现从这10人中抽取3人进行深度访谈,记ξ表示随机抽取的3人认为方便面是健康食品的人数,求随机变量ξ的分布列及数学期望()E ξ.参考公式:回归方程:y bt a =+,其中121()()()niii ni i t t y y b t t ==--=-∑∑,a y bt =-.参考数据:41()()135.5iii t t y y =--=-∑.26.甲、乙两名运动员进行射击训练,已知他们击中的环数都稳定在7、8、9、10环,且每次射击成绩互不影响.根据以往的统计数据,甲、乙射击环数的频率分布条形图如下:若将频率视为概率,回答下列问题:(1)甲、乙各射击一次,求甲、乙同时击中10环的概率; (2)求甲射击一次,击中9环以上(含9环)的概率;(3)甲射击3次,X 表示这3次射击中击中9环以上(含9环)的次数,求X 的分布列及数学期望()E X .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先求出()E X ,利用方差的定义建立()()22=13D X a -,利用二次函数单调性判断出()D X 的变化.【详解】由题意:()1111333E X a b =⨯+⨯+⨯, ∵2a b +=,∴()1E X =.∴()()()()()222221111=111123333D X a b a b -⨯+-⨯+-⨯=+-⨯ 又2a b +=,∴2b a =-,∴()()()()2222122=2=21=1333D X a b a a a +-⨯-+- ∴当01a <<时,()()22=13D X a -单调递减,即当()0,1a ∈内增大时()D X 减小. 故选:B2.D解析:D 【分析】根据独立重复试验的条件,转化成4次的独立重复试验,利用二项分布期望的计算公式,即可求解. 【详解】由题意,一批产品数量很大,其中次品率为13,现连续地抽取4次, 可以看出是4次的一个独立重复试验,可得随机变量X 服从二项分布,即1(4,)3X B ,所以()14433E X =⨯=. 故选:D . 【点睛】本题主要考查了独立重复试验,以及二项分布的期望的计算,其中解答熟记独立重复试验的条件,掌握独立重复试验中随机变量服从二项分布是解答的关键,着重考查了分析问题和解答问题的能力.3.C解析:C 【分析】根据分布列中概率和为1可得a 的范围和b 的值,再求出,EX DX 的表达式,转化成求二次函数在闭区间的最值问题. 【详解】12133b a a b +-+=⇒=,又110033a a -≥⇒≤≤, 1242()3333EX b a a a b a =+⨯-+⨯=++=+,2221(1)(2)()(3)3DX EX b EX a EX a =-⋅+-⋅-+-⋅2221215()()()()3333a b a a a a =--⋅+-⋅-+-⋅22212215()()()()33333a a a a a =--⋅+-⋅-+-⋅27239a a =-++,对称轴为7163a =>,∴max 1728()9999DX =-++=, 故选:C. 【点睛】本题考查标准差的最值求解,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将问题转化为函数的最值问题.4.A解析:A 【分析】根据题意有()))|(=(n AB P n A A B ,所以只须分析事件A 和事件AB 所包含的基本事件,即可根据公式求出结果. 【详解】解:事件A 中“x y +为偶数”,所以,x y 同奇同偶,共包含22318⨯=种基本事件;事件AB 同时发生,则,x y 都为偶数,且x y ≠,则包含236A =个基本事件;()()61=)13|=(8n AB n A P B A =. 故选:A. 【点睛】本题考查条件概率的应用,考查基本事件的求法,解题的关键是辨析条件概率,属于基础题.5.C解析:C 【分析】根据二项分布的期望和方差公式,可知()110E p ξ=,()210E q ξ=,那么()()12E E ξξ>等价于1010p q >,即p q >,并且()()1101D p p ξ=-,()()2101D q q ξ=-,则()()12D D ξξ>等价于()()101101pp q q -<-,即()()11p p q q -<-,分情况讨论,看这两个条件是否可以互相推出即得. 【详解】由题得,()110E p ξ=,()210E q ξ=,故()()12E E ξξ>等价于1010p q >,即p q >. 又()()1101D p p ξ=-,()()2101D q q ξ=-,故()()12D D ξξ>等价于()()101101p p q q -<-,即()()11p p q q -<-.若p q >,因为14pq >,说明12p >,且()()211124p p p p pq +-⎛⎫-<=< ⎪⎝⎭,故1p q -<,故有1122p q ->-.若12q <,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,若12q ≥,则自然有11022p q ->->,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭即()()11p p q q -<-.若()()11p p q q -<-,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,又因为()()1114p p q q pq -<-≤<,1p q -<,即1122p q ->-.若102p -≤,则与221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭矛盾,故12p >,若12q ≤,则自然有p q >,若12q >,则由221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭知1122p q ->-,即p q >. 所以是充要条件. 故选:C【点睛】本题综合的考查了离散型随机变量期望方差和不等式,属于中档题.6.C解析:C 【分析】求出1(01)0.68260.3412P X <=⨯=,即可得出结论.【详解】解:由题意1(01)0.68260.3412P X <=⨯=,∴落入阴影部分点的个数的估计值为10000.341341⨯=.故选:C . 【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性.7.C解析:C 【解析】 【分析】根据离散型随机变量的分布列的性质,求得,再利用随机变量的均值和方差的公式,即可求解,得到答案. 【详解】由离散型随机变量的分布列的性质可得,解得,所以随机变量的均值为,方差为, 故选C . 【点睛】本题主要考查了离散型随机变量的分布列的性质,以及均值与方程的计算,其中解答中根据离散型随机变量的分布列的性质,求得的值,再利用均值和方差的公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.8.B解析:B 【解析】 试题分析:由题意13368.26%6695.44%3695.44%68.26%13.59%2P P P (<<),(<<),(<<)().ξξξ-=-=∴=-=故选B . 考点:正态分布9.A解析:A 【分析】若电路不发生故障,则满足1T 正常工作,23T T ,至少有一个正常工作 【详解】记1T 正常工作为事件A 记2T 正常工作为事件B 记3T 正常工作为事件C 则()12P A =,()23P B =,()34P C = 电路不发生故障,则满足1T 正常工作,23T T ,至少有一个正常工作 则23T T ,至少有一个正常工作,概率为()1231111113412P P BC ⎛⎫⎛⎫=-=--⨯-= ⎪ ⎪⎝⎭⎝⎭则电路不发生故障的概率1111121224P =⨯= 故选A 【点睛】本题主要考查了概率知识及实际应用能力,考查了相互独立事件同时发生的概率的计算,关键是确定不发生故障时满足的条件.10.C解析:C 【解析】分析:先确定随机变量得取法12X =,,再根据独立重复试验求概率. 详解:因为14244411(1)(),(2)(),22P x C P x C ====所以142444411105(03)(1)(2)()(),2228P x P x P x C C <<==+==+== 选C.点睛:n 次独立重复试验事件A 恰好发生k 次得概率为(1)kkn kn C p p --.其中p 为1次试验种A 发生得概率.11.D解析:D 【分析】先求数学期望,再求方差,最后根据方差函数确定单调性. 【详解】111()0122222p p E p ξ-=⨯+⨯+⨯=+, 2222111111()(0)(1)(2)2222224p p D p p p p p ξ-∴=--+--+--=-++,1(0,1)2∈,∴()D ξ先增后减,因此选D. 【点睛】222111(),()(())().nnni i i i i i i i i E x p D x E p x p E ξξξξ=====-=-∑∑∑12.B解析:B 【解析】由题意知,E(X)=1×0.2+2×0.4+3×0.4=2.2,∴E(6X +8)=6E(X)+8=6×2.2+8=21.2.选B.二、填空题13.【分析】记甲乙都正常工作为事件记丙丁都正常工作为事件计算出利用对立事件的概率公式可求得系统的可靠度为【详解】记甲乙都正常工作为事件记丙丁都正常工作为事件则当且仅当事件或事件发生时系统正常工作当且仅当 解析:242r r -【分析】记甲、乙都正常工作为事件A ,记丙、丁都正常工作为事件B ,计算出()P A 、()P B ,利用对立事件的概率公式可求得系统的可靠度为()()1P A P B -. 【详解】记甲、乙都正常工作为事件A ,记丙、丁都正常工作为事件B ,则()()2P A P B r ==,当且仅当事件A 或事件B 发生时,系统正常工作, 当且仅当事件A 和事件B 都不发生时,系统不工作. 因此,系统的可靠度为()()()22241112P P A P B r r r =-=--=-.故答案为:242r r -. 【点睛】关键点点睛:本题考查事件概率的计算,解本题的关键就是确定事件“系统正常运行”的对立事件为“两条线路都不工作”,进而可利用概率的乘法公式以及对立事件的概率公式来进行求解.14.【分析】列出所有情况统计满足条件的情况得到齐王每次胜利的概率再根据独立事件计算得到答案【详解】设齐王的上中下等马为田忌的上中下等马为则共有9种情况其中齐王获胜的有6种情况故故答案为:【点睛】本题考查 解析:2027【分析】列出所有情况,统计满足条件的情况得到齐王每次胜利的概率123p =,再根据独立事件计算得到答案. 【详解】设齐王的上中下等马为ABC ,田忌的上中下等马为abc , 则共有,,,,,,,,Aa Ab Ac Ba Bb Bc Ca Cb Cc 9种情况, 其中齐王获胜的有,,,,,Aa Ab Ac Bb Bc Cc 6种情况,故16293p ==, 32232212033327p C ⎛⎫⎛⎫=+⋅⋅= ⎪ ⎪⎝⎭⎝⎭. 故答案为:2027. 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.15.25【分析】先根据条件求出分布列和期望再根据购进17份比购进18份的利润的期望值大即可得出答案【详解】解:若该超市一天购进17份这种有机蔬菜表示当天的利润(单位:元)那么的分布列为 65 75 85解析:25 【分析】先根据条件求出分布列和期望,再根据“购进17份比购进18份的利润的期望值大”即可得出答案. 【详解】解:若该超市一天购进17份这种有机蔬菜,1Y 表示当天的利润(单位:元),那么1Y 的分布列为1Y 的数学期望()16575100100E Y =⨯+⨯83001085100100x x--+⨯=, 若该超市一天购进18份这种有机蔬菜,2Y 表示当天的利润(单位:元),那么2Y 的分布列为2Y 的数学期望()26070100100E Y =⨯+⨯167480+90100100x -+⨯⨯854020100x-=, ∵购进17份比购进18份的利润的期望值大,∴830010854020100100x x-->,且30x <,解得2430x <<,又*x ∈N , ∴x 的最小值为25,故答案为:25. 【点睛】本题主要考查离散型随机变量的分布列和期望,属于中档题.16.【分析】首先确定所有可能的取值;根据每个取值所对应的情况计算出其所对应的概率从而根据数学期望计算公式求得结果【详解】由题意可知所有可能的取值为:则;;本题正确结果:【点睛】本题考查离散型随机变量的数 解析:26681【分析】首先确定ξ所有可能的取值;根据每个取值所对应的情况计算出其所对应的概率,从而根据数学期望计算公式求得结果. 【详解】由题意可知ξ所有可能的取值为:2,4,6则()222152339P ξ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭;()3311221212204333381P C C ξ⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; ()520166198181P ξ==--=()520162662469818181E ξ∴=⨯+⨯+⨯=本题正确结果:26681【点睛】本题考查离散型随机变量的数学期望的求解,关键是能够准确求解出随机变量每个取值所对应的概率,从而结合公式直接求得结果,属于常考题型.17.【分析】利用方差公式即可得出答案【详解】结合方差【点睛】本题考查了方差计算公式记住即可 解析:916【分析】利用方差公式()D x npq =,即可得出答案. 【详解】结合方差()31934416D x npq ==⋅⋅=. 【点睛】本题考查了方差计算公式,记住()D x npq =,即可.18.【分析】结合题意分别计算对应的概率计算期望即可【详解】列表:X 0 1 2 P 所以【点睛】本道题考查了数学期望计算方法结合题意即可属于中等难度的题解析:56【分析】结合题意,分别计算0,1,2x =对应的概率,计算期望,即可. 【详解】()112511665018C C P x C C ===,()111452116611118C C C P x C C +===,()11411166129C C P x C C === 列表:所以012181896EX =⨯+⨯+⨯= 【点睛】本道题考查了数学期望计算方法,结合题意,即可,属于中等难度的题.19.【分析】一位乘客是否在20层下电梯为一次试验这是5次独立重复试验用n 次独立重复试验概率公式即可求出P(X =4)【详解】一位乘客是否在20层下电梯为一次试验这是5次独立重复试验则有45所以故答案为【点解析:10243【分析】一位乘客是否在20层下电梯为一次试验,这是5次独立重复试验,153X B ⎛⎫ ⎪⎝⎭~,,用n 次独立重复试验概率公式即可求出P (X =4). 【详解】一位乘客是否在20层下电梯为一次试验,这是5次独立重复试验,153X B ⎛⎫ ⎪⎝⎭~,,则有()551233kkk P X k C -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,0123k =,,,,4,5. 所以()41451210433243P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.故答案为10243. 【点睛】独立重复试验的特点:(1)每次试验只有两种结果,要么发生,要么不发生;(2)每次试验的结果相互独立.20.ξ 0 1 P 【分析】正方体的12条棱中任取两条共有种情况若两条棱相交则交点必在正方体的顶点处过任意一个顶点的棱有3条共有对相交棱若两条棱平行则它们的距离为1或而距离为的共有6对ξ的可正方体的12条棱中任取两条共有212C 种情况,若两条棱相交,则交点必在正方体的顶点处,过任意一个顶点的棱有3条,共有238C 对相交棱,若两条棱平行,则它们的距离为16对,ξ的可能取值为0,1. 【详解】ξ的可能取值为0,1若两条棱相交,则交点必在正方体的顶点处,过任意一个顶点的棱有3条,所以P (ξ=0)=232128C C=411,若两条棱平行,则它们的距离为16对, 则P (ξ=2126C =111, P (ξ=1)=1-P (ξ=0)-P (ξ=1-411-111=611, 所以随机变量ξ的分布列为:三、解答题21.(1)38;(2)2150【分析】(1)两轮中答对一道题的情形为:第一种情况:甲第一轮答对1题,第二轮答错1题; 第二种情况:甲第一轮答错1题,第二轮答对1题; 然后,根据以上情况,列式求解即可 (2)答对三道题目的情况有:第一种情况:甲答对2道题,乙答对1道题; 第二种情况:甲答对1道题,乙答对2道题; 然后,根据以上情况,列式求解即可 【详解】(1)设0A 表示甲每轮答错1道题目的事件,1A 表示甲每轮答对1道题目的事件,则01()4P A =,13()4P A =,两轮中答对一道题的情况为,甲第一轮答对1题,第二轮答错1题和甲第一轮答错1题,第二轮答对1题,故概率为01103()()()()8P P A P A P A P A =+=; (2)设2A 表示甲答对0B 表示乙每轮答错1道题目的事件,1B 表示乙每轮答对1道题目的事件,则01()5P B =,14()5P B =,“明日之星队”在两轮答题中,答对三道题目的情况有: 第一种情况:甲答对2道题,乙答对1道题:11101101()()()()()()()()P A P A P B P B P A P A P B P B +22341314945545550⎛⎫⎛⎫=⋅⋅+⋅⋅= ⎪ ⎪⎝⎭⎝⎭第二种情况:甲答对1道题,乙答对2道题:01111011()()()()()()()()P A P A P B P B P A P A P B P B +22134314644544525⎛⎫⎛⎫=⋅⋅+⋅⋅= ⎪ ⎪⎝⎭⎝⎭ 所以,“明日之星队”在两轮答题中,答对三道题目的概率为9621502550+= 【点睛】解题关键在于把情况进行分类,通过分情况再列相关式子求解即可,难度属于中档题 22.(1);(2)随机变量X 的分布列见解析,期望为133. 【分析】(1)可从正面计算取得两次、三次、四次白球的概率和,也可以用1减去取得一次、两次白球的概率,而四次取球中每次是否取得白球相互独立,只需用组合数即可得到相应概率;(2)注意取出的球不放回,因此最多取5次白球就会被取完,故X =2,3,4,5,分别计算对应的概率,写出分布列,进而可求出期望. 【详解】(1)记随机变量ξ表示连续取球四次,取得白球的次数,则ξ~B (4,13) 则P (ξ>1)=1-P (ξ=0)-P (ξ=1)=1-00411344121211()()()()333327C C -=(2)随机变量X 的取值分别为2,3,4,5∴P (X =2)=2226115C C =,P (X =3)=11242612415C C C ⨯= P (X =4)=1224361135C C C ⨯=,P (X =5)=134244446635C C C C C += ∴随机变量X 的分布列为∴随机变量X 的期望为:1313()23451515553E X =⨯+⨯+⨯+⨯= 考点:古典概型,相互独立事件,随机变量的分布列与期望 23.(1)分布列见解析;期望为67;(2)0.973;(3)能; 1.4t =. 【分析】(1)由频率分布直方图和分层抽样求出抽取的7件产品中,[85k ∈,90)的有4件,[90k ∈,95)的有2件,[95k ∈,100)的有1件,从这7件产品中,任取3件,质量指标值[90k ∈,95)的件数X 的所有可能取值为0,1,2,分别求出相应的概率,由此能求出X 的分布列和()E X .(2)设事件A 的合格率为P (A ),则根据概率分布直方图求出一件产品为合格或合格以上等级的概率,由此能求出事件A 发生的概率.(3)由频率分布直方图可得该产品的质量指标值k 与利润y (元)的关系,从而求出每件产品的利润0.3 1.25t y e t =-+,(14)t <<,则0.3 1.25t y e '=-+,利用导数性质能求出生产该产品能够实现盈利,当251.46t ln ==时,每件产品的利润取得最大值为0.5元. 【详解】(1)由频率分布直方图得指标值不小于85的产品中,[85k ∈,90)的频率为0.0850.4⨯=,[90k ∈,95)的频率为004502..⨯=,[95k ∈,100]的频率为0.0250.1⨯=,∴利用分层抽样抽取的7件产品中,[85k ∈,90)的有4件,[90k ∈,95)的有2件,[95k ∈,100)的有1件,从这7件产品中,任取3件,质量指标值[90k ∈,95)的件数X 的所有可能取值为0,1,2,35372(0)7C P X C ===,1225374(1)7C C P X C ===, 2125371(2)7C C P X C ===, X ∴的分布列为:()0127777E X =⨯+⨯+⨯=.(2)设事件A 的合格率为P (A ),则根据概率分布直方图得: 一件产品为合格或合格以上等级的概率为1(0.040.02)50.7p =-+⨯=,∴事件A 发生的概率P (A )30330?70?30.973C =⨯⨯=.(3)由频率分布直方图可得该产品的质量指标值k 与利润y (元)的关系与表所示(14)t <<,90100k 8590k < 8085k < 7580k < 7075k <t e0.30.40.150.10.05每件产品的利润:0.30.40.30.40.150.3 1.25t t y e t t t t e t =-++++=-+,(14)t <<,则0.3 1.25t y e '=-+,令0.3 1.250t y e '=-+=,解得256t ln=,∴当25(1,)6t ln∈时,0y '>,函数0.3 1.25t y e =-+单调递增, 当25(6t ln∈,4)时,0y '<,函数0.3 1.25t y e t =-+,单调递减, ∴当256t ln=时,y 取最大值,为2562532550.3 1.25(2523)0.561064ln elnln ln ln -+⨯=-⨯+⨯--=, ∴生产该产品能够实现盈利,当251.46t ln==时,每件产品的利润取得最大值为0.5元. 【点睛】本题主要考查离散型随机变量的分布列、数学期望、利润最大值的求法,频率分布直方图、分层抽样、导数性质等基础知识,还考查了运算求解的能力,属于中档题. 24.(Ⅰ)200,150(Ⅱ)①0.6826②68.26 【分析】(I )由频率分布直方图可估计样本特征数均值、方差,均值为每个矩形中点横坐标与该矩形面积积的累加值.方差是矩形横坐标与均值差的平方的加权平均值; (II )①由已知得,Z ~(200,150)N ,故()187.8212.2P Z <<可根据()P Z μσμσ-<<+的概率计算;②由题意X 服从二项分布(100,0.6826)B ,根据()E X np =计算即可.【详解】(I )抽取产品的质量指标值的样本平均值x 和样本方差2s 分别为1700.021800.091900.22x =⨯+⨯+⨯+2000.332100.242200.08⨯+⨯+⨯+2300.02⨯200=,2222222(30)0.02(20)0.09(10)0.2200.33100.24200.08300.02s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯150=.(II )①由(I )知,Z 服从正态分布(200,150)N ,从而()187.8212.2P Z <<(20012.2200P Z =-<<12.2)0.6826+=. (ii )由①可知,一件产品的质量指标值位于区间()187.8,212.2的概率为0.6826, 依题意知(100,0.6826)X B ~, 所以()1000.682668.26E X =⨯=. 【点睛】本题考查了频率分布直方图,平均数与方差,正态分布与二项分布,属于中档题. 25.(1)27.1491.5y t =-+,356万包;(2)分布列详见解析,9()10E ξ=. 【分析】(1)直接利用回归方程公式计算得到答案.(2)ξ的可能值为0,1,2,3,计算概率得到分布列,再计算数学期望得到答案.【详解】(1) 2.5t =,462444404385423.754y +++==,()()()()4222221()1 2.52 2.53 2.54 2.55ii t t =-=-+-+-+-=∑, 135.527.15b -==-,423.75(27.1) 2.5491.5a =--⨯=,所以27.1491.5y t =-+. 当5t =时,27.15491.5356y =-⨯+=.(2)依题意,10人中认为方便面是健康食品的有3人,ξ的可能值为0,1,2,3,所以37310C 7(0)C 24P ξ===;1237310C C 21(1)C 40P ξ===; 2137310C C 7(2)C 40P ξ===; 33310C 1(3)C 120P ξ===, 故分布列为:()012324404012010E ξ=⨯+⨯+⨯+⨯=. 【点睛】 本题考查了回归方程,分布列,数学期望,意在考查学生的计算能力和应用能力. 26.(1) 0.1225;(2) 0.8(3)见解析.【分析】(1)分别计算出甲乙各射击一次击中10环的概率,利用相互独立事件的概率公式计算即可;(2)甲射击一次,击中9环以上(含9环)即为甲射击一次,击中9环和甲射击一次,击中10环,利用互斥事件的概率公式即可得出结果;(3)由(2)可知甲射击一次,击中9环以上(含9环)的概率为0.8,可知(3,0.8)XB .利用公式计算即可得出结果.【详解】(1) 设事件A 表示甲运动员射击一次,恰好击中10环, 设事件B 表示乙运动员射击一次,恰好击中10环, ()10.10.10.450.35P A =---=,()0.35P B =,所以甲、乙各射击一次,甲、乙同时击中10环即()0.350.350.1225P AB =⨯=.(2)设事件C 表示甲运动员射击一次,恰好击中9环以上(含9环),则()0.350.450.8P C =+=(3)由已知可得X 的可能取值为0,1,2,3,且(3,0.8)X B3(0)0.20.008P X ===,123(1)0.80.20.096P X C ==⨯=,223(2)0.80.20.384P X C ==⨯=,3(3)0.80.512P X ===所以30.8 2.4E X =⨯=【点睛】本题考查相互独立事件的概率,考查二项分布的分布列和数学期望,考查运用概率知识解决实际问题的能力和计算求解能力,难度一般.。
(常考题)北师大版高中数学高中数学选修2-3第一章《计数原理》测试卷(包含答案解析)(1)
![(常考题)北师大版高中数学高中数学选修2-3第一章《计数原理》测试卷(包含答案解析)(1)](https://img.taocdn.com/s3/m/384669330c22590103029d32.png)
一、选择题1.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则任意选取一名学生,该生成绩不高于80的概率为( ) A .0.05B .0.1C .0.15D .0.22.某单位举行诗词大会比赛,给每位参赛者设计了“保留题型”、“升级题型”、“创新题型”三类题型,每类题型均指定一道题让参赛者回答.已知某位参赛者答对每道题的概率均为45,且各次答对与否相互独立,则该参赛者答完三道题后至少答对两道题的概率( ) A .112125B .80125C .113125D .1241253.已知随机变量ξ服从正态分布(1,2)N ,则(23)D ξ+=( ) A .4B .6C .8D .114.先后投掷骰子(骰子的六个面分别标有1、2、3、4、5、6个点)两次落在水平桌面后,记正面朝上的点数分别为,x y ,设事件A 为“x y +为偶数”,事件B 为“x y 、中有偶数,且x y ≠”,则概率()P B A =( ) A .13B .12C .14D .255.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = ) A .85B .65C .45D .256.体育课上定点投篮项目测试规则:每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止.每次投中与否相互独立,某同学一次投篮投中的概率为p ,若该同学本次测试合格的概率为0.784,则p =( )A . 0.4B .0.6C .0.1D .0.27.设离散型随机变量X 可能的取值为1,2,3,4,()P X k ak b ==+,又X 的数学期望为()3E X =,则a b += A .110B .0C .110-D .158.将一枚质地均匀的硬币抛掷四次,设X 为正面向上的次数,则()03P X <<等于( ) A .18B .38C .58D .789.在10个排球中有6个正品,4个次品.从中抽取4个,则正品数比次品数少的概率为( )A .542B .435C .1942D .82110.若随机变量ξ满足(1)4E ξ-=,(1)4D ξ-=,则下列说法正确的是 A .4,4E D ξξ=-= B .3,3E D ξξ=-= C .4,4E D ξξ=-=-D .3,4E D ξξ=-=11.口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为( ). A .80243B .100243C .80729D .10072912.已知随机变量X 的方差()D X m =,设32Y X =+,则()D Y =( ) A .9mB .3mC .mD .32m +二、填空题13.甲、乙两人被随机分配到,,A B C 三个不同的岗位(一个人只能去一个工作岗位).记分配到A 岗位的人数为随机变量X ,则随机变量X 的数学期望()E X =_____. 14.中国光谷(武汉)某科技公司生产一批同型号的光纤通讯仪器,每台仪器的某一部件由三个电子元件按如图方式连接而成,若元件1或元件2正常工作,且元件3正常工作,则该部件正常工作.由大数据统计显示:三个电子元件的使用寿命(单位:小时)均服从正态分布N (1000,210).且各个元件能否正常工作相互独立.现从这批仪器中随机抽取1000台检测该部件的工作情况(各部件能否正常工作相互独立),那么这1000台仪器中该部件的使用寿命超过1000小时的平均值为______台.15.改革开放40年来,我国城市基础设施发生了巨大的变化,各种交通工具大大方便了人们的出行需求.某城市的A 先生实行的是早九晚五的工作时间,上班通常乘坐公交或地铁加步行.已知从家到最近的公交站或地铁站都需步行5分钟,乘坐公交到离单位最近的公交站所需时间Z 1(单位:分钟)服从正态分布N (33,42),下车后步行再到单位需要12分钟;乘坐地铁到离单位最近的地铁站所需时间Z 2(单位:分钟)服从正态分布N (44,22),从地铁站步行到单位需要5分钟.现有下列说法:①若8:00出门,则乘坐公交一定不会迟到;②若8:02出门,则乘坐公交和地铁上班迟到的可能性相同;③若8:06出门,则乘坐公交比地铁上班迟到的可能性大;④若8:12出门,则乘坐地铁比公交上班迟到的可能性大.则以上说法中正确的序号是_____.参考数据:若Z ~N (μ,σ2),则P (μ﹣σ<Z ≤μ+σ)=0.6826,P (μ﹣2σ<Z ≤μ+2σ)=0.9544,P (μ﹣3σ<Z ≤μ+3σ)=0.997416.袋中有5只大小相同的乒乓球,编号为1至5,从袋中随机抽取3只,若以ξ表示取到球中的最大号码,则ξ的数学期望是______.17.中国光谷(武汉)某科技公司生产一批同型号的光纤通讯仪器,每台仪器的某一部件由三个电子元件按如图方式连接而成,若元件1或元件2正常工作,且元件3正常工作,则该部件正常工作.由大数据统计显示:三个电子元件的使用寿命(单位:小时)均服从正态分布()210000,10N ,且各个元件能否正常工作相互独立.现从这批仪器中随机抽取1000台检测该部件的工作情况(各部件能否正常工作相互独立),那么这1000台仪器中该部件的使用寿命超过10000小时的平均值为______台.18.若随机变量2~5,3X B ⎛⎫ ⎪⎝⎭,则()3D X =_______. 19.小李练习射击,每次击中目标的概率均为13,若用ξ表示小李射击5次击中目标的次数,则ξ的均值E(ξ)与方差D(ξ)的值分别是____.20.已知随机变量ξ服从二项分布,1~(6,)2B ξ,则(23)E ξ+=________,(23)D ξ+=________. 三、解答题21.某市有两家共享单车公司,在市场上分别投放了黄、蓝两种颜色的单车,已知黄、蓝两种颜色的单车的投放比例为2:1.监管部门为了了解两种颜色的单车的质量,决定从市场中随机抽取5辆单车进行体验,若每辆单车被抽取的可能性相同. (1)求抽取的5辆单车中有2辆是蓝色颜色单车的概率;(2)在骑行体验过程中,发现蓝色单车存在一定质量问题,监管部门决定从市场中随机地抽取一辆送技术部门作进一步抽样检测,并规定若抽到的是蓝色单车,则抽样结束,若抽取的是黄色单车,则将其放回市场中,并继续从市场中随机地抽取下一辆单车,并规定抽样的次数最多不超过4次.在抽样结束时,已取到的黄色单车以ξ表示,求ξ的分布列. 22.某射手每次射击击中目标的概率均为23,且各次射击的结果互不影响. (1)假设这名射手射击3次,求至少2次击中目标的概率;(2)假设这名射手射击3次,每次击中目标得10分,未击中目标得0分.在3次射击中,若有2次连续击中目标,而另外1次未击中目标,则额外加5分;若3次全部击中,则额外加10分.用随机变量ζ表示射手射击3次后的总得分,求ζ的分布列和数学期望. 23.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布()2,N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)u u σσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)u u σσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s==≈,其中x i 为抽取的第i 个零件的尺寸,1,2,,16i =.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布()2,N μσ,则()–330.9974P Z μσμσ<<+=,160.99740.9592≈0.09≈.24.在一次猜灯谜活动中,共有20道灯谜,两名同学独立竞猜,甲同学猜对了12个,乙同学猜对了8个,假设猜对每道灯谜都是等可能的,试求: (1)任选一道灯谜,恰有一个人猜对的概率; (2)任选一道灯谜,甲、乙都没有猜对的概率.25.某投资公司准备在2020年年初将两千万投资东营经济开发区的“示范区”新型物流,商旅文化两个项目中的一个之中.项目一:新型物流仓是为企业提供仓储、运输、配送、货运信息等综合物流服务的平台.现准备投资建设10个新型物流仓,每个物流仓投资0.2千万元,假设每个物流仓盈利是相互独立的,据市场调研,到2022年底每个物流仓盈利的概率为(01)p p <<,若盈利则盈利为投资额的40%,否则盈利额为0.项目二:购物娱乐广场是一处融商业和娱乐于一体的现代化综合服务广场.据市场调研,投资到该项目上,到2022年底可能盈利投资额的50%,也可能亏损投资额的30%,且这两种情况发生的概率分别为p 和1p -.(1)若投资项目一,记1X 为盈利的物流仓的个数,求()1E X (用p 表示); (2)若投资项目二,记投资项目二的盈利为2X 千万元,求()2E X (用p 表示); (3)在(1)(2)两个条件下,针对以上两个投资项目,请你为投资公司选择一个项目,并说明理由.26.在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品. (1)顾客甲从10张奖券中任意抽取1张,求中奖次数X 的概率分布; (2)顾客乙从10张奖券中任意抽取2张,①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值Y 元,求Y 的概率分布及期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】1(80120)(80)(120)0.12P X P X P X -<<≤=≥== ,选B.2.A解析:A 【分析】利用n 次独立重复试验中事件A 恰好发生k 次概率计算公式能求出该参赛者答完三道题后至少答对两道题的概率. 【详解】解:某单位举行诗词大会比赛,给每位参赛者设计了“保留题型”、“升级题型”、“创新题型”三类题型,每类题型均指定一道题让参赛者回答.某位参赛者答对每道题的概率均为45,且各次答对与否相互独立,则该参赛者答完三道题后至少答对两道题的概率: 3223441112()()()555125P C =+=.故选:A . 【点睛】本题考查概率的求法,考查n 次独立重复试验中事件A 恰好发生k 次概率计算公式等基础知识,考查运算求解能力,属于中档题.3.C解析:C 【分析】由已知条件求得()2D ξ=,再由2(23)2()D D ξξ+=⨯,即可求解. 【详解】由题意,随机变量ξ服从正态分布(1,2)N ,可得()2D ξ=, 所以2(23)2()8D D ξξ+=⨯=.故选:C . 【点睛】本题主要考查了正态分布曲线的特点及曲线所表示的意义,其中解答中熟记方差的求法是解答的关键,着重考查了计算能力.4.A解析:A 【分析】根据题意有()))|(=(n AB P n A A B ,所以只须分析事件A 和事件AB 所包含的基本事件,即可根据公式求出结果. 【详解】解:事件A 中“x y +为偶数”,所以,x y 同奇同偶,共包含22318⨯=种基本事件;事件AB 同时发生,则,x y 都为偶数,且x y ≠,则包含236A =个基本事件;()()61=)13|=(8n AB n A P B A =. 故选:A. 【点睛】本题考查条件概率的应用,考查基本事件的求法,解题的关键是辨析条件概率,属于基础题.5.B解析:B 【分析】由题意知,3~(5,)3X B m +,由3533EX m =⨯=+,知3~(5,)5X B ,由此能求出()D X .【详解】由题意知,3~(5,)3X B m +, 3533EX m ∴=⨯=+,解得2m =, 3~(5,)5X B ∴,336()5(1)555D X ∴=⨯⨯-=.故选:B . 【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.6.A解析:A 【解析】 【分析】根据合格的情况列方程:()()2110.784p p p p p +-+-=,解方程求出结果. 【详解】由题意可得:()()2110.784p p p p p +-+-=整理可得:()()22212330.784p p p p p p p -+-+=-+=解得:0.4p = 本题正确选项:A 【点睛】本题考查概率的求法,考查对立事件概率计算公式、相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.7.A解析:A 【分析】将1,2,3,4X =代入()P X k =的表达式,利用概率之和为1列方程,利用期望值列出第二个方程,联立方程组,可求解得+a b 的值. 【详解】依题意可的X 的分布列为()()()()23412233443a b a b a b a b a b a b a b a b +++++++=⎧⎨+++++++=⎩,解得1,010a b ==,故110a b +=.所以选A. 【点睛】本小题主要考查离散型随机变量分布列,考查概率之和为1,考查离散型随机变量的数学期望,还考查了方程的思想.属于基础题.8.C解析:C 【解析】分析:先确定随机变量得取法12X =,,再根据独立重复试验求概率. 详解:因为14244411(1)(),(2)(),22P x C P x C ====所以142444411105(03)(1)(2)()(),2228P x P x P x C C <<==+==+== 选C.点睛:n 次独立重复试验事件A 恰好发生k 次得概率为(1)kkn kn C p p --.其中p 为1次试验种A 发生得概率.9.A解析:A 【解析】分析:根据超几何分布,可知共有410C 种选择方法,符合正品数比次品数少的情况有两种,分别为0个正品4个次品,1个正品3个次品,分别求其概率即可. 详解:正品数比次品数少,有两种情况:0个正品4个次品,1个正品3个次品,由超几何分布的概率可知,当0个正品4个次品时444101210C P C ==当1个正品3个次品时136441024421035C C P C === 所以正品数比次品数少的概率为1452103542+= 所以选A点睛:本题考查了超几何分布在分布列中的应用,主要区分二项分布和超几何分布的不同.根据不同的情况求出各自的概率,属于简单题.10.D解析:D 【解析】分析:由题意结合随机变量的性质整理计算即可求得最终结果. 详解:随机变量ξ满足()14E ξ-=,()14D ξ-=, 则:()214,14E D ξξ-=-=, 据此可得:3,4E D ξξ=-=. 本题选择D 选项.点睛:本题主要考查期望的数学性质,方差的数学性质等知识,意在考查学生的转化能力和计算求解能力.11.A解析:A 【解析】每次摸球中奖的概率为114529C C 2059C 36==,由于是有放回地摸球,故3次摸球相当于3次独立重复实验,所以3次摸球恰有1次中奖的概率2135580C 199243P ⎛⎫=⨯⨯-= ⎪⎝⎭. 故选A .点睛:判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()()1n kk kn p X k C p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.12.A解析:A 【解析】∵()D X m =,∴2()(32)3()D Y D X D X =+=9()D X =9m =,故选A .二、填空题13.【分析】由题意得出的可能取值以及相应的概率再计算数学期望即可【详解】由题意可得的可能取值有012则数学期望故答案为:【点睛】本题主要考查了求离散型随机变量的数学期望属于中档题解析:23【分析】由题意得出X 的可能取值以及相应的概率,再计算数学期望即可. 【详解】由题意可得X 的可能取值有0,1,2224(0)339P X ⨯===⨯,122411(1),(2)339339C P X P X ⨯======⨯⨯则数学期望4()09E X =⨯41212993+⨯+⨯=. 故答案为:23【点睛】本题主要考查了求离散型随机变量的数学期望,属于中档题.14.375【分析】由正态分布可知每个元件正常工作超过10000小时的概率为从而求出部件正常工作超过10000小时的概率再根据二项分布求出平均值【详解】由正态分布可知每个元件正常工作超过10000小时的概解析:375 【分析】由正态分布可知,每个元件正常工作超过10000小时的概率为12,从而求出部件正常工作超过10000小时的概率,再根据二项分布求出平均值. 【详解】由正态分布可知,每个元件正常工作超过10000小时的概率为12, 则部件正常工作超过10000小时的概率为21131228⎡⎤⎛⎫-⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,又1000台仪器的该部件工作服从二项分布,所以平均值为310003758⨯=台. 故答案为:375. 【点睛】本题考查正态分布和相互独立事件及二项分布,考查逻辑推理能力、运算求解能力.15.②④【分析】利用正态分布对每一个说法求解其概率逐项分析即可选出正确答案【详解】解:①若8:00出门江先生乘坐公交从家到车站需要5分钟下车后步行再到单位需要12分钟乘坐公交到离单位最近的公交站所需时间解析:②④ 【分析】利用正态分布对每一个说法求解其概率,逐项分析,即可选出正确答案. 【详解】解:①若8:00出门,江先生乘坐公交,从家到车站需要5分钟,下车后步行再到单位需要12分钟,乘坐公交到离单位最近的公交站所需时间1Z 服从正态分布()233,4N ,故()()12145452P Z P Z -<<≥=10.99740.00132-==, ∴江先生仍有可能迟到,只不过概率较小,故①错误; ②若8:02出门,江先生乘坐公交,∵从家到车站需要5分钟,下车后步行再到单位需要12分钟,乘坐公交到离单位最近的公交站所需时间1Z 服从正态分布()233,4N ,故当满足P (Z≤41)()()1254125410.97722P Z P Z -=+=<<<<时,江先生乘坐公交不会迟到;若8:02出门,江先生乘坐地铁,∵从家到车站需要5分钟,下地铁后步行再到单位需要5分钟,乘坐地铁到离单位最近的地铁站所需时间2Z 服从正态分布()244,2N ,故当满足P (Z≤48)()()1404840480.99722P Z P Z -=+=<<<<时,江先生乘坐地铁此时两种上班方式江先生不迟到的概率相当,故②正确; ③若8:06出门,江先生乘坐公交,∵从家到车站需要5分钟,下车后步行再到单位需要12分钟,乘坐公交到离单位最近的公交站所需时间1Z 服从正态分布()233,4N ,故当满足()()()129373729370.84132P Z P Z P Z -≤=+=<<<<时,江先生乘坐公交不会迟到;若8:06出门,江先生乘坐地铁,∵从家到车站需要5分钟,下地铁后步行再到单位需要5分钟,乘坐地铁到离单位最近的地铁站所需时间2Z 服从正态分布()244,2N ,故当满足()1440.52P Z ≤==时,江先生乘坐地铁不会迟到, 此时两种上班方式,乘坐公交比地铁上班迟到的可能性小,故③错误; ④若8:12出门,江先生乘坐公交,∵从家到车站需要5分钟,下车后步行再到单位需要12分钟,乘坐公交到离单位最近的公交站所需时间1Z 服从正态分布()233,4N ,故当满足()31P Z ≤时,江先生乘坐公交不会迟到, 而()()()1293731290.18572P Z P Z P Z -≤>≤==<<;若8:12出门,江先生乘坐地铁,∵从家到车站需要5分钟,下地铁后步行再到单位需要5分钟,乘坐地铁到离单位最近的地铁站所需时间2Z 服从正态分布()244,2N ,故当满足()()13850380.001352P Z P Z -<<≤==时,江先生乘坐地铁不会迟到,由0.18570.00135>,∴若8:12出门,则乘坐地铁比公交上班迟到的可能性大,故④正确; 故答案为:②④. 【点睛】本题主要考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,正确理解题意是关键,考查计算能力,属于中档题.16.【分析】分别分析最大号码为345的情况再根据所对应的概率求解数学期望即可【详解】所有可能的情况一共有种其中最大号码为3的情况一共有种;其中最大号码为4的情况一共有种;其中最大号码为5的情况一共有种;解析:92分别分析最大号码为3,4,5的情况再根据所对应的概率求解数学期望即可.【详解】所有可能的情况一共有3510C=种,其中最大号码为3的情况一共有221C=种;其中最大号码为4的情况一共有233C=种;其中最大号码为5的情况一共有246C=种;故ξ的数学期望是136312309 345101010102++⨯+⨯+⨯==.故答案为:9 2【点睛】本题主要考查了排列组合解决数学期望的问题,根据题意分析所有可能的情况再利用数学期望公式求解即可.属于中等题型.17.375【分析】先求得元件和并联电路正常工作的概率乘以元件正常工作的概率由此求得部件正常工作超过小时的概率利用二项分布均值计算计算公式计算出台仪器中该部件的使用寿命超过小时的平均值【详解】由正态分布可解析:375【分析】先求得元件1和2并联电路正常工作的概率,乘以元件3正常工作的概率,由此求得部件正常工作超过10000小时的概率.利用二项分布均值计算计算公式,计算出1000台仪器中该部件的使用寿命超过10000小时的平均值.【详解】由正态分布可知,每个元件正常工作超过10000小时的概率为12,则部件正常工作超过10000小时的概率为21131228⎡⎤⎛⎫-⨯=⎢⎥⎪⎝⎭⎢⎥⎣⎦,又1000台仪器的该部件工作服从二项分布,所以平均值为3 10003758⨯=台.故答案为:375【点睛】本小题主要考查相互独立事件概率计算,考查二项分布的识别和二项分布期望的计算,属于基础题.18.10【分析】根据题意可知随机变量满足二项分布根据公式即可求出随机变量的方差再利用公式即可求出【详解】故答案为【点睛】本题主要考查满足二项分布的随机变量方差的求解解题时利用公式将求的问题转化为求的问题解析:10根据题意可知,随机变量2~5,3X B ⎛⎫ ⎪⎝⎭满足二项分布,根据公式()(1)D X np p =-,即可求出随机变量的方差,再利用公式2()()D aX b a D X +=即可求出()3D X 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1 分类加法计数原理和分步乘法计数原理(一)
一、基础过关
1. 某班有男生26人,女生24人,从中选一位同学为数学科代表,则不同选法的种数有( )
A .50
B .26
C .24
D .616
2. 已知x ∈{2,3,7},y ∈{-3,-4,8},则x ·y 可表示不同的值的个数为
( ) A .8
B .12
C .10
D .9
3. 某班小张等4位同学报名参加A 、B 、C 三个课外活动小组,每位同学限报其中一个小
组,且小张不能报A 小组,则不同的报名方法有
( ) A .27种
B .36种
C .54种
D .81种
4. 如图,一条电路从A 处到B 处接通时,可构成线路的条数为
( )
A .8
B .6
C .5
D .3
5. 张华去书店,发现3本好书,决定至少买其中1本,则购买方式共有________种.
6. 4名学生参加跳高,跳远,游泳比赛,4人都来争夺这三项冠军,则冠军分配的种数有
________种.
二、能力提升
7. 植树节那天,四位同学植树,现有3棵不同的树,若一棵树限1人完成,则不同的植树
方法种数有
( ) A .1×2×3
B .1×3
C .34
D .43
8. 现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,
不同选法的种数是
( ) A .56 B .65
C.5×6×5×4×3×22
D .6×5×4×3×2 9. 如图所示,在连接正八边形的三个顶点而成的三角形中与正八边形有公共边的三角形有
________个.
10.如图是某校的校园设施平面图,现用不同的颜色作为各区域的底色,为了便于区分,要求相邻区域不能使用同一种颜色.若有6种不同的颜色可选,问有多少种不同的着色方案?
11.已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),
(1)P可以表示平面上的多少个不同点?
(2)P可以表示平面上的多少个第二象限的点?
(3)P可以表示多少个不在直线y=x上的点?
12.设椭圆的方程为x2
a2+y2
b2=1(a>b>0),a∈{1,2,3,4,5,6,7},b∈{1,2,3,4,5},这样的椭圆共有
多少个?
三、探究与拓展
13.某艺术小组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人,有多少种不同的选法?
答案
1.A 2.D 3.C 4.B 5.7 6.647.D
8.A9.40
10.解操场可从6种颜色中任选1种着色;餐厅可从剩下的5种颜色中任选1种着色;宿舍区和操场、餐厅颜色都不能相同,故可从剩下的4种颜色中任选1种着色;教学区和宿舍区、餐厅的颜色都不能相同,故可从剩下的4种颜色中任选1种着色.根据分步乘法计数原理,知共有6×5×4×4=480(种)着色方案.
11.解(1)完成这件事分为两个步骤:a的取法有6种,b的取法有6种.由分步乘法计数原理知,P点可以表示平面上的6×6=36(个)不同点.
(2)根据条件需满足a<0,b>0.
完成这件事分两个步骤:a的取法有3种,b的取法有2种,由分步乘法计数原理知,P可以表示平面上的3×2=6(个)点.
(3)因为点P不在直线y=x上,所以第一步a的取法有6种,第二步b的取法有5种,
根据分步乘法计数原理可知,P可以表示6×5=30(个)不在直线y=x上的点.12.解依题意按a,b的取值分为6类,
第一类:a=2,b=1;
第二类:a=3,b=1,2;
第三类:a=4,b=1,2,3;
第四类:a=5,b=1,2,3,4;
第五类:a=6,b=1,2,3,4,5;
第六类:a=7,b=1,2,3,4,5.
由分类加法计数原理得:
这样的椭圆共有1+2+3+4+5+5=20(个).
13.解由题意可知,在艺术小组9人中,有且仅有1人既会钢琴又会小号(把该人称为“多面手”),只会钢琴的有6人,只会小号的有2人,把选出会钢琴、小号各1人的方法分为两类:
第一类:多面手入选,另1人只需从其他8人中任选一个,故这类选法共有8种;
第二类:多面手不入选,则会钢琴者只能从6个只会钢琴的人中选出,会小号者也只能从只会小号的2人中选出,故这类选法共有6×2=12(种).
因此共有N=8+12=20(种)不同的选法.。