苏教版初二八下期中复习平行四边形折叠问题含答案(非常好)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合运用:
1、如图,矩形纸片ABCD,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD 上有一点P,PD=3cm,过P作PF⊥AD交BC于,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是cm.
解析
2、如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG >60°.现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为。
【解答】解:连接BH,如图,
∵沿直线EG将纸片折叠,使点B落在纸片上的点H处,∴∠1=∠2,EB=EH,BH⊥EG,
而∠1>60°,
∴∠1≠∠AEH,
∵EB=EH,
∴∠EBH=∠EHB,
又∵点E是AB的中点,
∴EH=EB=EA,
∴EH=AB,
∴△AHB为直角三角形,∠AHB=90°,∠3=∠4,
∴∠1+∠EBH=90°,∠EBH+∠4=90°,
∴∠1=∠4,
∴∠1=∠3,
∴∠1=∠2=∠3=∠4.
则与∠BEG相等的角有3个.
故答案为:3.
3、如图,正方形
ABCD中,AB=1,M,N分别是AD,BC边的中点,沿BQ将△BCQ 折叠,若点C恰好落在MN上的点P处,则PQ的长为()
A.B.C.D.
4、如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE 沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE 的长为________.
5、小明尝试着将矩形ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B 点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD长与宽的比值为。
本题主要考查图形变换的应用。
如图所示,连接,根据折叠的性质可得,,,所以为等腰直角三角形。因为为的平分线,,所以
,所以。设,则,所以,所以,即矩形长与宽的比值为。
故本题正确答案为。
6、如图所示,把一张矩形纸片沿对角线折叠,重合部分是什么图形,试说明理由.(1)若AB=4,BC=8,求AF.
(2)若对折使C在AD上,AB=6,BC=10,求AE,DF的长.
7、如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B'的位置,AB′与CD交于点E.
(1)试找出一个与△AED全等的三角形,并加以证明;
(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由。
8、如图,正方形ABCD中,点E为AB上一动点(不与A、B重合).将△EBC沿CE翻折至△EFC,延长EF交边AD于点G.
(1)连结AF,若AF∥CE.证明:点E为AB的中点;
(2)证明:GF=GD;
(3)若AD=10,设EB=x,GD=y,求y与x的函数关系式.