中考数学专题训练(附详细解析):平移、旋转、翻折
2023年九年级中考数学一轮专题练习 图形的平移、折叠和旋转(含解析)
2023年中考数学一轮专题练习 ——图形的平移、折叠和旋转5一、单选题(本大题共12小题)1. (重庆市2022年)下列北京冬奥会运动标识图案是轴对称图形的是( ) A . B .C .D .2. (浙江省台州市2022年)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a - 3. (浙江省嘉兴市2022年)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm 的正方形ABCD 沿对角线BD 方向平移1cm 得到正方形A B C D '''',形成一个“方胜”图案,则点D ,B ′之间的距离为( )A .1cmB .2cmC .-1)cmD .(2-1)cm4. (浙江省杭州市2022年)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在1M⎛⎫⎪⎪⎝⎭,()21M-,()31,4M,4112,2M⎛⎫⎪⎝⎭四个点中,直线PB经过的点是()A.1M B.2M C.3M D.4M5. (四川省德阳市2022年)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6. (四川省广安市2022年)如图,菱形ABCD的边长为2,点P是对角线AC上的一个动点,点E、F分别为边AD、DC的中点,则PE + PF的最小值是()A.2 B.C.1.5 D7. (黑龙江省省龙东地区2022年)下列图形是汽车的标识,其中是中心对称图形但不是轴对称图形的是()A .B .C .D .8. (北京市2022年)图中的图形为轴对称图形,该图形的对称轴的条数为( )A .1B .2C .3D .59. (福建省2022年)如图,现有一把直尺和一块三角尺,其中90ABC ∠=︒,60CAB ∠=︒,AB =8,点A 对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC 移动到A B C ''',点A '对应直尺的刻度为0,则四边形ACC A ''的面积是( )A .96B .C .192D . 10. (广东省2022年)在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( )A .()3,1B .()1,1-C .()1,3D .()1,1- 11. (广西百色市2022年)如图,在△ABC 中,点A (3,1),B (1,2),将△ABC 向左平移2个单位,再向上平移1个单位,则点B 的对应点B ′的坐标为( )A .(3,-3)B .(3,3)C .(-1,1)D .(-1,3) 12. (浙江省金华市2022年)如图是一张矩形纸片ABCD ,点E 为AD 中点,点F 在BC 上,把该纸片沿EF 折叠,点A ,B 的对应点分别为A B A E ''',,与BC 相交于点G ,B A ''的延长线过点C .若23BF GC =,则AD AB的值为( )A .B .C .207D .83二、填空题(本大题共6小题)13. (浙江省丽水市2022年)三个能够重合的正六边形的位置如图.已知B 点的坐标是(,则A 点的坐标是 .14. (浙江省台州市2022年)如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为2cm.15. (山东省潍坊市2022年)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO绕原点O逆时针旋转75︒,再沿y轴方向向上平移1个单位长度,则点B''的坐标为.16. (浙江省台州市2022年)如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F.当点M与点B 重合时,EF的长为;当点M的位置变化时,DF长的最大值为.17. (浙江省丽水市2022年)一副三角板按图1放置,O 是边()BC DF 的中点,12cm BC =.如图2,将ABC 绕点O 顺时针旋转60︒,AC 与EF 相交于点G ,则FG 的长是 cm .18. (山东省潍坊市2022年)小莹按照如图所示的步骤折叠A 4纸,折完后,发现折痕AB ′与A 4纸的长边AB 恰好重合,那么A 4纸的长AB 与宽AD 的比值为 .三、解答题(本大题共9小题)19. (浙江省丽水市2022年)如图,将矩形纸片折叠,使点B 与点D 重合,点A 落在点P 处,折痕为.(1)求证:PDE CDF △≌△;(2)若4cm,5cm CD EF ==,求BC 的长.20. (浙江省丽水市2022年)如图,在66⨯的方格纸中,点A ,B ,C 均在格点上,试按要求画出相应格点图形.ABCDEF(1)如图1,作一条线段,使它是AB 向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB 和AC 是它的两条边;(3)如图3,作一个与ABC 相似的三角形,相似比不等于1.21. (黑龙江省省龙东地区2022年)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,5B -,()5,4C -.(1)将ABC 先向左平移6个单位,再向上平移4个单位,得到111A B C △,画出两次平移后的111A B C △,并写出点1A 的坐标;(2)画出111A B C △绕点1C 顺时针旋转90°后得到221A B C △,并写出点2A 的坐标;(3)在(2)的条件下,求点1A 旋转到点2A 的过程中所经过的路径长(结果保留π). 22. (四川省广安市2022年)数学活动课上,张老师组织同学们设计多姿多彩的几何图形, 下图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.规定:凡通过旋转能重合的图形视为同一种图形)23. (黑龙江省2022年)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置;(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C124. (黑龙江省齐齐哈尔市2022年)综合与实践数学是以数量关系和空间形式为主要研究对象的科学.数学实践活动有利于我们在图形运动变化的过程中去发现其中的位置关系和数量关系,让我们在学习与探索中发现数学的美,体会数学实践活动带给我们的乐趣.如图①,在矩形ABCD中,点E、F、G分别为边BC、AB、AD的中点,连接EF、DF,H为DF的中点,连接GH.将△BEF绕点B旋转,线段DF、GH和CE的位置和长度也随之变化.当△BEF绕点B顺时针旋转90°时,请解决下列问题:(1)图②中,AB=BC,此时点E落在AB的延长线上,点F落在线段BC上,连接AF,猜想GH与CE之间的数量关系,并证明你的猜想;(2)图③中,AB=2,BC=3,则GHCE=;(3)当AB=m , BC=n时.GHCE=.(4)在(2)的条件下,连接图③中矩形的对角线AC,并沿对角线AC剪开,得△ABC (如图④).点M、N分别在AC、BC上,连接MN,将△CMN沿MN翻折,使点C的对应点P落在AB的延长线上,若PM平分∠APN,则CM长为.25. (黑龙江省省龙东地区2022年)ABC和ADE都是等边三角形.(1)将ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA PB PC+=(或PA PC PB+=)成立;请证明.(2)将ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;(3)将ADE 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.26. (北京市2022年)在平面直角坐标系xOy 中,已知点(,),.M a b N 对于点P 给出如下定义:将点P 向右(0)a ≥或向左(0)a <平移a 个单位长度,再向上(0)b ≥或向下(0)b <平移b 个单位长度,得到点P',点P'关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点(1,1),M 点N 在线段OM 的延长线上,若点(2,0),P -点Q 为点P 的“对应点”.①在图中画出点Q ;②连接,PQ 交线段ON 于点.T 求证:1;2NT OM = (2)O 的半径为1,M 是O 上一点,点N 在线段OM 上,且1(1)2ON t t =<<,若P 为O 外一点,点Q 为点P 的“对应点”,连接.PQ 当点M 在O 上运动时直接写出PQ 长的最大值与最小值的差(用含t 的式子表示)27. (河南省2022年)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平; 操作二:在AD 上选一点P ,沿BP 折叠,使点A 落在矩形内部点M 处,把纸片展平,连接PM ,BM .根据以上操作,当点M 在EF 上时,写出图1中一个30°的角: .(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ= °,∠CBQ= °;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.参考答案1. 【答案】C【分析】根据轴对称图形的定义进行逐一判断即可.【详解】A.不是轴对称图形,故A错误;B.不是轴对称图形,故B错误;C.是轴对称图形,故C正确;D.不是轴对称图形,故D错误.故选:C.2. 【答案】B【分析】直接利用关于y轴对称,纵坐标相同,横坐标互为相反数,进而得出答案.【详解】解:根据题意,点E与点D关于y轴对称,∵飞机E的坐标为(40,a),∴飞机D的坐标为(-40,a),故选:B.3. 【答案】D【分析】-′求解即可.先求出BD,再根据平移性质求得BB'=1cm,然后由BD BB【详解】解:由题意,BD=,由平移性质得BB'=1cm,∴点D,B′之间的距离为DB'=BD BB-′=(1)cm,故选:D.4. 【答案】B【分析】根据含30°角的直角三角形的性质可得B(2,PB的解析式,依次将M1,M2,M3,M4四个点的一个坐标代入y+2中可解答.【详解】解:∵点A(4,2),点P(0,2),∴PA ⊥y 轴,PA =4,由旋转得:∠APB =60°,AP =PB =4,如图,过点B 作BC ⊥y 轴于C ,∴∠BPC =30°,∴BC =2,PC∴B (2,2+2设直线PB 的解析式为:y =kx +b ,则222k b b ⎧+=+⎪⎨=⎪⎩∴2k b ⎧=⎪⎨=⎪⎩∴直线PB 的解析式为:y =x +2,当y =0+2=0,x∴点M 1(-0)不在直线PB 上,当x y =-3+2=1,∴M 2(-1)在直线PB 上,当x =1时,y =+2,∴M 3(1,4)不在直线PB 上,当x =2时,y ,∴M 4(2,112)不在直线PB 上. 故选:B .5. 【答案】A【分析】根据轴对称和中心对称的定义逐项判断即可.轴对称图形是把一个图形沿一条直线折叠,直线两旁的部分能够互相重合;中心对称图形是把一个图形绕某一点旋转180°,旋转后的图形能够与原来的图形重合.【详解】A 、既是中心对称图形,又是轴对称图形,符合题意;B 、是轴对称图形,但不是中心对称图形,不符合题意;C 、是轴对称图形,但不是中心对称图形,不符合题意;D 、是中心对称图形,但不是轴对称图形,不符合题意;故选:A .6. 【答案】A【分析】取AB 中点G 点,根据菱形的性质可知E 点、G 点关于对角线AC 对称,即有PE =PG ,则当G 、P 、F 三点共线时,PE +PF =PG +PF 最小,再证明四边形AGFD 是平行四边形,即可求得FG =AD .【详解】解:取AB 中点G 点,连接PG ,如图,∵四边形ABCD 是菱形,且边长为2,∴AD =DC =AB =BC =2,∵E 点、G 点分别为AD 、AB 的中点,∴根据菱形的性质可知点E 、点G 关于对角线AC 轴对称,∴PE =PG ,∴PE +PF =PG +PF ,即可知当G 、P 、F 三点共线时,PE +PF =PG +PF 最小,且为线段FG ,如下图,G 、P 、F 三点共线,连接FG ,∵F 点是DC 中点,G 点为AB 中点,∴, 1122DF DC AB AG ===∵在菱形ABCD 中,,∴,∴四边形AGFD 是平行四边形,∴FG =AD =2,故PE +PF 的最小值为2,故选:A .7. 【答案】C【分析】根据中心对称图形的定义判断即可.【详解】解:∵是轴对称图形,也是中心对称图形, ∴不符合题意;∵是轴对称图形,不是中心对称图形∴不符合题意;∵不是轴对称图形,是中心对称图形∴符合题意;∵是轴对称图形,不是中心对称图形∴不符合题意;故选C .8. 【答案】D【分析】根据题意,画出该图形的对称轴,即可求解.【详解】解∶如图,DC AB ∥DF AG ∥一共有5条对称轴.故选:D9. 【答案】B【分析】根据直尺与三角尺的夹角为60°,根据四边形ACC A ''的面积为sin602sin60AA AC AB AA ⋅'︒︒⋅'=,即可求解.【详解】解:依题意ACC A ''为平行四边形,∵90ABC ∠=︒,60CAB ∠=︒,AB =8,12AA '=.2AC AB ∴=∴平行四边形ACC A ''的面积=sin602sin60AA AC AB AA ''⋅︒=︒⋅2812=⨯⨯=故选B10. 【答案】A【分析】把点()1,1的横坐标加2,纵坐标不变,得到()3,1,就是平移后的对应点的坐标.【详解】解:点()1,1向右平移2个单位长度后得到的点的坐标为()3,1.故选A .11. 【答案】D【分析】根据图形的平移性质求解.【详解】解:根据图形平移的性质,B ′(1-2,2+1),即B ′(-1,3);故选:D .12. 【答案】A【分析】令BF =2x ,CG =3x ,FG =y ,易证CGA CFB ''△∽△,得出CG A G CF B F'=',进而得出y =3x ,则AE =4x ,AD =8x ,过点E 作EH ⊥BC 于点H ,根据勾股定理得出EH =,最后求出AD AB的值. 【详解】解:过点E 作EH ⊥BC 于点H ,又四边形ABCD 为矩形,∴∠A =∠B =∠D =∠BCD =90°,AD =BC ,∴四边形ABHE 和四边形CDEH 为矩形,∴AB =EH ,ED =CH , ∵23BF GC =, ∴令BF =2x ,CG =3x ,FG =y ,则CF =3x +y ,2B F x '=,, 由题意,得==90CA G CB F ''︒∠∠,又GCA '∠为公共角,∴CGA CFB ''△∽△, ∴CG A GCF B F '=', 则53232x yx x y x-=+,整理,得()()30x y x y +-=,解得x =-y (舍去),y =3x ,∴AD =BC =5x +y =8x ,EG =3x ,HG =x ,在Rt △EGH 中EH 2+HG 2=EG 2,则EH 2+x 2=(3x )2,解得EH=, EH=-(舍),∴AB=,∴ADAB ==.故选:A .13.【答案】3A【分析】 52x y A G -'=如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,证明,BOE AON 可得,,A O B 三点共线,可得,A B 关于O 对称,从而可得答案.【详解】解:如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,∴ 三个正六边形,O 为原点,,120,BM MO OH AH BMO OHA,BMO OHA ≌,OB OA 11209030,18012030,2MOE BMO MOB60,90,BOE BEO同理:120303060,906030,AON OAN,BOE AON,,A O B ∴三点共线,,A B ∴关于O 对称,3,3.A故答案为:3.A14. 【答案】8【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A ′B ′C ′=S △ABC ,BC =B ′C ′,BC ∥B ′C ′,∴四边形B ′C ′CB 为平行四边形,∵BB ′⊥BC ,∴四边形B ′C ′CB 为矩形,∵阴影部分的面积=S △A ′B ′C ′+S 矩形B ′C ′CB -S △ABC=S 矩形B ′C ′CB=4×2=8(cm 2).故答案为:8.15.【答案】(1)【分析】连接OB ,OB '由题意可得∠BOB '=75°,可得出∠COB '=30°,可求出B '的坐标,即可得出点B ''的坐标.【详解】解:如图:连接OB ,OB ',作B M '⊥y 轴∵ABCO 是正方形,OA =2∴∠COB =45°,OB=∵绕原点O 逆时针旋转75︒∴∠BOB '=75°∴∠COB '=30°∵=OB =∴,∴∵沿y 轴方向向上平移1个单位长度∴故答案为:16. 【答案】6-【分析】当点M 与点B 重合时,EF垂直平分AB ,利用三角函数即可求得EF的长;【详解】解:当点M 与点B 重合时,由折叠的性质知EF 垂直平分AB ,∴AE =EB =12AB =3, OB 'MB 'MO =B '(B ''(1)(1)在Rt △AEF 中,∠A =60°,AE =3,tan60°=EF AB, ∴EF =3当AF 长取得最小值时,DF 长取得最大值,由折叠的性质知EF 垂直平分AM ,则AF =FM ,∴FM ⊥BC 时,FM 长取得最小值,此时DF 长取得最大值,过点D 作DG ⊥BC 于点C ,则四边形DGMF 为矩形,∴FM =DG ,在Rt △DGC 中,∠C =∠A =60°,DC =AB =6,∴DG =DC sin60°∴DF 长的最大值为AD -AF =AD -FM =AD -DG =6-3故答案为:36-317. 【答案】3【分析】BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,根据锐角三角函数即可得DE ,FE ,根据旋转的性质得ONF △是直角三角形,根据直角三角形的性质得3ON =,即3NC =,根据角之间的关系得CNG △是等腰直角三角形,即3NG NC ==cm ,根据90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒得FON FED △∽△,即ON FN DE DF=,解得FN = 【详解】解:如图所示,BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,在Rt EDF 中,12tan tan 60DF DE EDF ===∠︒12sin sin 60DF EF EDF ===∠︒∵△ABC 绕点O 顺时针旋转60°,∴60BOD NOF ∠=∠=︒,∴90NOF F ∠+∠=︒,∴18090FNO NOF F ∠=︒-∠-∠=︒,∴ONF △是直角三角形, ∴132ON OF ==(cm ), ∴3NC OC ON =-=(cm ),∵90FNO ∠=︒,∴18090GNC FNO ∠=︒-∠=︒,∴NGC 是直角三角形,∴18045NGC GNC ACB ∠=-∠-∠=︒,∴CNG △是等腰直角三角形,∴3NG NC ==cm ,∵90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒,∴FON FED △∽△, 即ON FN DE DF=,12FN =,FN =∴3FG FN NG =-=(cm ),故答案为:3.18. 1【分析】判定△AB ′D ′是等腰直角三角形,即可得出AB ′=AD ,再根据AB ′= AB ,再计算即可得到结论.【详解】解:∵四边形ABCD 是矩形,∴∠D =∠B =∠DAB =90°,由操作一可知:∠DAB ′=∠D ′AB ′=45°,∠AD ′B ′=∠D =90°,AD =AD ′,∴△AB ′D ′是等腰直角三角形,∴AD =AD ′= B ′D ′,由勾股定理得AB ′=,又由操作二可知:AB ′=AB ,∴=AB ,∴AB AD=, ∴A 4纸的长AB 与宽AD:1.故答案为::1.19. 【答案】(1)证明见解析 (2)163cm 【分析】(1)利用ASA 证明即可;(2)过点E 作EG ⊥BC 交于点G ,求出FG 的长,设AE =x ,用x 表示出DE 的长,在Rt △PED 中,由勾股定理求得答案.(1)∵四边形ABCD 是矩形,∴AB =CD ,∠A =∠B =∠ADC =∠C =90°,由折叠知,AB =PD ,∠A =∠P ,∠B =∠PDF =90°,∴PD =CD ,∠P =∠C ,∠PDF =∠ADC ,∴∠PDF -∠EDF =∠ADC -∠EDF ,∴∠PDE =∠CDF ,在△PDE 和△CDF 中,P C PD CDPDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴PDE CDF △≌△(ASA );(2)如图,过点E 作EG ⊥BC 交于点G ,∵四边形ABCD 是矩形,∴AB =CD =EG =4cm ,又∵EF =5cm ,∴3GF =,设AE =x ,∴EP =x ,由PDE CDF △≌△知,EP =CF =x ,∴DE =GC =GF +FC =3+x ,在Rt △PED 中,222PE PD DE +=,即()22243x x +=+, 解得,76x =, ∴BC =BG +GC = 77163663++=cm . 20. 【答案】(1)画图见解析(2)画图见解析(3)画图见解析【分析】(1)分别确定A ,B 平移后的对应点C ,D ,从而可得答案;(2)确定线段AB ,AC 关于直线BC 对称的线段即可;(3)分别计算ABC 的三边长度,再利用相似三角形的对应边成比例确定DEF 的三边长度,再画出DEF 即可.(1)解:如图,线段CD 即为所求作的线段,(2)如图,四边形ABDC 是所求作的轴对称图形,(3)如图,如图,DEF 即为所求作的三角形,由勾股定理可得:221310,2,ABAC 而2,BC = 同理:2226210,22,DF DE 而4,EF 1,2AB AC BC DF DE EF .ABC DFE ∽21. 【答案】(1)见解析;()15,3A -(2)见解析;()22,4A(3)点1A 旋转到点2A 所经过的路径长为5π2【分析】(1)根据题目中的平移方式进行平移,然后读出点的坐标即可;(2)先找出旋转后的对应点,然后顺次连接即可;(3)根据旋转可得点1A 旋转到点2A 为弧长,利用勾股定理确定圆弧半径,然后根据弧长公式求解即可.(1)解:如图所示△A 1B 1C 1即为所求,()15,3A -;(2)如图所示△A 2B 2C 2即为所求,;(3)∵ ∴点旋转到点所经过的路径长为. 22. 【答案】见解析【分析】根据轴对称图形的定义、中心对称图形的定义画出图形即可 ()22,4A 115AC 1A 2A 90π55π1802⨯=【详解】解:如下图所示:23. 【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析;【分析】(1)连接对应点B 、F ,对应点C 、E ,其交点即为旋转中心的位置;(2)利用网格结构找出平移后的点的位置,然后顺次连接即可;(3)根据网格结构的特点作出即可.【详解】解:(1)如图所示,连接BF ,CE 交于点O ,点O 即为所求.(2)如图所示,△A 1B 1C 1为所求;(3)如图所示,点M 即为所求.理由:连接11,B M C M ,根据题意得:111111A B AC B M C M ====∴四边形111A B MC 菱形,∴A 1M 平分∠B 1A 1C 1.24. 【答案】(1)12GH CE =,证明见解析 (2)13GH CE = (3)2GH m CE n =(4)【分析】(1)先证明△ABF ≌△CBE ,得AF =CE ,再根据中位线性质得GH =12AF ,等量代换即可; (2)连接AF ,先证明△ABF ∽△CBE ,得到AF :CE 的比值,再根据中位线性质得GH =12AF ,等量代换即可; (3)连接AF ,先证明△ABF ∽△CBE ,用含m 、n 的代数式表达出AF :CE 的比值,再根据中位线性质得GH =12AF ,等量代换即可; (4)过M 作MH ⊥AB 于H ,根据折叠性质得∠C =∠MPN ,根据角平分线证明出∠C =∠PMH ,设CM =PM =x ,HM =y ,根据三角函数定义找到x 、y 之间的关系,再利用△AHM ∽△ABC ,得到CM BC H AM A =,代入解方程即可. (1) 解:12GH CE =,理由如下: ∵AB =BC ,四边形ABCD 为矩形,∴四边形ABCD 为正方形,∴∠ABC =∠CBE =90°,∵E 、F 为BC ,AB 中点,∴BE =BF ,∴△ABF ≌△CBE ,∴AF =CE ,∵H 为DF 中点,G 为AD 中点,∴GH =12AF , ∴12GH CE =. (2) 解:13GH CE =, 连接AF ,如图所示,由题意知,BF =12AB =1,BE =12BC =32, ∴, 由矩形ABCD 性质及旋转知,∠ABC =∠CBE =90°,∴△ABF ∽△CBE ,∴AF :CE =2:3,∵G 为AD 中点,H 为DF 中点,∴GH =, ∴. 故答案为:. (3)解:, 连接AF ,如图所示,23AB BF BC BE ==12AF 13GH CE =132GH m CE n=由题意知,BF ==,BE ==, ∴, 由矩形ABCD 性质及旋转知,∠ABC =∠CBE =90°,∴△ABF ∽△CBE ,∴AF :CE =m :n ,∵G 为AD 中点,H 为DF 中点,∴GH =, ∴. 故答案为:. (4)解:过M 作MH ⊥AB 于H ,如图所示,由折叠知,CM =PM ,∠C =∠MPN ,12AB 2m 12BC 2n AB BF m BC BE n==12AF 2GH m CE n =2mn∵PM 平分∠APN ,∴∠APM =∠MPN ,∴∠C =∠APM ,∵AB =2,BC =3,∴AC设CM =PM =x ,HM =y ,由知,, 即,∵HM ∥BC ,∴△AHM ∽△ABC ,∴, 即,, ∴,解得:x, 故答案为:. 25. 【答案】(1)证明见解析(2)图②结论:PB PA PC =+,证明见解析(3)图③结论:PA PB PC +=【分析】(1)由△ABC 是等边三角形,得AB =AC ,再因为点P 与点A 重合,所以PB =AB ,PC =AC ,PA =0,即可得出结论;(2)在BP 上截取BF CP =,连接AF ,证明BAD CAE ≌(SAS ),得ABD ACE ∠=∠,再证明CAP BAF ≌△△(SAS ),得CAP BAF ∠=∠,AF AP =,然后证明AFP 是等边三角形,得PF AP =,即可得出结论;(3)在CP 上截取CF BP =,连接AF ,证明BAD CAE ≌(SAS ),得ABD ACE ∠=∠,再证明BAP CAF ≌△△(SAS ),得出CAF BAP ∠=∠,AP AF =,然后证明AFP 是等边三角形,得PF AP =,即可得出结论:PA PB PF CF PC +=+=.(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∵点P 与点A 重合,∴PB =AB ,PC =AC ,PA =0,sin sin C APM ∠=∠AB HM AC PM =y x =y =C M BC H AM A =3y =3y =3=∴PA PB PC +=或PA PC PB +=;(2)解:图②结论:PB PA PC =+证明:在BP 上截取BF CP =,连接AF ,∵ABC 和ADE 都是等边三角形, ∴AB AC =,AD AE =,60BAC DAE ∠=∠=︒ ∴BAC CAD DAE CAD ∠+∠=∠+∠, ∴BAD CAE ∠=∠,∴BAD CAE ≌(SAS ),∴ABD ACE ∠=∠,∵AC =AB ,CP =BF ,∴CAP BAF ≌△△(SAS ),∴CAP BAF ∠=∠,AF AP =, ∴CAP CAF BAF CAF ∠+∠=∠+∠, ∴60FAP BAC ∠=∠=︒,∴AFP 是等边三角形,∴PF AP =,∴PA PC PF BF PB +=+=;(3)解:图③结论:PA PB PC +=,理由:在CP 上截取CF BP =,连接AF ,∵ABC 和ADE 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE ∠=∠=︒∴BAC BAE DAE BAE ∠+∠=∠+∠,∴BAD CAE ∠=∠,∴BAD CAE ≌(SAS ),∴ABD ACE ∠=∠,∵AB =AC ,BP =CF ,∴BAP CAF ≌△△(SAS ),∴CAF BAP ∠=∠,AP AF =,∴BAF BAP BAF CAF ∠+∠=∠+∠,∴60FAP BAC ∠=∠=︒,∴AFP 是等边三角形,∴PF AP =,∴PA PB PF CF PC +=+=,即PA PB PC +=.26. 【答案】(1)见解析(2)42t -【分析】(1)①先根据定义和(1,1)M 求出点P'的坐标,再根据点P'关于点N 的对称点为Q 求出点Q 的坐标;②延长ON 至点()3,3A ,连接AQ ,利用AAS 证明ΔΔAQT OPT ≅,得到12TA TO OA ==,再计算出OA ,OM ,ON ,即可求出12NT ON OT OM =-==; (2)连接PO 并延长至S ,使OP OS =,延长SQ 至T ,使ST OM =,结合对称的性质得出NM 为Δ'P QT 的中位线,推出1=2NM QT ,得出()12221SQ ST TQ t t =-=--=-,则()()max min 2PQ PQ PS QS PS QS QS -=+--=.(1)解:①点Q 如下图所示.∵点(1,1)M ,∴点(2,0)P -向右平移1个单位长度,再向上平移1个单位长度,得到点P', ∴()'1,1P -,∵点P'关于点N 的对称点为Q ,()2,2N ,∴点Q 的横坐标为:()2215⨯--=,纵坐标为:2213⨯-=,∴点()5,3Q ,在坐标系内找出该点即可;②证明:如图延长ON 至点()3,3A ,连接AQ ,∵ //AQ OP ,∴AQT OPT ∠=∠,在ΔAQT 与ΔOPT ∠中,AQT OPT ATQ OTP AQ OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ΔΔAQT OPT AAS ≅, ∴12TA TO OA ==, ∵ ()3,3A ,(1,1)M ,(2,2)N ,∴OA ==OMON =∴12TO OA ==∴NT ON OT =-= ∴12NT OM =; (2)解:如图所示,连接PO 并延长至S ,使OP OS =,延长SQ 至T ,使ST OM =,∵(,)M a b ,点P 向右(0)a ≥或向左(0)a <平移a 个单位长度,再向上(0)b ≥或向下(0)b <平移b 个单位长度,得到点P',∴'1PP OM ==,∵点P'关于点N 的对称点为Q ,∴'NP NQ =,又∵OP OS =,∴OM ∥ST ,∴NM 为Δ'P QT 的中位线,∴//NM QT ,1=2NM QT , ∵1NM OM ON t =-=-,∴222TQ NM t ==-,∴()12221SQ ST TQ t t =-=--=-,在ΔPQS 中,PS QS PQ PS QS -<<+,结合题意,max PQ PS QS =+,min PQ PS QS =-,∴()()max min 242PQ PQ PS QS PS QS QS t -=+--==-,即PQ 长的最大值与最小值的差为42t -.27. 【答案】(1)BME ∠或ABP ∠或PBM ∠或MBC ∠(2)①15,15;②MBQ CBQ ∠=∠,理由见解析 (3)4011AP =cm 或24cm 13【分析】(1)根据折叠的性质,得12BE BM =,结合矩形的性质得30BME ∠=︒,进而可得30ABP PBM MBC ∠=∠=∠=︒; (2)根据折叠的性质,可证()Rt Rt HL BQM BQC ∆≅∆,即可求解;(3)由(2)可得QM QC =,分两种情况:当点Q 在点F 的下方时,当点Q 在点F 的上方时,设AP PM x ==,分别表示出PD ,DQ ,PQ ,由勾股定理即可求解.(1) 解:12AE BE AB AB BM ===, 12BE BM =∴ 90BEM ∠=︒∵30BME ∠=︒∴60MBE ∠=︒∴ABP PBM ∠=∠∵30ABP PBM MBC ∠=∠=∠=︒∴(2)∵四边形ABCD 是正方形∴AB =BC ,∠A =∠ABC =∠C =90°由折叠性质得:AB =BM ,∠PMB =∠BMQ =∠A =90°∴BM =BC①BM BC BQ BQ ==∵,∴()Rt Rt HL BQM BQC ∆≅∆MBQ CBQ ∠=∠∴30MBC15MBQ CBQ ∠=∠=︒∴②BM BC BQ BQ ==∵,()Rt Rt HL BQM BQC ∆≅∆∴MBQ CBQ ∠=∠∴(3)当点Q 在点F 的下方时,如图,1cm 4cm 8cm FQ DF FC AB ====∵,,8413(cm)QC CD DF FQ =--=--=∴,DQ =DF +FQ =4+1=5(cm) 由(2)可知,QM QC =设8AP PM x PD x ===-,,222PD DQ PQ +=∴,即()()222853x x -+=+ 解得:4011x =∴40cm 11AP =; 当当点Q 在点F 的上方时,如图,1cm 4cm 8cm FQ DF FC AB ====∵,, 5QC =∴cm ,DQ =3cm , 由(2)可知,QM QC =设8AP PM x PD x ===-,,222PD DQ PQ +=∴,即()()222835x x -+=+ 解得:2413x =∴24cm 13AP =.。
中考专题 图形变换(精选17题)(平移、轴对称、旋转)练习及答案
中考复习专题:图形变换(精选17题)(平移、轴对称、旋转)练习及答案一、翻折翻折:翻折是指把一个图形按某一直线翻折180º后所形成的新的图形的变化.翻折特征:平面上的两个图形,将其中一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么说这两个图形关于这条直线对称,这条直线就是对称轴.解这类题抓住翻折前后两个图形是全等的,弄清翻折后不变的要素.翻折在三大图形运动中是比较重要的,考查得较多.另外,从运动变化得图形得特殊位置探索出一般的结论或者从中获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家留意.1.(2012•丽水)如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( )A.①B.②C.⑤D.⑥2.(2012•济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米3.(2012泰安)如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.B.(C.(2012泰安)D.4.(2012•梅州)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC 上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150°B.210°C.105°D.75°5.(2012绍兴)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A 与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.512532⨯B.69352⨯C.614532⨯D.711352⨯6.(2012•连云港)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角的正切值是( )A.+1B.+1 C.2.5 D.7、(2012山东滨州10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.8、.(2006年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交与点F、G(如图1),23AF ,求DE的长;(2)如果折痕FG分别与CD、AB交与点F、G(如图2),△AED的外接圆与直线BC相切,求折痕FG的长.9、.(2012•德州)如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC 于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.专题二.、旋转1. (2011四川成都,14,4分)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到R t △ADE ,点B 经过的路径为 BD,则图中阴影部分的面积是___________.2.(2012中考)如图,在△ABC 中,∠ACB =90º,∠B =30º,AC =1,AC 在直线l 上.将△ABC绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=2+3;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=3+3;…,按此规律继续旋转,直到得到点P 2012为止,则AP 2012=【 】A .2011+671 3B .2012+671 3C .2013+671 3D .2014+671 33.(2012•烟台)如图,在Rt △ABC 中,∠C=90°,∠A=30°,AB=2.将△ABC 绕顶点A 顺时针方向旋转至△AB ′C′的位置,B ,A ,C ′三点共线,则线段BC 扫过的区域面积为 .4.(2012•中考)如图,Rt △ABC 的边BC 位于直线l 上,AC=,∠ACB=90°,∠A=30°.若Rt△ABC 由现在的位置向右滑动地旋转,当点A 第3次落在直线l 上时,点A 所经过的路线的长为(结果用含有π的式子表示)B①② ③123… l5.(2012•济宁)如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是O(0,0),旋转角是90度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.6.(2012成都)(本小题满分10分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=9 2 a时,P、Q两点间的距离 (用含a的代数式表示).7、(2011安徽,22,12分)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C.(1)如图(1),当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;(2)如图(2),连接A ′A 、B ′B ,设△ACA ′ 和△BCB ′ 的面积分别为S △ACA ′ 和S △BC B′.求证:S △ACA ′ :S △BC B′ =1:3;(3)如图(3),设AC 中点为E ,A ′B ′中点为P ,AC =a ,连接EP ,当 = °时,EP 长度最大,最大值为 .Aθ A ′B ′BCA ′B ′BCAθ8、 (2011四川凉山州,21,8分)在平面直角坐标系中,已知ABC △三个顶点的坐标分别为()()()1,2,3,4,2,9.A B C ---⑴画出ABC △,并求出AC 所在直线的解析式。
中考数学一轮复习专题过关检测卷—轴对称、平移、旋转(含答案解析)
中考数学一轮复习专题过关检测卷—轴对称、平移、旋转(含答案解析)(考试时间:90分钟,试卷满分:100分)一、选择题(本题共10小题,每小题3分,共30分)。
1.下列图形中,对称轴最多的图形是()A.B.C.D.【答案】A【解答】解:A.该图有无数条对称轴;B.该图有一条对称轴;C.该图有两条对称轴;D.该图有三条对称轴.所以对称轴最多的图形是选项A.故选:A.2.如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为()A.12B.13C.19D.20【答案】B【解答】解:由折叠可知,AD=CD,∵AB=7,BC=6,∴△BCD的周长=BC+BD+CD=BC+BD+AD=BC+AB=7+6=13.故选:B.3.在平面直角坐标系中,点(3,2)关于x轴对称的点是()A.(﹣3,2)B.(3,﹣2)C.(﹣3,﹣2)D.(﹣2,3)【答案】B【解答】解在平面直角坐标系中,点(3,2)关于x轴对称的点是(3,﹣2).故选:B.4.在平面直角坐标系中,将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为()A.(2,2)B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)【答案】D【解答】解:将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为(﹣3+5,﹣2),即(2,﹣2),故选:D.5.“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则重叠部分的小正方形边长为()A.1cm B.2cm C.D.【答案】C【解答】解:∵四边形ABCD是正方形,∵AB=AD=2cm,∠A=90°,∴BD=AB=2(cm),由平移变换的性质可知BB′=1cm,∴DB′=BD﹣BB﹣1)cm,∴小正方形的边长=DB′=×(2﹣1)=(2﹣)cm,故选:C.6.如图,把三角形ABC沿BC方向平移1个单位长度得到三角形DEF,若四边形ABFD的周长为10,则三角形ABC的周长为()A.8B.10C.12D.14【答案】A【解答】解:∵把三角形ABC沿BC方向平移1个单位长度得到三角形DEF,∴AD=BE=1,△ABC≌△DEF,∵四边形ABFD的周长为10,∴AD+BF+AB+DF=10,∵BF=BE+EF=1+EF,∴1+1+EF+AB+DF=10,即EF+AB+DF=8,又∵DF=AC,EF=BC,∴AB+AC+BC=8,∴三角形ABC的周长为:8.故选:A.7.如图,将△ABC绕点C逆时针旋转一定的角度得到△A′B′C′,此点A在边B′C上,若BC=5,AC =3,则AB′的长为()A.5B.4C.3D.2【答案】D【解答】解:∵△ABC绕点C逆时针旋转一定的角度得到△A′B′C′,点A在边B′C上,∴CB′=CB=5,∴AB′=CB′﹣CA=5﹣3=2.故选:D.8.已知点A(a,1)与点B(﹣4,b)关于原点对称,则a﹣b的值为()A.﹣5B.5C.3D.﹣3【答案】B【解答】解:∵点A(a,1)与点B(﹣4,b)关于原点对称,∴a=4,b=﹣1.∴a﹣b=4﹣(﹣1)=5.故选:B.9.如图,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O′,则点A′的坐标为()A.(3,1)B.(3,2)C.(2,3)D.(1,3)【答案】D【解答】解:如图,点A′的坐标为(1,3).故选D.10.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.10D.12【答案】C【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=16,解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=CM+MD+CD=AD+BC=8+×4=8+2=10.故选:C.二、填空题(本题共6题,每小题2分,共12分)。
中考数学总复习《图形的旋转、翻折(对称)与平移》专项测试卷及答案
中考数学总复习《图形的旋转、翻折(对称)与平移》专项测试卷及答案(测试时长:60分钟;总分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共8小题,共40分)1.下列图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D .2.(2022·广东)在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( )A .()3,1B .()1,1-C .()1,3D .()1,1-3.四盏灯笼的位置如图.已知A ,B ,C ,D 的坐标分别是 (−1,b ),(1,b ),(2,b ),(3.5,b ),平移y 轴右侧的一盏灯笼,使得y 轴两侧的灯笼对称,则平移的方法可以是( )A .将B 向左平移4.5个单位B .将C 向左平移4个单位 C .将D 向左平移5.5个单位 D .将C 向左平移3.5个单位4.如图,将ABC 绕点A 逆时针旋转55︒得到ADE ,若70E ∠=︒且AD BC ⊥于点F ,则BAC ∠的度数为( )A .65︒B .70︒C .75︒D .80︒5.如图,将ABC 沿BC 边向右平移得到DEF ,DE 交AC 于点G .若:3:1BC EC = 16ADG S =△ 则CEG S △的值为( )A .2B .4C .6D .86.(2022·内蒙古呼和浩特)如图,ABC 中90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到EDC △,使点B 的对应点D 恰好落在AB 边上,AC 、ED 交于点F 若BCD α∠=,则EFC ∠的度数是(用含α的代数式表示)( )A .1902α︒+B .1902α︒-C .31802α︒-D .32α 7.如图,直径6AB =的半圆,绕B 点顺时针旋转30︒,此时点A 到了点A ',则图中阴影部分的面积是( )A .2πB .34πC .πD .3π8.如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O .若AE =5,BF =3,则AO 的长为( )A .√5B .32√5C .2√5D .4√5二、填空题(本题共5小题,每空3分,共15分)9.如图,在Rt ABC △中2AB =,30C ∠=︒将Rt ABC △绕点A 旋转得到Rt A B C '''∆,使点B 的对应点B '落在AC 上,在B C ''上取点D ,使2B D '=,那么点D 到BC 的距离等于 .10.在平面直角坐标系中,点G 的坐标是()2,1-,连接OG ,将线段OG 绕原点O 旋转180︒,得到对应线段OG ',则点G '的坐标为 .11. 如图,正△ABO 的边长为2,O 为坐标原点,A 在轴上,B 在第二象限。
备战2025年中考数学冲刺专项训练(全国)专题05 二次函数中的平移、旋转、对称(原卷版)
专题05二次函数中的平移、旋转、对称(五大题型)通用的解题思路:1.二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x–h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.3.二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。
4.二次函数图象的翻折与旋转y=a(x-h)²+k绕原点旋转180°y=-a(x+h)²-k a、h、k均变号沿x轴翻折y=-a(x-h)²-k a、k变号,h不变沿y轴翻折y=a(x+h)²+k a、h不变,h变号题型一:二次函数中的平移问题1.(2024•牡丹区校级一模)如图,在平面直角坐标系xOy中,抛物线21(0)y ax bx aa=+-<与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示).(2)当B的纵坐标为3时,求a的值;(3)已知点11(,2Pa-,(2,2)Q,若抛物线与线段PQ恰有一个公共点,请结合函数图象求出a的取值范围.2.(2024•平原县模拟)已知抛物线212:23C y ax ax a =++-.(1)写出抛物线1C 的对称轴:.(2)将抛物线1C 平移,使其顶点是坐标原点O ,得到抛物线2C ,且抛物线2C 经过点(2,2)A --和点B (点B 在点A 的左侧),若ABO ∆的面积为4,求点B 的坐标.(3)在(2)的条件下,直线1:2l y kx =-与抛物线2C 交于点M ,N ,分别过点M ,N 的两条直线2l ,3l 交于点P ,且2l ,3l 与y 轴不平行,当直线2l ,3l 与抛物线2C 均只有一个公共点时,请说明点P 在一条定直线上.3.(2024•和平区一模)已知抛物线21(y ax bx a =+-,b 为常数.0)a ≠经过(2,3),(1,0)两个点.(Ⅰ)求抛物线的解析式;(Ⅱ)抛物线的顶点为;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线.4.(2024•礼县模拟)如图,在平面直角坐标系中,抛物线23y ax bx =++交y 轴于点A ,且过点(1,2)B -,(3,0)C .(1)求抛物线的函数解析式;(2)求ABC ∆的面积;(3)将抛物线向左平移(0)m m >个单位,当抛物线经过点B 时,求m 的值.5.(2024•珠海校级一模)已知抛物线223y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.6.(2024•关岭县一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =;函数2y 与坐标轴的交点坐标为;(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.7.(2024•温州模拟)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式.(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.8.(2024•巴东县模拟)已知二次函数2y ax bx c =++图象经过(2,3)A ,(3,6)B 、(1,6)C -三点.(1)求该二次函数解析式;(2)将该二次函数2y ax bx c =++图象平移使其经过点(5,0)D ,且对称轴为直线4x =,求平移后的二次函数的解析式.9.(2024•郑州模拟)在平面直角坐标系中,抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B .(1)求抛物线的解析式;(2)直线y x m =+经过点A ,判断点B 是否在直线y x m =+上,并说明理由;(3)平移抛物线2y x bx c =-++使其顶点仍在直线y x m =+上,若平移后抛物线与y 轴交点的纵坐标为n ,求n 的取值范围.10.(2024•鞍山模拟)已知抛物线2246y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.11.(2023•原平市模拟)(1)计算:3211()(5)|2|3--+---⨯-;(2)观察表格,完成相应任务:x3-2-1-012221A x x =+-21-2-1-①72(1)2(1)1B x x =-+--721-2-②2任务一:补全表格;任务二:观察表格不难发现,当x m =时代数式A 的值与当1x m =+时代数式B 的值相等,我们称这种现象为代数式B 参照代数式A 取值延后,相应的延后值为1:换个角度来看,将代数式A ,B 变形,得到(A =③2)2-,22B x =-将A 与B 看成二次函数,则将A 的图象④(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式P =⑤.12.(2024•南山区校级模拟)数形结合是解决数学问题的重要方法.小明同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:【观察探究】:方程2(||1)1x --=-的解为:;【问题解决】:若方程2(||1)x a --=有四个实数根,分别为1x 、2x 、3x 、4x .①a 的取值范围是;②计算1234x x x x +++=;【拓展延伸】:①将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?画出平移后的图象并写出平移过程;②观察平移后的图象,当123y 时,直接写出自变量x 的取值范围.13.(2023•花山区一模)已知抛物线2y x ax b =++的顶点坐标为(1,2).(1)求a ,b 的值;(2)将抛物线2y x ax b =++向下平移m 个单位得到抛物线1C ,存在点(,1)c 在1C 上,求m 的取值范围;(3)抛物线22:(3)C y x k =-+经过点(1,2),直线(2)y n n =>与抛物线2y x ax b =++相交于A 、B (点A 在点B 的左侧),与2C 相交于点C 、D (点C 在点D 的左侧),求AD BC -的值.14.(2023•环翠区一模)已知抛物线2y x bx c =++经过点(1,0)和点(0,3).(1)求此抛物线的解析式;(2)当自变量x 满足13x - 时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x 时,y 的最小值为5,求m 的值.15.(2023•南宁一模)如图1,抛物线21y x c =-+的图象经过(1,3).(1)求c 的值及抛物线1y 的顶点坐标;(2)当132x -时,求1y 的最大值与最小值的和;(3)如图2,将抛物线1y 向右平移m 个单位(0)m >,再向上平移2m 个单位得到新的抛物线2y ,点N 为抛物线1y 与2y 的交点.设点N 到x 轴的距离为n ,求n 关于m 的函数关系式,并直接写出当n 随m 的增大而减小时,m 的取值范围.16.(2023•奉贤区一模)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(3,0).(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果//DE AC ,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q 的坐标.17.(2023•下城区校级模拟)如图已知二次函数2(y x bx c b =++,c 为常数)的图象经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标:(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q 的横坐标:若不存在,请说明理由.18.(2023•即墨区一模)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为243y x x =-+.已知二次函数2y ax bx c =++的图象经过点(0,3)A ,(1,0)B ,.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:;(2)当函数值6y <时,自变量x 的取值范围:;(3)如图1,将函数243(0)y x x x =-+<的图象向右平移4个单位长度,与243(4)y x x x =-+ 的图象组成一个新的函数图象,记为L .若点(3,)P m 在L 上,求m 的值;(4)如图2,在(3)的条件下,点A 的坐标为(2,0),在L 上是否存在点Q ,使得9OAQ S ∆=.若存在,求出所有满足条件的点Q 的坐标;若不存在,请说明理由.19.(2023•武侯区模拟)定义:将二次函数l 的图象沿x 轴向右平移t ,再沿x 轴翻折,得到新函数l '的图象,则称函数l '是函数l 的“t 值衍生抛物线”.已知2:23l y x x =--.(1)当2t =-时,①求衍生抛物线l '的函数解析式;②如图1,函数l 与l '的图象交于(M ,)n ,(,N m -两点,连接MN .点P 为抛物线l '上一点,且位于线段MN 上方,过点P 作//PQ y 轴,交MN 于点Q ,交抛物线l 于点G ,求QNG S ∆与PNG S ∆存在的数量关系.(2)当2t =时,如图2,函数l 与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC .函数l '与x 轴交于D ,E 两点,与y 轴交于点F .点K 在抛物线l '上,且EFK OCA ∠=∠.请直接写出点K 的横坐标.20.(2023•天门三模)如图,在平面直角坐标系中,已知抛物线223y x x =--的顶点为A ,与y 轴交于点C ,线段//CB x 轴,交该抛物线于另一点B .(1)求点B 的坐标及直线AC 的解析式;(2)当二次函数223y x x =--的自变量x 满足1m x m + 时,此函数的最大值为p ,最小值为q ,且2p q -=.求m 的值;(3)平移抛物线223y x x =--,使其(备用图)顶点始终在直线AC 上移动,当平移后的抛物线与射线BA 只有一个公共点时,设此时抛物线的顶点的横坐标为n ,请直接写出n 的取值范围.21.(2023•米东区模拟)如图,已知二次函数2(y x bx c b =-++,c 为常数)的图象经过点(3,1)A ,点(0,4)C ,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交该二次函数图象于点B ,连结BC .(1)求该二次函数的解析式及点M 的坐标;(2)若将该二次函数图象向下平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围.22.(2023•驻马店二模)如图1所示,平面直角坐标系中,抛物线223y ax ax =-+交x 轴于A 、B 两点,与y 轴交于点C ,已知点A 坐标为(1,0)-.(1)求抛物线解析式及其顶点坐标.(2)若将抛物线向右平移m 个单位,得新抛物线“V ”,若“V ”与坐标轴仅有两个交点,求m 值.(3)若点M 为线段AB 上一动点,过点M 作y 轴平行线,该平行线与“V ”交点为N ,请直接写出点N 的纵坐标N y 的取值范围.23.(2023•宝鸡二模)如图,抛物线2:4L y ax bx =++与x 轴交于点(1,0)A -、(3,0)B ,与y 轴交于点C .将抛物线L 向右平移一个单位得到抛物线L '.(1)求抛物线L 与L '的函数解析式;(2)连接AC ,探究抛物线L '的对称轴上是否存在点P ,使得以点A ,C ,P 为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.题型二:二次函数中的翻折问题24.(2024•江西模拟)已知二次函数265(0)y kx kx k k =-+>经过A ,B 两定点(点A 在点B 的左侧),顶点为P .(1)求定点A ,B 的坐标;(2)把二次函数265y kx kx k =-+的图象在直线AB 下方的部分向上翻折,将向上翻折得到的部分与原二次函数位于直线AB 上方的部分的组合图象记作图象W ,求向上翻折部分的函数解析式;(3)在(2)中,已知ABP ∆的面积为8.①当14x 时,求图象W 中y 的取值范围;②若直线y m =与图象W 从左到右依次交于C ,D ,E ,F 四点,若CD DE EF ==,求m 的值.25.(2023•零陵区三模)在平面直角坐标系中,二次函数2229y x mx m =-+-+的图象与x 轴交于A ,B 两点(点A 在点B 的左侧).(1)求A 、B 两点的坐标(用含m 的式子表示);(2)将该二次函数图象在x 轴下方的部分沿x 轴翻折,其他部分保持不变,得到一个新的函数图象.若当31x -- 时,这个新函数G 的函数值y 随x 的增大而减小,结合函数图象,求m 的取值范围;(3)已知直线:1l y =,点C 在二次函数2229y x mx m =-+-+的图象上,点C 的横坐标为2m ,二次函数2229y x mx m =-+-+的图象在C 、B 之间的部分记为M (包括点C ,)B ,图象M 上恰有一个点到直线l 的距离为2,直接写出m 的取值范围.26.(2023•连云港)如图,在平面直角坐标系xOy 中,抛物线21:23L y x x =--的顶点为P .直线l 过点(0M ,)(3)m m - ,且平行于x 轴,与抛物线1L 交于A 、B 两点(B 在A 的右侧).将抛物线1L 沿直线l 翻折得到抛物线2L ,抛物线2L 交y 轴于点C ,顶点为D .(1)当1m =时,求点D 的坐标;(2)连接BC 、CD 、DB ,若BCD ∆为直角三角形,求此时2L 所对应的函数表达式;(3)在(2)的条件下,若BCD ∆的面积为3,E 、F 两点分别在边BC 、CD 上运动,且EF CD =,以EF 为一边作正方形EFGH ,连接CG ,写出CG 长度的最小值,并简要说明理由.27.(2024•盐城模拟)已知抛物线2(31)2(y ax a x a =---为常数且0)a ≠与y 轴交于点A .(1)点A 的坐标为;对称轴为(用含a 的代数式表示);(2)无论a 取何值,抛物线都过定点B (与点A 不重合),则点B 的坐标为;(3)若0a <,且自变量x 满足13x - 时,图象最高点的纵坐标为2,求抛物线的表达式;(4)将点A 与点B 之间的函数图象记作图象M (包含点A 、)B ,若将M 在直线2y =-下方的部分保持不变,上方的部分沿直线2y =-进行翻折,可以得到新的函数图象1M ,若图象1M 上仅存在两个点到直线6y =-的距离为2,求a 的值.28.(2023•扶余市二模)如图,抛物线2y x bx c =++与x 轴交于点(1,0)A ,(5,0)B ,顶点为P .(1)求该抛物线的解析式,并直接写出点P 的坐标;(2)如图,把原抛物线x 轴下方的部分沿x 轴翻折到x 轴上方,将翻折得到的部分与原抛物线x 轴上方的部分记作图形M ,在图形M 中,回答:①点A ,B 之间的函数图象所对应的函数解析式为2(3)4y x =--+(15)x ;②当342x 时,求y 的取值范围;③当2m x m + ,且32m >时,若最高点与最低点的纵坐标的差为154,直接写出m 的值.29.(2023•余江区一模)已知抛物线21:23(0)C y ax ax a =--≠(1)当1a =时,①抛物线1C 的顶点坐标为.②将抛物线1C 沿x 轴翻折得到抛物线2C ,则抛物线2C 的解析式为.(2)无论a 为何值,直线y m =与抛物线1C 相交所得的线段EF (点E 在点F 左侧)的长度都不变,求m 的值和EF 的长;(3)在(2)的条件下,将抛物线1C 沿直线y m =翻折,得到抛物线3C ,抛物线1C ,3C 的顶点分别记为P ,Q ,是否存在实数a ,使得以点E ,F ,P ,Q 为顶点的四边形为正方形?若存在,请求出a 的值:若不存在,请说明理由.30.(2023•越秀区校级三模)已知二次函数2y x bx m =++图象的对称轴为直线2x =,将二次函数2y x bx m =++图象中y 轴左侧部分沿x 轴翻折,保留其他部分得到新的图象C .(1)求b 的值;(2)①当0m <时,图C 与x 轴交于点M ,(N M 在N 的左侧),与y 轴交于点P .当MNP ∆为直角三角形时,求m 的值;②在①的条件下,当图象C 中40y -< 时,结合图象求x 的取值范围;(3)已知两点(1,1)A --,(5,1)B -,当线段AB 与图象C 恰有两个公共点时,直接写出m 的取值范围.题型三:二次函数对称问题31.(2024•雁塔区校级二模)如图,抛物线2:3L y ax bx =++经过(1,0)A -,(5,3)B 两点,与y 轴交于点C .(1)求该抛物线L 的表达式;(2)抛物线L '与抛物线L 关于直线BC 对称,P 是抛物线L 的x 轴上方且在对称轴左侧的一点,过点P 作y 轴的平行线交抛物线L '于点Q ,点P 、Q 关于抛物线L 的对称轴对称的点分别为M 、N .试探究是否存在一点P ,使得四边形PQNM 为长宽之比是1:2的矩形?若存在,求出点P 的横坐标;若不存在,请说明理由.32.(2023•鄞州区校级模拟)已知二次函数21441y ax ax a =++-的图象是M .(1)求M 关于点(1,0)R 成中心对称的图象N 的解析式2y ;(2)当25x 时,2y 的最大值为5,求a 的值.33.(2024•沙坪坝区校级模拟)如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠与x 轴交于(2,0)A ,(4,0)B -,与y 轴交于(0,4)C ,连接AC ,作直线BC .(1)求该抛物线的解析式;(2)已知直线BC 上方抛物线上有一动点P ,过点P 作//PM x 轴交BC 于M ,过M 作//MN y 轴交x 轴于N ,求PM MN +的最大值和此时P 点坐标;(3)将原抛物线沿CB 方向平移个单位长度得到新抛物线,已知D 点是新抛物线上一动点,且DBC OAC BCO ∠=∠+∠,求所有符合条件的点D 的横坐标并写出其中一种情况的求解过程.34.(2023•海安市模拟)已知两个函数,如果对于任意的自变量x ,这两个函数对应的函数值记为1y ,2y ,都有点1(,)x y 、2(,)x y 关于点(,)x x 对称,则称这两个函数为关于y x =的对称函数,例如,112y x =和232y x =为关于y x =的对称函数.(1)判断:①13y x =和2y x =-;②11y x =+和21y x =-;③211y x =+和221y x =-,其中为关于y x =的对称函数的是(填序号);(2)若132y x =+和2(0)y kx b k =+≠为关于y x =的对称函数.求k 、b 的值.(3)若21(0)y ax bx c a =++≠和22y x n =+为关于y x =的对称函数,令21w y y =-,当函数w 与函数(02)y x x = 有且只有一个交点时,求n 的取值范围.35.(2023•雁塔区校级模拟)已知抛物线21:3C y ax bx =+-与x 轴于点(1,0)A -,(3,0)B ,与y 轴交于点C .(1)求抛物线1C 的解析式;(2)已知抛物线2C 与抛物线1C 关于y 轴对称,过点C 作//CD x 轴交抛物线1C 于点D ,P 是抛物线2C 上的一个动点,连接PB 、PC 、BC 、BD .若PBC BCD S S ∆∆=,求点P 的坐标.36.(2023•灞桥区校级模拟)如图,顶点M在y轴负半轴上的抛物线与直线2y x=+相交于点(2,0)A-,(4,6)B,连接AM,BM.(1)求该抛物线的函数表达式;(2)若将抛物线向下平移3个单位长度,则在平移后的抛物线上,且在直线AB的下方,是否存在点P,使得118ABP ABMS S∆∆=若存在,求出点P的坐标;若不存在,请说明理由.题型四:二次函数中的旋转问题37.(2023•吉安县校级一模)已知抛物线21y ax bx c =++分别交x 轴于(1,0)A -,(3,0)B 两点,且与y 轴交于点(0,3)C -.(1)求抛物线的解析式及顶点P 坐标;(2)将该二次函数绕点(4,0)旋转180︒,求旋转后的二次函数解析式;(3)设旋转后的抛物线顶点坐标为Q ,且与x 轴的右侧交点为D ,顺次连接A 、P 、D 、Q ,求四边形APDQ 的面积.38.(2023•郏县一模)如图,直线24y x =--与x 轴交于点A ,抛物线2421y ax x a =+++经过点(1,8),与x 轴的一个交点为(B B 在A 的左侧),过点B 作BC 垂直x 轴交直线于C .(1)求a 的值及点B 的坐标;(2)将ABC ∆绕点A 顺时针旋转90︒,点B 、C 的对应点分别为点E 、F .将抛物线2421y ax x a =+++沿x 轴向右平移使它过点F ,求平移后所得抛物线的解析式.39.(2023•郸城县二模)如图1,抛物线21y ax bx c =++分别交x 轴于(1,0)A -,(3,0)B 两点,且与y 轴交于点(0,3)C -.(1)求抛物线的表达式及顶点P 的坐标.(2)如图2,将该抛物线绕点(4,0)旋转180︒.①求旋转后的抛物线的表达式;②旋转后的抛物线顶点坐标为Q ,且与x 轴的右侧交于点D ,顺次连接A ,P ,D ,Q ,求四边形APDQ 的面积.40.(2023•长春模拟)如图,直线122y x =-与y 轴交于点A ,与x 轴交于点B .抛物线214y x bx c =++经过点A ,点B ,并与x 轴有另一交点C .(1)依题,点A 的坐标是,点B 的坐标是.(2)求抛物线的解析式.(3)在直线AB 下方的抛物线上有一点D ,求四边形ADBC 面积的最大值.(4)在x 轴上有一个动点(,0)P m ,将线段OA 绕点P 逆时针旋转90︒得到线段MN .直接写出线段MN 与抛物线只有一个公共点时m 的取值范围.题型五:二次函数中的几何变换41.(2024•梧州模拟)九年级数学兴趣小组的同学研究发现若把二次函数21y ax bx c =++的系数调换位置变成新的二次函数22y cx bx a =-+,且0b ≠,这两个函数有一定的关连,于是命名它们为“互为对调函数”,根据这个规定,解答下列问题:(1)若二次函数21325y x x =+-,则它的“对调函数”是2y =,且此“对调函数”与y 轴的交点是;(2)若k 、m 为非零实数,二次函数213y x kx m =++经过两个不同的点(,)A k h 与点(,)B m h ,请求出“对调函数”2y 的对称轴;(3)在(2)中,“对调函数”2y 的图象是否经过某两个定点?若经过,求出这两个定点坐标;若不经过,请说明理由.。
图形的旋转、翻折与平移-三年中考数学真题分项汇编(解析版)
图形的旋转、翻折与平移一、单选题1.(2022·浙江湖州)如图,将△ABC沿BC方向平移1cm得到对应的△A′B′C′.若B′C=2cm,则BC′的长是()A.2cm B.3cm C.4cm D.5cm【答案】C【分析】据平移的性质可得BB′=CC′=1,列式计算即可得解.【详解】解:∵∵ABC沿BC方向平移1cm得到△A′B′C′,∵BB′=CC′=1cm,∵B′C=2cm,∵BC′= BB′+ B′C+CC′=1+2+1=4(cm).故选:C.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.2.(2022·浙江嘉兴)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心'''',形成一个“方吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A B C D胜”图案,则点D,B′之间的距离为()A.1cm B.2cm C.2-1)cm D.21)cm【答案】D【分析】先求出BD,再根据平移性质求得BB'=1cm,然后由BD BB-′求解即可.【详解】解:由题意,BD=22cm,由平移性质得BB'=1cm,∵点D,B′之间的距离为DB'=BD BB-′=(221-)cm,【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.3.(2021·浙江丽水)四盏灯笼的位置如图.已知A,B,C,D的坐标分别是(−1,b),(1,b),(2,b),(3.5,b),平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是()A.将B向左平移4.5个单位B.将C向左平移4个单位C.将D向左平移5.5个单位D.将C向左平移3.5个单位【答案】C【分析】直接利用利用关于y轴对称点的性质得出答案.【详解】解:∵点A (−1,b) 关于y轴对称点为B (1,b),C (2,b)关于y轴对称点为(-2,b),需要将点D (3.5,b) 向左平移3.5+2=5.5个单位,故选:C.【点睛】本题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.4.(2021·浙江绍兴)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是()A.用3个相同的菱形放置,最多能得到6个菱形B.用4个相同的菱形放置,最多能得到16个菱形C.用5个相同的菱形放置,最多能得到27个菱形D.用6个相同的菱形放置,最多能得到41个菱形【分析】根据平移和大菱形的位置得出菱形的个数进行判定即可【详解】如图所示,用2个相同的菱形放置,最多能得到3个菱形;用3个相同的菱形放置,最多能得到8个菱形,用4个相同的菱形放置,最多能得到16个菱形,用5个相同的菱形放置,最多能得到29个菱形,用6个相同的菱形放置,最多能得到47个菱形.故选:B.【点睛】本题考查了生活中的平移现象,菱形的判定,正确的识别图形是解题的关键.5.(2020·浙江台州)如图,把∵ABC 先向右平移3个单位,再向上平移2个单位得到∵DEF ,则顶点C (0,-1)对应点的坐标为( )A .(0,0)B .(1,2)C .(1,3)D .(3,1) 【答案】D 【分析】先找到顶点C 的对应点为F ,再根据直角坐标系的特点即可得到坐标.【详解】∵顶点C 的对应点为F ,由图可得F 的坐标为(3,1),故选D .【点睛】此题主要考查坐标与图形,解题的关键是熟知直角坐标系的特点.6.(2022·浙江台州)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a -【答案】B 【分析】直接利用关于y 轴对称,纵坐标相同,横坐标互为相反数,进而得出答案.【详解】解:根据题意,点E 与点D 关于y 轴对称,∵飞机E 的坐标为(40,a ),∵飞机D 的坐标为(-40,a ),【点睛】此题主要考查了关于y 轴对称点的性质,正确记忆横纵坐标的符号关系是解题关键.7.(2020·浙江台州)把一张宽为1cm 的长方形纸片ABCD 折叠成如图所示的阴影图案,顶点A ,D 互相重合,中间空白部分是以E 为直角顶点,腰长为2cm 的等腰直角三角形,则纸片的长AD (单位:cm )为( )A .732+B .742+C .832+D .842+【答案】D 【分析】如图,过点M 作MH∵A'R 于H ,过点N 作NJ∵A'W 于J .想办法求出AR ,RM ,MN ,NW ,WD 即可解决问题.【详解】解:如图,过点M 作MH∵A'R 于H ,过点N 作NJ∵A'W 于J .由题意∵EMN 是等腰直角三角形,EM=EN=2,MN=22∵四边形EMHK 是矩形,∵EK= A'K=MH=1,KH=EM=2,∵∵RMH 是等腰直角三角形,∵RH=MH=1,RM=2,同法可证NW=2,题意AR=R A'= A'W=WD=4,∵AD=AR+RM+MN+NW+DW=4+2+22+2+4=842+.故答案为:D.【点睛】本题考查翻折变换,等腰直角三角形的判定和性质,矩形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形或特殊四边形解决问题.8.(2022·浙江衢州)下列图形是中心对称图形的是( )A .B .C .D .【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180 ,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)逐项判断即可得.【详解】解:A、不是中心对称图形,此项不符合题意;B、是中心对称图形,此项符合题意;C、不是中心对称图形,此项不符合题意;D、不是中心对称图形,此项不符合题意;故选:B.【点睛】本题考查了中心对称图形,熟记中心对称图形的定义是解题关键.9.(2020·浙江绍兴)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形【答案】B【分析】根据对称中心的定义,根据矩形的性质,可得四边形AECF形状的变化情况.【详解】解:观察图形可知,四边形AECF形状的变化依次为平行四边形→菱形→平行四边形→矩形.故选:B.【点睛】考查了中心对称,矩形的性质,平行四边形的判定与性质,菱形的性质,根据EF与AC的位置关系即可求解.二、填空题10.(2022·浙江台州)如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′∵BC,则阴影部分的面积为______2cm.【答案】8【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A ′B ′C ′=S △ABC ,BC =B ′C ′,BC ∵B ′C ′,∵四边形B ′C ′CB 为平行四边形,∵BB ′∵BC ,∵四边形B ′C ′CB 为矩形,∵阴影部分的面积=S △A ′B ′C ′+S 矩形B ′C ′CB -S △ABC=S 矩形B ′C ′CB=4×2=8(cm 2).故答案为:8.【点睛】本题考查了矩形的判定和平移的性质:∵平移不改变图形的形状和大小;∵经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.11.(2022·浙江金华)如图,在Rt ABC 中,90,30,2cm ACB A BC ∠=︒∠=︒=.把ABC 沿AB 方向平移1cm ,得到A B C ''',连结CC ',则四边形AB C C ''的周长为_____cm .【答案】823+【分析】通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.【详解】解:∵90,30,2cm ACB A BC ∠=︒∠=︒=,∵AB =2BC =4,∵AC =2216423AB BC -=-=,∵把ABC 沿AB 方向平移1cm ,得到A B C ''',∵1CC '=,=4+1=5AB ', =2B C BC ''=,∵四边形的周长为:23152823+++=+,故答案为:823+.【点睛】本题考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键. 12.(2022·浙江嘉兴)如图,在扇形AOB 中,点C ,D 在AB 上,将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则EF 的度数为_______;折痕CD 的长为_______.【答案】 60°##60度 46【分析】根据对称性作O 关于CD 的对称点M ,则点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上,再结合切线的性质和垂径定理求解即可.【详解】作O 关于CD 的对称点M ,则ON =MN连接MD 、ME 、MF 、MO ,MO 交CD 于N∵将CD 沿弦CD 折叠∵点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上∵将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .∵ME ∵OA ,MF ∵OB∵90MEO MFO ∠=∠=︒∵120AOB ∠=︒∵四边形MEOF 中36060EMF AOB MEO MFO ∠=︒-∠-∠-∠=︒即EF 的度数为60°;∵90MEO MFO ∠=∠=︒,ME MF =∵MEO MFO ≅(HL )∵1302EMO FMO FME ∠=∠=∠=︒ ∵643cos cos30ME OM EMO ===∠︒∵23MN =∵MO ∵DC∵222216(23)262DN DM MN CD =-=-== ∵46CD =故答案为:60°;46【点睛】本题考查了折叠的性质、切线的性质、垂径定理、勾股定理;熟练掌握折叠的性质作出辅助线是解题的关键.13.(2020·浙江金华)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A与点B 重合),点O 是夹子转轴位置,O E ∵AC 于点E ,OF ∵BD 于点F ,OE=OF=1cm ,AC =BD =6cm , CE =DF , CE :AE =2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大值时,以点A ,B ,C ,D 为顶点的四边形的周长是_____ cm .(2)当夹子的开口最大(点C 与点D 重合)时,A ,B 两点的距离为_____cm .【答案】1660 13【分析】(1)当E、O、F三点共线时,E、F两点间的距离最大,此时四边形ABCD是矩形,可得AB=CD=EF=2cm,根据矩形的性质求出周长即可.(2)当夹子的开口最大(点C与D重合)时,连接OC并延长交AB于点H,可得CH AB⊥,AH=BH,利用已知先求出125CE cm=,在Rt△OEF中利用勾股定理求出CO的长,由sinOE AHECOCO AAC∠==,求出AH,从而求出AB=2AH的长.【详解】(1)当E、O、F三点共线时,E、F两点间的距离最大,此时四边形ABCD是矩形,∵AB=CD=EF=2cm,∵以点A,B,C,D为顶点的四边形的周长为2+6+2+6=16cm.(2)当夹子的开口最大(点C与D重合)时,连接OC并延长交AB于点H,∵CH AB⊥,AH=BH,∵AC=BD=6cm,CE∵AE=2∵3,∵125CE cm=,在Rt△OEF中,2213 5CO OE CE=+=,∵sinOE AHECOCO AAC∠==,3013AH=,∴AB=2AH=60 13.故答案为16,60 13.【点睛】本题主要考查了勾股定理与旋转的结合,做题时准确理解题意利用已知的直角三角形进行求解是解题的关键.三、解答题14.(2022·浙江温州)如图,在26⨯的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转180︒后的图形.【答案】(1)见解析(2)见解析【分析】(1)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可;(2)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可.(1)画法不唯一,如图1或图2等.(2)画法不唯一,如图3或图4等.【点睛】本题考查作图—旋转变换、作图—平移变换,解答本题的关键是明确题意,画出相应的图形,注意不要忘记画出平移后或旋转后的图形.15.(2022·浙江丽水)如图,在66的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与ABC相似的三角形,相似比不等于1.【答案】(1)画图见解析(2)画图见解析(3)画图见解析【分析】(1)分别确定A,B平移后的对应点C,D,从而可得答案;(2)确定线段AB,AC关于直线BC对称的线段即可;(3)分别计算ABC的三边长度,再利用相似三角形的对应边成比例确定DEF的三边长度,再画出DEF 即可.(1)解:如图,线段CD即为所求作的线段,(2)如图,四边形ABDC是所求作的轴对称图形,(3)如图,如图,DEF 即为所求作的三角形,由勾股定理可得:221310,2,AB AC而2,BC = 同理:2226210,22,DFDE 而4,EF1,2AB AC BC DF DE EF.ABC DFE ∽【点睛】本题考查的是平移的作图,轴对称的作图,相似三角形的作图,掌握平移轴对称的性质,相似三角形的判定方法是解本题的关键.16.(2021·浙江温州)如图44⨯与66⨯的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中,使点P 为它的一个顶点,并画出将它向右平移3个单位后所得的图形. (253中. 【答案】(1)见解析;(2)见解析【分析】(1)七巧板中有两个四边形,分别是正方形和平行四边形,根据题意可画出4种图形任意选一种即可,(2)七巧板中有五个等腰直角三角形,有直角边长2的两个,直角边长22的两个,直角边长2 的一个,根据题意利用数形结合的思想解决问题即可.【详解】解:(1)画法不唯一,当选四边形为正方形时可以是如图1或图2;当四边形式平行四边形时可以是图3或图4.(2)画法不唯一,当直角边长为2时,扩大5即直角边长为10利用勾股定理画出直角边长为10直角三角形可以是如图5或图6当直角边长为22时,扩大5即直角边长为210利用勾股定理画出直角边长为210直角三角形可以是如图7或图8等.【点睛】本题考查基本作图,平移,二次根式的乘法,以及勾股定理的应用,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.17.(2022·浙江宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.【答案】(1)见解析(2)见解析【分析】利用轴对称图形、中心对称图形的特点画出符合条件的图形即可;(1)答案不唯一.(2)【点睛】本题考查了轴对称图形、中心对称图形的特点,熟练掌握特殊三角形与四边形的性质才能准确画出符合条件的图形.18.(2020·浙江宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【答案】(1)见解析;(2)见解析【分析】(1)根据轴对称图形的定义画出图形构成一个大的等边三角形即可(答案不唯一).(2)根据中心对称图形的定义画出图形构成一个平行四边形即可(答案不唯一).【详解】解:(1)轴对称图形如图1所示.(2)中心对称图形如图2所示.【点睛】本题考查利用中心对称设计图案,利用轴对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.19.(2020·浙江金华)如图,在∵ABC 中,AB =42∵B =45°,∵C =60°. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将∵AEF 折叠得到∵PEF . ∵如图2,当点P 落在BC 上时,求∵AEP 的度数. ∵如图3,连结AP ,当PF ∵AC 时,求AP 的长.【答案】(1)4;(2)∵90°;∵26【分析】(1)如图1中,过点A 作AD∵BC 于D .解直角三角形求出AD 即可. (2)∵证明BE=EP ,可得∵EPB=∵B=45°解决问题. ∵如图3中,由(1)可知:AC=83sin 603AD =︒,证明∵AEF∵∵ACB ,推出AF AE AB AC =,由此求出AF 即可解决问题.【详解】解:(1)如图1,过点A 作AD ∵BC 于点D , 在Rt∵ABD 中,sin 45AD AB =⋅︒=2422⨯=4.(2)∵如图2,∵∵AEF ∵∵PEF , ∵AE =EP . 又∵AE =BE , ∵BE =EP , ∵∵EPB =∵B =45°, ∵∵AEP =90°.∵如图3,由(1)可知:在Rt∵ADC 中,83sin 603AD AC ==︒. ∵PF ∵AC , ∵∵PF A =90°. ∵∵AEF ∵∵PEF ,∵∵AFE =∵PFE =45°,则∵AFE =∵B . 又∵∵EAF =∵CAB , ∵∵EAF ∵∵CAB ,∵AF AB=AE AC ,即42AF =22833, ∵AF =23,在Rt∵AFP 中,AF =PF ,则AP =2AF =26.【点睛】本题属于三角形综合题,考查了解直角三角形的应用,翻折变换,全等三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.20.(2021·浙江嘉兴)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα︒<≤︒,得到矩形'''AB C D[探究1]如图1,当90α=︒时,点'C 恰好在DB 延长线上.若1AB =,求BC 的长.[探究2]如图2,连结'AC ,过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB 分别交'AD ,'AC 于点P ,N (如图3),MN ,PN 存在一定的数量关系,并加以证明.【答案】[探究1]152BC +=;[探究2]'D M DM =,证明见解析;[探究3]2MN PN DN =⋅,证明见解析 【分析】[探究1] 设BC x =,根据旋转和矩形的性质得出''//D C DA ,从而得出''D C B ADB ∆∆∽,得出比例式'''D C D BAD AB=,列出方程解方程即可; [探究2] 先利用SAS 得出''AC D DBA ∆∆≌,得出'DAC ADB ∠=∠,'ADB AD M ∠=∠,再结合已知条件得出''MDD MD D ∠=∠,即可得出'D M DM =;[探究3] 连结AM ,先利用SSS 得出ADM ADM ∆∆≌,从而证得MN AN =,再利用两角对应相等得出NPA NAD ∆∆∽,得出PN ANAN DN=即可得出结论. 【详解】[探究1]如图1,设BC x =.∵矩形ABCD 绕点A 顺时针旋转90︒得到矩形'''AB C D , ∵点A ,B ,'D 在同一直线上.∵'AD AD BC x ===,'1DC AB AB ===, ∵''1D B AD AB x =-=-. ∵'90BAD D ∠=∠=︒, ∵//D C DA ''.又∵点'C 在DB 延长线上, ∵''D C B ADB ∆∆∽, ∵'''D C D BAD AB =,∵111x x -=. 解得1152x +=,2152x -=(不合题意,舍去)∵152BC +=. [探究2] 'D M DM =. 证明:如图2,连结'DD .∵'//'D M AC , ∵'''AD M D AC ∠=∠.∵'AD AD =,''90AD C DAB ∠=∠=︒,''D C AB =,∵()''AC D DBA SAS ∆∆≌.∵'D AC ADB '∠=∠,'ADB AD M ∠=∠,∵AD AD =,''ADD AD D ∠=∠,∵''MDD MD D ∠=∠,∵'D M DM =.[探究3]关系式为2MN PN DN =⋅.证明:如图3,连结AM .∵'D M DM =,'AD AD =,AM AM =,∵()ADM AD M SSS '∆∆≌.∵'MAD MAD ∠=∠,∵AMN MAD NDA ∠=∠+∠,'NAM MAD NAP ∠=∠+∠,∵AMN NAM ∠=∠,∵MN AN =.在NAP ∆与NDA ∆中,ANP DNA ∠=∠,NAP NDA ∠=∠,∵NPA NAD ∆∆∽,∵PN AN AN DN=, ∵2AN PN DN =⋅.∵2MN PN DN =⋅.【点睛】本题考查了矩形的性质,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,解一元二次方程等,解题的关键是灵活运用这些知识解决问题.21.(2020·浙江绍兴)如图1,矩形DEFG中,DG=2,DE=3,Rt∵ABC中,∵ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG∵BC,OG=2,OC=4.将∵ABC绕点O逆时针旋转α(0°≤α<180°)得到∵A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.∵当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.∵当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.【答案】(1)点C′到直线OF的距离为23;(2)∵点C′到直线DE的距离为22±2;∵2≤d<4417或d=3.【分析】(1)过点C′作C′H∵OF于H.根据直角三角形的边角关系,解直角三角形求出CH即可.(2)∵分两种情形:当C′P∵OF时,过点C′作C′M∵OF于M;当C′P∵DG时,过点C′作C′N∵FG于N.通过解直角三角形,分别求出C′M,C′N即可.∵设d为所求的距离.第一种情形:当点A′落在DE上时,连接OA′,延长ED交OC于M.当点P落在DE上时,连接OP,过点P作PQ∵C′B′于Q.结合图象可得结论.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=25﹣2,即d=25﹣2;当点P落在EF上时,设OF交A′B′于Q,过点P作PT∵B′C′于T,过点P作PR∵OQ交OB′于R,连接OP.求出QG可得结论.第三种情形:当A′P经过点F时,此时显然d=3.综上所述即可得结论.【详解】解:(1)如图,过点C′作C′H∵OF于H.∵∵A′B′C′是由∵ABC绕点O逆时针旋转得到,∵C′O=CO=4,在Rt∵HC′中,∵∵HC′O=α=30°,∵C′H=C′O•cos30°=23,∵点C′到直线OF的距离为23.(2)∵如图,当C′P∵OF时,过点C′作C′M∵OF于M.∵∵A′B′C′为等腰直角三角形,P为A′B′的中点,∵∵A′C′P=45°,∵∵A′C′O=90°,∵∵OC′P=135°.∵C′P∵OF,∵∵O=180°﹣∵OC′P=45°,∵∵OC′M是等腰直角三角形,∵C′M =C′O•cos45°=4×22=22, ∵点C′到直线DE 的距离为222-.如图,当C′P∵DG 时,过点C′作C′N∵FG 于N .同法可证∵OC′N 是等腰直角三角形,∵C′N =22,∵GD=2,∵点C′到直线DE 的距离为222+.∵设d 为所求的距离.第一种情形:如图,当点A′落在DE 上时,连接OA′,延长ED 交OC 于M .∵OC=4,AC=2,∵ACO=90°,2216425OA CO AC =+∴+==∵OM =2,∵OMA′=90°,∵A′M =22A O OM '-=()22252-=4,∵DM=2,∵A′D=A′M-DM=4-2=2,即d=2,如图,当点P落在DE上时,连接OP,过点P作PQ∵C′B′于Q.∵P为A′B′的中点,∵A′C′B′=90°,∵PQ∵A′C′,∵'12 B P C Q PQB A BC A C'''''''===∵B′C′=2∵PQ=1,C'Q=1,∵Q点为B′C′的中点,也是旋转前BC的中点,∵OQ=OC'+C'Q=5∵OP=2251+=26,∵PM=2226422OP OM-=-=,∵PD=222PM DM-=-,∵d=22﹣2,∵2≤d≤22﹣2.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=25﹣2,即d=25﹣2,如图,当点P落在EF上时,设OF交A′B′于Q,过点P作PT∵B′C′于T,过点P作PR∵OQ交OB′于R,连接OP.由上可知OP=26,OF=5,∵FP=22OP OF-=2625-=1,∵OF=OT,PF=PT,∵F=∵PTO=90°,∵Rt∵OPF∵Rt∵OPT(HL),∵∵FOP=∵TOP,∵PR∵OQ,∵∵OPR=∵POF,∵∵OPR=∵POR,∵OR=PR,∵PT2+TR2=PR2,22215PR PR∴+(﹣)=∵PR=2.6,RT=2.4,∵∵B′PR∵∵B′QO,∵B ROB''=PRQO,∵3.46=2.6OQ,∵OQ=78 17,∵QG=OQ﹣OG=4417,即d=4417∵25﹣2≤d<44 17,第三种情形:当A′P经过点F时,如图,此时FG=3,即d=3.综上所述,2≤d<4417或d=3.【点睛】(1)本题考查了通过解直角三角形求线段长,解决本题的关键是构建直角三角形,熟练掌握直角三角形中边角关系.(2)∵本题综合性较强,考查了平行线的性质,解直角三角形,解决本题的关键是正确理解题意,能够根据题目条件进行分类讨论,然后通过解直角三角形求出相应的线段长即可.∵本题综合性较强,考查了辅助线的作法,平行线的性质以及解直角三角形,解决本题的关键是正确理解题意,能够根据情况对题目进行分类讨论,通过不同情形,能够作出辅助线,在解决本题的过程中要求熟练掌握直角三角形中的边角关系. 22.(2020·浙江嘉兴)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∵ACB=∵DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE (如图4).【探究】当EF平分∵AEO时,探究OF与BD的数量关系,并说明理由.【答案】【思考】是,理由见解析;【发现】94;【探究】BD =2OF ,理由见解析; 【分析】【思考】由全等三角形的性质得出AB =DE ,∵BAC =∵EDF ,则AB ∵DE ,可得出结论;【发现】连接BE 交AD 于点O ,设AF =x (cm ),则OA =OE =12(x +4),得出OF =OA ﹣AF =2﹣12x ,由勾股定理可得()2221123424x x ⎛⎫-+=+ ⎪⎝⎭,解方程求出x ,则AF 可求出; 【探究】如图2,延长OF 交AE 于点H ,证明∵EFO ∵∵EFH (ASA ),得出EO =EH ,FO =FH ,则∵EHO =∵EOH =∵OBD =∵ODB ,可证得∵EOH ∵∵OBD (AAS ),得出BD =OH ,则结论得证.【详解】解:【思考】四边形ABDE 是平行四边形.证明:如图,∵∵ABC ∵∵DEF ,∵AB =DE ,∵BAC =∵EDF ,∵AB ∵DE ,∵四边形ABDE 是平行四边形;【发现】如图1,连接BE 交AD 于点O ,∵四边形ABDE 为矩形,∵OA =OD =OB =OE ,设AF =x (cm ),则OA =OE =12(x +4),∵OF =OA ﹣AF =2﹣12x ,在Rt∵OFE 中,∵OF 2+EF 2=OE 2,∵()2221123424x x ⎛⎫-+=+ ⎪⎝⎭, 解得:x =94, ∵AF =94cm . 【探究】BD =2OF ,证明:如图2,延长OF 交AE 于点H ,∵四边形ABDE 为矩形,∵∵OAB =∵OBA =∵ODE =∵OED ,OA =OB =OE =OD ,∵∵OBD =∵ODB ,∵OAE =∵OEA ,∵∵ABD +∵BDE +∵DEA +∵EAB =360°,∵∵ABD +∵BAE =180°,∵AE ∵BD ,∵∵OHE =∵ODB ,∵EF 平分∵OEH ,∵∵OEF =∵HEF ,∵∵EFO =∵EFH =90°,EF =EF ,∵∵EFO ∵∵EFH (ASA ),∵EO =EH ,FO =FH ,∵∵EHO =∵EOH =∵OBD =∵ODB ,∵∵EOH ∵∵OBD (AAS ),∵BD =OH =2OF .【点睛】本题考查了图形的综合变换,涉及了三角形全等的判定与性质、平行四边形的判定与性质等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.。
备战2025年中考数学(全国)秘籍14 二次函数图象的平移、翻折、旋转综合问题(3题型)(解析版)
抢分秘籍14二次函数图象的平移、翻折、旋转综合问题(压轴通关)目录【中考预测】预测考向,总结常考点及应对的策略【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)二次函数图象的平移、翻折、旋转综合问题是全国中考的热点内容,更是全国中考的必考内容。
每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。
1.从考点频率看,二次函数图象的平移、翻折、旋转问题是几何综合,综合性比较强,同时也是高频考点、必考点,所以必须对几何和函数图象的性质定理很熟练和贯通。
2.从题型角度看,以解答题的最后一题或最后第二题为主,分值12分左右,着实不少!题型一二次函数图象的平移综合问题【例1】(2024·浙江温州·一模)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式;(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.【答案】(1)点B 的坐标为()0,2,24y x x =-+;本题考查了待定系数法求二次函数解析式、一次函数的图象与性质、二次函数图象的平移,熟练掌握知识点的应用是解题的关键.【例2】(2024·江西赣州·模拟预测)如图,已知抛物线1L :2y x =-与直线1y =-相交于A ,B .(1)AB =______;(2)抛物线1L 随其顶点沿直线12y x =向上平移,得到抛物线2L ,抛物线2L 与直线1y =-相交于C ,D (点C 在点D 左边),已知抛物线2L 顶点M 的横坐标为m .①当6m =时,抛物线2L 的解析式是______,CD =______;②连接,MC MD ,当MCD △为等边三角形时,求点M 的坐标.∵MCD △是等边三角形,∴60MCE ∠=︒,∴12tan 2m ME MCE m CE +∠=+=1.(2024·陕西西安·三模)已知抛物线2:4C y ax bx =+-的对称轴为2x =,且过点()1,2A .(1)求抛物线C 的表达式及顶点坐标;(2)对称轴直线2x =与x 轴的交于点D ,与抛物线C 交于点N .平移抛物线C 得到抛物线C ',使得抛物线C '的顶点M 在直线2x =的右侧.若等腰三角形DNM 面积为8,请叙述平移过程.∵等腰三角形DNM面积为∴h为该等腰三角形的高,∴148 2h⨯=,∴()24,2M +,即()6,2M ,∴将抛物线C 向右平移4个单位长度,再向下平移2个单位长度,得到抛物线C '.当4DM DN ==时,如图,可得()6,0M ,∴将抛物线C 向右平移4个单位长度,再向下平移4个单位长度,得到抛物线C '.当NM ND =时,如图,可得()6,4M ∴将抛物线C 向右平移4个单位长度,得到抛物线C '.2.(2024·贵州安顺·一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =__________;2y 与y 轴的交点坐标为(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.3.(2024·安徽池州·二模)如图,抛物线2Ly ax bx c =++∶与x 正半轴交于点(3,0)A ,与y 轴交于点(0,3)B ,对称轴为直线1x =.(1)求直线AB 的解析式及抛物线的解析式;(2)如图①,点P 为第一象限抛物线上一动点,过点P 作PC x ⊥轴,垂足为C ,PC 交AB 于点D ,求当点P 的横坐标为多少时,PD AD +最大;(3)如图②,将抛物线2L y ax bx c =++∶向左平移得到抛物线L ',直线AB 与抛物线L '交于M 、N 两点,若点B 是线段MN 的中点,求抛物线'L 的解析式.(1)①写出a 与b 的数量关系______;②证明:抛物线与直线22y x =-+有两个交点;(2)如图2,抛物线经过点()1,1--,将此抛物线记为1F ,把抛物线1F 先向左平移2个单位长度,再向上平移1个单位长度,得抛物线2F .①求抛物线2F 与x 轴的交点坐标;②点P 为抛物线1F 上一动点,过点P 作x 轴的垂线,交抛物线2F 于点Q ,连接PQ ,以点P 为圆心、PQ 的长为半径作P .当P 与x 轴相切时,求点P 的坐标.特例感知(1)如图1,对于抛物线()()111332y x x =---+,()21432y x x =--+,()()311532y x x =-+-+,()()412632y x x =-+-+,下列结论正确的序号是________.①抛物线1y ,2y ,3y ,4y 的对称轴是直线2x =;②抛物线1y ,2y ,3y ,4y 由抛物线212y x =-依次向上平移2个单位长度得到;③抛物线1y ,2y ,3y ,4y 与直线3y =的交点中,对称轴两侧相邻两点之间的距离相等.概念形成把满足()()12232n y x n x n =-+---+的抛物线称为“族抛物线”.知识应用如图2,“族抛物线”n y 的顶点依次为1M ,2M ,3M ,4M ,…,n M .(2)试求线段1n n M M +的长.(用含n 的代数式表示)(3)“族抛物线”1y ,2y ,3y ,…,n y 上分别有点1P ,2P ,3P ,…,n P ,它们的横坐标分别是2,3,4,…,1n +.试判断点1P ,2P,3P ,…,n P 是否在同一条直线上,如果在,求出此直线的解析式;如果不在,请说明理由.【详解】解:(1)()()111332y x x =---+213222x x =-++()217222x =--+,∴抛物线的对称轴为直线2x =,顶点坐标为72,2⎛⎫ ⎪⎝⎭;()21432y x x =--+21232x x =-++()21252x =--+,∴抛物线的对称轴为直线2x =,顶点坐标为()2,5;()()311532y x x =-+-+2111222x x =-++()2115222x =--+,∴抛物线的对称轴为直线2x =,顶点坐标为152,2⎛⎫ ⎪⎝⎭;()()412632y x x =-+-+21292x x =-++()212112x =--+,∴抛物线的对称轴为直线2x =,顶点坐标为()2,11;①抛物线1y ,2y ,3y ,4y 的对称轴是直线2x =,故①正确;②抛物线1y ,2y ,3y ,4y 由抛物线()2122y x =--向上平移得到,但不是2个单位,故②错误;③抛物线()()111332y x x =---+与直线3y =的交点坐标为()11,3B ,()13,3A ;抛物线()21432y x x =--+与直线3y =的交点坐标为()20,3B ,()24,3A ;抛物线()()311532y x x =-+-+与直线3y =的交点坐标为()31,3B -,()35,3A ;抛物线()()412632y x x =-+-+与直线3y =的交点坐标为()42,3B -,()46,3A ;∴抛物线1y ,2y ,3y ,4y 与直线3y =的交点中,对称轴两侧相邻两点之间的距离相等,故③正确.综上分析可知,正确的是①③;(2)∵()()12232n y x n x n =-+---+()2214432x x n =---++()2212322n x =--+,∴“族抛物线”n y 的顶点坐标为22,32n n M ⎛⎫+ ⎪⎝⎭,则()2112,32n n M +⎡⎤++⎢⎥⎢⎥⎣⎦,∴()22112133222n n n n n M M ++⎛⎫+=+-+= ⎪⎝⎭;(3)把2x =代入()2117222y x =--+得:172y =,则172,2P ⎛⎫ ⎪⎝⎭;把3x =代入()221252y x =--+得:292y =,则293,2P ⎛⎫ ⎪⎝⎭;把4x =代入()23115222y x =--+得:3112y =,则3114,2P ⎛⎫ ⎪⎝⎭;把5x =代入()2412112y x =--+得:4132y =,则4135,2P ⎛⎫ ⎪⎝⎭;把1x n =+代入()2212322n n y x =--++得:52n y n =+,则51,2n P n n ⎛⎫++ ⎪⎝⎭;∴点3、4、n 在直线12上,∴点1P ,2P ,3P ,…,n P 在同一条直线上.【点睛】本题主要考查了二次函数的综合应用,二次函数的性质,求一次函数解析,解题的关键是数形结合,熟练掌握二次函数的性质.题型二二次函数图象的翻折综合问题【例1】(2024·湖北孝感·一模)如图1,抛物线254y ax bx =++与x 轴相交于1,02A ⎛⎫ ⎪⎝⎭、5,02B ⎛⎫ ⎪⎝⎭两点,与y 轴交于点C ,连接BC ,抛物线顶点为点M .(1)直接写出a ,b 的值及点M 的坐标;(2)点N 为抛物线对称轴上一点,当AN CN +最小时,求点N 的坐标;(3)平移直线BC 得直线y mx n =+.①如图2,若直线y mx n =+过点M ,交x 轴于点D ,在x 轴上取点7,06E ⎛⎫ ⎪⎝⎭,连接EM ,求∠DME 的度数.②把抛物线254y ax bx =++在x 轴下方图象沿x 轴翻折得到新图象(如图3).当直线y mx n =+与新图象有两个公共点时,请直接写出n 的取值范围.则3,02H ⎛⎫ ⎪⎝⎭,∴1MH =,3122DH ⎛⎫=--= ⎪⎝⎭在Rt DMH △中,=DM DH ∵7,06E ⎛⎫ ⎪⎝⎭,∴715DE ⎛⎫=--=,则翻折后的图象的解析式为y=-∵直线BC解析式为1524 y x=-+,直线BC平移后的解析式为1 y=-本题考查用待定系数法求二次函数解析式、解直角三角形的应用、勾股定理、一元二次方程的根与判别式的关系、解一元一次方程及解二元一次方程组,熟练利用待定系数法求得二次函数解析式是解题的关键.【例2】(2024·四川德阳·模拟预测)学习了二次函数后,我们发现抛物线的形状由二次函数的二次项系数决定.已知抛物线()2440y ax ax a =-->.(1)如图1,将抛物线244y ax ax =--在直线4y =-下方的图象沿该直线翻折,其余部分保持不变,得到一个新的函数图象“W ”.翻折后,抛物线顶点A 的对应点A '恰好在x 轴上,求抛物线244y ax ax =--的对称轴及a 的值;(2)如图2,抛物线()2440y ax ax a =-->的图象记为“G ”,与y 轴交于点B ;过点B 的直线与(1)中的图象“W ”(2)x >交于P ,C 两点,与图象“G ”交于点D .①当13a =时,求证:PC CD =;②当1a ≠时,请用合适的式子表示PC PD(直接写结果).【答案】(1)2x =,1a =;作CN x ∥轴,过点D 作DN 由各点横坐标可得:4PM =∴PM CN =.∵PM x ∥轴,CN x ∥轴,∴∥PM CN ,∴DCN CPM ∠=∠.∵DN CN CM PM ⊥⊥,,由各点的横坐标可知4PQ k =+∵CQ PQ DT PT ⊥⊥,,∴CQ DT .∴CPQ DPT ∽.则()2211PC PQ k a PD PT k a a===++.当1a >时,如图3,作PQ x ∥轴,过点C 作CQ x ⊥轴,交PQ 于点Q ,过点D 作DT x ⊥轴交PQ 于点T .由各点的横坐标可知4(4)2PQ k k k =+--=,()()144k a a k PT k a a++=--=,∵CQ PQ DT PT ⊥⊥,,∴CQ DT ,∴CPQ DPT ∽.则()2211PC PQ k a PD PT k a a===++.综上所述,用含a 的式子表示PC PD为21a a +1.(2022·湖南衡阳·中考真题)如图,已知抛物线2y x x 2=--交x 轴于A 、B 两点,将该抛物线位于x 轴下方的部分沿x 轴翻折,其余部分不变,得到的新图象记为“图象W ”,图象W 交y 轴于点C .(1)写出图象W 位于线段AB 上方部分对应的函数关系式;(2)若直线y x b =-+与图象W 有三个交点,请结合图象,直接写出b 的值;(3)P 为x 轴正半轴上一动点,过点P 作PM y ∥轴交直线BC 于点M ,交图象W 于点N ,是否存在这样的点P ,使CMN 与OBC △相似?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.题型三二次函数图象的旋转综合问题【例1】(新考法,拓视野)(2024·江西南昌·一模)如图、在平面直角坐标系xOy 中,抛物线21:23C y x x =-++与x 轴交于点A ,点B (点A 在点B 的左侧),与y 轴交于点C ,P 为抛物线1C 的顶点,连接PB ,将抛物线1C 绕点O 旋转180︒得到抛物线2C .(1)求抛物线2C 的解析式.(2)连接AC ,BC ,求sin ACB ∠的值.(3)连接CP ,Q 是抛物线2C 上的点,若满足QCO PBC ∠=∠,求点Q 的坐标.1解得,121,3x x =-=,∴()()()0,3,1,0,3,0C A B -,又()221:2314C y x x x =-++=--+,,则111022ABC S AC BE =⨯=⨯ ∴1212610510BE AC ===,∴61025sin 532BE ACB BC ∠===∵QCO PBC ∠=∠,∴tan tan QCO PBC ∠=∠=设点Q 的坐标为(2,2m m m +∴213233m m m -=--+,解得,122,3m m =-=,∵点A 关于原点对称的点∴1OA '=,连接CA ',则有:tan A CO '∠∴tan tan ,A CO PBC '∠=∠∴点Q 与点A '重合,∴()1,0Q ,本题主要考查二次函数的图象与性质,中心对称的性质以及与解直角三角形相关的计算.【例2】(2023·陕西西安·模拟预测)已知抛物线21:22L y ax x =--与x 轴相交于A 、B 两点(点B 在点A 的左侧),点A 的坐标是(4,0),与y 轴相交于点C ,将抛物线L 绕点(2,0)旋转180︒得到抛物线1L .(1)求抛物线1L 的函数表达式.(2)将抛物线1L 向左或向右平移,得到抛物线2L ,2L 与x 轴相交于A '、B '两点(点B '在点A '的左侧),与y 轴相交于点C ',要使2A B C ABC S S '''=△△,求所有满足条件的抛物线2L 的函数表达式.(2)当0x =时,1(4y =∴抛物线219(1)44y x =--由题可知AB A B ''=,要使2A B C ABC S S '''=△△,则19【点睛】此题考查了二次函数的图象和性质、二次函数的平移和旋转、待定系数法等知识,熟练掌握二次函数的图象和性质及平移规律是解题的关键.1.(2023·河南周口·二模)如图1,抛物线21y ax bx c =++分别交x 轴于()1,0A -,()3,0B 两点,且与y 轴交于点()0,3C -.(1)求抛物线的表达式及顶点P 的坐标.(2)如图2,将该抛物线绕点()4,0旋转180︒.①求旋转后的抛物线的表达式.②旋转后的抛物线顶点坐标为Q ,且与x 轴的右侧交于点D ,顺次连接A ,P ,D ,Q ,求四边形APDQ 的面积.【答案】(1)223y x x =--,()1,4-(2)①()247y x =-+-;②40【分析】(1)根据函数的交点式设二次函数的表达式为()()13y a x x =+-,将点()0,3C -代入即可求解,再把二次函数变换成顶点式即可求出点P 的坐标;(2)①根据旋转的特点,设旋转后抛物线的顶点坐标为(),m n ,可知()4,0为顶点()1,4P -和(),Q m n 的中点,根据中点坐标公式可求旋转后函数的顶点坐标,由此即可求解;②根据题意求出点D 的坐标,由,,,A P D Q 的坐标,图形结合得AQD APD APDQ S S S =+△△四边形,由此即可求解.2.(2023河北廊坊二模)如图,抛物线1,其顶点B 的纵坐标为2-,点M 的坐标为(),0(m 0m >),将抛物线1L 绕点M 旋转180︒得到抛物线2L ,点A 对应点为点C ,点B 对应点为点D .(1)求抛物线1L 的表达式;(2)试用含m 的代数式表示出点D 的坐标,并直接写出抛物线2L 的表达式;(3)若直线y t =(t 为常数)与抛物线1L 、2L 均有交点,请直接写出t 的取值范围.【答案】(1)2221224()y x x x=+-=+(2)()21,2D m +,22212()y x m =---+(3)22t -≤≤【分析】(1)根据题意求得顶点坐标,设抛物线的解析式为2(1)2y a x =+-,将原点坐标代入求得a 的值,即可求得抛物线的解析式,(2)过点B 作BE x ⊥轴于E ,过点D 作DF x ⊥轴于F ,证明(AA )S BEM DFM ≌ ,进而求得()21,2D m +,根据旋转的性质即可求得抛物线2L 的解析式,(3)根据当直线(y t t =为常数)在点B 与点D 之间运动时,与抛物线1L 、2L 均有交点,B 点的纵坐标为2-,D 点的纵坐标为2,即可求得t 的范围,【详解】(1) 抛物线1L 经过坐标原点和点()2,0A -,∴抛物线1L 的对称轴为直线1x =-.顶点B 的纵坐标为2-,∴抛物线1L 的顶点B 的坐标为()1,2--.∴设抛物线的解析式为2(1)2y a x =+-.抛物线1L 经过坐标原点,120a ∴⨯-=.2a ∴=.∴抛物线1L 的表达式为:2221224()y x x x =+-=+.(2) 点M 为旋转中心,MA MC ∴=,MB MD =.∴四边形ABCD 为平行四边形.过点B 作BE x ⊥轴于E ,过点D 作DF x ⊥轴于F ,如图,90BEM DFM ∠=∠=︒ ,BME DMF ∠=∠,∴(AA )S BEM DFM ≌ .ME MF ∴=,BE DF =.()1,2B -- ,1OE ∴=,2BE =.2DF ∴=.点M 的坐标为(),0(0)m m >,OM m ∴=.1ME OM OE m ∴=+=+.1MF ME m ∴==+.21OF OM MF m ∴=+=+.∴()21,2D m +.将抛物线1L 绕点M 旋转180︒得到抛物线2L ,∴抛物线2L 的解析式为:22212()y x m =---+.(3) 直线(y t t =为常数)是与x 轴平行的直线,∴当直线(y t t =为常数)在点B 与点D 之间运动时,与抛物线1L 、2L 均有交点.B 点的纵坐标为2-,D 点的纵坐标为2,t ∴的取值范围为22t -≤≤.【点睛】本题主要考查了二次函数的综合运用,待定系数法求函数的解析式,二次函数的顶点坐标,对称轴,平行四边形的性质,三角形的面积.利用点的坐标表示相应线段的长度是解题的关键.3.(2023·河北邯郸·二模)如图1,抛物线2:28L y ax ax a =++-与x 轴相交于A ,B 两点(点A 在,点B 的左侧),已知点B 的横坐标是1,抛物线L 的顶点为D ,点P 从原点开始沿x 轴正半轴运动,将抛物线L 绕点P 旋转180︒后得到抛物线1L ,顶点E 的横坐标为h .(1)求a 的值及顶点D 的坐标;(2)当点P 与点B 重合时,求抛物线1L 的解析式:(3)如图2,明明设计小游戏:有一等边三角形MNK (MN 与x 轴平行),边长为5,顶点M 的坐标为1,6(),当抛物线1L 与MNK △有公共点时(含边界),MNK △会变色,此时抛物线1L 被称为“美好曲线”,请直接写出抛物线1L 为“美好曲线”时,点E 横坐标h 的取值范围.【答案】(1)2a =;(1,8)--(2)22(3)8y x =--+(3)17h ≤≤【分析】(1)将(1,0)B 代入228y ax ax a =++-中,求出a 值后即可得解;(2)连接DE ,作DH x ⊥轴于点H ,作EM x ⊥轴于点M ,证出()DBH EBM AAS ≅ ,抛物线1L 的顶点E 的坐标,然后根旋转的性质即可得解;(3)设(),0P m ,利用D ,E 关于点P 成中心对称,利用中点坐标公式得出()21,8E m +,()()21,023,0G m F m -+,,用含m 的式子表示出1L 的解析式,根据旋转的性质和新定义讨论出m 的范围,进而可得出h 的取值范围.【详解】(1)由题意可知,点B 坐标为(1,0),将(1,0)B 代入228y ax ax a =++-中,得2a =∴抛物线L 的解析式为222462(1)8y x x x =+-=+-∴顶点D 的坐标为(1,8)--;(2)如图,连接DE ,作DH x ⊥轴于点H ,作EM x ⊥轴于点M ,根据题意,点D ,E 关于点(1,0)B 成中心对称,DE ∴过点B ,且DB EB =,在DBH △和EBM △中,90,,,DHB EMB DBH EBM DB EB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()DBH EBM AAS ∴≅ ,8EM DH ∴==,2BM BH ==,∴抛物线1L 的顶点E 的坐标为(3,8),抛物线1L 由L 绕点P 旋转180︒后得到,∴抛物线1L 的函数表达式为22(3)8y x =--+;(3)设(),0P m ∵D ,E 关于点P 成中心对称,()1,8D --∴根据中心对称的性质,得出P 为DE 的中点∴()21,8E m +同理可得()()21,023,0G m F m -+,【点睛】本题考查二次函数的综合应用,图形的旋转,新定义二次项系数a确定函数的形状,形状相同.开口方向相同则二次项系数相等,若形状相同,开口方向相反,则二次项系数互为相反数,根据二次项系数和顶点坐标直接写出二次函数的解析式是关键.。
上海中考18题 图形的平移、翻折、旋转及点的运动(解析版)
专题38 图形的平移、翻折、旋转及点的运动图形的平移、翻折、旋转及点的运动是初中数学图形的几种基本运动形式,是初中数学的重要内容之一.这类问题常常要运用“动”的思路去观察、分析、推理、猜想、探究相关图形的位置变化情况或图形的有关性质,对提高数学思维能力与发展空间观念有重要作用,也是近年的中考试题的一个热点.图形的平移、翻折、旋转有一个重要性质:任何图形经过平移、翻折、旋转后,除图形的位置发生变化外,图形的形状、大小保持不变.这个性质在解决图形运动的有关问题中常用.【例1】(2019•上海)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.【分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB=ABAE=2.【解答】解:如图所示,由折叠可得AE=FE,∠AEB=∠FEB=12∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=12AD=12AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=12∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB=ABAE=2.故答案为:2.【例2】(2020•静安区一模)如图,有一菱形纸片ABCD,∠A=60°,将该菱形纸片折叠,使点A恰好与CD的中点E重合,折痕为FG,点F、G分别在边AB、AD上,联结EF,那么cos∠EFB的值为.【分析】如图,连接BD.设BC=2a.在Rt△BEF中,求出EF,BF即可解决问题.【解答】解:如图,连接BD.设BC=2a.∵四边形ABC都是菱形,∴AB=BC=CD=AD=2a,∠A=∠C=60°,∴△BDC是等边三角形,∵DE=EC=a,∴BE⊥CD,∴BE=√BC2−EC2=√3a,∵AB∥CD,BE⊥CD,∴BE⊥AB,∴∠EBF=90°,设AF=EF=x,在Rt△EFB中,则有x2=(2a﹣x)2+(√3a)2,∴x =7a 4, ∴AF =EF =7a 4,BF =AB ﹣AF =a 4, ∴cos ∠EFB =BF EF =a 47a 4=17, 故答案为17. 【例3】(2020•闵行区一模)如图,在等腰△ABC 中,AB =AC =4,BC =6,点D 在底边BC 上,且∠DAC =∠ACD ,将△ACD 沿着AD 所在直线翻折,使得点C 落到点E 处,联结BE ,那么BE 的长为 .【分析】只要证明△ABD ∽△MBE ,得AB BM =BD BE ,只要求出BM 、BD 即可解决问题. 【解答】解:∵AB =AC ,∴∠ABC =∠C ,∵∠DAC =∠ACD ,∴∠DAC =∠ABC ,∵∠C =∠C ,∴△CAD ∽△CBA ,∴CA CB=CD AC , ∴46=CD 4, ∴CD =83,BD =BC ﹣CD =103,∵∠DAM =∠DAC =∠DBA ,∠ADM =∠ADB ,∴△ADM ∽△BDA ,∴AD BD =DM DA ,即83103=DM 83,∴DM =3215,MB =BD ﹣DM =65,∵∠ABM =∠C =∠MED ,∴A 、B 、E 、D 四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴ABBM =BDBE,∴BE=BM⋅DBAB=1.故答案为:1.1.(2020•青浦区一模)已知,在矩形纸片ABCD中,AB=5cm,点E、F分别是边AB、CD的中点,折叠矩形纸片ABCD,折痕BM交AD边于点M,在折叠的过程中,如果点A恰好落在线段EF上,那么边AD的长至少是cm.【分析】根据已知条件得到AE=DF=BE=CF,求得四边形AEFD是矩形,得到EF=AD,∠AEN=∠BEN=90°,根据折叠的性质得到BN=AB,根据直角三角形的性质得到∠BNE=30°,于是得到EN=√32BN=5√32,即可得到结论.【解答】解:如图,∵在矩形纸片ABCD中,点E、F分别是边AB、CD的中点,∴AE=DF=BE=CF,∴四边形AEFD是矩形,∴EF=AD,∠AEN=∠BEN=90°,∵折叠矩形纸片ABCD,折痕BM交AD边于点M,∴BN=AB,∵BE=12AB,∴BE=12BN,∴∠BNE=30°,∵AB=5cm,∴EN =√32BN =5√32, ∴EF ≥EN 时,点A 恰好落在线段EF 上,即AD ≥5√32, ∴边AD 的长至少是5√32, 故答案为:5√32.2.(2020•杨浦区一模)在Rt △ABC 中,∠A =90°,AC =4,AB =a ,将△ABC 沿着斜边BC 翻折,点A 落在点A 1处,点D 、E 分别为边AC 、BC 的中点,联结DE 并延长交A 1B 所在直线于点F ,联结A 1E ,如果△A 1EF 为直角三角形时,那么a = .【分析】当△A 1EF 为直角三角形时,存在两种情况:①当∠A 1EF =90°时,如图1,根据对称的性质和平行线可得:A 1C =A 1E =4,根据直角三角形斜边中线的性质得:BC =2A 1B =8,最后利用勾股定理可得AB 的长;②当∠A 1FE =90°时,如图2,证明△ABC 是等腰直角三角形,可得AB =AC =4.【解答】解:当△A 1EF 为直角三角形时,存在两种情况:①当∠A 1EF =90°时,如图1,∵△A 1BC 与△ABC 关于BC 所在直线对称,∴A 1C =AC =4,∠ACB =∠A 1CB ,∵点D ,E 分别为AC ,BC 的中点,∴D 、E 是△ABC 的中位线,∴DE ∥AB ,∴∠CDE =∠MAN =90°,∴∠CDE =∠A 1EF ,∴AC ∥A 1E ,∴∠ACB =∠A 1EC ,∴∠A 1CB =∠A 1EC ,∴A1C=A1E=4,Rt△A1CB中,∵E是斜边BC的中点,∴BC=2A1E=8,由勾股定理得:AB2=BC2﹣AC2,∴AB=√82−42=4√3;②当∠A1FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A1BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA1=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4√3或4;故答案为:4√3或4;3.(2020•崇明区一模)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC的中点,点E在边AB上,将△ADE沿DE翻折,使得点A落在点A′处,当A′E⊥AB时,则A′A=.【分析】分两种情形分别求解,作DF ⊥AB 于F ,连接AA ′.想办法求出AE ,利用等腰直角三角形的性质求出AA ′即可.【解答】解:如图,作DF ⊥AB 于F ,连接AA ′.在Rt △ACB 中,BC =√AB 2−AC 2=6,∵∠DAF =∠BAC ,∠AFD =∠C =90°,∴△AFD ∽△ACB ,∴DF BC =AD AB =AF AC , ∴DF 6=410=AF 8,∴DF =125,AF =165,∵A ′E ⊥AB ,∴∠AEA ′=90°,由翻折不变性可知:∠AED =45°,∴EF =DF =125, ∴AE =A ′E =125+165=285,∴AA ′=28√25, 如图,作DF ⊥AB 于F ,当 EA ′⊥AB 时,同法可得AE =165−125=45,AA ′=√2AE =4√25.故答案为28√25或4√25. 4.(2020•闵行区一模)已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在BC 的延长线上的点E 处,那么tan ∠BAE = .【分析】由正方形ABCD 中四个内角为直角,四条边相等,求出BC 与DC 的长,利用勾股定理求出BD 的长,由旋转的性质可求BE 的长,即可求解.【解答】解;如图,∵正方形ABCD ,∴∠ABC =∠C =90°,在Rt △BCD 中,DC =BC =2,根据勾股定理得:BD =√AD 2+AB 2=√4+4=2√2,∵将线段BD 绕着点B 旋转后,点D 落在BC 的延长线上的点E 处,∴BE =BD =2√2,∴tan ∠BAE =BE AB =2√22=√2, 故答案为:√2.5.(2020•徐汇区一模)如图,在矩形ABCD 中,AB =3,AD =4,将矩形ABCD 绕着点B 顺时针旋转后得到矩形A 'BC 'D ',点A 的对应点A '在对角线AC 上,点C 、D 分别与点C '、D '对应,A ′D '与边BC 交于点E ,那么BE 的长是 .【分析】如图,过点B 作BF ⊥AC ,过点E 作EH ⊥AC ,由勾股定理可求AC =5,由面积法可求BF =125,由勾股定理可求AF =95,由旋转的性质可得AB =BA ',∠BAD =∠BA 'D '=90°,可求AA '=75,由等腰三角形的性质可求HC 的长,通过证明△EHC ∽△ABC ,可得BC AC =HC EC ,可求EC 的长,即可求解.【解答】解:如图,过点B 作BF ⊥AC ,过点E 作EH ⊥AC ,∵AB =3,AD =4,∠ABC =90°,∴AC =√AB2+BC 2=√9+16=5, ∵S △ABC =12AB ×BC =12AC ×BF ,∴3×4=5BF ,∴BF =125∴AF =√AB 2−BF 2=√9−14425=95, ∵将矩形ABCD 绕着点B 顺时针旋转后得到矩形A 'BC 'D ',∴AB =BA ',∠BAD =∠BA 'D '=90°,且BF ⊥AC ,∴∠BAC =∠BA 'A ,AF =A 'F =95,∠BA 'A +∠EA 'C =90°,∴A 'C =AC ﹣AA '=75,∵∠BA 'A +∠EA 'C =90°,∠BAA '+∠ACB =90°,∴∠ACB =∠EA 'C ,∴A 'E =EC ,且EH ⊥AC ,∴A 'H =HC =12A 'C =710, ∵∠ACB =∠ECH ,∠ABC =∠EHC =90°,∴△EHC ∽△ABC ,∴BC AC=HC EC ∴45=710EC∴EC =78,∴BE =BC ﹣EC =4−78=258, 故答案为:258.6.(2020•普陀区一模)如图,在Rt △ABC 中,∠C =90°,AC =5,sin B =513,点P 为边BC 上一点,PC=3,将△ABC 绕点P 旋转得到△A 'B 'C '(点A 、B 、C 分别与点A '、B '、C '对应),使B 'C '∥AB ,边A 'C '与边AB 交于点G ,那么A 'G 的长等于 .【分析】如图,作PH ⊥AB 于H .利用相似三角形的性质求出PH ,再证明四边形PHGC ′是矩形即可解决问题.【解答】解:如图,作PH ⊥AB 于H .在Rt △ABC 中,∠C =90°,AC =5,sin B =513,∴AC AB =513,∴AB =13,BC =√AB 2−AC 2=√132−52=12,∵PC =3,∴PB =9,∵∠BPH ∽△BAC ,∴PH AC =PB AB , ∴PH 5=913,∴PH =4513, ∵AB ∥B ′C ′,∴∠HGC ′=∠C ′=∠PHG =90°,∴四边形PHGC ′是矩形,∴CG ′=PH =4513, ∴A ′G =5−4513=2013, 故答案为2013.7.(2020•奉贤区一模)如图,已知矩形ABCD (AB >BC ),将矩形ABCD 绕点B 顺时针旋转90°,点A 、D 分别落在点E 、F 处,连接DF ,如果点G 是DF 的中点,那么∠BEG 的正切值是 .【分析】连接BD ,BF ,EG .利用四点共圆证明∠BEG =∠BFD =45°即可.【解答】解:连接BD ,BF ,EG .由题意:BD =BF ,∠DBF =90°,∵DG =GF ,∴BG ⊥DF ,∴∠BGF =∠BEF =90°,∴∴B ,G ,E ,F 四点共圆,∠BEG=∠BFD=45°,∴∠BEG的正切值是1.故答案为1.8.(2020•嘉定区一模)在△ABC中,∠ACB=90°,AB=10,cos A=35(如图),把△ABC绕着点C按照顺时针的方向旋转,将A、B的对应点分别记为点A'、B'.如果A'B'恰好经过点A,那么点A与点A'的距离为.【分析】如图,过点C作CE⊥A'B',由锐角三角函数可求AC=6,由旋转的性质可得AC=A'C=6,∠A'=∠BAC,即可求A'E的长,由等腰三角形的性质可求AA'的长.【解答】解:如图,过点C作CE⊥A'B',∵在△ABC中,∠ACB=90°,AB=10,cos∠BAC=3 5,∴AC=6,∵把△ABC绕着点C按照顺时针的方向旋转,∴AC=A'C=6,∠A'=∠BAC,∵cos∠A'=cos∠BAC=A′EA′C=35,∴A'E=18 5,∵AC=A'C,CE⊥A'B',∴AA '=2A 'E =365, 故答案我:365.9.(2020•金山区一模)如图,在Rt △ABC 中,∠ABC =90°,AB =2,BC =4,点P 在边BC 上,联结AP ,将△ABP 绕着点A 旋转,使得点P 与边AC 的中点M 重合,点B 的对应点是点B ′,则BB ′的长等于 .【分析】如图,延长AB '交BC 于E ,过点B '作B 'D ⊥AB 于点D ,由勾股定理可求AC 的长,由旋转的性质可求AP =AM =√5,∠P AB =∠CAE ,AB =AB '=2,通过证明△ABP ∽△CBA ,可得∠P AB =∠C ,可得CE =AE ,由勾股定理可求CE ,BE 的长,由相似三角形的性质可求B 'D ,BD 的长,即可求解.【解答】解:如图,延长AB '交BC 于E ,过点B '作B 'D ⊥AB 于点D ,∵∠ABC =90°,AB =2,BC =4,∴AC =√AB 2+BC 2=√16+4=2√5,∵点M 是AC 中点,∴AM =√5,∵将△ABP 绕着点A 旋转,使得点P 与边AC 的中点M 重合,∴AP =AM =√5,∠P AB =∠CAE ,AB =AB '=2,∵AP 2=AB 2+PB 2,∴PB =1,∵BA PB =2=BC AB ,且∠ABP =∠ABC =90°, ∴△ABP ∽△CBA ,∴∠C =∠CAE ,∴CE =AE ,∵AE 2=AB 2+BE 2,∴CE 2=4+(4﹣CE )2,∴CE =AE =52,∴BE =32,∵B 'D ∥BC ,∴△AB 'D ∽△AEB ,∴AB′AE =AD AB =B′D BE, ∴252=AD 2=B′D32, ∴AD =85,B 'D =65, ∴BD =25,∴BB '=√B′D2+BD 2=√3625+425=2√105, 故答案为:2√105. 10.(2020•松江区一模)如图,矩形ABCD 中,AD =1,AB =k ,将矩形ABCD 绕着点B 顺时针旋转90°得到矩形A ′BC ′D ′,联结AD ′,分别交边CD ,A ′B 于E 、F ,如果AE =√2D ′F ,那么k = .【分析】由矩形的性质和旋转的性质可求AD =A 'D '=1,AB =A 'B =k ,∠A '=∠DAB =90°=∠DCB =∠ABC ,通过证明△ADE ∽△F A 'D ',可得AD A′F =DE A′D′=AE D′F ,可求DE ,A 'F 的长,通过证明△A 'D 'F ∽△CEF ,由相似三角形的性质可求解.【解答】解:∵将矩形ABCD 绕着点B 顺时针旋转90°得到矩形A ′BC ′D ′,∴AD =A 'D '=1,AB =A 'B =k ,∠A '=∠DAB =90°=∠DCB =∠ABC ,∴∠A 'D 'F =∠FEC =∠DEA ,且∠D =∠A '=90°,∴△ADE ∽△F A 'D ',∴AD A′F =DE A′D′=AE D′F ,且AE =√2D ′F ,∴DE =√2A 'D '=√2,A 'F =1√2AD =√22, ∵∠A '=∠DCF =90°,∠A 'FD '=∠EFC ,∴△A 'D 'F ∽△CEF ,∴EC A′D′=FCA′F , ∴k−√21=k−1−√22√22∴k =√2+1,故答案为:√2+1.11.(2019•浦东新区二模)如图,已知在△ABC 中,AB =3,AC =2,∠A =45o ,将这个三角形绕点B 旋转,使点A 落在射线AC 上的点A 1处,点C 落在点C 1处,那么AC 1= .【分析】连接AC 1,由旋转的性质先证△ABA 1为等腰直角三角形,再证△AA 1C 1为直角三角形,利用勾股定理可求AC 1的长度.【解答】解:如图,连接AC 1,由旋转知,△ABC ≌△A 1BC 1,∴AB =A 1B =3,AC =A 1C 1=2,∠CAB =∠C 1A 1B =45°,∴∠CAB =∠CA 1B =45°,∴△ABA 1为等腰直角三角形,∠AA 1C 1=∠CA 1B +∠C 1A 1B =90°,在等腰直角三角形ABA 1中,AA 1=√2AB =3√2,在Rt △AA 1C 1中,AC1=√AA12+A1C12=√(3√2)2+22=√22,故答案为:√22.12.(2019•松江区二模)如图,已知Rt△ABC中,∠ACB=90°,AC=8,BC=6.将△ABC绕点B旋转得到△DBE,点A的对应点D落在射线BC上.直线AC交DE于点F,那么CF的长为.【分析】由题意,可得BD=AB=10,tan D=tan∠A=BCAC=34,所以CD=4,在Rt△FCD中,∠DCF=90°,tan D=CFCD=34,即CF4=34,可得CF=3.【解答】解:∵如图,已知Rt△ABC中,∠ACB=90°,AC=8,BC=6.∴AB=√62+82=10,tan∠A=BCAC=34,∵将△ABC绕点B旋转得到△DBE,点A的对应点D落在射线BC上,直线AC交DE于点F,∴BD=AB=10,∠D=∠A,∴CD=BD﹣BC=10﹣6=4,在Rt△FCD中,∠DCF=90°,∴tan D=CFCD=34,即CF4=34,∴CF=3.故答案为:3.13.(2019•长宁区二模)如图,在△ABC中,AB=AC=5,BC=8,将△ABC绕着点C旋转,点A、B的对应点分别是点A'、B',若点B'恰好在线段AA'的延长线上,则AA'的长等于.【分析】由旋转的性质可得AC=A'C=5,AB=A'B'=5,BC=B'C=8,由等腰三角形的性质可得AF=A'F,由勾股定理列出方程组,可求AF的长,即可求AA'的长.【解答】解:如图,过点C作CF⊥AA'于点F,∵旋转∴AC=A'C=5,AB=A'B'=5,BC=B'C=8∵CF⊥AA',∴AF=A'F在Rt△AFC中,AC2=AF2+CF2,在Rt△CFB'中,B'C2=B'F2+CF2,∴B'C2﹣AC2=B'F2﹣AF2,∴64﹣25=(5+AF)2﹣AF2,∴AF =75∴AA '=145故答案为:14514.(2019•奉贤区二模)如图,矩形ABCD ,AD =a ,将矩形ABCD 绕着顶点B 顺时针旋转,得到矩形EBGF ,顶点A 、D 、C 分别与点E 、F 、G 对应(点D 与点F 不重合).如果点D 、E 、F 在同一条直线上,那么线段DF 的长是 .(用含a 的代数式表示)【分析】连接BD ,证明Rt △EDB ≌Rt △CBD ,可得DE =BC =AD =a ,因为EF =AD =a ,根据DF =DE +EF 即可得出DF 的长.【解答】解:如图,连接BD ,∵将矩形ABCD 绕着顶点B 顺时针旋转,得到矩形EBGF ,且D 、E 、F 在同一条直线上,∴∠DEB =∠C =90°,BE =AB =CD ,∵DB =BD ,∴Rt △EDB ≌Rt △CBD (HL ),∴DE =BC =AD =a ,∵EF =AD =a ,∴DF =DE +EF =a +a =2a .故答案为:2a .15.(2019•青浦区二模)如图,在矩形ABCD 中,AB =3,E 为AD 的中点,F 为CD 上一点,且DF =2CF ,沿BE 将△ABE 翻折,如果点A 恰好落在BF 上,则AD = .【分析】连接EF,则可证明△EA′F≌△EDF,从而根据BF=BA′+A′F,得出BF的长,在Rt△BCF 中,利用勾股定理可求出BC,即得AD的长度.【解答】解:连接EF,∵点E、点F是AD、DC的中点,∴AE=ED,DF=2CF=2,由折叠的性质可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,{EA′=ED,EF=EF∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=2,∴BF=BA′+A′F=AB+DF=3+2=5,在Rt△BCF中,BC=√BF2−CF2=√52−12=2√6.∴AD=BC=2√6.故答案为2√616.(2019•虹口区二模)如图,在矩形ABCD中,AB=6,点E在边AD上且AE=4,点F是边BC上的一个动点,将四边形ABFE沿EF翻折,A、B的对应点A1、B1与点C在同一直线上,A1B1与边AD交于点G,如果DG=3,那么BF的长为.【分析】由DG =3,CD =6可知△CDG 的三角函数关系,由△CDG 分别与△A 'EG ,△B 'FC 相似,可求得CG ,CB ',由勾股定理△CFB '可求得BF 长度.【解答】解:∵△CDG ∽△A 'EG ,A 'E =4∴A 'G =2∴B 'G =4由勾股定理可知CG '=3√5则CB '=3√5−4由△CDG ∽△CFB '设BF =xCB′B′F =GD CD∴3√5−4x =36解得x =6√5−8故答案为6√5−817.(2019•杨浦区二模)如图,点M 、N 分别在∠AOB 的边OA 、OB 上,将∠AOB 沿直线MN 翻折,设点O 落在点P 处,如果当OM =4,ON =3时,点O 、P 的距离为4,那么折痕MN 的长为 .【分析】由折叠的性质可得MN ⊥OP ,EO =EP =2,由勾股定理可求ME ,NE 的长,即可求MN 的长.【解答】解:设MN 与OP 交于点E ,∵点O、P的距离为4,∴OP=4∵折叠∴MN⊥OP,EO=EP=2,在Rt△OME中,ME=√OM2−OE2=2√3在Rt△ONE中,NE=√ON2−OE2=√5∴MN=ME﹣NE=2√3−√5故答案为:2√3−√5。
中考数学专题15图形的旋转、翻折(对称)与平移(全国通用原卷版)
图形的旋转、翻折(对称)与平移一、单选题1.(2022·广东)在平面直角坐标系中.将点()1,1向右平移2个单位后.得到的点的坐标是( )A .()3,1B .()1,1-C .()1,3D .()1,1- 2.(2022·广西)如图.在△ABC 中.点A (3.1).B (1.2).将△ABC 向左平移2个单位.再向上平移1个单位.则点B 的对应点B ′的坐标为( )A .(3.-3)B .(3.3)C .(-1.1)D .(-1.3) 3.(2020·山东菏泽)在平面直角坐标系中.将点()3,2P -向右平移3个单位得到点P '.则点P '关于x 轴的对称点的坐标为( )A .()0,2-B .()0,2C .()6,2-D .()6,2-- 4.(2020·四川自贡)在平面直角坐标系中.将点()2,1向下平移3个单位长度.所得点的坐标是( )A .(),-11B .(),51C .(),24D .(),-22 5.(2021·四川雅安)如图.将ABC 沿BC 边向右平移得到DEF .DE 交AC 于点G .若:3:1BC EC =.16ADG S =△.则CEG S △的值为( )A .2B .4C .6D .86.(2021·浙江丽水)四盏灯笼的位置如图.已知A .B .C .D 的坐标分别是 (−1.b ).(1.b ).(2.b ).(3.5.b ).平移y 轴右侧的一盏灯笼.使得y 轴两侧的灯笼对称.则平移的方法可以是( )A .将B 向左平移4.5个单位B .将C 向左平移4个单位 C .将D 向左平移5.5个单位 D .将C 向左平移3.5个单位 7.(2022·四川南充)如图.将直角三角板ABC 绕顶点A 顺时针旋转到AB C ''△.点B '恰好落在CA 的延长线上.3090∠=︒∠=︒,B C .则BAC '∠为( )A .90︒B .60︒C .45︒D .30 8.(2022·山东青岛)如图.将ABC 先向右平移3个单位.再绕原点O 旋转180︒.得到A B C '''.则点A 的对应点A '的坐标是( )A .(2,0)B .(2,3)--C .(1,3)--D .(3,1)-- 9.(2022·内蒙古呼和浩特)如图.ABC 中.90ACB ∠=︒.将ABC 绕点C 顺时针旋转得到EDC △.使点B 的对应点D 恰好落在AB 边上.AC 、ED 交于点F .若BCD α∠=.则EFC ∠的度数是(用含α的代数式表示)( )A .1902α︒+ B .1902α︒- C .31802α︒- D .32α 10.(2022·四川内江)如图.在平面直角坐标系中.点B 、C 、E 在y 轴上.点C 的坐标为(0.1).AC =2.Rt△ODE 是Rt△ABC 经过某些变换得到的.则正确的变换是( )A .△ABC 绕点C 逆时针旋转90°.再向下平移1个单位B .△ABC 绕点C 顺时针旋转90°.再向下平移1个单位C .△ABC 绕点C 逆时针旋转90°.再向下平移3个单位D .△ABC 绕点C 顺时针旋转90°.再向下平移3个单位11.(2022·黑龙江绥化)如图.线段OA 在平面直角坐标系内.A 点坐标为()2,5.线段OA 绕原点O 逆时针旋转90°.得到线段OA '.则点A '的坐标为( )A .()5,2-B .()5,2C .()2,5-D .()5,2- 12.(2021·四川广安)如图.将ABC 绕点A 逆时针旋转55︒得到ADE .若70E ∠=︒且AD BC ⊥于点F .则BAC ∠的度数为( )A .65︒B .70︒C .75︒D .80︒ 13.(2020·湖北黄石)在平面直角坐标系中.点G 的坐标是()2,1-.连接OG .将线段OG 绕原点O 旋转180︒.得到对应线段OG '.则点G '的坐标为( ) A .()2,1- B .()2,1 C .()1,2- D .()2,1-- 14.(2020·四川攀枝花)如图.直径6AB =的半圆.绕B 点顺时针旋转30︒.此时点A 到了点A '.则图中阴影部分的面积是( ).A .2πB .34πC .πD .3π15.(2022·天津)如图.在△ABC 中.AB =AC .若M 是BC 边上任意一点.将△ABM 绕点A 逆时针旋转得到△ACN .点M 的对应点为点N .连接MN .则下列结论一定正确的是( )A .AB AN =B .AB NC ∥ C .AMN ACN ∠=∠D .MN AC ⊥16.(2022·江苏扬州)如图.在ABC ∆中.AB AC <.将ABC 以点A 为中心逆时针旋转得到ADE .点D 在BC 边上.DE 交AC 于点F .下列结论:△AFE DFC △△.△DA 平分BDE ∠.△CDF BAD ∠=∠.其中所有正确结论的序号是( )A .△△B .△△C .△△D .△△△ 17.(2021·黑龙江牡丹江)如图.△AOB 中.OA =4.OB =6.AB =7.将△AOB 绕原点O 旋转90°.则旋转后点A 的对应点A ′的坐标是( )A .(4.2)或(﹣4.2)B .(3﹣4)或(﹣3)C .(﹣3)或(3﹣2)D .(2.﹣33 18.(2021·广东广州)如图.在Rt ABC 中.90C ∠=︒.6AC =.8BC =.将ABC 绕点A 逆时针旋转得到A B C '''.使点C '落在AB 边上.连结BB '.则sin BB C ''∠的值为( )A.35B.45C5D2519.(2021·河南)如图.OABC的顶点(0,0)O.(1,2)A.点C在x轴的正半轴上.延长BA 交y轴于点D.将ODA绕点O顺时针旋转得到OD A''△.当点D的对应点D落在OA 上时.D A''的延长线恰好经过点C.则点C的坐标为()A.(23,0)B.5,0)C.(231,0)D.(251,0) 20.(2020·海南)如图.在Rt ABC中. 90,30,1,C ABC AC cm∠=︒∠=︒=将Rt ABC绕点A逆时针旋转得到Rt AB C''△.使点C'落在AB边上.连接BB'.则BB'的长度是()A.1cm B.2cm C3cm D.3cm 21.(2020·山东菏泽)如图.将ABC绕点A顺时针旋转角α.得到ADE.若点E恰好在CB 的延长线上.则BED ∠等于( )A .2α B .23α C .α D .180α︒-22.(2020·山东聊城)如图.在Rt ABC △中.2AB =.30C ∠=︒.将Rt ABC △绕点A 旋转得到Rt A B C '''∆.使点B 的对应点B '落在AC 上.在B C ''上取点D .使2B D '=.那么点D 到BC 的距离等于( ).A .321⎫+⎪⎪⎝⎭B 31C 31D 3123.(2020·山东枣庄)如图.平面直角坐标系中.点B 在第一象限.点A 在x 轴的正半轴上.30AOB B ∠=∠=︒.2OA =.将AOB 绕点O 逆时针旋转90︒.点B 的对应点B '的坐标是( )A .(1,23-+B .()3,3-C .(3,23+D .(3-二、填空题 24.(2022·山东临沂)如图.在平面直角坐标系中.ABC 的顶点A .B 的坐标分别是()0,2A .()2,1B -.平移ABC 得到A B C '''.若点A 的对应点A '的坐标为()1,0-.则点B 的对应点B '的坐标是_____________.25.(2021·辽宁鞍山)如图.△ABC 沿BC 所在直线向右平移得到△DEF .若EC =2.BF =8.则BE =___.26.(2021·湖南湘潭)在平面直角坐标系中.把点()2,1A -向右平移5个单位得到点A '.则点A '的坐标为____.27.(2021·吉林长春)如图.在平面直角坐标系中.等腰直角三角形AOB 的斜边OA 在y 轴上.2OA =.点B 在第一象限.标记点B 的位置后.将AOB 沿x 轴正方向平移至111AO B 的位置.使11A O 经过点B .再标记点1B 的位置.继续平移至222A O B △的位置.使22A O 经过点1B .此时点2B 的坐标为__________.28.(2021·湖南怀化)如图.在平面直角坐标系中.已知(2,1)A -.(1,4)B -.(1,1)C -.将ABC 先向右平移3个单位长度得到111A B C △.再绕1C 顺时针方向旋转90︒得到221A B C △.则2A 的坐标是____________.29.(2022·山东潍坊)如图.在直角坐标系中.边长为2个单位长度的正方形ABCO 绕原点O 逆时针旋转75︒.再沿y 轴方向向上平移1个单位长度.则点B ''的坐标为___________.30.(2020·江苏镇江)如图.在△ABC 中.BC =3.将△ABC 平移5个单位长度得到△A 1B 1C 1.点P 、Q 分别是AB 、A 1C 1的中点.PQ 的最小值等于_____.31.(2020·广东广州)如图.点A 的坐标为()1,3.点B 在x 轴上.把OAB ∆沿x 轴向右平移到ECD ∆.若四边形ABDC 的面积为9.则点C 的坐标为_______.32.(2020·湖南湘西)在平面直角坐标系中.O 为原点.点(6,0)A .点B 在y 轴的正半轴上.30ABO ∠=︒.矩形CODE 的顶点D.E.C 分别在,,OA AB OB 上.2OD =.将矩形CODE 沿x 轴向右平移.当矩形CODE 与ABO 重叠部分的面积为3.则矩形CODE 向右平移的距离为___________.33.(2022·湖南永州)如图.图中网格由边长为1的小正方形组成.点A 为网格线的交点.若线段OA 绕原点O 顺时针旋转90°后.端点A 的坐标变为______.34.(2021·湖北随州)如图.在Rt ABC 中.90C ∠=︒.30ABC ∠=︒.3BC =将ABC 绕点A 逆时针旋转角α(0180α︒<<︒)得到AB C ''△.并使点C '落在AB 边上.则点B 所经过的路径长为______.(结果保留π)35.(2020·广西)以原点为中心.把()3,4M 逆时针旋转90°得到点N .则点N 的坐标为______.36.(2022·广西贺州)如图.在平面直角坐标系中.OAB 为等腰三角形.5OA AB ==.点B 到x 轴的距离为4.若将OAB 绕点O 逆时针旋转90︒.得到OA B ''△.则点B '的坐标为__________.37.(2022·湖北随州)如图1.在矩形ABCD 中.8AB =.6AD =.E .F 分别为AB .AD 的中点.连接EF .如图2.将△AEF 绕点A 逆时针旋转角()090θθ<<︒.使EF AD ⊥.连接BE 并延长交DF 于点H .则△BHD 的度数为______.DH 的长为______.38.(2021·四川巴中)如图.把边长为3的正方形OABC 绕点O 逆时针旋转n °(0<n <90)得到正方形ODEF .DE 与BC 交于点P .ED 的延长线交AB 于点Q .交OA 的延长线于点M .若BQ :AQ =3:1.则AM =__________.9(0)0αα︒<<︒得到AB C ''△.连接BB '.CC '.则CAC '△与BAB '△的面积之比等于_______.40.(2020·四川眉山)如图.在Rt ABC 中.90BAC ∠=︒.2AB =.将ABC 绕点A 按顺时针方向旋转至11AB C △的位置.点1B 恰好落在边BC 的中点处.则1CC 的长为________.41.(2020·山东烟台)如图.已知点A (2.0).B (0.4).C (2.4).D (6.6).连接AB .CD .将线段AB 绕着某一点旋转一定角度.使其与线段CD 重合(点A 与点C 重合.点B 与点D 重合).则这个旋转中心的坐标为_____.42.(2020·甘肃天水)如图.在边长为6的正方形ABCD 内作45EAF ∠=︒.AE 交BC 于点E .AF 交CD 于点F .连接EF .将ADF ∆绕点A 顺时针旋转90︒得到ABG .若3DF =.则BE 的长为__________.三、解答题43.(2022·安徽)如图.在由边长为1个单位长度的小正方形组成的网格中.△ABC 的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位.再向右平移2个单位.得到111△﹔A B CA B C△.请画出111 (2)以边AC的中点O为旋转中心.将△ABC按逆时针方向旋转180°.得到222△.A B C请画出222△.A B C44.(2022·黑龙江牡丹江)如图.在边长为1个单位长度的小正方形组成的网格中.△ABC与△DEF关于点O成中心对称.△ABC与△DEF的顶点均在格点上.请按要求完成下列各题.(1)在图中画出点O的位置.(2)将△ABC先向右平移4个单位长度.再向下平移2个单位长度.得到△A1B1C1.请画出△A1B1C1.(3)在网格中画出格点M.使A1M平分△B1A1C145.(2021·黑龙江哈尔滨)如图.方格纸中每个小正方形的边长均为1个单位长度.ABC ∆的顶点和线段DE 的端点均在小正方形的顶点上.(1)在方格纸中将ABC ∆向上平移1个单位长度.再向右平移2个单位长度后得到MNP ∆.(点A 的对应点是点M .点B 的对应点是点N .点C 的对应点是点P ).请画出MNP ∆.(2)在方格纸中画出以DE 为斜边的等腰直角三角形DEF (点F 在小正方形的顶点上).连接FP .请直接写出线段FP 的长.46.(2021·安徽)图.在每个小正方形的边长为1个单位的网格中.ABC 的顶点均在格点(网格线的交点)上.(1)将ABC 向右平移5个单位得到111A B C △.画出111A B C △.(2)将(1)中的111A B C △绕点C 1逆时针旋转90︒得到221A B C △.画出221A B C △.47.(2022·湖南)如图所示的方格纸(1格长为一个单位长度)中.AOB ∆的顶点坐标分别为(3,0)A .(0,0)O .(3,4)B .(1)将AOB ∆沿x 轴向左平移5个单位.画出平移后的△111AO B (不写作法.但要标出顶点字母).(2)将AOB ∆绕点O 顺时针旋转90︒.画出旋转后的△222A O B (不写作法.但要标出顶点字母).(3)在(2)的条件下.求点B 绕点O 旋转到点2B 所经过的路径长(结果保留)π.48.(2022·黑龙江)如图.在正方形网格中.每个小正方形的边长都是一个单位长度.在平面直角坐标系中.ABC 的三个顶点坐标分别为()1,1A -.()2,5B -.()5,4C -.(1)将ABC 先向左平移6个单位.再向上平移4个单位.得到111A B C △.画出两次平移后的111A B C △.并写出点1A 的坐标.(2)画出111A B C △绕点1C 顺时针旋转90°后得到221A B C △.并写出点2A 的坐标.(3)在(2)的条件下.求点1A 旋转到点2A 的过程中所经过的路径长(结果保留π).49.(2020·四川巴中)如图所示.ABC 在边长为1cm 的小正方形组成的网格中.(1)将ABC 沿y 轴正方向向上平移5个单位长度后.得到111A B C △.请作出111A B C △.并求出11A B 的长度.(2)再将111A B C △绕坐标原点O 顺时针旋转180°.得到222A B C △.请作出222A B C △.并直接写出点2B 的坐标.(3)在(1)(2)的条件下.求线段AB 在变换过程中扫过图形的面积和.50.(2022·江苏常州)如图.点A 在射线OX 上.OA a =.如果OA 绕点O 按逆时针方向旋转(0360)<≤︒n n 到OA '.那么点A '的位置可以用(),︒a n 表示.(1)按上述表示方法.若3a =.37n =.则点A '的位置可以表示为______.(2)在(1)的条件下.已知点B 的位置用()3,74︒表示.连接A A '、A B '.求证:A A A B ''=.51.(2021·黑龙江)如图.正方形网格中.每个小正方形的边长都是一个单位长度.在平面直角坐标系内.ABO 的三个顶点坐标分别为()()()1,3,4,3,00,0A B --.(1)画出ABO 关于x 轴对称的11A B O .并写出点1A 的坐标.(2)画出ABO 绕点O 顺时针旋转90︒后得到的22A B O .并写出点2A 的坐标. (3)在(2)的条件下.求点A 旋转到点2A 所经过的路径长(结果保留π).52.(2021·青海西宁)如图.正比例函数12y x =与反比例函数(0)ky x x =>的图象交于点A .AB x ⊥轴于点B .延长AB 至点C .连接OC .若2cos 3BOC ∠=.3OC =.(1)求OB 的长和反比例函数的解析式.(2)将AOB 绕点О旋转90°.请直接写出旋转后点A 的对应点A '的坐标.53.(2021·江苏淮安)如图.方格纸上每个小正方形的边长均为1个单位长度.△ABC 的顶点A 、B 、C 都在格点上(两条网格线的交点叫格点).请仅用无刻度的直尺按下列要求画图.并保留画图痕迹(不要求写画法).(1)将△ABC 绕点A 按顺时针方向旋转90°.点B 的对应点为B 1.点C 的对应点为C 1.画出△AB 1C 1.(2)连接CC 1.△ACC 1的面积为 .(3)在线段CC 1上画一点D .使得△ACD 的面积是△ACC 1面积的15.54.(2021·辽宁阜新)下面是小明关于“对称与旋转的关系”的探究过程.请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示.简称G .G 关于y 轴的对称图形为1G .关于x 轴的对称图形为2G .则将图形1G 绕____点顺时针旋转____度.可以得到图形2G .(2)在图2中分别画出....G 关于 y 轴和直线1y x =+的对称图形1G .2G .将图形1G 绕____点(用坐标表示)顺时针旋转______度.可以得到图形2G .(3)综上.如图3.直线1:22l y x =-+和2:l y x =所夹锐角为α.如果图形G 关于直线1l 的对称图形为1G .关于直线2l 的对称图形为2G .那么将图形1G 绕____点(用坐标表示)顺时针旋转_____度(用α表示).可以得到图形2G .55.(2021·贵州毕节)如图1.在Rt ABC 中.90BAC ∠=︒.AB AC =.D 为ABC 内一点.将线段AD 绕点A 逆时针旋转90°得到AE .连接CE .BD 的延长线与CE 交于点F . (1)求证:BD CE =.BD CE ⊥.(2)如图2.连接AF .DC .已知135BDC ∠=︒.判断AF 与DC 的位置关系.并说明理由.56.(2021·内蒙古通辽)已知AOB和MON△都是等腰直角三角形2OM OA ⎫<<⎪⎪⎝⎭.90AOB MON∠=∠=︒.(1)如图1.连接AM.BN.求证:AM BN=.(2)将MON△绕点O顺时针旋转.△如图2.当点M恰好在AB边上时.求证:2222AM BM OM+=.△当点A.M.N在同一条直线上时.若4OA=.3OM=.请直接写出线段AM的长.57.(2021·湖南衡阳)如图.点E为正方形ABCD外一点.90AEB=︒∠.将Rt ABE△绕A 点逆时针方向旋转90︒得到,ADF DF的延长线交BE于H点.(1)试判定四边形AFHE 的形状.并说明理由.(2)已知7,13BH BC ==.求DH 的长.58.(2021·北京)如图.在ABC 中.,,AB AC BAC M α=∠=为BC 的中点.点D 在MC 上.以点A 为中心.将线段AD 顺时针旋转α得到线段AE .连接,BE DE .(1)比较BAE ∠与CAD ∠的大小.用等式表示线段,,BE BM MD 之间的数量关系.并证明.(2)过点M 作AB 的垂线.交DE 于点N .用等式表示线段NE 与ND 的数量关系.并证明.59.(2021·浙江嘉兴)小王在学习浙教版九上课本第72页例2后.进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα︒<≤︒.得到矩形'''AB C D[探究1]如图1.当90α=︒时.点'C 恰好在DB 延长线上.若1AB =.求BC 的长.[探究2]如图2.连结'AC .过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.[探究3]在探究2的条件下.射线DB 分别交'AD .'AC 于点P .N (如图3).MN .PN 存在一定的数量关系.并加以证明.60.(2021·四川阿坝)如图.Rt ABC 中.90ACB ∠=︒.将ABC 绕点C 顺时针旋转得到DEC .点D 落在线段AB 上.连接BE .(1)求证:DC平分ADE∠.(2)试判断BE与AB的位置关系.并说明理由:(3)若BE BD∠的值.=.求tan ABC61.(2020·湖南邵阳)已知:如图△.将一块45°角的直角三角板DEF与正方形AF CE.点M是CE的中点.连接DM.ABCD的一角重合.连接,(1)请你猜想AF与DM的数量关系是__________.(2)如图△.把正方形ABCD绕着点D顺时针旋转α角(090︒<<︒).a△AF与DM的数量关系是否仍成立.若成立.请证明.若不成立.请说明理由.(温馨提示:延长DM到点N.使MN DM=.连接CN)△求证:AF DM⊥.△若旋转角45α=︒.且2的值.(可不写过程.直接写出结果)EDM MDC∠=∠.求ADED62.(2020·江苏常州)如图1.点B在线段CE上.Rt△ABC△Rt△CEF.ABC CEF∠=∠=︒.3090∠=︒.1BACBC=.(1)点F 到直线CA 的距离是_________.(2)固定△ABC .将△CEF 绕点C 按顺时针方向旋转30°.使得CF 与CA 重合.并停止旋转.△请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示.保留画图痕迹.不要求写画法)该图形的面积为_________. △如图2.在旋转过程中.线段CF 与AB 交于点O .当OE OB =时.求OF 的长.63.(2020·福建)如图.ADE ∆由ABC ∆绕点A 按逆时针方向旋转90︒得到.且点B 的对应点D 恰好落在BC 的延长线上.AD .EC 相交于点P .(1)求BDE ∠的度数.(2)F 是EC 延长线上的点.且∠=∠CDF DAC . △判断DF 和PF 的数量关系.并证明.△求证:=EP PC PF CF .64.(2020·甘肃金昌)如图.点M .N 分别在正方形ABCD 的边BC .CD 上.且45MAN ∠=︒.把ADN △绕点A 顺时针旋转90︒得到ABE △. (1)求证:AEM △△ANM . (2)若3BM =.2DN =.求正方形ABCD 的边长.。
中考数学专题复习卷:轴对称、平移与旋转(含解析)
轴对称、平移与旋转一、选择题1.以下图形中必定是轴对称图形的是()A. B. C. D.【答案】 D【分析】 A 、 40°的直角三角形不是轴对称图形,故不切合题意;B、两个角是直角的四边形不必定是轴对称图形,故不切合题意;C、平行四边形是中心对称图形不是轴对称图形,故不切合题意;D、矩形是轴对称图形,有两条对称轴,故切合题意,故答案为: D.【剖析】把一个图形沿着一条直线折叠,直线两旁的部分能完整重合的图形就是轴对称图形;依据轴对称图形的定义,再一一判断即可。
2.以下图形中,是轴对称图形但不是中心对称图形的是(A. 正三角形B. 菱形)C. 直角梯形D. 正六边形【答案】C【分析】:A.正三角形是轴对称图形,不是中心对称图形,故正确,A切合题意; B.菱形既是轴对称图形,又是中心对称图形,故错误, B 不切合题意;C.直角梯形既不是轴对称图形,也不是中心对称图形,故错误, C 不切合题意;D. 正六边形既是轴对称图形,又是中心对称图形,故错误, D 不切合题意;故答案为: A.【剖析】依据轴对称图形和中心对称图形定义一一判断对错即可得出答案.3.将抛物线y=-5x+l向左平移 1 个单位长度,再向下平移 2 个单位长度,所获得的抛物线为() .A. y=-5(x+1)-1B. y=-5(x-1)-1C. y=-5(x+1)+3D. y=-5(x-1)+3【答案】A【分析】:将抛物线y=-5x+l向左平移 1 个单位长度,获得的抛物线分析式为:y=-5 ( x+1 )2+1再向下平移 2 个单位长度获得的抛物线为:y=-5(x-1)+1-2即 y=-5(x+1)-1故答案为:A【剖析】依据二次函数图像的平移规律:上加下减,左加右减,将抛物线y=ax2向上或向下平移m 个单位,再向左或向右平移n 个单位即获得y=a( x±n)2±m。
依据平移规则即可得出平移后的抛物线的分析式。
专题11 几何图形中的平移、翻折、旋转-2023年中考数学毕业班二轮热点题型归纳与变式演练(解析版)
专题11 几何图形中的平移、翻折、旋转目录最新模考题热点题型归纳【题型一】 平移运动【典例分析】(2022春·上海长宁·九年级校考期中)如图,在梯形ABCD 中,AB CD ∥,3AB =,8CD =,点E 是边CD 的中点,联结AE 交BD 于点F ,将ACD V 沿着射线DC 方向平移,如果点F 的对应点恰好落在ABC V 内,那么平移的距离m 的取值范围是________.【答案】122477m <<##241277m >>【分析】过点F 作CD 或AB 的平行线交AC 于点P ,交BC 于点Q ,此时由平移的性质可得FP FQ 、都为平移距离m ,如图所示,分别求得平移距离m FP =和m FQ =即可求得点F 的对应点恰好落在ABC V 内时,平移的距离m 的取值范围.【详解】解:过点F 作CD 或AB 的平行线交AC 于点P ,交BC 于点Q ,此时由平移的性质可得FP FQ 、都为平移距离m ,如图所示,【提分秘籍】图形的平移规律找特殊点1.图形的平移即是图形中各个点的平移,解题时只需选取线段端点或三角形顶点等这样的特殊点即可.2.在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数b,相应的新图形就是把原图形向上(或向下)平移b 个单位长度。
(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.【变式演练】1.(2020·上海浦东新·统考一模)如图,将ABC D 沿射线BC 方向平移得到DEF D ,边DE与AC 相交于点G ,如果6BC cm =,ABC D 的面积等于29cm ,GEC D 的面积等于24cm ,那么CF =____________cm .【答案】2【分析】根据平移性质得AC DF ∥,易证△EGC EDF ∽△,根据相似三角形的面积的比等于相似比的平方,求得EC 的长,即可求CF 的长.2.(2021·上海浦东新·模拟预测)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为16,阴影部分三角形的面积为9.如果AA'=1,那么A'D的长为_____.【题型二】 翻折运动【典例分析】(2022·上海·二模)已知在平行四边形ABCD 中,AB BC ¹,将ABC V 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE .(1)如图1,求证://AC DE ;(2)如图2,如果90B Ð=°,AB ==BC OAC V 的面积;(3)如果30B Ð=°,AB =AED △是直角三角形时,求BC 的长.②如图4,当90AEDÐ=°时AD BC=Q,BC EC=,AD EC\=,由折叠的性质得:AE AB=,AE CD\=,在ACED和CADD中,AE CDCE ADAC CA=ìï=íï=î,()ACE CAD SSS\D@D,ECA DAC\Ð=Ð,OA OC\=,OE OD\=,OED ODE\Ð=Ð,AED CDE\Ð=Ð,90AEDÐ=°Q,90CDE\Ð=°,//AE CD\,又//AB CDQ,【提分秘籍】解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。
中考数学复习 图形的平移和旋转 专题练习 含答案和部分解析
初三中考数学复习图形的平移与旋转专题复习练习1. 下列图案中,可以看做是由图案自身的一部分经平移后得到的是()A B C D2. 如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连结BB′,若AC′∥BB′,则∠CAB′的度数为()A.45°B.60°C.70°D.90°3. 如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位,得到△A1B1C1,则点B1的坐标是( )A.(-2,3) B.(3,-1) C.(-3,1) D.(-5,2)4. 已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(-2,1),则点B的对应点的坐标为( ) A.(5,3) B.(-1,-2) C.(-1,-1) D.(0,-1)5. 如图,△DEF是由△ABC绕点O旋转180°而得到的,则下列结论不成立的是( )A.点A与点D是对应点 B.BO=EO C.AB∥DE D.∠ACB=∠FDE6. 如图,点A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,则a -b的值为( )A.1 B.-1 C.0 D.27. 如图,在方格图上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得到△A′B′O,则点A′的坐标为( )A.(3,1) B.(3,2) C.(2,3) D.(1,3)8. 如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A按顺时针方向旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为( )A.5 B.23 C.7 D.299. 如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,△ABC绕点C按顺时针方向旋转得△A1B1C,当点A1落在AB边上时,连结B1B,取BB1的中点D,连结A1D,则A1D的长度是( )A.7 B.2 2 C.3 D.2 310. 把一副三角尺按如图①放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角尺DCE绕点C按顺时针方向旋转15°得到△D1CE1(如图②),此时AB与CD1交于点O,则线段AD1的长度为( )图①图②A.3 2 B.5 C.4 D.3111. 如图,将△ABC绕点A按顺时针方向旋转60°得△ADE,则∠BAD=°.12. 将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为.13. 如图,两个全等的三角尺重叠摆放在△ACB的位置,将其中一个三角尺绕点C按逆时针方向旋转到△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8 cm,则CF= cm.14. 如图,P是等边三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC 绕点A按逆时针方向旋转后,得到△MAB,则点P与点M之间的距离为,∠APB=°.15. 在4×4的方格图中,△ABC的三个顶点都在格点上.(1)在图①中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图②中的△ABC绕点C按顺时针方向旋转90°,画出旋转后的三角形.16. 如图,在菱形ABCD中,∠BAD=α,点E在对角线BD上,将线段CE绕点C 按顺时针方向旋转α,得到CF,连结DF.(1)求证:BE=DF;(2)连结AC,若EB=EC,求证:AC⊥CF.17. 如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于点E,D′C′交CB于点F,连结EF,当四边形EDD′F 为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.答案与解析: 1. A 2. D 3. C 4. C 5. D 6. C 7. D 8. D9. A 解析:∵∠ACB =90°,∠ABC =30°,AC =2,∴∠A =60°,AB =4,BC =2 3.∵CA =CA 1,∴△ACA 1是等边三角形,AA 1=AC =BA 1=2,∴∠A 1CB =∠A 1BC =30°,∠BCB 1=∠ACA 1=60°.∵CB =CB 1,∴△BCB 1是等边三角形,∴BB 1=23.∵BA 1=2,∠A 1BB 1=∠A 1BC +∠CBB 1=90°,BD =DB 1=3,∴A 1D =A 1B 2+BD 2=7.故选A .10. B 解析:∵∠ACB=∠DEC=90°,∠D =30°,∴∠DCE =90°-30°=60°,∴∠ACD =90°-60°=30°.∵旋转角为15°,∴∠ACD 1=30°+15°=45°.又∵∠CAB=45°, ∴△ACO ,△ACB 均是等腰直角三角形,∴AO =CO =12AB=12×6=3,AB ⊥CO.∵DC =7,∴D 1C =DC =7,∴D 1O =7-3=4.在Rt △AOD 1中,AD 1=AO 2+D 1O 2=32+42=5.故选B . 11. 60 12. 10 13. 2 3解析:∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A 恰好落在边DE上,∴DC=AC,∴∠D=∠DAC=∠CAB.∵∠ACB=∠DCE=90°,∠B=30°,∴∠D=∠DAC=∠CAB=60°,∴∠DCA=60°,∴∠ACF=30°,可得∠AFC=90°.∵AB=8 cm,∴AC=4 cm,∴CF=4×cos 30°=23(cm).14. 6 150解析:如图,连结MP.∵△ABC为等边三角形,∴AB=AC,∠BAC=60°.∵△PAC 绕点A逆时针旋转后,得到△MAB,∴AM=AP,∠MAP=∠BAC=60°,BM=CP=10,∴△AMP为等边三角形,∴MP=AP=6,∠APM= 60°.在△PBM中,PM =6,BM=10,PB=8,∵62+82=102,∴PM2+PB2=BM2,∴∠BPM=90°,∴∠APB =∠APM+∠BPM=60°+90°=150°.故答案为6,150.15. (1) 解:画出下列其中一个即可.△AB′C为所求作的三角形△A′BC为所求作的三角形.(2) 解:△A′B′C′即为所求作的三角形.16. (1) 证明:∵四边形ABCD为菱形,∴BC=CD=AB,∠BAD=∠BCD=α.∵∠ECF=∠BCD,∴∠BCE =∠DCF.又∵BC=CD ,CE =CF ,∴△BEC ≌△DFC ,∴BE =DF.(2) 证明:如图,连结AC 交BD 于点O.∵四边形ABCD 是菱形,∴AC ⊥BD .∵BE =EC ,BC =DC ,∴∠EBC =∠ECB,∠CBD =∠BDC,∴∠BDC =∠ECB=∠DCF,∴BD ∥CF 且AC⊥BD,∴AC ⊥CF.17. 解:当四边形EDD′F 为菱形时,△A′DE 是等腰三角形,△A′DE≌△EFC′.理由如下:∵△ABC 是直角三角形,∠ACB=90°,AD =DB ,∴CD=DA =DB ,∴∠DAC =∠DCA.∵A′C′∥AC ,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE ,∴△A′DE 是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE =DA′,EF∥DD′,∴∠C′EF=∠DA′E,∠EFC′=∠C′D′A′.∵CD∥C′D′,∴∠A′DE=∠A′D′C′=∠EFC′.在△A′DE 和△EFC′中,⎩⎪⎨⎪⎧∠EA′D=∠C′EF,A′D=EF ,∠A′DE=∠EFC′,∴△A′DE≌△EFC′.。
中考数学专题复习卷:轴对称、平移与旋转(含解析)
轴对称、平移与旋转一、选择题1.下列图形中一定是轴对称图形的是()A. B. C. D.【答案】D【解析】A、40°的直角三角形不是轴对称图形,故不符合题意;B、两个角是直角的四边形不一定是轴对称图形,故不符合题意;C、平行四边形是中心对称图形不是轴对称图形,故不符合题意;D、矩形是轴对称图形,有两条对称轴,故符合题意,故答案为:D.【分析】把一个图形沿着一条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;根据轴对称图形的定义,再一一判断即可。
2.下列图形中,是轴对称图形但不是中心对称图形的是()A. 正三角形B. 菱形C. 直角梯形D. 正六边形【答案】C【解析】:A.正三角形是轴对称图形,不是中心对称图形,故正确,A符合题意;B.菱形既是轴对称图形,又是中心对称图形,故错误,B不符合题意;C.直角梯形既不是轴对称图形,也不是中心对称图形,故错误,C不符合题意;D.正六边形既是轴对称图形,又是中心对称图形,故错误,D不符合题意;故答案为:A.【分析】根据轴对称图形和中心对称图形定义一一判断对错即可得出答案.3.将抛物线y=-5x +l向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为().A. y=-5(x+1) -1B. y=-5(x-1) -1C. y=-5(x+1) +3D. y=-5(x-1) +3【答案】A【解析】:将抛物线y=-5x+l向左平移1个单位长度,得到的抛物线解析式为:y=-5(x+1)2+1再向下平移2个单位长度得到的抛物线为:y=-5(x-1)+1-2即y=-5(x+1)-1故答案为:A【分析】根据二次函数图像的平移规律:上加下减,左加右减,将抛物线y=ax2向上或向下平移m个单位,再向左或向右平移n个单位即得到y=a(x±n)2±m。
根据平移规则即可得出平移后的抛物线的解析式。
即可求解。
4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【解析】:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。
中考数学压轴题 第四部分 图形的平移翻折与旋转
4.1 图形的平移、翻折与旋转1.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2, 0),点A在第一象限内,将△OAB沿直线OA 的方向平移至△O′B′A′的位置,此时点A′的横坐标为3,则点B′的坐标为().A.(4,B.(3,C.(4,D.(3,2.如图,在平面直角坐标系中,点A的坐标为(0, 6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线34y x=-上,则点B与其对应点B′间的距离为______.3.已知直线y=2x+(3-a)与x轴的交点在A(2, 0),B(3, 0)之间(包括A、B两点)则a的取值范围是_____________.4.如图,在矩形ABCD中,AD=15,点E在边DC上,连结AE,△ADE沿直线AE翻折后点D落到点F,过点F作FG⊥AD,垂足为G.如果AD=3GD,那么DE=_____.5.如图,在△ABC中,CA=CB,∠C=90°,点D是BC的中点,将△ABC沿着直线EF折叠,使点A与点D重合,折痕交AB于点E,交AC于点F,那么sin∠BED的值为____________.6.如图,在矩形ABCD中,AB=6,AD=8,把矩形ABCD沿直线MN翻折,点B落在边AD上的E点处,若AE=2AM,那么EN的长等于.7.如图,已知在Rt△ABC中,∠C=90°,AC=BC=1,点D在边BC上,将△ABC沿直线AD翻折,使点C落在点C′处,连结AC′.直线AC′与CB的延长线相交于点F.如果∠DAB=∠BAF,那么BF=______________.8.如图,已知Rt△ABC中,D是斜边AB的中点,AC=4,BC=2,将△ACD沿直线CD折叠,点A落在点E处,连结AE,那么线段AE的长度等于__________.9.如图,在矩形纸片ABCD中,AB<BC,点M、N分别在AD、BC上,沿直线MN将四边形DMNC翻折,点C恰好与点A重合.如果此时在原图中△CDM与△MNC的面积比是1∶3,那么MNDM的值等于___________.10.如图,△ABC中,AB=AC=5cm,BC=6cm,BD平分∠ABC,BD交AC于点D.如果将△ABD沿BD翻折,点A 落在点A′处,那么△DA′C的面积为_______.11.如图,在Rt△ABC中,∠ACB=90°.将△ABC沿BD折叠,点C恰好落在AB边上的点C′处,折痕为BD.再将其沿DE折叠,使点A落在DC′的延长线上的点A′处,若△BED与△ABC相似,则相似比BDAC=___________.12.如图,已知扇形OAB的半径为6,圆心角为90°,E是半径OA上一点,F是AB上一点.将扇形AOB沿着EF 对折,使得折叠后的'A F恰好与半径OB相切于点G,若OE=5,则O到折痕EF的距离为__________.13.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.14.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为().A B.C.D15.如图,将正方形ABCD沿MN折叠,使点D落在AB边上,对应点为D′,点C落在C′处.若AB=6,AD′=2,则折痕MN的长为_________.16.如图,矩形ABCD中,AB=8,BC=6,点P为AD边上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为_______.17.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是_________.18.如图,正方形ABCD的边长为3,点E在AB边上且BE=1,点P、Q分别是边BC、CD上的动点(均不与顶点重合),当四边形AEPQ的周长取得最小值时,四边形AEPQ的面积是____________.19.如图,已知钝角三角形ABC,∠A=35°,OC为AB边的中线.将△AOC绕着点O顺时针旋转,点C落在BC 边上的点C′处,点A落在点A′处,连结BA′,如果A、C、A′在同一条直线上,那么∠BA′C′的度数为__________.20.如图,在Rt△ABC中,∠C=90°,AC=BC ABC绕着点A顺时针旋转60°得到△AB′C′,连结C′B,则C′B的长为___________.21.如图,△ABC中,∠ABC>90°,tan∠BAC=34,BC=4,将三角形绕着点A旋转,点C落在直线AB上的点C′处,点B落在点B′处,若C、B、B′恰好在一直线上,则AB的长为______________.22.如图,在正方形ABCD中,E、F分别在BC、AB边上,如果AF=BE,那么∠AOD的度数是__________.23.如图,△ABC、△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2B1C D124.如图,已知Rt△ACB中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC,若点F是DE的中点,连结AF,则AF= .25.如图,在△ABC中,∠ABC=90°,AB=BC ABC绕点C逆时针旋转60°,得到△MNC,则BM的长是___________.26.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′//AB,则旋转角的度数为().A.35°B.40°C.50°D.65°27.已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处.延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE的长等于.28.如图,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC=5,BC=6.△ABC固定不动,△DEF运动,并满足点E在BC边从B向C移动(点E不与B、C重合),DE始终经过点A,EF与AC边交于点M,当△AEM是等腰三角形时,BE=_________.29.如图,在四边形ABCD中,∠A=90°,AB=AD=3,点M、N分别是线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别是DM、MN的中点,则EF长度的最大值为.30.如图,正方形ABCD的边长为16,点E在边AB上,AE=3,点F是边BC上不与B、C重合的一个动点,把△EBF 沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为_______________.31.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.32.在平面直角坐标系中,点A,B,动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为().A.2B.3C.4D.533.在平行四边形ABCD中,AB<BC,已知∠B=30°,AB=ABC沿AC翻折至△AB′C,使点B′落在平行四边形ABCD所在的平面内,连结B′D.若△AB′D是直角三角形,则BC的长为_____________.34.如图,AC是矩形ABCD的对角线,AB=2,BC=E、F分别是线段AB、AD上的点,连结CE、CF,当∠BCE=∠ACF且CE=CF时,AE+AF=______.35.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是().A.B.C.5 D.636.如图,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的平行四边形AEMG 的面积S 1与平行四边形HCFM 的面积S 2的大小关系是( ).A .S 1>S 2B .S 1<S 2C .S 1=S 2D .2S 1=S 237.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD ,B 与D 两点之间用一根橡皮筋...拉直固定,然后向右扭动框架,观察所得四边形的变化.下面判断错误..的是( ). A .四边形ABCD 由矩形变为平行四边形; B .BD 的长度增大;C .四边形ABCD 的面积不变; D .四边形ABCD 的周长不变.38.如图,C 是以AB 为直径的半圆O 上一点,连结AC 、BC ,分别以AC 、BC 为边向外作正方形ACDE 和正方形BCFG ,DE 、FG 、AC 、BC 的中点分别是M 、N 、P 、Q .若MP +NQ =14,AC +BC =18,则AB 的长是( ). A. 29 B. 790 C. 13 D. 16 39.如图1,点P 是以r 为半径的⊙O 外一点,点P ′在线段OP 上,若满足OP ·OP ′=r 2,则称点P ′是点P 关于⊙O的反演点.如图2,在Rt △ABO 中,∠B =90°,AB =2,BO =4,⊙O 的半径为2,如果点A ′、B ′分别是点A 、B 关于⊙O 的反演点,那么A ′B ′的长是____.40.如图,已知⊙O 1的半径为1,⊙O 2的半径为2,O 1O 2=5,⊙O 分别与⊙O 1外切,与⊙O 2内切,那么⊙O 半径r 的取值范围是__________.41.如图,在边长为4的正方形ABCD 中,先以点A 为圆心,AD 为半径画弧,再以AB 边的中点为圆心,AB 的一半为半径画弧,则两弧之间的阴影部分的面积是_________(结果保留π).42.如图,半圆O 的直径AE =4,点B 、C 、D 均在半圆上,若AB =BC ,CD =DE ,连结OB 、OD ,则图中阴影部分的面积为_________.43.如图1,菱形ABCD 的边长为2,∠A =60°,以点B 为圆心的圆与AD ,DC 相切,与AB 、CB 的延长线分别相交于点E 、F ,则图中阴影部分的面积为( ).A 2πB πC 2πD .2π+44.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b ,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b 重合为止,则圆心O 运动路径的长度等于_____.45.如图,⊙O 的半径为2,AB ,CD 是互相垂直的两条直径,点P 是⊙O 上任意一点(P 与A ,B ,C ,D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为_________. A. 4π B. 2π C. 6π D. 3π 46.如图,在平面直角坐标系中,已知点A (0, 1),点P 在线段OA 上,以AP 为半径的⊙P 的周长为1.点M 从点A 开始沿⊙P 按照逆时针方向转动,射线AM 交x 轴于点N (n , 0) ,设点M 转过的路程为m (0<m <1).随着点M 的转动,当m 从13变化到23时,点N 相应移动的路程长为____________.47.已知⊙P 的半径为2,圆心在函数y=8x的图象上运动,当⊙P 与坐标轴相切于点D 时,则符合条件的点D 的个数为( ).A .0B .1C .2D .448.如图,AB 是⊙O 的弦,AB =6,点C 是⊙O 上的一个动点,且∠ACB =45°.若M 、N 分别是AB 、BC 的中点,那么MN 长的最大值是__________.49.如图,正方形ABCD 的边长为1,中心为点O ,有一边长大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正方形的边),当这个六边形的边长最大时,AE 的最小值为 . 50.如图,正比例函数11y k x =的图象与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当y 1>y 2时,x 的取值范围是( ). A .x <-2或x >2 B . x <-2或0<x <2 C .-2<x <0或0<x <2 D .-2<x <0或x >251.正比例函数y 1=mx (m >0)的图象与反比例函数2k y x=(k ≠0)的图象交于A (n , 4)、B 两点,AM ⊥y 轴,垂足为M ,若△AMB 的面积为8,则满足y 1>y 2的实数x 的取值范围是___________.52.如图,在平面直角坐标系中,四边形ODEF 和四边形ABCD 都是正方形,点F 在x 轴的正半轴上,点C 在边DE 上,反比例函数k y x=(k ≠0,x >0)的图象过点B 、E .若AB =2,则k 的值为________.53.如图,点A 1、A 2依次在y =(x >0)的图象上,点B 1、B 2依次在x 轴的正半轴上,若△A 1OB 1、△A 2B 1B 2均为等边三角形,则点B 2的坐标为________.54.如图,在平面直角坐标系中,直线y =k 1x +2与x 轴交于点A ,与y 轴交于点C ,与反比例函数2k y x =在第一象限内的图象交于点B ,连结BO ,若S △OBC =1,tan ∠BOC =13,则k 2的值是( ).A .-3B .1C .2D .3 55.如图,在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,点A 的坐标为(a , a ).若曲线3y x=(x >0)与此正方形的边有交点,则a 的取值范围是_____________. 56.如图,已知点A 在反比例函数k y x =(x <0)上,作Rt △ABC ,点D 为斜边AC 的中点,连结DB 并延长交y 轴于点E ,若△BCE 的面积为8,则k = .57.如图,已知∠AOB =90°,在∠AOB 的平分线ON 上依次取点C 、F 、M ,过点C 作DE ⊥OC ,分别交OA 、OB 于点D 、E ,以FM 为对角线作菱形FGMH ,已知∠DFE =∠GFH =120°,FG =FE .设OC =x ,图中阴影部分的面积为y ,则y 与x 之间的函数关系式是( ). A. 223x y = B. 23x y = C. 232x y = D. 233x y = 58.如图1,正方形ABCD 的边长为3,动点P 从点B 出发以每秒3个单位长度的速度沿着BC -CD -DA 运动,到达点A 停止运动;另一动点Q 同时从点B 出发以每秒1个单位长度的速度沿着BA 边向点A 运动,到达点A 停止运动.设点P 运动时间为x 秒,△BPQ 的面积为y ,则y 关于x 的函数图象是( ).A .B .C .D .59.如图1,在平面直角坐标系中,点A 的坐标为(2, 2),点P (m , n )在直线y =-x +2上运动.设△APO 的面积为S ,则下面能够反映S 与m 的函数关系的图象是( ).60.如图1,在Rt△ABC中,∠C=90°,∠BAC=30°,AB=8.以DEFG的一边在直线AB上,且点D与点A重合.现将正方形DEFG沿A→B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是().61.如图,已知正△ABC的边长为2,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是().图1 A.B.C.D.62.如图1,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图像中,能表示y 与x的函数关系的图象大致是().63.函数x xx y2 2+=的图象为().A.B.C.D.。
2023年中考数学一轮专题练习 图形的平移、折叠和旋转(含解析)
2023年中考数学一轮专题练习 ——图形的平移、折叠和旋转2一、单选题(本大题共10小题)1. (天津市2022年)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( ) A .B .C .D .2. (湖南省娄底市2022年)下列与2022年冬奥会相关的图案中,是中心对称图形的是( )A .B .C .D .3. (湖南省郴州市2022年)下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D .4. (江苏省常州市2022年)在平面直角坐标系xOy 中,点A 与点1A 关于x 轴对称,点A 与点2A 关于y 轴对称.已知点1(1,2)A ,则点2A 的坐标是( ) A .(2,1)- B .(2,1)--C .(1,2)-D .(1,2)--5. (湖南省长沙市2022年)在平面直角坐标系中,点(5,1)关于原点对称的点的坐标是( ) A .(5,1)- B .(5,1)- C .(1,5) D .(5,1)-- 6. (湖南省邵阳市2022年)下列四种图形中,对称轴条数最多的是( ) A .等边三角形B .圆C .长方形D .正方形7. (湖南省怀化市2022年)如图,△ABC 沿BC 方向平移后的像为△DEF ,已知BC =5,EC =2,则平移的距离是( )A .1B .2C .3D .48. (湖南省衡阳市2022年)下列图形中既是中心对称又是轴对称的是( )A .可回收垃圾B .其他垃圾C .有害垃圾D .厨余垃圾9. (四川省雅安市2022年)在平面直角坐标系中,点(a +2,2)关于原点的对称点为(4,﹣b ),则ab 的值为( ) A .﹣4B .4C .12D .﹣1210. (天津市2022年)如图,在△ABC 中,AB =AC ,若M 是BC 边上任意一点,将△ABM 绕点A 逆时针旋转得到△ACN ,点M 的对应点为点N ,连接MN ,则下列结论一定正确的是( )A .AB AN = B .AB NC ∥ C .AMN ACN ∠=∠D .MN AC ⊥二、填空题(本大题共8小题)11. (辽宁省抚顺本溪辽阳市2022年)在平面直角坐标系中,线段AB 的端点(3,2),(5,2)A B ,将线段AB 平移得到线段CD ,点A 的对应点C 的坐标是(1,2)-,则点B 的对应点D 的坐标是 .12. (吉林省2022年)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角()0360αα︒<<︒后能够与它本身重合,则角α可以为 度.(写出一个即可)13. (辽宁省抚顺本溪辽阳市2022年)如图,正方形ABCD 的边长为10,点G 是边CD 的中点,点E 是边AD 上一动点,连接BE ,将ABE △沿BE 翻折得到FBE ,连接GF .当GF 最小时,AE 的长是 .14. (辽宁省大连市2022年)如图,对折矩形纸片ABCD ,使得AD 与BC 重合,得到折痕EF ,把纸片展平,再一次折叠纸片,使点A 的对应点A '落在EF 上,并使折痕经过点B ,得到折痕BM .连接,若,,则的长是 .15. (辽宁省大连市2022年)如图,在平面直角坐标系中,点A 的坐标是1,2,将线段OA 向右平移4个单位长度,得到线段BC ,点A 的对应点C 的坐标是 .16. (江苏省扬州市2022年)“做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片ABC ,第1次折叠使点B 落在BC 边上的点B '处,折痕AD 交BC 于点D;第MF MF BM ⊥6cm AB =ADcm2次折叠使点A 落在点D 处,折痕MN 交AB '于点P .若12BC =,则MP MN += .17. (江苏省无锡市2022年)△ABC 是边长为5的等边三角形,△DCE 是边长为3的等边三角形,直线BD 与直线AE 交于点F .如图,若点D 在△ABC 内,∠DBC =20°,则∠BAF = °;现将△DCE 绕点C 旋转1周,在这个旋转过程中,线段AF 长度的最小值是 .18. (湖北省荆州市2022年)规定:两个函数,的图象关于y 轴对称,则称这两个函数互为“Y 函数”.例如:函数与的图象关于y 轴对称,则这两个函数互为“Y 函数”.若函数(k 为常数)的“Y 函数”图象与x轴只有一个交点,则其“Y 函数”的解析式为 . 三、解答题(本大题共5小题)19. (四川省自贡市2022年)如图,用四根木条钉成矩形框ABCD ,把边BC 固定在地面上,向右推动矩形框,矩形框的形状会发生改变(四边形具有不稳定性).1y 2y 122y x =+222y x =-+()2213y kx k x k =+-+-(1)通过观察分析,我们发现图中线段存在等量关系,如线段EB 由AB 旋转得到,所以EB AB =.我们还可以得到FC = , EF = ;(2)进一步观察,我们还会发现EF ∥AD ,请证明这一结论;(3)已知BC 30,DC 80==cm cm ,若BE 恰好经过原矩形DC 边的中点H ,求EF 与BC 之间的距离.20. (湖北省十堰市2022年)已知90ABN ∠=︒,在ABN ∠内部作等腰ABC ,AB AC =,()090BAC αα∠=︒<≤︒.点D 为射线BN 上任意一点(与点B 不重合),连接AD ,将线段AD 绕点A 逆时针旋转α得到线段AE ,连接EC 并延长交射线BN 于点F .(1)如图1,当90α=︒时,线段BF 与CF 的数量关系是 ;(2)如图2,当090α︒<<︒时,(1)中的结论是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)若60α=︒,AB =BD m =,过点E 作EP BN ⊥,垂足为P ,请直接写出PD 的长(用含有m 的式子表示).21. (黑龙江省绥化市2022年)我们可以通过面积运算的方法,得到等腰三角形底边上的任意一点到两腰的距离之和与一腰上的高之间的数量关系,并利用这个关系解决相关问题.(1)如图一,在等腰ABC 中,AB AC =,BC 边上有一点D ,过点D 作DE AB ⊥于E ,DF AC ⊥于F ,过点C 作CG AB ⊥于G .利用面积证明:DE DF CG +=.(2)如图二,将矩形ABCD 沿着EF 折叠,使点A 与点C 重合,点B 落在B ′处,点G 为折痕EF 上一点,过点G 作GM FC ⊥于M ,GN BC ⊥于N .若8BC =,3BE =,求GM GN +的长.(3)如图三,在四边形ABCD 中,E 为线段BC 上的一点,EA AB ⊥,ED CD ⊥,连接BD ,且AB AECD DE=,BC =3CD =,6BD =,求ED EA +的长. 22. (天津市2022年)将一个矩形纸片OABC 放置在平面直角坐标系中,点(0,0)O ,点(3,0)A ,点(0,6)C ,点P 在边OC 上(点P 不与点O ,C 重合),折叠该纸片,使折痕所在的直线经过点P ,并与x 轴的正半轴相交于点Q ,且30OPQ ∠=︒,点O 的对应点O '落在第一象限.设OQ t =.(1)如图①,当1t =时,求O QA ∠'的大小和点O '的坐标;(2)如图②,若折叠后重合部分为四边形,,O Q O P ''分别与边AB 相交于点E ,F ,试用含有t 的式子表示O E '的长,并直接写出t 的取值范围;(3)若折叠后重合部分的面积为t 的值可以是 (请直接写出两个不同....的值即可).23. (湖北省鄂州市2022年)如图1,在平面直角坐标系中,Rt △OAB 的直角边OA 在y 轴的正半轴上,且OA =6,斜边OB =10,点P 为线段AB 上一动点.(1)请直接写出点B 的坐标;(2)若动点P满足∠POB=45°,求此时点P的坐标;(3)如图2,若点E为线段OB的中点,连接PE,以PE为折痕,在平面内将△APE折叠,点A的对应点为A',当PA'⊥OB时,求此时点P的坐标;(4)如图3,若F为线段AO上一点,且AF=2,连接FP,将线段FP绕点F顺时针方向旋转60°得线段FG,连接OG,当OG取最小值时,请直接写出OG的最小值和此时线段FP扫过的面积.参考答案1. 【答案】D【分析】根据轴对称图形的概念对各项分析判断即可得解.【详解】A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确.故选:D.2. 【答案】D【分析】中心对称图形定义:如果一个图形绕某一点旋转180度,旋转后的图形能和原图形回完全重合,那么这个答图形叫做中心对称图形,根据中心对称图形定义逐项判定即可.【详解】解:根据中心对称图形定义,可知D符合题意,故选:D.3. 【答案】B【分析】根据轴对称图形和中心对称图形的定义判断即可.【详解】解:A、该图形是轴对称图形,不是中心对称图形,故A选项错误;B、该图形既是轴对称图形,也是中心对称图形,故B选项正确;C、该图形不是轴对称图形,是中心对称图形,故C选项错误;D、该图形既不是轴对称图形,也不是中心对称图形,故D选项错误.故答案为B.4. 【答案】D【分析】直接利用关于x,y轴对称点的性质分别得出A,A点坐标,即可得出答案.2【详解】解:∵点1A的坐标为(1,2),点A与点1A关于x轴对称,∴点A的坐标为(1,-2),∵点A与点A关于y轴对称,2∴点A的坐标是(-1,﹣2).2故选:D.5. 【答案】D【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】--.解:点(5,1)关于原点对称的点的坐标是(5,1)故选D.6. 【答案】B【分析】分别求出各个图形的对称轴的条数,再进行比较即可.【详解】解:因为等边三角形有3条对称轴;圆有无数条对称轴;长方形有2条对称轴;正方形有4条对称轴;经比较知,圆的对称轴最多.故选:B.7. 【答案】C【分析】根据题意判断BE的长就是平移的距离,利用已知条件求出BE即可.【详解】因为ABC沿BC方向平移,点E是点B移动后的对应点,所以BE的长等于平移的距离,由图可知,点B、E、C在同一直线上,BC=5,EC=2,所以BE=BC-ED=5-2=3,故选 C.8. 【答案】C【分析】根据中心对称图形和轴对称图形的定义,逐一判断各个选项,即可得到答案.【详解】解:A.既不是中心对称图形也不是轴对称图形,B.既不是中心对称图形也不是轴对称图形,C.既是中心对称又是轴对称图形,D.是轴对称图形但不是中心对称图形,故选C.9. 【答案】D【分析】a b,可得a,b的值,再首先根据关于原点对称的点的坐标特点可得240,20代入求解即可得到答案.【详解】解:点(a+2,2)关于原点的对称点为(4,﹣b),∴240,20a b,a b解得:6,2,ab12,故选D10. 【答案】C【分析】根据旋转的性质,对每个选项逐一判断即可.【详解】解:∵将△ABM绕点A逆时针旋转得到△ACN,∴△ABM≌△ACN,∴AB=AC,AM=AN,∴AB不一定等于AN,故选项A不符合题意;∵△ABM≌△ACN,∴∠ACN=∠B,而∠CAB不一定等于∠B,∴∠ACN不一定等于∠CAB,∴AB与CN不一定平行,故选项B不符合题意;∵△ABM≌△ACN,∴∠BAM=∠CAN,∠ACN=∠B,∴∠BAC=∠MAN,∵AM=AN,AB=AC,∴△ABC和△AMN都是等腰三角形,且顶角相等,∴∠B=∠AMN,∴∠AMN=∠ACN,故选项C符合题意;∵AM=AN,而AC不一定平分∠MAN,∴AC与MN不一定垂直,故选项D不符合题意;故选:C.11. 【答案】(1,2)【分析】根据点的平移法则:横坐标,右移加,左移减;纵坐标,上移加,下移减解答即可.【详解】解:点A(3,2),点A的对应点C(-1,2),将点A(3,2)向左平移4个单位,所得到的C(-1,2),∴B(5,2)的对应点D的坐标为(1,2),故答案为:(1,2).12. 【答案】60或120或180或240或300(写出一个即可)【分析】如图(见解析),求出图中正六边形的中心角,再根据旋转的定义即可得.【详解】解:这个图案对应着如图所示的一个正六边形,它的中心角3601606︒∠==︒, 0360α︒<<︒, ∴角α可以为60︒或120︒或180︒或240︒或300︒,故答案为:60或120或180或240或300(写出一个即可).13. 【答案】5【分析】根据动点最值问题的求解步骤:①分析所求线段端点(谁动谁定);②动点轨迹;③最值模型(比如将军饮马模型);④定线段;⑤求线段长(勾股定理、相似或三角函数),结合题意求解即可得到结论.【详解】解:①分析所求线段GF 端点:G 是定点、F 是动点;②动点F 的轨迹:正方形ABCD 的边长为10,点E 是边AD 上一动点,连接BE ,将ABE △沿BE 翻折得到FBE ,连接GF ,则10BF BA ==,因此动点轨迹是以B 为圆心,10BA =为半径的圆周上,如图所示:③最值模型为点圆模型;④GF 最小值对应的线段为10GB -;⑤求线段长,连接GB ,如图所示:在Rt BCG ∆中,90C ∠=︒,正方形ABCD 的边长为10,点G 是边CD 的中点,则5,10CG BC ==,根据勾股定理可得BG =当G F B 、、三点共线时,GF最小为10,接下来,求AE 的长:连接EG ,如图所示根据翻折可知,90EF EA EFB EAB =∠=∠=︒,设AE x =,则根据等面积法可知EDG BCG BAE BEG S S S S S ∆∆∆∆=+++正方形,即()111111005105101022222DE DG BC CG AB AE BG EF x x ⎡⎤=⋅+⋅+⋅+⋅=-+⨯++⎣⎦整理得)120x =,解得2015x AE====,故答案为:5.14. 【答案】【分析】根据直角三角形的中线定理,先证明四边形是平行四边形,再证明是等边三角形,分别根据直角三角形中的三角函数求出AM 和DM ,从而得到答案.【详解】解:如下图所示,设A E '交BM 于点O ,连接AO ,∵点E 是中点,∴在Rt ABM 和 Rt A BM '中,,AO OM OB OA OB OM '====,∴,OAE OBE OBA OA B ''∠=∠∠=∠ ,∵OBE OBA '∠=∠,AOA M 'AOM∴OAE OA B '∠=∠ ,∵90,90OAE AOE OA B OA M ︒︒''∠+∠=∠+∠=,∴AOE OA M '∠=∠,∴//AO A M ',∵//AM OA '∴四边形AOA M '是平行四边形,∴AM OA '=∴AM AO OM ==,∴是等边三角形,∴∴ ∴∵,,∴,∴,∵, ∴∴故答案为:15. 【答案】()5,2【分析】由将线段OA 向右平移4个单位长度,可得点A 1,2向右边平移了4个单位与C 对应,再利用“右移加”即可得到答案.【详解】解:∵将线段OA 向右平移4个单位长度,∴点A 1,2向右边平移了4个单位与C 对应,∴14,2,C 即5,2,C故答案为:5,2.16. 【答案】6【分析】根据第一次折叠的性质求得12BD DB BB ''==和AD BC ⊥,由第二次折叠得到AM DM =,MN AD ⊥,进而得到MN BC ,易得MN 是ADC 的中位线,最后由三角形的中位线求解.【详解】AOM 60AMO OMA ︒'∠=∠=tan tan 60AB AMO AM ︒∠==AM =MF BM ⊥60OMA ︒'∠=30A MF ︒'∠=18015030DMF ︒︒︒∠=-=132DF AB ==tan 30DF MD ==︒AD AM MD =+=解:∵已知三角形纸片ABC ,第1次折叠使点B 落在BC 边上的点B '处,折痕AD 交BC 于点D , ∴12BD DB BB ''==,AD BC ⊥. ∵第2次折叠使点A 落在点D 处,折痕MN 交AB '于点P ,∴AM DM =,AN ND =,∴MN AD ⊥,∴MN BC .∵AM DM =,∴MN 是ADC 的中位线, ∴12MP DB '=,12MN DC =. ∵12BC =,2BD DC CB BD BC +=+'=, ∴()111162222MP MN DB DC DB DB B C BC +=+=+='+''='. 故答案为:6.17. 【答案】80 4##4【分析】利用SAS 证明△BDC ≌△AEC ,得到∠DBC =∠EAC =20°,据此可求得∠BAF 的度数;利用全等三角形的性质可求得∠AFB =60°,推出A 、B 、C 、F 四个点在同一个圆上,当BF 是圆C 的切线时,即当CD ⊥BF 时,∠FBC 最大,则∠FBA 最小,此时线段AF 长度有最小值,据此求解即可.【详解】解:∵△ABC 和△DCE 都是等边三角形,∴AC =BC ,DC =EC ,∠BAC =∠ACB =∠DCE =60°,∴∠DCB +∠ACD =∠ECA +∠ACD =60°,即∠DCB =∠ECA ,在△BCD 和△ACE 中,CD CE BCD ACE BC AC =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD ( SAS ),∴∠EAC =∠DBC ,∵∠DBC =20°,∴∠EAC =20°,∴∠BAF =∠BAC +∠EAC =80°;设BF 与AC 相交于点H ,如图:∵△ACE ≌△BCD∴AE =BD ,∠EAC =∠DBC ,且∠AHF =∠BHC ,∴∠AFB =∠ACB =60°,∴A 、B 、C 、F 四个点在同一个圆上,∵点D 在以C 为圆心,3为半径的圆上,当BF 是圆C 的切线时,即当CD ⊥BF 时,∠FBC 最大,则∠FBA 最小,∴此时线段AF 长度有最小值,在Rt △BCD 中,BC =5,CD =3,∴BD4,即AE =4,∴∠FDE =180°-90°-60°=30°,∵∠AFB =60°,∴∠FDE =∠FED =30°,∴FD =FE ,过点F 作FG ⊥DE 于点G ,∴DG =GE =32, ∴FE =DF =cos30DG ︒∴AF =AE -FE故答案为:80;18. 【答案】或【分析】分两种情况,根据关于y 轴对称的图形的对称点的坐标特点,即可求得.【详解】解:函数(k 为常数)的“Y 函数”图象与x 轴只有一个交点,函数(k 为常数)的图象与x 轴也只有一个交点,当k =0时,函数解析为,它的“Y 函数”解析式为,它们的图象与x 轴只有一个交点,23y x =-244y x x =-+-()2213y kx k x k =+-+-∴()2213y kx k x k =+-+-23y x =--23y x =-当时,此函数是二次函数,它们的图象与x 轴都只有一个交点,它们的顶点分别在x 轴上,,得, 故k +1=0,解得k =-1,故原函数的解析式为,故它的“Y 函数”解析式为,故答案为:或.19. 【答案】(1)CD ,AD ;(2)见解析;(3)EF 于BC 之间的距离为64cm .【分析】(1)由推动矩形框时,矩形ABCD 的各边的长度没有改变,可求解;(2)通过证明四边形BEFC 是平行四边形,可得结论;(3)由勾股定理可求BH 的长,再证明△BCH ∽△BGE ,得到BH CH BE EG=,代入数值求解EG ,即可得到答案.(1)解:∵ 把边BC 固定在地面上,向右推动矩形框,矩形框的形状会发生改变(四边形具有不稳定性).∴由旋转的性质可知矩形ABCD 的各边的长度没有改变,∴AB =BE ,EF =AD ,CF =CD ,故答案为:CD ,AD ;(2)解:∵四边形ABCD 是矩形,∴AD BC ,AB =CD ,AD =BC ,∵AB =BE ,EF =AD ,CF =CD ,∴BE =CF ,EF =BC ,∴四边形BEFC 是平行四边形,∴EF BC ,∴EF AD ;(3)解:如图,过点E 作EG ⊥BC 于点G , 0k≠∴()()2432104k k k k ---⎡⎤⎣⎦∴=10k k+=244y x x =---244y x x =-+-23y x =-244y x x =-+-∵DC =AB =BE =80cm ,点H 是CD 的中点,∴ CH =DH =40cm ,在Rt △BHC 中,∠BCH =90°,BH50=(cm ),∵ EG ⊥BC ,∴∠EGB =∠BCH =90°,∴CH EG ,∴ △BCH ∽△BGE , ∴BH CH BE EG =, ∴, ∴EG =64,∵ EF BC ,∴EF 与BC 之间的距离为64cm .20. 【答案】(1)BF =CF(2)成立;理由见解析 (3)62m PD =-或PD =0或62m PD =- 【分析】(1)连接AF ,先根据“SAS”证明ACE ABD ∆∆≌,得出90ACE ABD ∠=∠=︒,再证明Rt Rt ABF ACF ≌,即可得出结论; (2)连接AF ,先说明EAC BAD ∠=∠,然后根据“SAS”证明ACE ABD ∆∆≌,得出90ACE ABD ∠=∠=︒,再证明Rt Rt ABF ACF ≌,即可得出结论;(3)先根据60α=︒,AB =AC ,得出△ABC 为等边三角形,再按照60BAD ∠︒<,60BAD ∠=︒,60BAD ∠︒>三种情况进行讨论,得出结果即可.(1)解:BF =CF ;理由如下:连接AF ,如图所示:504080EG=根据旋转可知,90DAE α∠==︒,AE =AD , ∵∠BAC =90°,∴90EAC CAD ∠+∠=︒,90BAD CAD ∠+∠=︒, ∴EAC BAD ∠=∠,∵AC =AB ,∴ACE ABD ∆∆≌(SAS ),∴90ACE ABD ∠=∠=︒,∴1809090∠=︒-︒=︒ACF ,∵在Rt △ABF 与Rt △ACF 中AB AC AF AF =⎧⎨=⎩, ∴Rt Rt ABF ACF ≌(HL ),∴BF =CF .故答案为:BF =CF .(2)成立;理由如下:连接AF ,如图所示:根据旋转可知,DAE α∠=,AE =AD , ∵BAC α∠=,∴EAC CAD α∠-∠=,BAD CAD α∠-∠=, ∴EAC BAD ∠=∠,∵AC =AB ,∴ACE ABD ∆∆≌,∴90ACE ABD ∠=∠=︒,∴1809090∠=︒-︒=︒ACF ,∵在Rt △ABF 与Rt △ACF 中AB AC AF AF =⎧⎨=⎩, ∴Rt Rt ABF ACF ≌(HL ),∴BF =CF .(3)∵60α=︒,AB =AC ,∴△ABC 为等边三角形,∴60ABC ACB BAC ∠=∠=∠=︒,AB AC BC === 当60BAD ∠︒<时,连接AF ,如图所示:根据解析(2)可知,Rt Rt ABF ACF ≌, ∴1302BAF CAF BAC ∠=∠=∠=︒,∵AB = tan tan30BF BAF AB∴∠=︒=,即tan304BF AB =⨯︒==, 4CF BF ∴==,根据解析(2)可知,ACE ABD ∆∆≌, ∴CE BD m ==,∴4EF CF CE m =+=+,906030FBC FCB ∠=∠=︒-︒=︒, 60EFP FBC FCB ∴∠=∠+∠=︒, ∵90EPF ∠=︒,∴906030FEP ∠=︒-︒=︒, ∴()1142222m PF EF m ==+=+, 42622m m BP BF PF ∴=+=++=+,∴6622m m PD BP BD m =-=+-=-; 当60BAD ∠=︒时,AD 与AC 重合,如图所示:∵60DAE ∠=︒,AE AD =,∴△ADE 为等边三角形,∴∠ADE =60°,∵9030ADB BAC ∠=︒-∠=︒,∴603090ADE ∠=︒+︒=︒,∴此时点P 与点D 重合,0PD =;当60BAD ∠︒>时,连接AF ,如图所示:根据解析(2)可知,Rt Rt ABF ACF ≌, ∴1302BAF CAF BAC ∠=∠=∠=︒,∵AB = tan tan30BF BAF AB∴∠=︒=,即tan304BF AB =⨯︒==, 4CF BF ∴==,根据解析(2)可知,ACE ABD ∆∆≌, ∴CE BD m ==,∴4EF CF CE m =+=+,∵906030FBC FCB ∠=∠=︒-︒=︒,60EFP FBC FCB ∴∠=∠+∠=︒,∵90EPF ∠=︒,∴906030FEP ∠=︒-︒=︒, ∴()1142222m PF EF m ==+=+, 42622m m BP BF PF ∴=+=++=+, ∴6622m m PD BD BF m ⎛⎫=-=-+=- ⎪⎝⎭; 综上分析可知,62m PD =-或PD =0或62m PD =-. 21. 【答案】(1)证明见解析(2)4(3)【分析】(1)根据题意,利用等面积法ABC ABD ACD S S S ∆∆∆=+,根据等腰ABC 中,AB AC =,即可得到结论;(2)根据题中条件,利用折叠性质得到AFE CFE ∠=∠,结合矩形ABCD 中AD BC ∥得到AFE FEC ∠=∠,从而有CFE FEC ∠=∠,从而确定EFC ∆是等腰三角形,从而利用(1)中的结论得到=GM GN FH +,结合勾股定理及矩形性质即可得到结论; (3)延长BA CD 、交于F ,连接EF ,过点B 作BG FC ⊥于G ,根据AB AE CD DE =,EA AB ⊥,ED CD ⊥,得到ABC ∆是等腰三角形,从而由(1)知ED EA BG +=,在Rt BCG ∆中,BG ==Rt BDG ∆中,6BD =,BG =BG =1x =,从而得到结论.(1)证明:连接AD ,如图所示:在等腰ABC 中,AB AC =,BC 边上有一点D ,过点D 作DE AB ⊥于E ,DF AC ⊥于F ,过点C 作CG AB ⊥于G ,∴由ABC ABD ACD S S S ∆∆∆=+得111222AB CG AB ED AC FD ⋅=⋅+⋅, ∴DE DF CG +=;(2)解:连接CG ,过点F 作FH BC ⊥于H ,如图所示:根据折叠可知AFE CFE ∠=∠,在矩形ABCD 中,AD BC ∥,则AFE FEC ∠=∠,CFE FEC ∴∠=∠,即EFC ∆是等腰三角形,在等腰EFC ∆中,FC EC =,EF 边上有一点G ,过点G 作GM FC ⊥于M ,GN BC ⊥于N ,过点F 作FH BC ⊥于H ,由(1)可得=GM GN FH +,在Rt ABE ∆中,90B ∠=︒,3,835BE AE EC BC BE ===-=-=,则4AB =,在四边形ABHF 中,90B BAF FHB ∠=∠=∠=︒,则四边形ABHF 为矩形,4FH AB ∴==,即4GM GN FH AB +===;(3)解:延长BA CD 、交于F ,连接EF ,过点B 作BG FC ⊥于G ,在四边形中,E 为线段上的一点,,,则,又, ,,即是等腰三角形,由(1)可得,设,,,在中,在中,,,22. 【答案】(1)60O QA ∠='︒,点O '的坐标为32⎛ ⎝⎭ (2)36O E t '=-,其中t 的取值范围是23t <<(3)3,103.(答案不唯一,满足3t ≤< 【分析】(1)先根据折叠的性质得60O QA ∠='︒,即可得出30∠=︒'QO H ,作O H OA '⊥,然后求出O H '和OH ,可得答案;(2)根据题意先表示3=-QA t ,再根据12QA QE =,表示QE ,然后根据O E O Q QE =''-表示即可,再求出取值范围;ABCD BC EA AB ⊥ED CD ⊥90BAE CDE ∠=∠=︒AB AE CD DE=∴ABE DCE ∆∆ABE C ∴∠=∠ABC ∆∴ED EA BG +==GD x 90EDC BGC ∠=∠=︒BC =3CD =Rt BCG ∆BG Rt BDG ∆6BD =BG ∴BG =1x =BG ∴=ED EA BG +==(3)求出t =3时的重合部分的面积,可得从t =3之后重合部分的面积始终是求出P 与C 重合时t 的值可得t 的取值范围,问题得解.(1)在Rt POQ △中,由30OPQ ∠=︒,得9060OQP OPQ ∠=-∠=︒︒.根据折叠,知PO Q POQ '△≌△,∴O Q OQ '=,60︒∠=∠='O QP OQP .∵180O QA O QP OQP ∠=︒--∠'∠',∴60O QA ∠='︒.如图,过点O′作O H OA '⊥,垂足为H ,则90O HQ ∠='︒.∴在Rt O HQ '中,得9030QO H O QA ∠=︒-'∠='︒.由1t =,得1OQ =,则1O Q '=. 由1122'==QH O Q ,222'+='O H QH O Q得32=+=OH OQ QH ,'=O H∴点O '的坐标为32⎛ ⎝⎭.(2)∵点(3,0)A ,∴3OA =.又OQ t =,∴3QA OA OQ t =-=-.同(1)知,'=O Q t ,60O QA ∠='︒.∵四边形OABC 是矩形,∴90OAB ∠=︒.在Rt EAQ △中,9030QEA EQA ∠=-∠=︒︒,得12QA QE =. ∴22(3)62QE QA t t ==-=-.又O E O Q QE =''-,∴36O E t '=-.如图,当点O ′与AB 重合时,OQ O Q t '==,60AQO '∠=︒,则30AO Q ∠='︒, ∴12AQ t =, ∴132t t +=, 解得t =2,∴t 的取值范围是23t <<;(3)3,103.(答案不唯一,满足3t ≤< 当点Q 与点A 重合时,3AO '=,30DAO '∠=︒,∴cos 30AO AD '==︒则132ADP S =⨯⨯=∴t =3时,重合部分的面积是从t =3之后重合部分的面积始终是当P 与C 重合时,OP =6,∠OPQ =30°,此时t =OP ·tan30°=由于P 不能与C 重合,故t <所以3t ≤<23. 【答案】(1)(8,6)(2)(67,6) (3)(112,6) (4)OG 的最小值为4,线段FP 扫过的面积为83π 【分析】(1)由勾股定理即可求解;(2)连接OP ,过点P 作PQ ⊥OB 于点Q ,因为∠POB =45°,所以PQ =OQ ,设PQ =OQ =x ,则BQ =10-x ,根据tan B 的值,即可求得x 的值,再利用勾股定理,即可求解;(3)令PA '交OB 于点D ,由点E 为线段OB 的中点,可得152A E AE OB '===,152BE OB ==,利用折叠的性质、正切函数、勾股定理,即可求解; (4)当以点F 为圆心,OF 的长为半径画圆,与AB 的交点即为点P ,再将线段FP 绕点F 顺时针方向旋转60°得线段FG ,此时OG 最小,利用三角函数、等边三角形的判定与性质、扇形的面积公式,即可求解.(1)解:在Rt △OAB 中,8AB ===,∴点B 的坐标为(8,6);(2)解:连接OP ,过点P 作PQ ⊥OB 于点Q ,如图,∵∠POB=45°,∴∠OPQ=45°,∴∠POB=∠OPQ,∴PQ=OQ,设PQ=OQ=x,则BQ=10-x,在Rt△OAB中,6384 tanOABAB===,在Rt△BPQ中,3104 tanPQ xBBQ x===-,解得307x=,∴307 OQ PQ==,在Rt△POQ中,7OP==,在Rt△AOP中,67 AP==,∴点P的坐标为(67,6);(3)解:令PA'交OB于点D,如图,∵点E为线段OB的中点,∴152AE OB==,152BE OB==,∵6384tan PD OA B BD AB ====, 设3PD a =,则4BD a =,∴5BP a ==,54DE BE BD a =-=-∴85AP AB BP a =-=-,由折叠的性质,可得5A E AE '==,85A P AP a '==-,∴88A D A P PD a ''=-=-,在Rt △A DE 中,222A D DE A E ''+=,即22288545()()a a -+-=, 解得121825,a a ==, ∵BD BE <,即45a <, ∴54a <, ∴12a =, ∴1118522A P '=-⨯=, ∴点P 的坐标为(112,6); (4) 解:以点F 为圆心,OF 的长为半径画圆,与AB 的交点即为点P ,再将线段FP 绕点F 顺时针方向旋转60°得线段FG ,连接OG ,此时OG 最小,如图,由题可知,624FP FG FO OA AF ===-=-=,在Rt APF 中,2142cos AF AFP FP ∠===, ∴60AFP ∠=︒,∵60PFG ∠=︒,∴60OFG ∠=︒,∴OFG △是等边三角形,∴4OG FO ==,∴OG的最小值为4,∴线段FP扫过的面积=26048 3603ππ⨯=.。
初三数学旋转翻折等几何试题及答案
旋转、平移、翻转等问题讨论答案例1、已知P为等边△ABC内一点,PA=2,PB=,PC=4.求△ABC中∠APB的度数.解:将△PBC绕点B顺时针旋转60°得到△P′BA,连接PP′.则△PBC≌△P′BA.∴BP=BP′=.而∠PBP′=60°,∴△PBP′是等边三角形,∴∠2=60°,PP′=BP =.∵,∴,∴∠1=90°.故∠APB=∠1+∠2=150°.例2、如图所示,已知P为正方形ABCD的对角线AC上一点,(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.(1)求证:BP=PD;(2)如图,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明.(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.答案:(1)证明△APB≌△APD(SAS)得BP=PD.(2)解:不是总有BP=DP.理由:若旋转角为45°,则点P在BC上.∵正方形ABCD中∠DCP=90°,∴PD>DC.∵DC=BC,∴PD>BC.∵BC>PB,∴PD>PB.(3)解:BE=DF始终成立.证明:∵正方形ABCD和正方形PECF中,∠BCD=∠ECF=90°,∴∠1=∠2.∵CE=CF,CB=CD,∴△CBE≌△CDF.∴BE=DF.例3、如图,将△ABC绕点C(0,-1)旋转180°得到△ABC,设点A的坐标为(a,b),则点A的坐标为()A.B.C.D.例4、如图,在坐标平面内,△ABC的三个顶点坐标分别为A(0,5),B(-20,-10),C(5,-10).(1)求△ABC的面积.(2)如何把△ABC平移到△A′B′O的位置,使点C与原点O重合,点B′在x轴的负半轴上?(3)求△A′B′O的顶点A′、B′的坐标.解:(1)因为B、C两点的坐标分别为(-20,-10)、(5,-10),所以BC∥x轴,BC=|5-(-20)|=25.设BC与y轴相交于点D,则点D的坐标为(0,-10).又点A坐标为(0,5),AD是△ABC的高,故AD=|5-(-10)|=15.所以,△ABC的面积(2)由(1),得BC∥x轴,由此可知将BC边平移到B′O,与把点C平移到点O的规律相同.因为点C的坐标为(5,-10),所以由点C往左平移5个单位,向上平移10个单位可与点O重合.所以,将△ABC向左平移5个单位,向上平移10个单位即可到达△A′B′O的位置.(3)根据平移的规律,得点A′的坐标为(0-5,5+10),点B′的坐标为(-20-5,-10+10),即点A′、B′的坐标分别为A′(-5,15)、B′(-25,0).点拨:已知三角形的三个顶点,求三角形面积这类问题中,本例(1)是特殊情形,其中有两个顶点的纵坐标(或横坐标)相等,即有一边平行于坐标轴.因此,它的底边和高可直接利用公式d=|x2-x1|或d=|y2-y1|求出.本例(2)、(3)的图形,在平移前后对应点的坐标的变化规律:每一点的横坐标都比原来增加(或减小)同一个数,纵坐标也都比原来增加(或减少)同一个数.如本例(2),由平移前后的对应点C和O的坐标变化分析出△ABC的平移规律;本例(3)再按这个平移规律分别求出A、B的对应点A′、B′的坐标.例5、(天津市中考题)在平面直角坐标系中,已知线段AB的两个端点分别是A(-4,-1),B(1,1),将线段AB平移后得到线段,若点的坐标为(-2,2),则点的坐标为()A.(4,3)B.(3,4)C.(-1,-2)D.(-2,-1)例6、如图,已知Rt△ABC中,∠C=90°,BC=4,AC=4,现将△ABC沿CB方向平移到△A′B′C′的位置.(1)若平移距离为3,求△ABC与△A′B′C′的重叠部分的面积;(2)若平移距离为x(),求△ABC与△A′B′C′的重叠部分的面积y,并写出y与x的关系式.显示答案解:(1)由题意CC′=3,BB′=3,所以BC′=1,又由题意易得重叠部分是一个等腰直角三角形,所以其面积为.(2)(0≤x≤4)例7、如图所示,A、B两点在l的两侧,在l上找一点C,使C到A、B的距离之差最大.分析:以l为对称轴作A点的对称点A′,作直线A′B交l于C点,则C为所求作的点.证明:在l上异于C点,找一点C′,连接C′A,C′B∵A,A′关于l轴对称,∴l为AA′的垂直平分线,则CA=CA′.∴CA-CB=CA′-CB=A′B.又∵C′在l上,在△A′BC′中,C′A′-C′B<A′B,∴C′A′-C′B<CA-CB.例8、在直角坐标系中,已知点A(4,0)和B(0,3),若有一个直角三角形与Rt△ABO全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(不必写出计算过程).解:(-4,0),(-4,3),(4,-3),(0,-3),(4,3),.例9、如图所示,AD为△ABC的高,∠B=2∠C,用轴对称证明CD=AB+BD.显示答案证明:作点B关于AD的对称点E,连接AE,因为AD⊥BC,所以E点在BC上.由轴对称性质知,BD=DE,AB=AE,∠1=∠B.因为∠1=∠2+∠C,∠B=∠1=2∠C.所以∠2=∠C,所以 AE=CE.所以CD=BD+AB.例10、下列投影中,不属于中心投影的是()A.晚上路灯下小孩的影子B.舞台上灯光下演员的影子C.阳光下树的影子D.电影屏幕上演员的影子解:太阳光是平行光,不是点光源发出的光线,故选C.例11、一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()A.B.C. D.例12、与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花和一棵树.晚上,幕墙反射路灯灯光形成了那盆花的影子,树影是路灯灯光形成的,如下图所示,你能确定此时路灯光源的位置吗?解:过盆花及其影子顶端作直线,作反射面法线,并作∠2=∠1,得光线l1,过树及其影子顶端作直线l2,两线交于点O,则O处为灯光位置.例13、如图,不透明的圆锥体DEC放在直线BP所在水平面上,且BP过底面圆的圆心,圆锥高为,底面半径为2m,某光源位于点A处,照射圆锥体在水平面上留下的影长BE=4m.(1)求∠B的度数;(2)若∠ACP=2∠B,求光源A距平面的高度.隐藏答案解:(1)设圆心为O,连DO,则DO⊥BP,在△BOD中,BO=BE+EO=4+2=6(m),Welcome To Download欢迎您的下载,资料仅供参考!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题训练(附详细解析) 全等变换(平移、旋转、翻折)1、(专题•天津)如图,在△ABC 中,AC=BC ,点D 、E 分别是边AB 、AC 的中点,将△ADE 绕点E 旋转180°得△CFE ,则四边形ADCF 一定是( )2、(专题黄石)把一副三角板如图甲放置,其中90ACB DEC ∠=∠= ,45A ∠= ,30D ∠= ,斜边6AB =,7DC =,把三角板DCE 绕着点C 顺时针旋转15 得到△11D CE (如图乙),此时AB 与1CD 交于点O ,则线段1AD 的长度为DCAE B AD 1OE 1BC图甲图乙A. B.5答案:B解析:如图所示,∠3=15°,∠E1=90°,∴∠1=∠2=75°,又∵∠B=45°,∴∠OFE1=∠B+∠1=45°+75°=120°。
∵∠OFE1=120°,∴∠D1FO=60°,∵∠CD1E1=30°,∴∠4=90°,又∵AC=BC,AB=6,∴OA=OB=3,∵∠ACB=90°,∴,又∵CD1=7,∴OD1=CD1-OC=7-3=4,在Rt△AD1O中,。
3、(专题•攀枝花)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()4、(10-3平移与旋转·专题东营中考)将等腰直角三角形AOB 按如图所示放置,然后绕点O 逆时针旋转90︒至A OB ''∆的位置,点B 的横坐标为2,则点A '的坐标为( )A .(1,1)B .C .(-1,1)D .()5C.解析:在Rt AOB ∆中,2OB =,45AOB ∠=︒,OAAOB OB∠=,所以cos 2OA OB AOB =∠== ,所以OA '=,过A '作A C y '⊥轴于点C ,在Rt A OC'∆,45A OC '∠=︒,OA '=,sin A C A OC A O''∠=',sin 1A C A O A OC '''=∠==,又因为⊙O 1A C '==,且点A '在第二象限,所以点A '的坐标为(-1,1). 5、(2012•青岛)如图,将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A ′的坐标是( )6、(专题泰安)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A.(1.4,﹣1)B.(1.5,2)C.(1.6,1)D.(2.4,1)考点:坐标与图形变化-旋转;坐标与图形变化-平移.分析:根据平移的性质得出,△ABC的平移方向以及平移距离,即可得出P1坐标,进而利用中心对称图形的性质得出P2点的坐标.解答:解:∵A点坐标为:(2,4),A1(﹣2,1),∴点P(2.4,2)平移后的对应点P1为:(﹣1.6,﹣1),∵点P1绕点O逆时针旋转180°,得到对应点P2,∴P2点的坐标为:(1.6,1).故选:C.点评:此题主要考查了旋转的性质以及平移的性质,根据已知得出平移距离是解题关键.7、(专题•湖州)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E 处,连接DE.若DE:AC=3:5,则的值为()根据相似三角形对应边成比例求出==AD==8、(专题•湘西州)如图,在平面直角坐标系中,将点A(﹣2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是()9、(专题•郴州)如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC 沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()10、(专题•常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为()B=5,11、(专题•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()12、(2013•荆门)在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,13、(专题成都市)如图,将矩形ABCD沿对角线BD折叠,使点C与点C’重合。
若AB=2,C D的长为()则'A.1B.2C.3D.4答案:BC D=CD=AB=2。
解析:由折叠可知,'14、(专题•绥化)如图,在Rt△ABC中,∠C=90°,AC=,BC=1,D在AC上,将△ADB 沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是()CF=,ED=AC==2=EF=1﹣×BC AD××((15、(专题•牡丹江)如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为(),AOB==)16、(专题广州市)在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格分析:根据题意,结合图形,由平移的概念求解解:观察图形可知:从图1到图2,可以将图形N向下移动2格.故选D.点评:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后图形的位置.17、(专题台湾、19)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P 时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC 的面积为50,则BP与PC的长度比为何?()A.3:2 B.5:3 C.8:5 D.13:8考点:翻折变换(折叠问题);三角形的面积.分析:由题意分别计算出△DBP与△DCP的面积,从而BP:PC=S△DBP:S△DCP,问题可解.解答:解:由题意可得:S△ABD=S△ABC﹣S△DBC=80﹣50=30.由折叠性质可知,S△DBP=S△ABD=30,∴S△DCP=S△DBC﹣S△DBP=50﹣30=20.∴BP:PC=S△DBP:S△DCP=30:20=3:2.故选A.点评:本题考查了折叠的性质:折叠前后的两个三角形是全等三角形,它们的面积相等.18、(专题•苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若=,则=用含k的代数式表示).中,,∵==2a==故答案为:19、(专题•衡阳)如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=70°.20、(专题•广安)将点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4个长度单位后得到点A′的坐标为(2,﹣2).21、(专题四川宜宾)如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为15.考点:平移的性质.分析:设点A到BC的距离为h,根据平移的性质用BC表示出AD、CE,然后根据三角形的面积公式与梯形的面积公式列式进行计算即可得解.解答:解:设点A到BC的距离为h,则S△ABC=BC•h=5,∵平移的距离是BC的长的2倍,∴AD=2BC,CE=BC,∴四边形ACED的面积=(AD+CE)•h=(2BC+BC)•h=3×BC•h=3×5=15.故答案为:15.点评:本题考查了平移的性质,三角形的面积,主要用了对应点间的距离等于平移的距离的性质.22、(专题•黄冈)如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD 沿直线l作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为6π.经过的路线长为:=经过的路线长为:经过的路线长为:=经过的路线长为:=6在AB边上的D点处,折痕BE与AC交于点E,若AD=BD,则折痕BE的长为4.×,,)24、(专题•烟台)如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为108度.25、(专题•鄂州)如图,△AOB中,∠AOB=90°,AO=3,BO=6,△AOB绕顶点O逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点,则线段B′E的长度为.=3,BO=×ו×EF=×E=3﹣故答案为:26、(专题河北)如图11,四边形ABCD 中,点M ,N 分别在AB ,BC 上, 将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B = °. 答案:95解析:∠BNF =∠C =70°,∠BMF =∠A =100°, ∠BMF +∠B +∠BNF +∠F =360°,所以,∠F =∠B =95°。
27、(专题河南省)如图,矩形ABCD 中,3,4AB BC ==,点E 是BC 边上一点,连接AE ,把B ∠沿AE 折叠,使点B 落在点'B 处,当△'CEB 为直角三角形时,BE 的长为 【解析】①当'90EB C ∠=︒时,由题可知:'90ABE AB E ∠=∠=︒,即:,',A B C 在同一直线上,'B 落在对角线AC 上,此时,设BE x =,则'B E x =,4,''2CE x B C AC AB =-=-=,在'Rt B EC 中,解得32x =②当'90B CE ∠=︒时,即'B 落在CD 上,'3AB AB ==,此时在'Rt ADB 中, 斜边'AB 大于直角边AD ,因此这种情况不成立。
③当'90B EC ∠=︒时,即'B 落在AD 上,此时四边形'ABEB 是正方形,所以3,AB BE ==【答案】332或28、(专题安顺)如图,在平面直角坐标系中,将线段AB 绕点A 按逆时针方向旋转90°后,得到线段AB ′,则点B ′的坐标为 .考点:坐标与图形变化-旋转.分析:画出旋转后的图形位置,根据图形求解. 解答:解:AB 旋转后位置如图所示. B ′(4,2).点评:本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心A ,旋转方向逆时针,旋转角度90°,通过画图得B ′坐标.29、(专题广东省4分、15)如题15图,将一张直角三角板纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E ′位置,则四边形ACE ′E 的形状是________________. 答案:平行四边形解析:C 'E 平行且等于BE ,而BE =EA ,且在同一直线上,所以,C 'E 平行且等于AE ,故是平行四边形。