(完整版)分数的意义和性质知识点总结.docx
人教版五年级数学下册分数的意义和性质知识点总结
人教版五年级数学下册分数的意义和性质知识点总结第四单元:分数的意义和性质一、分数的意义分数是把单位“1”平均分成若干份,表示这样的一份或几份的数。
分数单位是把单位“1”平均分成若干份,表示这样的一份的数。
分数与除法的关系是,除法中的被除数相当于分数的分子,除数相等于分母。
被除数÷除数可以用字母表示为:a÷b=(b≠)。
分数未带单位表示两个量之间的倍数关系,而分数带有单位则表示一个具体的数量。
二、真分数和假分数真分数是指分子比分母小的分数,真分数小于1.假分数是指分子比分母大或分子和分母相等的分数,假分数大于1或等于1.带分数是由整数部分和分数部分组成的分数。
假分数和带分数可以互相转化。
将假分数化成带分数,可以用分子除以分母,所得商作整数部分,余数作分子,分母不变。
将带分数化成假分数,可以用整数部分乘以分母加上分子作分子,分母不变。
三、分数的基本性质分数的基本性质是,分数的分子和分母同时乘或除以相同的数(除外),分数的大小不变。
四、约分最大公因数是几个数共有的因数中最大的一个。
两个数的公因数都是它们最大公因数的因数,最大公因数是它们的倍数。
公因数只有1的两个数叫做互质数。
判断两个数是否互质,可以使用以下方法:1和任何大于1的自然数互质;2和任何奇数都是互质数;相邻的两个自然数是互质数;相邻的两个奇数互质;不相同的两个质数互质;当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
求最大公因数的方法有三种:倍数关系,最大公因数就是较小数;互质关系,最大公因数就是1;一般关系,从大到小看较小数的因数是否是较大数的因数。
最简分数是指分子和分母只有公因数1的分数。
约分是把一个分数化成和它相等,但分子和分母都比较小的分数。
通常将分数化成与它相等的最简分数。
五、通分最小公倍数是几数共有的倍数中最小的一个。
几个数的公倍数是它们最小公倍数的倍数。
五年级数学下《分数的意义和性质》知识点总结归纳
五年级数学下《分数的意义和性质》知识点总结归纳
一、分数的意义
1.分数定义:分数是一种表示部分与整体关系的数,由分子和分母组成,分子表
示部分的大小,分母表示整体的等分份数。
2.分数单位:分数的基本单位是“1”,它可以代表一个整体或一个物体。
3.分数种类:分数可以分为真分数和假分数,真分数的分子小于分母,假分数的
分子大于或等于分母。
二、分数的性质
1.分数的基本性质:分数的分子和分母同时扩大或缩小相同的倍数,分数的大小
不变。
2.分数的大小比较:比较两个分数的大小时,可以先把它们化成同分母的分数,
再比较分子的大小。
如果分子相同,那么分母大的分数反而小。
3.约分与通分:约分是指将一个分数化成最简分数的过程,通分是将两个或多个
分数化为同分母的过程。
三、分数的运算
1.加法:分数的加法是将两个分数的分子相加,分母保持不变。
2.减法:分数的减法是将两个分数的分子相减,分母保持不变。
3.乘法:分数的乘法是将两个分数的分子相乘,分母相乘。
4.除法:分数的除法是将一个分数除以另一个分数等于乘以它的倒数。
四、特殊分数值
1.1/2:表示一半,即一个物体平均分成两份中的一份。
2.1/3:表示三分之一,即一个物体平均分成三份中的一份。
3.1/4:表示四分之一,即一个物体平均分成四份中的一份。
4.2/3:表示三分之二,即一个物体平均分成三份中的两份。
5.3/4:表示四分之三,即一个物体平均分成四份中的三份。
分数的性质和意义知识点总结
分数的性质和意义知识点总结一、分数的意义(一)分数的产生和意义1、在测量、分物或计算不能得到整数结果时,常用分数表示2、单位“1”的含义:一个物体、一些物体都可以看做一个整体,这个整体可以用自然数1来表示,通常把它叫做单位“1”。
3、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
4、分数中分母表示把单位“1”平均分成的份数,分子表示这样的一份或几份。
5、分数单位:把单位“1” 平均分成若干份,表示这样的一份的数。
6、分数单位及其个数:一个分数的分母是几,它的分数单位就是几分之一;分子是几,它就有几个这样的分数单位。
(二)分数与除法1、被除数除数= ab=(b0)2、按分数的意义表示把单位“1”平均分成4份,表示其中3份的数;按分数与除法的关系表示把3平均分成4份,表示这样一份的数。
3、求一个数是另一个数的几分之几解题方法是一个数另一个数=,得到的商表示的是两个数的关系,没有单位名称。
二、真分数和假分数1、真分数的意义:分子比分母小的分数叫真分数。
2、真分数小于1、3、假分数的意义:分子比分母大或分子和分母相等的分数叫假分数。
4、假分数的特征:假分数大于1或等于1、5、带分数的意义:由整数(不包括0)和真分数合成的分数叫带分数。
6、假分数化成整数或带分数的方法:用分子除以分母,当分子式分母的整数倍时,能化成整数,商就是这个整数;当分子不是分母的整数倍时,化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变。
三、分数的基本性质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
四、约分(一)最大公因数1、几个数公有的因数叫这几个数的公因数,其中最大的一个叫最大公因数。
2、公因数只有1的两个数叫做互质数。
3、求最大公因数的方法:①列举法,先分别找出两个数的因数,从中找出公因数,再找出最大的。
②筛选法:先找出两个数中较小数的因数,从中圈出较大数的因数,再看那一个因数最大;③分解质因数:先将这两个数分别分解质因数,再从分解的质因数中找出这两个数公有的质因数,公有的质因数相乘所得的积就是这两个数的最大公因数;④短除法:把两个数公有的质因数从小到大依次作为除数,连续去除这两个数,直到得出的两个商是互质数为止,再把所有的除数相乘,所得的积就是这两个数的最大公因数。
(完整版)人教版五年级语文下册分数的意义和性质知识点
(完整版)人教版五年级语文下册分数的意
义和性质知识点
1. 分数的意义
分数是用来表示部分和整体之间关系的一种数学表示法。
在语文中,分数可以用来表示时间、长度、面积等概念。
1.1 表示时间
分数可用于表示时间。
例如,一天可以分为24小时,每个小时又可以分为60分钟,每分钟又可以分为60秒。
这样,我们可以用分数来表示时间的不同单位。
1.2 表示长度
分数可用于表示长度。
例如,一个长方形的边长可以分为10等分,每个等分又可以分为10小份。
这样,我们可以用分数来表示长度的不同单位。
1.3 表示面积
分数可用于表示面积。
例如,一个正方形的面积可以分为10等分,每个等分又可以分为10小份。
这样,我们可以用分数来表示面积的不同单位。
2. 分数的性质
分数具有一些特殊的性质,包括整数的性质和小数的性质。
2.1 整数的性质
分数是整数的一种扩展形式,具有整数的性质。
例如,分数可以进行加减乘除运算,可以比较大小,并且可以化简为最简分数形式。
2.2 小数的性质
分数可以表示小数。
当分子除以分母不能整除时,分数可以转化为小数。
例如,$\frac{1}{4}$可以表示为0.25。
结论
分数在语文研究中起到了重要的作用,可以帮助我们理解和描述时间、长度、面积等概念,并且具有整数和小数的性质。
通过掌握分数的意义和性质,我们能够更好地应用它们来解决语文问题。
分数的意义和性质整理和复习
分数的意义和性质整理和复习分数是一个常见的数学概念,它用来表示两个数之间的比值关系。
在日常生活和工作中,分数有着广泛的应用。
下面我们来整理和复习分数的意义和性质。
一、分数的意义1.比值关系:分数表示两个数的比值关系,如1/2表示分子为1,分母为2,表示一个整体被平均分成两份,每份占据整体的1/22.部分与整体:分数表示一个整体被平均分成若干份,分母表示整体被分成的份数,分子表示其中的分数部分。
3.精确度:分数可以表示大于整数、小于整数和介于两个整数之间的数,增加了计量的精确度。
二、分数的性质1.分子和分母都是整数:分数的分子和分母都是整数,分子表示分数中有多少份,分母表示被分成了几等份。
分子和分母都是整数是分数的基本性质。
2.分子是整数,分母是正整数:分子是整数,分母是正整数是分数的约定性质。
分母是正整数是因为被分成几份不能是0或负数。
3.基本性质:分数的基本性质包括分数的相等性、比较性、大小性及其相反数性质。
4.分数的相等性:分数A/B和分数C/D相等(A、B、C、D为整数,B 和D不为零,A/B=C/D)的条件是AD=BC。
5.分数的比较性:对于任意两个正分数A/B和C/D(A、B、C、D为整数,B和D不为零),有A/B>C/D当且仅当AD>BC。
6.分数的大小性:正整数的分数越大,分母越小,分数就越小;反之,正整数的分数越小,分母越大,分数就越大。
7.分数的相反数:正分数A/B和负分数-A/B的大小关系是-A/B>A/B。
三、分数的简化和增补1.分数的简化:把一个分数化为最简形式,即分子和分母没有公约数,这时的分数就是最简分数。
例如,8/12可以简化为2/32.分数的增补:根据相等性原理,可以在分子和分母同时乘以同一个非零整数,得到与原分数值相等的另一个分数。
这个过程叫做增补分数。
例如,1/2和2/4是相等的分数,2/4是1/2的增补分数。
四、分数的运算1.分数的加法:两个分数相加时,首先要找到它们的最小公倍数作为分母,然后分别乘以相应的倍数,将两个分数转化为相同整体的等份,然后将分子相加。
分数的意义和性质及分数加减法_知识点
分数的意义和性质及分数加减法_知识点(总7页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除分数的意义和性质及分数加减法教学目标:1、掌握分数的含义,真分数,假分数。
2、熟练应用分数的基本性质。
3、分数的应用题。
教学难点:分数应用题一、分数的意义1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
典型例题:(1)七分之六里有()个七分之一,1里面有()个五分之一,4里面有几个三分之一。
(2)十五分之七表示把()平均分成()份,表示这样的()份。
(3)把一根5米长的绳子平均截成7段,每段是这根绳子的(),每段长()米。
(4)把16块巧克力平均分给4位同学,则每人分得()块,每人分得的巧克力是这盒巧克力的()。
二、分数与除法的关系,真分数和假分数,带分数1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
2、真分数和假分数:① 分子比分母小的分数叫做真分数,真分数小于1。
② 分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。
③ 由整数部分和分数部分组成的分数叫做带分数。
2、假分数与带分数的互化:① 把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
② 把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
典型例题:(1)30分米=( )米 35分=( )小时(填上合适的分数)(2)要使九分之x 是真分数,八分之x 是假分数,x=()。
(3)一又五分之三的分数单位是(),它有()个这样的分数单位,再添上()个这样的分数单位就是3。
(4)3块橡皮泥做了4个飞船模型,平均每个飞船模型用多少块橡皮泥平均每块橡皮泥做多少个飞船模型(5)分母是11的真分数有()个,假分数()个。
五年级数学《分数的意义和性质》知识点
五年级数学《分数的意义和性质》知识点五年级数学《分数的意义和性质》知识点1、分数的意义:把单位1平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位1平均分成若干份,表示这样的一份的数叫做分数单位。
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:ab= (b0)。
4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。
分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。
由整数部分和分数部分组成的分数叫做带分数。
5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。
8、互质数:公因数只有1的两个数叫做互质数。
两个数互质的特殊判断方法:①1和任何大于1的自然数互质。
②2和任何奇数都是互质数。
③相邻的两个自然数是互质数。
④相邻的两个奇数互质。
⑤不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
9、最简分数:分子和分母只有公因数1的分数叫做最简分数。
10、约分:把一个分数化成和它相等,但分子和分母都比较小的`分数,叫做约分。
11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。
12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
13、特殊情况下的最大公因数和最小公倍数:①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数。
②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积。
14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。
人教版五年级数学下册分数的意义和性质知识点.docx
第四章分数的意义和性质一、分数的意义1、分数的产生:在测量、分物或计算不能正好得到整数结果时. 用分数表示2、单位“ 1”的含义:一个物体、一些物体都可以看作一个整体 . 这个整体可用自然数 1 来表示 . 也叫做整体“ 1”3、分数的意义:把单位“ 1”平均分成若干份 . 表示这样的一份或几份的数叫做分数。
形式用n(m、mn 为自然数 . 且 m≠0)表示4、分数单位的意义:把单位“1”平均分成若干份 . 表示其中一份的数5、分数单位及其个数:一个分数的分母是几. 它的分数单位就是几分之一;分子是几. 它就有几个这样的分数单位6、两个整数相除.可以用分数表示商.a ÷b= a (b ≠0).反过来说. 分数也可以看作两个数相除. 分子b→被除数 . 分母→除数. 分数线→除号. 分数值→商7、求一个数是另一个数的几分之几:一个数÷另一个数=一个数另一个数. 即比较量÷标准量比较量=.标准量得到的商表示的是两个数的关系. 没有单位名称二、真分数和假分数1、真分数:分子比分母小的分数. 小于 12、假分数:分子比分母大或相等的分数. 大于或等于 13、带分数:由整数(不包括0)和真分数合成的分数4、假分数化成整数或带分数的方法:分子除以分母. 分子是分母倍数时 . 能化成整数;不是倍数时.能化成带分数 . 商是带分数的整数部分 . 余数是分数部分的分子 . 分母不变三、分解质因数1、定义把一个合数用几个质数相乘的形式表示. 每个质数都是这个合数的质因数2、方法枝状图式分解法、短除法3、书写方法要分解的数写在等号左边. 质因数用连乘的形式写在等号右边四、分数的基本性质1、性质:分数的分子和分母同时乘以或除以相同的数(0 除外) . 分数的大小不变2、性质的应用:可以把不同分母的分数化成同分母的分数;可以把一个分数化为指定分母的分数五、约分1、几个数公有的因数叫做这几个数的公因数。
(完整版)分数的意义和性质知识点.docx
分数的基本性质知识点1.一个物体或是几个物体组成的一个整体都可以用自然数 1 来表示,我们通常把它叫做单位“ 1”。
2.把单位“ 1”平均分成若干份,表示这样的一份或几份的数叫做分数。
例如3/7 表示把单位“ 1”平均分成 7 份,取其中的 3 份。
3.5/8 米按分数的意义,表示:把1米平均分成8份,取其中的5份。
按分数与除法的关系,表示:把 5 米平均分成 8 份,取其中的 1 份。
4.把单位“ 1”平均分成若干份,表示其中一份的数叫分数单位。
5.分数和除法的关系是:分数的分子相当于除法中的被除数,分数的分数线相当于除法中的除号,分数的分母相当于除法中的除数,分数的分数值相当于除法中的商。
6.把一个整体平均分成若干份,求每份是多少,用除法。
总数÷份数=每份数。
7.求一个数量是另一个数量的几分之几,用除法。
一个数量÷另一个数量=几分之几(几倍)。
8.分子比分母小的分数叫真分数。
真分数小于1。
9.分子比分母大或分子和分母相等的分数叫做假分数。
假分数大于1或等于1。
10.带分数包括整数部分和分数部分,分数部分应当是真分数。
带分数大于1。
11.把假分数化成带分数的方法是用分子除以分母,商是整数部分,余数是分子,分母不变。
把带分数化成假分数的方法是用整数部分乘分母的积加原来的分子作分子,分母不变。
12.整数可以看成分母是 1 的假分数。
例如 5 可以看成是 5/1 。
13.分数的分子和分母同时乘或除以相同的数( 0 除外),分数的大小不变。
这叫做分数的基本性质。
14.几个数公有的因数叫做它们的公因数,其中最大的公因数叫作它们的最大公因数。
最小公因数一定是 1。
15.几个数公有的倍数叫做它们的公倍数,其中最小的公倍数叫作它们的最小公倍数。
没有最大的公倍数。
16.求最大公因数或最小公倍数可以用列法,也可以用短除法分解因数。
17.公因数只有 1 的两个数叫做互数。
分子和分母只有公因数 1 的分数,叫做最分数。
分数的意义和性质知识点归纳总结
分数的意义和性质知识点归纳总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第四单元《分数的意义和性质》知识点一、分数的意义1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2.分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
3.分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
被除数÷除数用字母表示:a÷b=ab(b≠0)。
4.分数未带单位表示两个量之间的倍数关系;分数带有单位表示一个具体的数量。
二、真分数和假分数1.真分数和假分数:① 分子比分母小的分数叫做真分数,真分数小于1。
② 分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。
③ 由整数部分和分数部分组成的分数叫做带分数。
2.假分数与带分数的互化:① 把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
② 把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
三、分数的基本性质1.分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
四、约分1.最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。
2.两个数的公因数和它们最大公因数之间的关系:所有的公因数都是最大公因数的因数,最大公因数是它们的倍数。
3.互质数:公因数只有1的两个数叫做互质数。
4.两个数互质的特殊判断方法:① 1和任何大于1的自然数互质。
② 2和任何奇数都是互质数。
③ 相邻的两个自然数是互质数。
④ 相邻的两个奇数互质。
⑤ 不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
5.求最大公因数的方法:① 倍数关系:最大公因数就是较小数。
② 互质关系:最大公因数就是1③ 一般关系:从大到小看较小数的因数是否是较大数的因数。
(完整版)人教版五年级地理下册分数的意义和性质知识点
(完整版)人教版五年级地理下册分数的意
义和性质知识点
1. 分数的意义
分数是用来表示一个整体被平均分成若干份的一种数学表示方法。
在地理研究中,分数可以用来表示一些数据的比例、比例关系或分配情况。
2. 分数的性质
- 分数可以比较大小,比较分数大小时,可以通过分数的大小关系或将其转换为相同分母的分数进行比较。
- 分数可以进行加减乘除运算,通过运算可以改变分数的大小关系。
- 分数还可以与整数进行运算,同样可以通过相应的运算规则改变分数的大小关系。
3. 意义和性质的应用
在地理研究中,掌握分数的意义和性质对于理解和计算地理数据具有重要作用,例如:
- 比例尺:比例尺是地图上长度与实际长度之间的比例关系,
可以用分数表示,使得地图上的距离与实际距离的比例相对准确。
- 人口比例:地理上常常需要描述不同地区的人口数量和比例,可以用分数来表示人口在不同地区之间的分布情况。
- 自然资源分配:分数可以用来表示自然资源在不同地区的分
配情况,有助于了解资源的利用和保护。
总结:掌握分数的意义和性质,可以帮助我们更好地理解和应
用地理知识,为地理研究提供有力的数学工具和思维方式。
以上是关于人教版五年级地理下册分数的意义和性质的知识点,希望对你有帮助。
分数的含义和性质
第4讲分数的意义和性质知识点一:分数的意义和性质1.分数的意义:把单位“1”平均分成若干份,表这样的一份或者几份的数,叫做分数。
表示其中的一份的数,叫做分数单位。
若干份是分母,其中的一份或者几份的数是子分。
小结:单位“1”与分数单位的区别单位“1”表示:一个物体、一些物体、一个计量单位或者一个整体。
分数单位表示:把单位“1”平均分成若干份,其中1份的数。
2、分数与除法的关系被除数相当于分数的分子,除数相当于分数的分母。
小结:知识点二:真分数假分数小结:真分数、假分数和带分数与1的关系真分数小于1;假分数大于1或者等于1;带分数大于1;知识点三:分数的基本性质分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
把一个分数化成和它相等,但分子和分母都比较小的分数,叫约分。
一般用分数的分子和分母同时除以它们的公因数(1除外),通常要除到得出最简分数为止。
知识点四:约分分解质因数的方法也用于约分,必须看准分子分母。
1、分子分母都是偶数除以2。
2、分子分母同时是0或5除以5.3、分子分母都是奇数或一奇一偶找3、7和11.4、除此之外看大数是否是小数的倍数。
5、当分子分母中小的数是质数时,一定要看大数是否是小数的倍数,如果是就要同时除以小的数。
知识点五:通分1、把异分母分数化成和原来分数相等的同分母分数,叫做通分。
用乘法。
(1)异分母化成同分母;(2)分数大小不变。
2、通分的一般方法:(1)求原来几个分母的最小公倍数。
(2)把各分数化成以这个最小公倍数作分母的分数。
知识点六:分数与小数互化1、分母是10,100,1000,……的分数化小数,可以直接去掉分母,看分母中1后面有几个0,就在分子中从最后一位起向左数出几位,点上小数点。
2、分母不是10、100、1000……的分数化小数,可以用分子除以分母;除不尽的,可以根据需要按四舍五入法保留几位小数。
考点一:分数的意义和性质例1.(2020秋•土默特左旗校级期末)100克盐水中含盐10克,盐占盐水的()A.B.C.D.1.(2020秋•肇源县期末)把一张纸对折3次后展开,每一小块占这张纸的()A.B.C.2.(2020秋•兴仁市校级期末)一条公路,修路队一星期修完,那么3天修了这条路的()A.B.C.D.3.(2020秋•广东期末)10米长的绳子,平均分成3份,每份占全长的()A.B.C.D.考点二:真分数假分数例2.(2020春•桃江县期末)把下列假分数化成整数或带分数,把带分数化成假分数.=.=.=.1.(2020春•阜平县期末)分数单位是的最小真分数是,最大真分数是,最小假分数是,最小带分数是.2.(2019秋•宝鸡期末)分母为4的最简真分数有和,它们的分数单位都是,分子是3的假分数有个.3.(2019秋•渭滨区期末)的分子与分母的最大公因数是,化成最简分数是.考点三:分数的基本性质例3.(2020春•桐梓县期末)的分子扩大3倍,要使分数大小不变,分母应加上16.(判断对错)1.(2020•隆回县)分数的分子和分母同时乘一个相同的数,分数的大小不变..(判断对错)2.(2020春•田东县期末)约分和通分的依据都是分数的基本性质.(判断对错)3.(2019春•昌乐县期末)把的分子乘3,分母加6后,分数值不变.(判断对错)考点四:约分例4.(2020秋•深圳期末)圈出最简分数,并把其余的分数约分.1.(2020春•南海区期末)约分.===2.(2019春•吴忠期中)写出每组数的最大公因数.12和6013和1424和423.(2018春•隆化县校级期中)用你喜欢的方法求出下列各组数的最大公因数.(1)15和20(2)24和18(3)13和19考点五:通分例5.(2020春•长白县期末)有两瓶质量相同的饮料,小红喝了其中一瓶的0.35千克,小琪喝了其中的五分之二千克,谁剩下的饮料多一些?1.(2020春•桃江县期末)一块菜地的种了辣椒,种了茄子,种了丝瓜,种了空心菜.哪些菜地的面积一样大?2.(2020春•陕州区期末)用收割机收割一块麦田.第一台收割机用1.4小时能完成,第二台收割机用小时能完成.哪一台收割得快一些?3.五2班同学的人参加了舞蹈小组,的人参加了书法小组,哪个小组的人数多?考点六:分数与小数互化例6.连一连。
分数的性质和意义知识点总结
分数的性质和意义知识点总结一、分数的意义(一)分数的产生和意义1、在测量、分物或计算不能得到整数结果时,常用分数表示2、单位“1”的含义:一个物体、一些物体都可以看做一个整体,这个整体可以用自然数1来表示,通常把它叫做单位“1”。
3、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
4、分数中分母表示把单位“1”平均分成的份数,分子表示这样的一份或几份。
5、分数单位:把单位“1” 平均分成若干份,表示这样的一份的数。
6、分数单位及其个数:一个分数的分母是几,它的分数单位就是几分之一;分子是几,它就有几个这样的分数单位。
(二)分数与除法1、被除数除数= ab=(b0)2、按分数的意义表示把单位“1”平均分成4份,表示其中3份的数;按分数与除法的关系表示把3平均分成4份,表示这样一份的数。
3、求一个数是另一个数的几分之几解题方法是一个数另一个数=,得到的商表示的是两个数的关系,没有单位名称。
二、真分数和假分数1、真分数的意义:分子比分母小的分数叫真分数。
2、真分数小于1、3、假分数的意义:分子比分母大或分子和分母相等的分数叫假分数。
4、假分数的特征:假分数大于1或等于1、5、带分数的意义:由整数(不包括0)和真分数合成的分数叫带分数。
6、假分数化成整数或带分数的方法:用分子除以分母,当分子式分母的整数倍时,能化成整数,商就是这个整数;当分子不是分母的整数倍时,化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变。
三、分数的基本性质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
四、约分(一)最大公因数1、几个数公有的因数叫这几个数的公因数,其中最大的一个叫最大公因数。
2、公因数只有1的两个数叫做互质数。
3、求最大公因数的方法:①列举法,先分别找出两个数的因数,从中找出公因数,再找出最大的。
②筛选法:先找出两个数中较小数的因数,从中圈出较大数的因数,再看那一个因数最大;③分解质因数:先将这两个数分别分解质因数,再从分解的质因数中找出这两个数公有的质因数,公有的质因数相乘所得的积就是这两个数的最大公因数;④短除法:把两个数公有的质因数从小到大依次作为除数,连续去除这两个数,直到得出的两个商是互质数为止,再把所有的除数相乘,所得的积就是这两个数的最大公因数。
分数的意义和性质及分数加减法-知识点
千里之行,始于足下。
分数的意义和性质及分数加减法-知识点一、分数的意义和性质分数是用来表示一个数量与其总量之间比值的数。
分数由两个部分组成,分子表示数量,分母表示总量。
在分数中,分子和分母都是整数。
1. 分数的意义分数表示的是一个部分与整体之间的比例关系。
分子表示部分的数量,分母表示整体的总量。
例如,1/4表示一个部分占整体的四分之一。
2. 分数的性质(1)真分数:分子小于分母的分数,称为真分数。
真分数的值小于1,例如1/2、3/4等。
(2)假分数:分子大于等于分母的分数,称为假分数。
假分数的值大于等于1,例如5/4、7/3等。
(3)带分数:由整数部分和真分数部分组成的数,称为带分数。
带分数的值大于等于1,例如1 1/2、2 3/4等。
(4)分数化简:将一个分数化简为最简形式,即分子与分母没有公因数。
例如,2/4可以化简为1/2。
(5)分数的大小比较:两个分数的大小可以通过比较它们的大小关系进行判断。
如果两个分数的分子相同,那么分母越大的分数越小;如果两个分数的第1页/共2页锲而不舍,金石可镂。
分母相同,那么分子越大的分数越大;否则,可以通过交叉相乘的方法进行比较。
二、分数加减法1. 分数加法分数加法是指将两个分数相加得到一个新的分数。
要进行分数加法,首先需要确定两个分数的分母相同,然后将它们的分子相加即可。
例如,1/2 + 1/3 = 3/6 + 2/6 = 5/6。
2. 分数减法分数减法是指将一个分数减去另一个分数得到一个新的分数。
要进行分数减法,首先需要确定两个分数的分母相同,然后将它们的分子相减即可。
例如,2/3 - 1/4 = 8/12 - 3/12 = 5/12。
3. 分数加减法的扩展如果两个分数的分母不同,无法直接进行加减法运算。
这时需要通过分母的最小公倍数(LCM)来确定一个相同的分母,然后将分子进行合并。
例如,1/2 + 1/3 = 3/6 + 2/6 = 5/6。
4. 分数加减法的化简进行分数加减法运算后,得到的结果可能不是最简形式,需要将其化简为最简形式。
分数的意义和性质
五年级数学下册《分数的意义和性质》知识点第一课时分数的产生与意义(一)分数的意义(二)分数的产生、分数的意义(三)1、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。
(四)2、单位“1”的含义:一个物体、一个计量单位或是一些物体等都可以看作一个整体,这个整体可以用自然数“1”来表示,通常把它叫做单位“1”,也叫整体“1”。
3、分数的意义:把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
4、把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。
5、一个分数的分母是几,它的分数单位就是几分之一;分子是几,它就有几个这样的分数单位。
练习:1单位是()。
2、16朵花,平均分成2份,每份是这堆花的() ()平均分成4份,3份是这堆花的() ()平均分成8份,7份是这堆花的() ()3、在括号里填上适当的分数表示阴影部分。
()()()()4、看图写数。
5、涂一涂。
(1)65涂上绿色,其余的()()涂上红色。
(2)41涂上红色,其余的()()涂上你+喜欢的颜色。
6、把20颗糖的5份给小康,把( )看单位“1”,平均分成( )份。
小康分这样的( )份,是( )颗糖。
7、读出下面的分数,说说它们的具体含义。
(1)我国水资源人均占有量约为世界人均水平的41。
(2)地球表面大约有10071被海洋覆盖。
8、爸爸买来了一个西瓜,小明吃了这个西瓜的51,小红吃了剩下西瓜的41,小明和小红谁吃得多,试试用图来说明你的理由。
2、“求一个数是另一个数的几分之几”和“求一个数是另一个数的几倍”,计算方法相同,都可以用除法计算,即一个数÷另一个数= 一个数是另一个数的几分之几(或几倍)。
注意:占、是、为时,用前面的量除以后面的量。
练习:第三课时真分数和假分数1、真分数的意义;分子比分母小的分数叫做真分数。
2、真分数的特征:真分数小于1。
3、假分数的意义:分子比分母大或分子和分母相等的分数叫做假分数。
(完整版)人教版五年级数学下册第四单元分数的意义和性质知识点
(完整版)人教版五年级数学下册第四单元分数的意义和性质知识点【完整版】人教版五年级数学下册第四单元分数的意义和性质知识点在人教版五年级数学下册的第四单元中,我们将学习有关分数的意义和性质知识点。
分数在我们的日常生活中无处不在,它能够帮助我们表达不完整的数量,比较大小以及解决实际问题。
下面将逐个介绍分数的基本概念、意义和性质知识点。
一、分数的基本概念1. 分数的定义分数由分子和分母组成,分母表示平等的份数,分子表示取的份数,分子和分母之间用“/”连接。
例如:1/2,3/42. 分数与整数的关系分数可以看作是整数和整数的一部分,它既可以表示小于1的部分,也可以表示大于1的整数部分。
例如:1/2可以表示一个单位中的一半,而3可以表示三个整数单位。
二、分数的意义1. 分数的部分与整体关系分数可以帮助我们表示一个整体中的一部分,例如一个饼干被平均分成8块,我们可以用分数表达其中的一部分。
例如:饼干的四分之一即为1/4,它表示了饼干中的一块。
2. 分数的大小比较分数可以帮助我们比较两个部分的大小。
当分母相同时,分子越大,分数越大;当分子相同时,分母越小,分数越大。
例如:1/2和3/4,由于分母不同,我们需要通过找相同的基数来比较。
在这两个分数中,1/2比3/4小。
三、分数的性质1. 分数的分子与分母分数的分子和分母都可以是正整数或零,但分母不能为0,因为0不能作为除数。
例如:1/2中,1为分子,2为分母。
2. 分数的约分分数可以进行约分,即分子和分母同时除以相同的数,使得分子和分母之间没有公共的因数。
例如:4/8可以约分为1/2,因为4和8都能被2整除。
3. 分数的等值分数可以进行等值转换,即分子和分母同时乘以或除以相同的数,得到的结果仍然表示相同的部分。
例如:1/2和2/4是等值分数,因为它们代表了同样大小的部分。
4. 分数的相加与相减分数可以进行相加和相减运算。
当分母相同时,分子相加或相减即可;当分母不相同时,需要找到相同的基数,将分数转换成相同的分母后再进行运算。
(完整版)五年级数学下册重要知识点汇总:分数的意义和性质
五年级数学下册重要知识点汇总:分数的意义和性质五年级数学下册重要知识点汇总:分数的意义和性质1、分数的意义:一个物体、一个计量单位或一些物体等都可以看作一个整体。
一个个整体平均分成若干份,表示这样的一份或几份的数叫做分数。
2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。
3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
如的分数单位是。
最大的分数单位是,没有最小的分数单位。
4、分数与除法被除数÷除数= ,用字母表示A÷B= (B≠0,除数不能为0,分母也不能够为0)例如:4÷、真分数和假分数、带分数1、真分数:分子比分母小的分数叫真分数。
真分数1。
2、假分数:分子比分母大或分子和分母相等的分数叫假分数。
假分数、带分数:带分数由整数和真分数组成的分数。
带分数>、真分数<1≤假分数真分数<1<带分数6、假分数与整数、带分数的互化(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子,如:=10÷5=2 =21÷(2)整数化为假分数,用整数乘分母得分子如:2= 2×4=8 (8作分子)(3)带分数化为假分数,用整数乘分母加分子,得数就是假分数的分子,分母不变,如:×5 1=26 (4)1等于任何分子和分母相同的分数。
如:…= =…【注意】分数未带单位表示两个量之间的倍数关系;分数带有单位表示一个具体的数量。
7、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。
反之则不可以。
9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
如:0、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。
分数的意义和性质知识点归纳及练习
分数的意义和性质1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。
(也就是把什么平均分什么就是单位“1”。
)3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
如54的分数单位是51。
4、分数与除法A ÷B=B A (B ≠0,除数不能为0,分母也不能够为0) 例如: 4÷5=54 5、真分数和假分数、带分数1、真分数:分子比分母小的分数叫真分数。
真分数<1。
2、假分数:分子比分母大或分子和分母相等的分数叫假分数。
假分数≧13、带分数:带分数由整数和真分数组成的分数。
带分数>1.4、真分数<1≤假分数 真分数<1<带分数6、假分数与整数、带分数的互化(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子, 如:510=10÷5=2 521=21÷5=451 (2)整数化为假分数,用整数乘以分母得分子 如:把2化成分母是4的假分数;2=48)( 2×4=8 (8作分子) (3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如: 551=526)( 5×5+1=26 (4)1等于任何分子和分母相同的分数。
如: 1=22=33=44=55=…=100100=… 7、分数的基本性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
分数的基本性质:分数的分子、分母同时扩大或缩小相同的倍数,分数的大小不变。
8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。
反之则不可以。
9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
分数的意义和性质》知识点总结
分数的意义和性质》知识点总结鸭的只数)=(鹅的只数是鸭的几分之几)。
二、分数的性质分数的大小关系:分数的大小关系与分数的分子、分母有关,分母相同,分子越大。
分数越大;分子相同,分母越小,分数越大。
分数的化简:将分子和分母同时除以一个相同的数,使分数变得更简单,但分数的大小不变。
化简时要除以最大公约数。
分数的比较:比较分数大小时,可以通分后比较分子的大小,也可以将分数转化为小数进行比较。
分数的加减法:分数的加减法需要通分,即将分母变成相同的数,然后将分子相加或相减,最后化简。
分数的乘除法:分数的乘法直接将分子和分母相乘,然后化简;分数的除法可以转化为乘法,即将除数倒数后再乘以被除数,最后化简。
分数的倒数:一个分数的倒数是将分子和分母互换位置得到的分数。
分数的相反数:一个分数的相反数是将分子加上负号得到的分数。
分数的倒数和相反数的积等于-1,即一个数的倒数和相反数的积等于-1.约分和通分分数的基本性质分数的大小可以用分子与分母的比值来表示。
在研究分数的过程中,我们需要了解以下几个概念:1.真分数和假分数分子比分母小的分数叫做真分数,真分数小于1.分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1.由整数和真分数合成的数叫做带分数,带分数大于1.带分数是一部分假分数的另外一种书写形式,所以分数只分为真分数和假分数。
真分数<1≤假分数。
带分数的读法:先读整数部分,再读分数部分,中间加个“又”字。
2.分数的化简和转换在中,当a<9时,它是真分数;当a≥9时,它是假分数;当a是9的倍数时,它能化成整数。
把假分数化成整数或带分数:根据分数与除法的关系,用分子除以分母。
如果能整除时,那么商就是所要化成的整数。
如果不能整除,那么商就是带分数的整数部分,余数就是带分数的分数部分的分子,分母不变。
带分数化成假分数的方法:用带分数的整数部分乘分母加分子作假分数的分子,分母不变。
任何整数都可以看成分母是1的分数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四单元《分数的意义和性质》知识点
一、分数的意义
1、分数的意义:把单位“ 1平”均分成若干份,表示这样的一份或几份的数,
叫做分数。
2、分数单位:把单位“ 1平”均分成若干份,表示这样的一份的数叫做分数单位。
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
被除数÷除数 =用字母表示:a÷b=(b≠0)。
4、分数未带单位表示两个量之间的倍数关系;分数带有单位表示一个具体的
数量。
二、真分数和假分数
1、真分数和假分数:
①分子比分母小的分数叫做真分数,真分数小于 1。
②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于 1 或等于 1。
③由整数部分和分数部分组成的分数叫做带分数。
2、假分数与带分数的互化:
① 把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,
分母不变。
② 把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
三、分数的基本性质
1、分数的基本性质:
分数的分子和分母同时乘或除以相同的数( 0 除外),分数的大小不变,这叫做分数的基本性质。
四、约分
1、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做
最大公因数。
2、两个数的公因数和它们最大公因数之间的关系:所有的公因数都是最大公
因数的因数,最大公因数是它们的倍数。
3、互质数:公因数只有 1 的两个数叫做互质数。
4、两个数互质的特殊判断方法:
①1 和任何大于1 的自然数互质。
②2 和任何奇数都是互质数。
③ 相邻的两个自然数是互质数。
④ 相邻的两个奇数互质。
⑤ 不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
5、求最大公因数的方法:
①倍数关系:最大公因数就是较小数。
②互质关系:最大公因数就是 1 ③一般关系:从大到小看较小数的因数是否是较大数的因数。
6、最简分数:分子和分母只有公因数 1 的分数叫做最简分数。
7、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)
五、通分
1、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫最
小公倍数。
2、两个数的公倍数和它们的最小公倍数之间的关系:几个数的公倍数是它们
最小公倍数的倍数。
3、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(通分时,公分母一般为几个数的最小公倍数)。
4、求最小公倍数的方法:①倍数关系:最小公倍数就是较大数。
②互质关系:最小公倍数就是它们的乘积。
③ 一般关系:大数翻倍(从小到大看较大数的倍数是否是较小数的倍数)。
5、分数的大小比较:
① 同分母分数,分子大的分数就大,分子小的分数就小;② 同分子分数,分母大的分数反而小,分母小的分数反而大。
③ 异分母分数,先化成同分母分数(分数单位相同),再进行比较。
6、分和通分的依据都是分数的基本性。
六、分数和小数的互化:
1、小数化分数:一位小数表示十分之几,两位小数表示百分之几,三位小数表示
千分之几⋯⋯ ,
去掉小数点作分子,能分的必成最分数;
2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。
(一般保留两位小数。
)
3、判断分数是否能化成有限小数的方法:①判断分数是否是最分数;如果不是最分数,先把它化成最分数;
②把分数的分母分解因数:
如果分母中除了 2 和 5 以外,不含有其他因数,个分数就能化成有限小数;
如果分母中含有 2 和 5 以外的因数,个分数就不能化成有限小数。