信号与线性系统总结课件 高等教育出版社 管致中等主编

合集下载

信号与线性系统 管致中 第四版 第4章 ppt课件

信号与线性系统 管致中 第四版 第4章 ppt课件
j+2
HjE Rjj j1+2
2020/12/2
16
2) 从微分方程直接求解(方程两边取傅氏变换) 例:已知微分方程
y ''( t) 3 y '( t) 2 y ( t) x ( t)
求:系统函数 H( j) 。 解:对方程两边求傅氏变换,可得
[j()2 3 (j) 2 ]Y (j)X (j)
1 2j1 1 vo(t)1 2e t (t) 28
例:某系统的微分方程为
y " (t) 5 y '( t) 6 y ( t) x (t) 已知输入 x(t激 )e励 t(t),
初始状 y(0态 )2,y'(0)1, 试求全响应。
解(1: )求零状态yz响 s(t),用 应傅氏变换分析
X(j)F[x(t)] 1 j1
H(j)141 j11
27
例:已知 vS(t)2e2t(t)求:1.H( j) 2. h (t ) 3. vo (t)
H(j)141 j11
反变换,得 h(t)1(t)et(t) 4
V o (j ) V S(j )H (j )j 2 2 1 4 jj 1 2
2020/12/2
| H(j)| 2 42
0,| H ( j ) | 1
2020/12/2
2,| H(j)| 2
2
,|H (j)| 0 23
设含噪声 u1(t)信 5s号 itn) (: 3sin 2(t0)
u1(t)
h(t)
u2(t)
2020/12/2
24
三、系统响应: y(t)yx(t)yf(t)
yx(t): 系统零输入响应,取决于系统自然频率和初始值;

信号与线性系统(管致中)

信号与线性系统(管致中)

1 5rad / s
T1 2 5
sin t 的角频率和周期分别为 1 rad / s T1 2 2
T1和T2 的不存在最小公倍数,因此原信号不是周期信号
连续正弦信号一定是周期信号; 两个连续周期信号之和不一定是周期信号 。
例1:判断下列信号是否为周期序列,若是,求其周期。 (1) f (k ) cosk 解:
两个周期序列之和一定是周期序列 。
2 8 N1 3 4 3
f (k ) sin k cos
k
2
信号的分类
能量信号与功率信号
假设信号f(t)在实际应用中是一个电路网络输出的电流或 者电压,将它施加在一个电阻值为1欧的负载电阻上,则在一 定时间间隔(t1,t2)里,负载电阻中消耗的信号能量为:
传输和处理连续时间信号系统的激励和响应在连续时间的一切值上都有确定的意义连续时间系统传输和处理离散时间信号系统的激励和响应都是不连续的离散序列离散时间系统在实际工程中离散时间系统常常与连续时间系统联合运用同时包含有这两者的系统称为混合系统
信号与线性系统
主讲: 俞菲 建雄院 211室 无线谷 5209室
正弦序列不一定是周期序列
例1:判断下列信号是否为周期序列,若是,求其周期。
解: 序列由两个周期序列组成 sin 3k 4 的角频率和周期分别为
3k k (2) f (k ) sin cos 4 2
1 3 4 rad / s
cosk 2的角频率和周期分别为 2 1 2 rad / s N1 4 2 N1和N 2的最小公倍数为8,因此其周期为8。
信号的分类
连续信号与离散信号
离散信号(discrete signal)可以在均匀的时间间隔上给 出函数值,也可以在不均匀的时间间隔上给出函数值,本课 程一般考虑均匀间隔的情况。 离散信号的描述:

《信号与线性系统》 东南大学 管致中 夏恭恪 孟桥著 高等教育出版社第六章-2

《信号与线性系统》 东南大学 管致中 夏恭恪 孟桥著 高等教育出版社第六章-2
第2行 第3行 第4行
An-1n -1 a An-2 An-3 Bn-1 n -3 Cn-1n -5 Dn-1 -7 a a an … Bn-2 Bn-3 B2 0 0 Cn-2 Cn-3 0 0 0 Dn-2 … Dn-3 …
Ai −1 =
M
第(n-1)行 A2 第n行 第(n+1)行
An − 2 =
3
∴ H 3 ( s ) 系统不稳定
以上两个性质是判断系统稳定的必要条件
第六章 连续时间系统的系统函数
(二) 罗斯-霍维茨(Routh-Hurwitz)准则(判据) 罗斯-霍维茨( 准则(
内容: 若 内容: D(s) = an sn + an−1sn−1 +L+ a1s + a0 的根全部位于s左半平面的充要条件是 左半平面的充要条件是: 则 D(s) = 0 的根全部位于 左半平面的充要条件是: (ⅰ)D ( s ) 的全部系数 a i 为正,无缺项; 为正,无缺项; 罗斯-霍维茨阵列中第一列数字( )符号相同 (ⅱ)罗斯-霍维茨阵列中第一列数字( A i )符号相同 -6 R-H阵列: 1行 An an Bn an -2 Cnan -4 Dnan… … 阵列: - 阵列 第
第六章 连续时间系统的系统函数
例 4 反馈系统
F(s) + _ E(s) G(s)
H(s)
Y(s)
前向通道 , 反馈通道 H ( s ) = K 问当常数满足什么条件时,系统是稳定的? 解: E ( s) = F ( s) − H ( s)Y ( s)
Y ( s ) = E ( s )G ( s ) = G ( s ) F ( s ) − G ( s ) H ( s )Y ( s )

信号与线性系统管致中第8章通信系统

信号与线性系统管致中第8章通信系统

PPT文档演模板
信号与线性系统管致中第8章通信系 统
• 已调信号的最大峰值等于载波峰值的 2倍。 这就要求发射机的峰值功率容限是载波功率的 4 倍,发射机的效率是很低的。
• 从功率利用的角度, 越大越好;从包络检波
的效果来看, 越小越好。因此,在包络解调中,
通常折衷地取

PPT文档演模板
信号与线性系统管致中第8章通信系 统
• 对正弦载波的情况,若调制信号是脉冲信号,
•则称为:
• ASK------幅度键控(Amplitude Shift Keying)
• FSK------频率键控(Frequency Shift Keying)
• PSK------相位键控(Phase Shift Keying)
PPT文档演模板
信号与线性系统管致中第8章通信系 统
• 如果 然。
,定义
为调制指数 , 显
•特例
• 当调制信号是单音正弦时,在 的情况下,
已调信号的频谱如下:
PPT文档演模板
信号与线性系统管致中第8章通信系 统
• 此时,已调信号的平均功率是载波功率的1.5 倍, 而这些功率中真正用于传输有用信息的边带功率 只是载波功率的1/2,只占整个已调信号总功率的 1/3。
•二. 脉冲载波的情况:
• 根据被控制的参量可分为:脉冲幅度调制、脉
冲宽度调制、脉冲周期(位置)调制。
•PAM------Pulse Amplitude Modulation
•PWM-----Pulse Width Modulation
•PPM------Pulse Periodic(Position) Modulation
PPT文档演模板

信号与线性系统课件(第5版)管致中 第2章2-3及应用

信号与线性系统课件(第5版)管致中 第2章2-3及应用

得齐次解 (自由响应)为: y(t) =12e−t −11e−2t t ≥0
得全解(全响应)为: y(t) =12e−t −11e−2t +2e−3t
14
t ≥0
(4)零输入响应,特征根为:λ1 = −1, λ2 = −2
∴ yzi (t ) = A1e −t + A2e−2t
代入初始值,得
⎧A1 + ⎩⎨− A1
11

已知系统的转移算子 H ( p)
=
p2
p +2p+1
,初始条件为
r(0) = 1, r′(0) = 2, 试求系统的零输入响应 rzi(t)。并画出草图。
解:令 p2 + 2 p +1 = 0 得:p1 = p2 = −1
∴ rzi (t) = (C1 + C2t)e− t 代入初值得:
⎧r(0) = C1 = ⎩⎨r′(0) = −C1
一.冲激响应的定义
定义:当激励为单位冲激函数δ (t)时,系统的零状态响应称 为单位冲激响应,简称冲激响应,用h(t)表示。
h(t)
δ(t)
(1)
δ(t)
h(t)
LTI
0
t
零状态
0
t
冲激响应的一般形式:
δ (t)
h (t)
22
冲激响应的求法 � 直接求解法 � 间接求解法 � 转移算子法 � 拉普拉斯变换
� 受迫响应(强迫响应)
� 有输入激励时系统的响应。
� 对应于特解(只含外加激励频率项) 。
� 形式由微分方程的自由项或外加激励信号决定。
2
零输入响应与零状态响应
� 一个连续系统的完全响应,可以根据引起响应的不同原 因,将它分解为零输入响应和零状态响应两部分。 � 零输入响应

《信号与线性系统》(管致中)ch5-3

《信号与线性系统》(管致中)ch5-3

四、拉普拉斯反变换由,常为s 的有理函数)()(t f s F 求)(s F 一般形式:1110111)(a s a s a s b s b s b s b s F n n n m m m m ++++++++=---- (为实数,m 、n 为整数)k k b a 、如nm ≥)()()()(s D s N s R s F +=R(s)的拉氏变换为冲激函数及其各阶导数——理想情况一般情况下:nm <求拉氏反变换有三种方法:查表、部分分式展开法和围线积分法(留数法)(一)部分分式展开法1110111)()()(a s a s a s b s b s b s b s D s N s F n n nm m mm ++++++++=---- =()n m <要点:将分解,逐个求反变换,再叠加)(s F 基本形式:0,1≥↔-t e s s ts kk 1.的根无重根[的极点为单阶] 0)(=s D )(s F )1()())(()()()()(21 n s s s s s s s N s D s N s F ---==极零点)(s F 极点:使=∞的s 根值,)(s F 如为的极点),,1(n k s k =)(s F 零点:使的s 根值,0)(=s F 如,)()()()(1m k z s z s z s s N ---= 为的零点),,1(m k z k =)(s F )2()(2211 nn k k s s k s s k s s k s s k s F -++-++-+-=ts n t s k t s t s n k ek e k e k e k t f +++++= 2121)(求系数的两种方法k k [方法一] (2)式两边乘以():k s s -nnk k k k k s s k s s k s s k s s s s k s s s F s s --++++--+--=-)()()()()(2211 令ks s =则ks s k k s F s s k =-=)]()[([方法二]用微分求])()()([lim s D s N s s k k s s k k -=→(形式)0)()]()[(lim s D ds ds N s s ds dk s s k -=→——罗彼塔法则k s s s D s N ='=])()([())()()(])()[(s N s N s s s N s s k k +'-='-例1 求的反变换)2)(1(4)(+++=s s s s s F )(t f [为真分式,极点为实数])(s F 解:21)(321++++=s k s k s k s F 1)求:k s 2,1,0321-=-==s s s 2)求:k k 【方法一】,2])2)(1(4[01=+++==s s s s k ,3])2(4[12-=++=-=s s s s k 1])1(4[32=++=-=s s s s k 【方法二】用微分求,23)2)(1()(23s s s s s s s D ++=+=+263)(2++='s s s D 2634)()(2+++='s s s s D s N ,2]2634[021=+++==s s s s k ,3]2634[122-=+++=-=s s s s k 1]2634[223=+++=-=s s s s k3)求:)(t f 21132)(++++=s s s s F -)()32()(2t eet f ttε--+-=例2)2)(1(795)(23+++++=s s s s s s F [为假分式,极点为实数] )(s F 解:)2)(1(32)(+++++=s s s s s F )(21s F s ++=令求的反变换:)(1s F 2112)2)(1(3)(1+-+++++=s s s s s s F =)()2()(21t ee tf tt ε---=求的反变换:)(s F )()2()(2)()()(2)()(21t e e t t t f t t t f t t εδδδδ---++'=++'=例3 求的反变换52)(2++=s s s s F [为真分式,极点为共轭复数] )(s F 解:【方法一】2211)(ss k s s k s F -+-=2令21j s --=*=s2)求:k k 1)]()[(11s s s F s s k =-=)2(41j +=2)]()[(22s s s F s s k =-=)2(41j -=*=1k 3)求:)(t f t s t s e k e k t f 2121)(+=tj t j e j ej )21()21()2(41)2(41--+--++=)](2)[(212222t j t j tj t j t e e j e e e ----++=)222(21t Sin t Cos e t -=-,2212t Sin e t Cos e t t---=0≥t ),,,()(2121k k s s f t f =tj tj ejc c ejc c t f )(21)(21)()()(βαβα-+-++=)(221t Sin c t Cos c e tββα-=)(,,,21t f c c 求→βα【方法二】为二次多项式)(s D 52)(2++=s s s D 4)1(2++=s ])[(22βα+-=s 4)1()(2++=s s s F ]2)1(2[212)1(12222++-+++=s s s tCos e s s t022)(ωωααα↔+--t Sin e s t02020)(ωωαωα↔+-1--t t2.当=0有重根的情况[有多重极点])(s D )(s F 设=0共有n 个根,其中一个根s 1为p 重根,其余为单根(异根))(s D 即)())(()()(211n p p ps s s s s s s s s D ----=++ )1(][])()()([)()()(11111211211)1(111 n n p p p p p p s s k s s k s s k s s k s s k s s k s D s N s F -++-+-+-++-+-==++--令异根项][11nn p p s s k s s k -++-++ )()(00s D s N =其系数的求法如上所述重根项的求取111,,k k p (1)求:p k 1)2()()(])()()([)(00111211211)1(111 s D s N s s k s s k s s k s s k s F p p p p+-+-++-+-=--式(2)乘以,ps s )(1-)()()()()()()()(00111111221)1(1111s D s N s s k s s k s s k s s k s F s s pp p p p p-+-+-++-+=---- 再令s s =p(2)求(系数)11)1(1,k k p -引入)()()(11s F s s s F p-=)(4)()()()()()(100111121)2(11)1(11 p p p p p s s s D s N s s k s s k s s k k -+-++-+-+=---将式(4)对s 取导一次:)(5])()()([)()1()(2)(10021111)2(1)1(11 pp p p s s s D s N ds d s s k p s s k k ds s dF -+--++-+=---1])([1)1(1s s p dss dF k =-=将式(5)对s 取导一次,再令得1s s =1])([21212)2(1s s p dss F d k =-=一般情况:1,,1,,])([)!(1111 -=-==--p p k dss F d k p k s s kp kp k 总结:)()(])()()([)(001111)1(12112111s D s N s s k s s k s s k s s k s F pp p p +-+-++-+-=-- ∑-+++++=n t s t s p p ts t s t s q ek e t k e t k te k e k t f 112131111)(例求的反变换22)5)(3(52)(++++=s s s s s F 解:0)5)(3()(2=++=s s s D ⎩⎨⎧-=-=523121s s 重根个单根)1()5(53)(222211 +++++=s k s k s k s F 1)求系数22211,,k k k 单根项2)]()3[(31=+=-=s s F s k 重根项5221)]()5([-=+=s s F s dsd k 52]}352[{-=+++=s s s s ds d 1-=求式代入的另法:把)1(,22121k k k 5)5(1032)(212+++-+=s k s s s F 551032535)0(2122k F +-=⨯=121-=k 2) 求:)(t f )()102()(553t teeet f tttε-----=10)]()5[(5222-=+=-=s s F s k(二)围线积分法(留数法)拉氏反变换:⎰∞+∞-=j j stdse s F j tf σσπ)(21)(留数定理:∑⎰==ni icstsds e s F j 1Re )(21π上式左边的积分是在s 平面内沿一不通过被积函数极点的封闭曲线C 进行的,右边则是在此围线C 中被积函数各极点上留数之和。

(完整版)信号与线性系统管致中第1章信号与系统

(完整版)信号与线性系统管致中第1章信号与系统

N
x(n) 2

x(n) 2
在无限区间内的平均功率可定义为:
x(t) P
lim 1 T 2T
T T
2
dt
1 N
P

lim
N
2N
1
N
x(n) 2
三类重要信号: 1. 能量信号——信号具有有限的总能量,
即: E , P 0
2. 功率信号——信号有无限的总能量,但平均功率 有限。即:
1.2 自变量变换
如果有 x(t) x(t) 则称该信号为奇信号
x(n) x(n)
(镜像奇对称)
对复信号而言:
x(t) x(t) 如果有 x(n) x(n) 则称该信号为共轭偶信号。
x(t) x(t)
如果有
则称为共轭奇信号。
x(n) x(n)
1.2 自变量变换

x (n)]
例1:
x(t)
2 1
-2 -1 0

t
12
-2
xe (t)
1

t
02
xo (t)
1
-1
t
1 -1
例2. 信号的奇偶分解:
1.3 指数信号与正弦信号
(Exponential and Sinusoidal Signals ) 1.3.1. 连续时间复指数信号与正弦信号
x(t) Ceat 其中 C, a 为复数
确定的定义。
x(n) c 可以视为周期信号,其基波周期 N0 。1
1.2 自变量变换
非周期信号
周期信号
1.2.3. 奇信号与偶信号: odd Signals and even Signals 对实信号而言:

信号与线性系统分析课件

信号与线性系统分析课件

04 线性系统的响应
系统的冲激响应
冲激响应定义
01
冲激响应是线性系统对单位冲激函数的响应,反映了系统对瞬
时作用的响应特性。
冲激响应计算
02
通过求解线性系统的微分方程或差分方程,可以得到系统的冲
激响应。
冲激响应的物理意义
03
冲激响应可以理解为系统内部能量的传播和分布,是分析系统
动态特性的重要手段。
卷积积分定义
卷积积分是信号处理中常用的一种运算,用于描述两个函数的相互作用。在线性系统中 ,卷积积分用于描述系统的输出与输入之间的关系。
卷积积分的计算
卷积积分的计算涉及到函数乘积的积分,常用的计算方法包括离散卷积和离散化卷积等 。
卷积积分的物理意义
卷积积分可以理解为系统对输入信号的处理和转换能力,是分析系统动态特性的重要手 段。在信号处理中,卷积积分常用于信号滤波、预测和控制系统设计等领域。
03 信号的傅里叶分析
傅里叶级数
傅里叶级数定义
将周期信号表示为无穷多个正弦和余弦函数 的线性组合。
复指数形式
使用复指数函数来表示周期信号。
三角函数形式
使用正弦和余弦函数来表示周期信号。
傅里叶级数的应用
用于分析信号的频率成分和幅度变化。
傅里叶变换
01
02
03
傅里叶变换定义
将时域信号转换为频域信 号,表示信号的频率分布 。
傅里叶变换的性质
线性、时移、频移、共轭 、对称等性质。
傅里叶变换的应用
用于信号处理、图像处理 、通信等领域。
频域分析
频域分析定义
通过分析信号的频率成分 来理解信号的特征和性质 。
频域分析的应用
用于信号滤波、调制解调 、频谱分析等领域。

信号与线性系统(管致中)

信号与线性系统(管致中)

1 p 1 p
1 d t p x(t )d x(t ) p dt
?
t dx(t ) 1 p x(t ) x() dt p
1 p =1 p
dx (t ) dy (t ) dt dt
当且仅当x() 0时等号成立
x(t ) y (t ) C
注:初始条件
rzs (0 ) 0, rzs ' (0 ) 0
零输入响应和零状态响应
r (t )(全响应) rzi (t )(零输入响应 rzs (t(零状态响应) ) )
2. 用叠加积分的方法求解零状态响应:原理——系统的叠加性
若f1 (t ) r1 (t ),f 2 (t ) r2 (t )
转移算子:
N ( p) r (t ) e (t ) D( p)
N ( p) H ( p) D( p)
转移算子描述了响应函数和激励函数在时域中的关系
2-2 系统方程的算子表示法
二、算子多项式的运算法则 1、代数运算:
( p a)( p b) p 2 (a b) p ab
B0不可解
i f (t ) (B0 t )e2t
i(t ) in (t ) i f (t ) (C1 B0 )e2t C2e3t tet
其中待定常数C1+B0,C2由初始条件确定:
i(0) C1 B0 C2 1 1, C1 B0 2, C2 1
(杜阿美积分,卷积积分)
零输入响应 自然响应
零状态响应 受迫响应
对于一个稳定的系统而言,系统的零输入响应必然是
自然响应的一部分
零状态响应中又可以分为自然响应和受迫响应两部分。 零输入响应和零状态响应中的自然响应部分和起来构 成总的自然响应,零状态响应中有外加激励源作用产生的 响应是受迫响应

《信号与线性系统》 东南大学 管致中 夏恭恪 孟桥著 高等教育出版社第三章-2

《信号与线性系统》 东南大学 管致中 夏恭恪 孟桥著 高等教育出版社第三章-2
F ( jω )量纲: 单位频带的振幅 ——频谱密度函数 频谱密度函数 量纲:
无穷小), 当 T → ∞时, Ω → dω ( 无穷小), nΩ → 连续变量 ω 则 F ( jω ) =


−∞
f ( t )e − jωt dt = F ( jω ) e jϕ ( ω ) — —傅里叶变换
F ( jω )
式(1)乘以T/2:
& & πAn An T & = An × = = 2 Ω 2 f

T 2 T − 2
f (t )e − jnΩt dt (≠ 0,当T → ∞时)
11
第三章 连续信号的正交分解
& πAn T & 定义: 定义: F ( jω ) = F (ω ) = lim An × = lim T →∞ 2 Ω→0 Ω
2
2
第三章 连续信号的正交分解
Sinx Sa ( x ) = ——抽样函数 抽样函数 x T τ 2 2 2 2 2 Aτ a0 = ∫ T f (t )dt = ∫ τ Adt = = l im an n→0 T −2 T −2 T
nπτ Aτ ∞ 2 Aτ ∴ f (t ) = +∑ Sa( )Cos(nΩt ) T T n =1 T
∞ 1 & jnΩt f (t ) = ∑ An e = ∑ C n e jnΩt (指数级数) 指数级数) 又如按 n = −∞ 2 n = −∞ C
n

指数频谱图: 指数频谱图:
- 2π/τ 0 2π/τ 4π/τ ω=nΩ
(关于纵轴对称,但并不表示有负频率,它只表示一对 关于纵轴对称,但并不表示有负频率, 相应的正、 相应的正、负指数项合起来构成一个正弦分量 )

信号与系统吴大正第四版第一章课件1

信号与系统吴大正第四版第一章课件1

0T 2m

) sin[ (k m N)]
正弦序列周期性的判定:
• 当 为整数时,正弦序列才具有周期 N 。 • 当
2
2
2

2
为有理数时,正弦序列仍具有周期性,其周期 N M
2


• 当 为无理数时,正弦序列不具有周期性。
第1-22页

信号与系统 电子课件
f (n )
2 1 1 1
2 1 ...
N=5
n
1
2
3
4
5
6
7
8
离散周期信号的周期只能为整数
第1-21页

信号与系统 电子课件
• 正弦信号:
sin 0t sin 0 (t T ) sin(0t 0T )
• 正弦序列:
sin(k ) sin(k 2m ) sin[ (k m 2
第1-11页

信号与系统 电子课件
1.1 信号的描述
1. 消息(message)
通过某种方式传递的声音、文字、图像、符号等。
2.信息(information) 通常把消息中有意义的内容称为信息。 信息的表现形态:数据、文字、声音、图像。 3.信号(signal)
信号是信息的载体,信息是信号的内容。
课程地位:
信号与系统是理工科学生一门重要的专业基
础课。是许多专业(通信、电子、自动化、计算
机、系统工程等)的必修课,是我们将来从事专 业技术工作的重要理论基础,是后续专业课(通 信原理、数字信号处理)的基础,也是上述各类 专业硕士研究生入学考试课程。
第1-5页

信号与系统 电子课件

《信号与线性系统》 东南大学 管致中 夏恭恪 孟桥著 高等教育出版社第七章-1

《信号与线性系统》 东南大学 管致中 夏恭恪 孟桥著 高等教育出版社第七章-1

jϕ k
6.离散信号的分解
= ∑ f ( j)δ (k − j)
j =−∞ ∞
f (k ) = 1 ϕ k = kω 0
f(k)
●● ●●● ●
f (k) =L+ f (−3)δ(k +3) + f (−2)δ(k +2) + f (−1)δ(k +1) + f (0)δ(k) + f (1)δ(k −1) +L
(k = 0、±1、 ±2、 ---) 、 、 、 (1)解析式 例 f1 (k) =2 (-1) k ) f2 (k) = k (1/2) k (k = 0、1、2、---) 、 、 、 (2)序列形式 f (k) = {…,2,-2,2,-2,2,-2,…} ) , , , , , , ,
1
1 1 3 f2 (k) = {0,2 ,2 ,8,…} ,
1●●
0 1 2 3 4
GN (k )
k
1, 0 ≤ k ≤ N −1 GN (k) = 0, k < 0, k ≥ N
1●●
● ● ●

0 1 2 3 4
N-1
k
三者关系: 三者关系: ε(k) =δ(k) +δ(k −1) +δ(k −2) +L
= ∑ δ (k − j )

δ (k) = ε(k) −ε(k −1) GN (k) = ε(k) −ε(k − N)
13
第七章 离散时间系统的时域分析 二、抽样信号与抽样定理
信号处理过程: 信号处理过程:
f (t ) 抽样
模拟信号
f s (t )
抽样信号
量化编码

《信号与系统》管致中 ch6_1~5

《信号与系统》管致中 ch6_1~5
波特图的横坐标上只能表示 0 或者 f 0 频率下
的系统特性。图中的二、三象限并非表示频率小于零的 部分,而是表示频率小于 1(大于零)部分频率特性。 ➢ 根据系统频率特性的共扼对称性,不难得到频率小
于零部分的特性。 在波特图的纵坐标上,可以标注系统幅频特性值(如图
中红字所示),也可以标注分贝值。
东南大学 信息科学与工程学院
H ( j )
1
2
H ( j ) * ( )
1
j
1 H ( j ) * ( ) 1 H ( j ) * 1
2
2
j
1 H ( j ) 1 H ( j ) * 1
2
2j
1 H( j) 1 H( j) * 1
2
2j
R( j) jX( j) 1 R( j) jX( j)* 1
东南大学 信息科学与工程学院
三、线性系统的波特图
1、一般系统的波特图
m
H ( j) H0
i1 n
j zi
m
n
e j
i 1
i
i 1
i
j pi
i1
G() 20log H ( j)
m
n
20log H0 20log j zi 20log j pi
i 1
i 1
m
n
20log H0 Gzi ( ) Gpi ( )
率变化规律的幅频特性曲线和反映相位特性随频率变 化规律的相频特性曲线描述。 频率特性主要用于研究系统的频率特性分析。 对于 H (s) ,没有必要研究其随任意复频率变化的规律,
只需要令 s j ,得到 H ( j ) ,研究沿 s 平面虚轴变
化的规律。
东南大学 信息科学与工程学院

《信号与线性系统》南京航空航天大学_管致中_夏恭恪_孟桥著_高等

《信号与线性系统》南京航空航天大学_管致中_夏恭恪_孟桥著_高等

《信号与线性系统》南京航空航天大学_管致中_夏恭恪_孟桥著_高等连续时间系统的复频域分析七、信号流图分析法(一)信号流图的表示法1。

由方程作流图作图规则:例1x2 ax1 0 (1)首先把方程式写成因果关系式:果=f(因); (2)方程式中的各个变量用“○”表示,称作结点;如选x 2 为果:是用有向的线图来描述线性方程组变量间因果关系的一种图。

信号流图:本质:求解线性方程组的图解法。

x 2 ax1(3)变量之间的因果关系用线段来表示,称作支路。

○x1a○其特点:)有向,因果(支路的方向表示信号流动的方向) )支路旁边标上因变量的系数(传输值) )每一个结点的变量等于流入它的变量与相应支路传输值的乘积的代数和。

如X(s) x21 sY(s) 1/s Y(s)sY (s) X (s) aY (s)1《信号与线性系统》南京航空航天大学_管致中_夏恭恪_孟桥著_高等教育出版社第五章连续时间系统的复频域分析例2 ax0 bx1 cx2 0 (1) 的流图dx0 ex1 fx 2 0 (2) x1 为果:1 a x0 c x2 x 解:(1)选1) b b求各方程的x 2 为果:2 d x0 e x1 x 果变量不能相同(2)选f f 2)用结点表示变量(结点还兼有加法器的作用) 3)用支路表示因果关系并标注传输值x1 ax0 (b 1) x1 cx2 x 2 dx0 ex1 ( f 1) x 2x0 若x0b+1-a/b -c/bx1由此可画流图:ac ex1-d/f-e/fd f+1x2一个方程组的流图不是唯一的,但其解答是唯一的!《信号与线性系统》南京航空航天大学_管致中_夏恭恪_孟桥著_高等教育出版社第五章连续时间系统的复频域分析例3 求一阶系统的流图解:y a0 y x y a0 y xsY ( s) a0Y ( s) X ( s) (1) X (s)、(s) 、(s ) ――复量Y sY――时域模型――复域模型Y 、sY (s) 、(s)1作流图:结点3个――X (s)1X (s)Y (s )sY (s)1/sY (s )-a0 1 Y ( s) sY ( s) (2) sY Y 若只有X (s)、(s) 两个复量:(s)( s a0 ) X (s)Y ( s) 1 X ( s) H ( s ) X ( s) (3) s a0H(s)则流图为:2022年-4-26X (s)Y (s )其中H ( s)1 s a03流图和框图都用于描述系统方程,但流图更简洁,使用更方便。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反转,得f (– 2t – 4)
o
f (2t - 4) 1 1 2 3 t
1.4 系统的分类方法
1. 连续系统与离散系统 2. 动态系统与即时系统 3. 线性系统与非线性系统 4. 时不变系统与时变系统 5. 因果系统与非因果系统 6. 稳定系统与不稳定系统
1.5 LTI系统的性质
1. 齐次性(homogeneity,均匀性、比例性scaling) 若 e(t ) r (t ) 则 ke(t ) kr(t ) 2.叠加性(可加性additivity) 若 e1 (t ) r1 (t ), e2 (t ) r2 (t ) 则 e1 (t ) e2 (t ) r1 (t ) r2 (t ) 3.时不变性(非时变性) 若 e(t ) r (t ) 则 e(t t0 ) r (t t0 ) 综合1、2、3性质有: 若 e1 (t ) r1 (t ), e2 (t ) r2 (t ) 则 k1e1(t t0 ) k2e2 (t t0 ) k1r (t t0 ) k2r2 (t t0 ) 1 * 线性时不变系统的判决(重要)
1.2 信号的分类及性质
例2 判断正弦序列f(k) = sin(βk)是否为周期信号, 若是,确定其周期。
解 f (k) = sin(βk) = sin(βk + 2mπ) , m = 0,±1,±2,…
2π sinβ k m sin[β (k mN)] β
k
则零输入响应的形式为
rzi (t ) (C 0 C1t C 2 t 2 C k 1t k 1 )e 1t C k 1 e k 1 C n e n
其中 C0 ,, Ck 1 , Ck 1 ,, Cn 也是由系统的初始条件 确定的待定系数。
d n r (t ) d n 1 r (t ) dr (t ) an 1 a1 a0 r (t ) n n 1 dt dt dt
bm d m e(t ) dt m bm 1 d m 1e(t ) dt m 1 b1 de(t ) b0 e(t ) dt
第一章 信号与系统 1.1 绪论 1. 信号的表示
电信号的基本形式:随时间变化的电压或电流。 描述信号的常用方法(1)表示为时间的函数 (2)图形表示--波形
2. 系统的表示
e(t )
• 系统可以用下面的方框图来表示
r (t )
e(t )是输入信号,称为激励; r (t )是输出信号,称为响应。
1.2
第二章 连续时间系统的时域分析
基本概念:系统的数学模型、特征方程、特征根、
奇异函数、零输入响应、零状态响应 、 单位冲激响应、单位阶跃响应、自然 响应、受迫响应、瞬态响应、稳态响应、 卷积。
基本运算:零输入响应的求解、单位冲激响应及单位
阶跃响应的求解、零状态响应的求解、卷 积的几何含义、卷积性质的应用。
(1)信号的能量E
E
def
def

f (t ) d t
2
(2)信号的功率P
1 P lim T T

T 2 T 2
f (t ) d t
2
定义:若信号f (t)的能量有界,即 E <∞ ,则称其为能量有限 信号,简称能量信号。此时 P = 0 定义:若信号f (t)的功率有界,即 P <∞ ,则称其为功率有限 信号,简称功率信号。此时 E = ∞
§2.6
阶跃响应和冲激响应
单位冲激响应 以单位冲激信号作为激励信号时, 系统的零状态响应,记为 h(t ) 。 单位阶跃响应 以单位阶跃信号作为激励信号时, 系统的零状态响应,记为 r (t )。
一、冲激响应
d n h(t ) dt n a n 1
bm
d n 1 h(t ) dt n 1
t 0 n Ci e i t (t )
t 0
i 1
n 2、 m情况
n i 1
h(t ) 中含有冲激项
ki eλ i t
h(t )
t 0
Bδ (t )
0
t 0
t 0


i 1
n
k i eλ i t ε (t ) Bδ (t )
3、n m 的情况 h(t )中不仅含有 (t )项, 而且还含有 (t )项、 (t )项等,这主要取决 于n 比 m 小几。
一、特征根为单根的情况
p n a n1 p n 1 a1 p a 0 0 的根为 设
1 , 2 , , n ,且彼此不等,即 1 2 n ( p 1 )( p 2 ) ( p n ) 0
则零输入响应的形式为
由上式可见: • 仅当2π/ β为整数时,正弦序列才具有周期N = 2π/ β。 • 当2π/ β为有理数时,正弦序列仍为具有周期性,但其周期 为N= m(2π/ β),m取使N为整数的最小整数。 • 当2π/ β为无理数时,正弦序列为非周期序列。
1.2 信号的分类及性质 4.能量信号与功率信号
将信号f (t)施加于1Ω电阻上,它所消耗的瞬时功率为| f (t) |2, 在区间(–∞ , ∞)的能量和平均功率定义为:
f (t )
t
不具有周期性的信号称为非周期信号。
1.2 信号的分类及性质
例1 判断下列信号是否为周期信号,若是,确定其周期。 (1)f1(t) = sin2t + cos3t (2)f2(t) = cos2t + sinπt
解:两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期 之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号, 其周期为T1和T2的最小公倍数。
rzi (t ) C1e 1t C 2 e 2t C n e nt
其中 C1 , C2 ,, Cn 是由初始条件确定的待定系数。
二、特征根有重根的情况 假设1是特征方程的 k阶重根,即特征方程有 ( p 1 ) 因子,其余为单根,即特征方程可表示为:
( p 1 ) k ( p k 1 ) ( p n ) 0
一、信号的+、-、×运算
两信号f1(· 和f2 (· ) )的相+、-、×指同一时刻两 信号之值对应相加减乘 。如
2 , k 1 3 , k 0 f1 (k ) 6 , k 1 0 , k其他
2, k 1 3 , k 0 6, k 0 2 , k 1 f1 (k ) f 2 (k ) 8, k 1 f 2 (k ) 4, k 2 4 , k 2 0 , k其他 9 , k 0 0, k其他 f 1 ( k ) f 2 ( k ) 12 , k 1 0 , k其他
k

e(kt ) (t kt ) t
e(kt ) h(t kt ) t
eb (t ) e(t )

rb (t )
t 0
k
h(t ) 的系数 Ci 、k i 和 B 可以通过方程两
边平衡的原则加以确定。 二、阶跃响应 根据线性时不变系统的性质求 即 h(t ) 与 r (t ) 之间满足微积分的关系,因 此阶跃响应可以通过对冲激响应积分求解 得到。
§2.7 叠加积分
二、卷积积分 激励信号用冲激信号近似表示的形式为
eb (t )
a1
dh(t ) a 0 h(t ) dt
b1 d (t ) b0 (t ) dt
d m (t ) ) dt m 1
*冲激响应的模式
n 1、 m 的情况
h(t )中不含冲激项
n C i e i t i 1 h(t ) 0
§2.2
系统数学模型的建立
1) 构成电路各个元件上的电压和电流的关系。由于 所讨论的电路系统最终可以等效为由理想元件电阻、 电容、电感所构成,因此应掌握这些元件电压与电流 的关系:
R:
L:
C:
u R R iR
diL uL L dt
1 t uC iC (τ )dτ C
2) 基尔霍夫电压和电流定律。
1.2 信号的分类及性质 2. 连续信号和离散信号
(1)连续时间信号:
在连续的时间范围内(-∞<t<∞)有定义的信号称为连 续时间信号,简称连续信号。 如取值也连续则常称为模拟信号。 这里的“连续”指函数的定义域—时间是连续的,但 可含间断点,至于值域可连续也可不连续。
(2)离散时间信号:
仅在一些离散的瞬间才有定义的信号称为离散时间信号, 简称离散信号。 如取值也离散则常称为数字信号。 这里的“离散”指信号的定义域—时间是离散的,它只 在某些规定的离散瞬间给出函数值,其余时间无定义。
信号的分类及性质
1. 确定信号和随机信号
确定信号:
可以用确定时间函数表示的信号,称为确定信号或 规则信号。如正弦信号。
随机信号:
若信号不能用确切的函数描述,它在任意时刻的取 值都具有不确定性,只可能知道它的统计特性,如在某 时刻取某一数值的概率,这类信号称为随机信号或不确 定信号。 研究确定信号是研究随机信号的基础。 本课程只讨论确定信号。
1.2 信号的分类及性质 3. 周期信号和非周期信号
周期信号(period signal)是定义在(-∞,∞)区间,每 隔一定时间T (或整数N),按相同规律重复变化的信号。 连续周期信号f(t)满足 f(t) = f(t + mT),m = 0,±1,±2,… 离散周期信号f(k)满足 f(k) = f(k + mN),m = 0,±1,±2,… 满足上述关系的最小T(或整数N)称为信号的周期。
相关文档
最新文档