第4章 圆轴扭转时的强度与刚度计算

合集下载

第4章圆轴扭转时的强度与刚度计算

第4章圆轴扭转时的强度与刚度计算

圆轴扭转后横截面保持平面
第一个结论
圆轴扭转时,横截 面保持平面,平面上 各点只能在平面内转 动
圆轴扭转后横截面保持平面
假设平面不是刚性转动, 直径将变成曲线,A端观察 者看到的情形。
圆轴扭转后横截面保持平面
假设平面不是刚性转动, 直径将变成曲线,B端观察 者看到的情形。
圆轴扭转后横截面保持平面
最终结论
圆轴扭转时,横 截面 保持平面,并且 只能发生刚性转动。
圆轴扭转后横截面保持平面
变形协调方程
圆轴扭转时的变形协调方程
若将圆轴用同轴柱面分割成许多半径不等的圆柱,根据上述结论,在dx长度 上,虽然所有圆柱的两端面均转过相同的角度d,但半径不等的圆柱上产生的剪 应变各不相同,半径越小者剪应变越小。
其中P为功率,单位为千瓦(kW); n为轴的转速,单位为转/分(r/min)。
4.1外加扭力矩、扭矩与 扭矩图
P[马力]
Me
7024 n[r / min]
[N m]
若P为功率,单位为马力 (1马力=735.5 N•m/s )
n为轴的转速,单位为转/分(r/min)
4.1外加扭力矩、扭矩与 扭矩图
max
M x,max Wp
[ ]
[ ]为许用剪应力;是指圆轴所有横截面
上最大剪应力中的最大者,
钢 [ ] (0.5 ~ 0.6)[ ] 铸铁 [ ] (0.8 ~ 1)[ ]
例题1
已知:P=7.5kW, n=100r/min,最大剪应力不得超过40MPa,空心圆轴的内外直 径之比 = 0.5。二轴长度相同。
圆轴扭转时横截面上的剪应力表达式
圆轴扭转时横截面上的剪应力表达式
圆轴扭转时横截面上的最大剪应力

圆 轴扭转时的变形和刚度计算

圆 轴扭转时的变形和刚度计算

a<[
]
60MP
a
可见强度满足要求。
目录
扭转\圆轴扭转时的变形和刚度计算
4)刚度校核。轴的单位长度最大扭转角为

max
Tmax GIp
180=
2.86103 N m
π 80109 P a 6.44106
m4
180 3.14
=0.318 / m 1.1 / m
可见刚度也满足要求。
目录
扭转\圆轴扭转时的变形和刚度计算
【例3.6】 一钢制传动圆轴。材料的切变模量G=79×103MPa,
许用切应力[τ]= 88.2 MPa,单位长度许用扭转角 0.5 /m,承受
的扭矩为T = 39.6 kN·m。试根据强度条件和刚度条件设计圆轴的直 径D。
【解】 1)按强度条件设计圆轴的直径。由强度条件
=Tmax W max
床的加工精度;机器的传动轴如有过大的扭转变形,将使机器在运
转时产生较大振动。因此,必须对轴的扭转变形加以限制,即使其
满足刚度条件:
=Tmax max GIp
式中:[ ]——单位长度许用扭转角,单位为rad/m,其数值是由轴
上荷载的性质及轴的工作条件等因素决定的,可从有关设计手册中
查到。在工程实际中,[ ]的单位通常为 /m ,因而刚度条件变为
Gπ2[ ]
3 21 8 0 3 9.6 1 03
79109 2 0.5 m 0.156m 156mm
故取D=160mm,显然轴能同时满足强度条件和刚度条件。
目录
力学
该轴的强度和刚度。
目录
扭转\圆轴扭转时的变形和刚度计算
【解】 1)计算外力偶矩。
M eA
9549

扭转刚度计算.

扭转刚度计算.

例6-5 汽车传动轴AB由45号无缝钢管制成,外径D=90mm,
[ ] =1.0°/m,工作时最 内径d=85mm,许用切应力 [ ]=60MPa,
大力偶矩M =1500N· m,G =80GPa。
(1)试校核其强度及刚度。 (2)若将AB轴改为实心轴,试求其直径。 (3)比较空心轴和实心轴的重量。 解 (1)试校核其强度及刚度。
max 180M n /(GI P ) [θ ]
下列标准。 精密机械的轴 一般传动轴
(6-13)
[ ]的数值,可从有关手册中查得。一般情况下,可参照 [ ] =(0.25~0.5)°/m [ ] =(0.5~1.0) °/m [ ] =(1.0~2.5) °/m
精度要求不高的轴
根据扭转刚度条件,可以解决三类问题, 即校核刚度、 设计截面和确定许可载荷 。
M n Wn [ ] (0.2 403 109 60106 )N m 768N m
M M n 768N m
(2) 确定最大功率
由式(6-1)得
P M nn / 9550 (768 200/ 9550 )kW 16kW
二、刚度计算 圆轴扭转时,还要求不产生过大的扭转变形。即
第四节 圆轴扭转时的强度和刚度计算
,即
max M n/W n [ ]
(6-12)
例6-4 某传动轴,已知轴的直径d=40mm,转速n=200r/min, 材料的许用切应力 60MPa ,试求此轴可传递的最大功率。
解 (1)确定许可外力偶矩
由扭转强度条件得
0.8/m < [ ]
传动轴满足刚度要求。 (2)计算实心轴的直径
1)按强度条件设计(设直径为D1)。若实心轴与空心轴强

04. 圆轴的扭转解析

04. 圆轴的扭转解析

在工厂里当看到一套传动装置时,往往可从轴径的 粗细来判断这一组传动轴中的低速轴和高速轴。
§4-1圆轴扭转时所受外力的分析与计算
一、搅拌轴的三项功能 二、n , P, m 之间的关系(重点)
一、搅拌轴的三项功能
1.传递旋转运动 : 将电动机或减速机输出轴的旋转运动传递给搅拌物 料的桨叶。 2.传递扭转力偶矩: 将轴上端作用的驱动力偶传至轴的下端,用以克服 桨叶旋转时遇到的阻力偶;力偶通过轴传递时,其力偶 矩称为扭矩,扭矩属于内力,其值可借助外力偶矩求出; 3.传递功率: 转轴带动桨叶旋转时要克服流体阻力作功,所需功 率也是从转轴的上端输入后,通过轴传递给浆叶的。
(KN*m)
圆轴传递的功率P和转数n为已知时,用上述公式 即可求出该轴外力矩的大小。由上式可以看出: 如轴的功率P一定,转数n越大,则外力矩越小, 反之,转数越低则外力矩越大。 例如:化工设备厂卷制钢板圆筒用的卷板机,工作时滚轴 所需力矩很大,因为功率受到一定的限制,所以只能减 低滚轴的转数n来增大力矩M。由电动机经过一个三级四 轴减速机带动滚轴,此减速机各轴传递的功率可看成是 一样的。因此,转数n高的轴,力矩M就小,轴径就细一 些;转数低的轴,力矩M就大,轴径就粗.
A
解:1)用截面法把所求
各轴截开:
2)分别求各段轴的扭矩: M M 1+ M B = 0
1 2
= -M =-M
B
B
=-350N.m
C
M M
B D
+ M -M
3
C
+ M = 0
2
=0
M
-M
=-700N.m
M
3
= M
D
= 446N.m
二、扭转内力:(扭矩和扭矩图)(续3)

材料力学-第4章圆轴扭转时的强度与刚度计算

材料力学-第4章圆轴扭转时的强度与刚度计算
B
I
C
A
II
D
III
I
II
III
M
x
0
确定各段圆轴内的扭 矩。
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
3 . 建立 Mx - x 坐 标系,画出扭矩图 建 立 Mx - x 坐 标 系,其中x轴平行于 圆轴的轴线,Mx轴垂 直于圆轴的轴线。将 所求得的各段的扭矩 值,标在 Mx - x 坐标 系中,得到相应的点 ,过这些点作x轴的 平行线,即得到所需 要的扭矩图。
P M e 9549 [N m] n
其中P为功率,单位为千瓦(kW);n为轴的转速,单位为转/ 分(r/min)。 如果功率P的单位用马力(1马力=735.5 N•m/s),则
P[马力] M e 7024 [N m] n[r / min]
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴 外加扭力矩、扭矩与扭矩图 剪应力互等定理 剪切胡克定律
圆轴扭转时横截面上的剪应力分析 与强度设计 圆杆扭转时的变形及刚度条件 结论与讨论
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴
第4章 圆轴扭转时的强度与刚度计算
绘出扭矩图:
第4章 圆轴扭转时的强度与刚度计算
B C
I
外加扭力矩、扭矩与扭矩图 A III D II
I 扭矩Mn-图
II
III
159.2
(+)
(-)
63.7 159.2
M n,max 159.2( N m)
(在CA段和AD段)

工程力学-圆轴扭转变形分析

工程力学-圆轴扭转变形分析

P=7.5kW,轴的转速n=80r/min。试选择实心圆轴的直径d和空心圆轴的外
径d 2。己知空心圆轴的内外径之比=d 1/d 2=0.8,许用扭转切应力 [τ]=40MPa。
解:(1)外力偶矩为
M e 9550 7.5 N m 895 .3 N m 80
(2)扭矩为 T = Me = 895.3N· m (3)实心圆轴直径 根据强度条件
各点切应力的大小与该点到圆心的距离成正比,其分布 规律如图
圆轴扭转时,最大切应力 max 发生在圆轴表面。当ρ=R 时,其值为:
TR T max Ip IP / R
令 Wp
Ip R
max
T Wp
Wp称为扭转截面系数,它表示截面抵抗扭转破坏的能 力,单位是(mm)3。
工程中承受扭转的圆轴通常采用实心圆轴和空心圆轴两种形
max
T 16T 3 Wp πd
16 T 3 16 895.3 d 3 m 0.048m 48mm 6 [ ] 3.14 40 10
(4)空心圆轴外径
根据强度条件
max
T 16T 3 4 Wp πd 2 (1 )
16 T 16 895.3 3 d2 m 4 6 4 [ ](1 ) 3.14 40 10 (1 0.8 )
3
0.058m 58m m
内径d 1=α×d 2= 0.8×58 mm = 46.4mm
(5)比较重量
在长度相等、材料相同的情况下,空心圆轴与实心圆 轴重量之比等于横截面面积之比,即
四、圆轴扭转时的强度 计算
圆轴的扭转的强度条件
max
Tmax Wp

转轴扭转强度、刚度校核

转轴扭转强度、刚度校核
max M n/Wn (1500 103 / 29800 )MPa 50.3MPa<[ ]
传动轴满足强度要求。 2)刚度校核 传动轴的极惯性矩为
IP 0.1D 4 (1 a4 ) {0.1 904[1 (85 / 90)4 ]}mm4 134 10 4 mm4
max 180 M n /(GI P ) (180 1500 103 / 80 103 134 10 4 ) 103/m
当两轴材料、长度相同,它们的重量之比等于横截面面
积之比。设A1、A2分别为空心轴和实心轴的面积,则有
A 1
/
A 2
[
(D
2
d
2)
/
4] /(D 22
/
4)
(90 2
852 )
/
612
0.235
第四节 圆轴扭转时的强度和刚度计算
一、强度计算
为了保证圆轴安全正常地工作,即
max M n/Wn [ ]
(6-12)
例6-4 某传动轴,已知轴的直径d=40mm,转速
n材=料20的0许r/m用i切n,应力 60MPa ,试求此轴可传递的最大功率。
解 (1)确定许可外力偶矩
由扭转强度条件得
M n Wn[ ] (0.2 403 109 60 106 )N m 768N m

大力偶矩M =1500N·m,G =80GPa。
(1)试校核其强度及刚度。 (2)若将AB轴改为实心轴,试求其直径。 (3)比较空心轴和实心轴的重量。 解 (1)试校核其强度及刚度。 1) 强度校核 传动轴各截面上的扭矩均为
Mn = M = 1500N·m
传动轴的抗扭截面系数为
Wn 0.2D 3 (1 d 4 ) {0.2 903[1 (85 / 90)4 ]}mm3 29800 mm3 传动轴横截面上的最大切应力为

《材料力学》第四章 扭转

《材料力学》第四章 扭转

第四章 扭转§4—1 工程实例、概念一、工程实例1、螺丝刀杆工作时受扭。

2、汽车方向盘的转动轴工作时受扭。

3、机器中的传动轴工作时受扭。

4、钻井中的钻杆工作时受扭。

二、扭转的概念受力特点:杆两端作用着大小相等方向相反的力偶,且作用面垂直杆的轴线。

变形特点:杆任意两截面绕轴线发生相对转动。

轴:主要发生扭转变形的杆。

§4—2 外力偶矩、扭矩一、外力:m (外力偶矩)1、已知:功率 P 千瓦(KW ),转速 n 转/分(r /min ; rpm)。

外力偶矩:m)(N 9549⋅=nPm 2、已知:功率 P 马力(Ps),转速 n 转/分(r /min ;rpm)。

外力偶矩:m)(N 7024⋅=nPm 二、内力:T (扭矩) 1、内力的大小:(截面法)mT m T mx==-=∑002、内力的符号规定:以变形为依据,按右手螺旋法则判断。

(右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向背离所在截面则扭矩规定为正值,反之为负值。

)3、注意的问题:(1)、截开面上设正值的扭矩方向;(2)、在采用截面法之前不能将外力简化或平移。

4、内力图(扭矩图):表示构件各横截面扭矩沿轴线变化的图形。

作法:同轴力图:§4—3 薄壁圆筒的扭转 一、薄壁圆筒横截面上的应力(壁厚0101r t ≤,0r :为平均半径) 实验→变形规律→应力的分布规律→应力的计算公式。

1、实验:2、变形规律:圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动了一个不同的角度。

纵向线——倾斜了同一个角度,小方格变成了平行四边形。

3、切应变(角应变、剪应变):直角角度的改变量。

4、定性分析横截面上的应力(1) 00=∴=σε ;(2)00≠∴≠τγ因为同一圆周上切应变相同,所以同一圆周上切应力大小相等。

⑶ 因为壁厚远小于直径,所以可以认为切应力沿壁厚均匀分布,而且方向垂直于其半径方向。

10——扭转的强度和刚度计算

10——扭转的强度和刚度计算

τ 1 = γτ max
其中 : WT = α b 2h
θ = Mx
GI T
, 其中 : IT = β b3h
对于狭长矩形 ( 即 : h ≥ 10 ) ; b
α ≈β ≈1
3
查表求α 和β 时一定要注意,表中α 和β 与那套公式对应。
[例] 一矩形截面等直钢杆,其横截面尺寸为:h = 100 mm, b=50mm,长度L=2m,杆的两端受扭转力偶 Mx =4000N·m 的作用 ,钢的G =80GPa ,试求此杆的剪应力和单位长度扭 转角。
T
Ip

max
G[θ ]
T max ≤ GI p[θ ]
有时,还可依据此条件进行选材。
[例] 长为 L=2m 的圆杆受均布力偶 m=20Nm/m 的作用,
如图,若杆的内外径之比为α =0.8 ,G=80GPa ,许用剪应 力 [τ]=30MPa,试设计杆的外径;若[θ]=2º/m ,试校核此杆
的刚度,并求右端面转角。
石油钻机中的钻杆等。
扭转:外力的合力为一力偶,且力偶的作用面与直杆的轴线
垂直,杆发生的变形为扭转变形。
A
B O
A
γ ϕBO
m
m
工 程 实 例
单元体的四个侧面上只有剪应力而无正应力作用,这 种应力状态称为纯剪切应力状态。 四、剪切虎克定律:
T
T
τ =G⋅γ
式中:G是材料的一个弹性常数,称为剪切弹性模量,因γ 无量纲,故G的量纲与τ 相同,不同材料的G值可通过实验确定,
dx
τρ
=
Mx ⋅ρ
Ip
—横截面上距圆心为ρ处任一点剪应力计算公式。
4. 公式讨论: ① 仅适用于各向同性、线弹性材料,在小变形时的等圆截面

同济大学材料力学第四章 扭转 3学时

同济大学材料力学第四章 扭转 3学时

N马力 m 7.02 n
(kN m)
N KW m 9.55 n
(kN m)
第四章 扭转/二 外力偶矩、扭矩和扭矩图
2 求扭转内力的方法—截面法


3 受扭圆轴横截面上的内力—扭矩
I
Mn
I
第四章 扭转/二 外力偶矩、扭矩和扭矩图
4 扭矩的符号规定—右手螺旋法则
mI I
m
Mn
扭 矩 符 号 规 定 :
m1
d1
m2
d2
m3
I P1 I P2
d1
A
0.8kN· m
0.8m
B
1.0m
C
32 d 2 4 236cm 4 32
25.1cm
4
AB
BC
M n1L1 0.0318rad GI P1
M n 2 L2 0.0079rad GI P 2
1.5kN· m
AC AB BC 0.0318rad 0.0079rad 0.0239rad
0
τ
τ
σmin
τ
45 0
0
σmax
第四章 扭转/三 圆轴扭转时的强度计算
3 圆轴扭转时的强度条件 为保证圆轴安全工作,要求轴内的最大工作切 应力不超过材料的许用切应力,即:
max
式中的许用扭转切应力 ,是根据扭转试验, 并考虑适当的工作安全系数确定的.
M n max WP
159.2
第四章 扭转/二 外力偶矩、扭矩和扭矩图
课堂练习 图示圆轴中,各轮上的转矩分别为mA=4kN·m, mB=10kN·m, mC=6kN · m,试求1-1截面和2-2截面上的 轮 扭矩,并画扭矩图。

材料力学课件 第四章扭转

材料力学课件 第四章扭转
4. 公式讨论: ① 仅适用于各向同性、线弹性材料,在小变形时的等圆截面
直杆。
② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
—该点到圆心的距离。
Ip—截面极惯性矩,纯几何量,无物理意义。
17
Ip A 2dA 单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,
只是Ip值不同。
一、传动轴的外力偶矩 传递轴的传递功率、转数与外力偶矩的关系:
m
9.55
P n
(kN
m)
其中:P — 功率,千瓦(kW) n — 转速,转/分(rpm)
m
7.024
P n
(kN
m)
其中:P — 功率,马力(PS) n — 转速,转/分(rpm)
m
7.121
P n
(kN
m)
其中:P — 功率,马力(HP) n — 转速,转/分(rpm)
22
[例2]有一阶梯形圆轴,如图(a)所示轴的直径分别d为1 50mm,d2 80mm 。扭转力偶矩分别为 Me1 0.8kN m ,Me2 1.2kN m ,M e3 2kN m。若 材料的许用切应力 [ ] 40MPa ,试校核该轴的强度。
解: 方法一(理论计算法) 用截面法求出圆轴各段的扭矩,如图(b)所示。 由扭矩图可见,CD段和DB段的直径相同,但DB段的扭矩大 于CD段,故这两段只要校核DB段的强度即可。AC段的扭矩 虽然也小于DB段,但其直径也比DB段小,故AC段的强度也 需要校核。
2GI p
W
U ;
64PR3n Gd 4
P K
;
K
Gd 4 64R3n
为弹簧常数。
36
[例3] 圆柱形密圈螺旋弹簧的平均直径为:D=125mm,簧丝直 径为:d =18mm,受拉力 P=500N 的作用,试求最大剪应力 的近似值和精确值;若 G =82GPa,欲使弹簧变形等于 6mm, 问:弹簧至少应有几圈?

圆轴扭转时刚度计算

圆轴扭转时刚度计算
38.4ΜΡa [ ] 40ΜΡa
轴满足 强度条件
4) 刚度校核
Tmax 180 700 32 180 0 max ( / m) 9 4 12 GIp 8010 45 10
1.23
m
[ ] 1.5
m
因轴同时满足刚度条件,所以传动轴是安全的。
T2 M B M A
468 1168 700 N m
3-3截面的扭矩
B
m
A
T3 M C 350N m
绘出的扭矩图如图所示。显然AC段扭矩最大,由于是等 截面圆轴,故危险截面在AC段内。
3) 强度校核
max
T 700 16 P 3 9 a WP 45 10
D3
70016 m 0.049m 49mm (1 0.74 ) 38.4 106
d D 0.7 49 34 mm
二者所费材料比就是横截面积之比
A空 4 A实 452 4
(D2 d 2 )

1245 0.61 2025
可见空心圆轴所用材料只占实心轴所用材料的
61%,节约了材料。
例若将前题中的圆轴改为同样强度的空心圆轴,其内外径之比
=d/D=0.7,试设计其内外径尺寸,并与前题所消耗材料作
一比较。 解:要求与前题之轴具有同样强度,即要求该空心圆轴工 作时的最大切应力与实心圆轴的最大切应力相同: max = 38.4MPa,即有
max
70016 T 38.4MPa 3 4 WP D (1 )
GI P
抗扭刚度:式中的 GIP 称为圆轴的抗扭刚度,它反映了圆轴抵抗扭转变 形的能力。

圆轴扭转时的强度和刚度计算

圆轴扭转时的强度和刚度计算

A1 / A2 = [π (D 2 − d 2 ) / 4] /(πD 2 2 / 4) = (90 2 − 852 ) / 612 = 0.235
传动轴满足强度要求。 2)刚度校核 传动轴的极惯性矩为
I P = 0.1D 4 (1 − a 4 ) = {0.1 × 90 4 [1 − (85 / 90 ) 4 ]}mm 4 = 134 × 10 4 mm 4 θ max = 180 M n /(πGI P )
= (180 × 1500 × 10 3 / 80 × 10 3 × 134 × 10 4 π ) × 10 3 °/m
= 0.8°/m < [θ ]
传动轴满足刚度要求。 (2)计算实心轴的直径
1)按强度条件设计(设直径为D1)。若实心轴与空心轴强 度相同,当材料相同时,它们的抗扭截面系数应相等,即
W n = πD 13 / 16 = πD 3 (1 Βιβλιοθήκη a 4 ) / 16由此得
D 1 = D3 1 − a 4 = [90 × 3 1 − (85 / 90) 4 ]mm = 53mm
根据扭转刚度条件,可以解决三类问题, 即校核刚度、 设计截面和确定许可载荷 。
例6-5 汽车传动轴AB由45号无缝钢管制成,外径D=90mm,
[ 内径d=85mm,许用切应力 [τ ]=60MPa,θ ] =1.0°/m,工作时最
大力偶矩M =1500N·m,G =80GPa。 (1)试校核其强度及刚度。 (2)若将AB轴改为实心轴,试求其直径。 (3)比较空心轴和实心轴的重量。 解 (1)试校核其强度及刚度。 1) 强度校核 传动轴各截面上的扭矩均为
θ max = 180M n /(πGI P ) ≤ [θ ]
(6-13)

材料力学 (扭转)(四章 圆轴扭转时的强度与刚度计算)

材料力学 (扭转)(四章 圆轴扭转时的强度与刚度计算)

Mx 0: T1 MA 0
C
T1 MA 7.03KN.m
22
Mx 0: -T2 MC 0
T2 MC 2.32KN.m
X
(4)讨论现在的设计是否合理。
若将A轮与B轮调换, X 则扭矩图如下:
可见轴内的最大扭矩值减小了。10
T(KN.M)
§3.2 薄壁圆筒扭转
在圆筒表面画 上许多纵向线 与圆周线,形成 许多小方格.
G
剪切胡克定律
G-剪切弹性模量
G E
2(1 )
2021/8/19
17
圆轴扭转时的应力和变形
根据观察到的现象, 经过推理,得出关于圆 轴扭转的基本假设。
m
m
圆轴扭转变形前的横截面,变形后仍保持为平面,
形状和大小不变。且相邻两截面间的距离不变。这就 是圆轴扭转的平面假设。
2021/8/19
18
二. 应力在横截面上的分布
2
而象电动机的主轴,水轮 机的主轴也承受扭转作用, 但这些零件除扭转变形外, 还伴随有其它形式的变形, 属于组合变形。
• 以扭转变形为主要变形形式的构件通常称为轴。 • 工程上应用最广的多为圆截面轴,即圆轴。
2021/8/19
3
• 扭转受力的特点是:
• 在构件的两端作用两个大小相等、方向相反且作 用面垂直于构件轴线的力偶矩。致使构件的任意 两个截面都发生绕构件轴线的相对转动,这种形 式的变形即为扭转变形。
在转矩m作用下,发现圆 周线相对地旋转了一个角 度,但大小、形状和相邻 两圆周线的距离不变。
表明,在圆筒的横截面上没有正应力和径向剪应力。
2021/8/19
11
设圆筒平均半径为r,筒壁厚度为t
因圆筒壁厚很小,可认为剪应力沿

圆轴扭转时的变形、刚度计算

圆轴扭转时的变形、刚度计算

功率分别为 剪切弹性模
N A =10 kW,N B G=80GPa,若
=12 kW,N D=18
=50MPa,
kW。材料的
=0.3º/m,
试按强度条件和刚度条件设计此轴的直径。
解(1)求外力偶矩
MA MB
MC
d
M M
A B
9549 9549
NA
n NB
n
9549 10 318(N m) 300
工程力学
圆轴扭转时的变形、刚度计算
一、变形:(相对扭转角)
MT
GIP
d
dx
d
dx
MT GIP
d MT dx
GIP
MT dx L GIP —— T T (x) MT L
GIP —— T=常量
单位:弧度(rad)。 GIP——抗扭刚度。
MT L
GIP
——T=常量,且分段。
注意: “MT” 代入其“+、-”号
AB
MT 3 M D 573(N·m)
(Nm) MT
d
MC
MD
(a)
C
D
573 N∙m
x
MT max 700N m
318 N∙m
(b)
(3)按强度条件设计轴的直径:由强度条件 700N∙m
max
MT ,max Wp
[ ]
Wp
d 3
16

d 3 16M n max
16 700103 3
9549 12 382(N m) 300
A
B
C
MC
9549
NC n
9549 40 300
1273(N m)
MD

圆轴扭转时的强度与刚度计算材料力学

圆轴扭转时的强度与刚度计算材料力学


度条件为
max
Mn Wp
maxG MnIp •180
返回 下一张 上一张 小结
精品课件!
精品课件!
• (五)用强度,刚度条件解决实际部题的步骤

1)求出轴上外力偶矩;

2)计算扭矩和作出扭矩图;

3)分析危险截面;

4)列出危险截面的强度、刚度条件并进行计算。
返回 下一张 上一张 小结
返回 下一张 上一张 小结
• 二 剪应力计算:
• 1 几何关系: • • 2 物理关系:
P G
• • 3 静力关系:
Mnl d
G Ip
Mn d GIp d
• 扭转剪应力公式:
p
M n Ip
max
Mn Wp
返回 下一张 上一张 小结
•三
• •
截面极惯性矩 ;抗扭截面模量
ax

故求得直径为
4010
D3
16Mnmax3
1
6
628.467
0 .03 m 332 .2 3 mm
返回 下一张 上一张 小结
• (4)由刚度条件,得
maxM G nm pIax180G M nm D a4x 18 G n m 2a•x 18038 2 0 216 80 . 46 7 21 180
m ax0 .5 WM Pn 0 .6
0 .8 1 .0
• 2 强度计算的三个方面:

a 强度校核

b 截面选择

c 许可荷载确定
返回 下一张 上一张 小结
• 例1 如图为一钢圆轴,两端受外力偶m的作用,已知m=2.5
• KN.m,直径d=60m,许用应力为60MPa。试校核该轴的强度。

工程力学-9-圆轴扭转的强度与刚度

工程力学-9-圆轴扭转的强度与刚度
工程力学-9-圆轴扭转的强度 与刚度

CONTENCT

• 引言 • 圆轴扭转的基本概念 • 圆轴扭转的强度分析 • 圆轴扭转的刚度分析 • 圆轴扭转的实例分析 • 结论
01
引言
主题简介
圆轴扭转的强度与刚度是工程力学中的重要概念,主要研究圆轴 在受到扭矩作用时的应力、应变以及如何保证其强度和刚度的问 题。
对于圆轴扭转,刚度条件通常要求圆轴在承受外力矩作用时 产生的扭转变形量不超过允许值,以确保设备的正常运转。
刚度计算
刚度计算是确定结构刚度的过程,通常需要利用力学原理 和相关公式进行计算。
对于圆轴扭转,刚度计算需要考虑圆轴的截面尺寸、材料 属性、外力矩大小等因素,通过计算得出圆轴的扭转变形 量,从而评估其刚度是否满足要求。
剪切应变
圆轴扭转时,横截面上的任意两点之间会发生相对转动,这种转 动效应称为剪切应变。
剪切强度条件
剪切强度极限
圆轴在受到外力矩作用发生扭转 时,其横截面上剪切应力的最大 值不能超过材料的剪切强度极限 。
剪切强度条件
圆轴扭转时,其横截面上的剪切 应力应满足剪切强度条件,即剪 切应力不超过材料的剪切强度极 限。
工程实例分析
某型号汽车传动轴断裂分析
通过对实际发生的汽车传动轴断裂案例进行分析,发现是由于材料缺陷和加工工艺问题导致的强度不足,进一步 强调了圆轴扭转强度的重要性。
大型机械传动装置故障
大型机械传动装置在运行过程中发生故障,经分析是由于圆轴扭转刚度不足,导致运行过程中产生过大变形,影 响正常运行。
设计建议与注意事项
01
02
03
04
材料选择
选择具有高强度、高刚度的材 料,如合金钢、不锈钢等,以 满足圆轴扭转的强度和刚度要 求。

轴的强度和刚度计算

轴的强度和刚度计算

下式
φ≤[φ]
(1-5)
轴的强度和刚度计算
例1-1 如图1-17所示为一圆柱直齿轮减速器的传动简 图。已知传递功率P= 44 kW,从动齿轮转速n= 600 r/min,分度圆直径d=320 mm,轮毂长度80 mm, 采用深沟球轴承。试设计输出轴。
图1-17 圆柱直齿轮减速器
⑥校核危险截面的强度 根据当量弯矩图找出危险截面,进行轴的强度
校核,其公式如下
M M
d e
e W 0.1
e 3
1 b

M d 3
e
0.1Байду номын сангаас1 b
(1-3)
式中,w为轴的抗弯截面系数(mm3);σe为当量弯曲应力(MPa)。
轴的强度和刚度计算
• 1.2 轴的刚度计算
轴受载荷的作用后会发生弯曲、扭转变形,如变形过大会影响轴上零
件的正常工作,例如装有齿轮的轴,如果变形过大会使啮合状态恶化。
因此对于有刚度要求的轴必须要进行轴的刚度校核计算。
1.轴的弯曲刚度校核计算
应用材料力学的计算公式和方法算出轴的挠度y或转角θ,并使其满足
下式
y≤[y]
(1-4)
θ≤[θ]
2.轴的扭转刚度校核计算
应用材料力学的计算公式和方法算出轴每米长的扭转角φ,并使其满足
轴的强度和刚度计算
• 1.1 轴的弯扭合成强度计算
进行强度计算时通常把轴当作置于铰链支座上的梁,作用于轴上零
件的力作为集中力,其作用点取为零件轮毂宽度的中点。支点反力的作
用点一般可近似地取在轴承宽度的中点上。一般计算顺序如下:
①画出轴的空间力系图。将轴上作用力分解为水平面分力和垂直面分
力,并求出水平面和垂直面上的支点反力。

第四节圆轴扭转时的强度和刚度计算

第四节圆轴扭转时的强度和刚度计算

选择直径、壁厚、长度等作为设计变量。
设计变量
目标函数
约束条件
优化算法
以最大扭矩为目标函数,考虑重量和成本的影响。
强度、刚度、稳定性等为约束条件。
采用遗传算法进行优化,考虑多种方案进行比较和选择。
THANKS
感谢观看
抗扭截面模数是圆轴截面的几何特性,等于圆周上各点的截面模数之和。
剪切弹性模量是衡量圆轴材料抵抗剪切变形能力的参数,等于剪切模量与弹性模量之比。
圆轴扭转的强度计算
02
扭矩的单位
扭矩的单位为牛米(N·m)或千克米(kgf·m)。
扭矩
圆轴扭转时所受的力偶矩为扭矩,用M表示。
扭矩的方向
扭矩的方向垂直于圆轴的轴线。
圆轴扭转的受力分析
强度条件
强度计算公式
强度计算公式说明
圆轴扭转的强度计算公式
选择材料:圆轴的材料为45号钢。
确定许用扭矩:[M] = 50 N·m。
已知圆轴的直径d = 20 mm。
根据强度计算公式
由于Mmax ≤ [M],因此该圆轴满足强度要求。
圆轴扭转的强度计算实例
01
02
03
04
05
圆轴扭转的刚度计算
圆轴扭转时,轴的横截面保持为圆形,且各点的剪切变形相等。
圆轴扭转时,轴的纵向线发生微小的缩短,但各点的缩短量相等。
圆轴扭转的特点
圆轴扭转的基本参数
作用在轴上的扭矩等于作用在轴上所有外力的投影矢量的代数和。
扭矩(M)
极惯性矩(Ip)
抗扭截面模数(Wp)
剪切弹性模量(G)
极惯性矩是衡量圆轴抗扭能力的参数,等于圆周上各点的截面惯性矩之和。
xx年xx月xx日
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

其中
φ1 =
M x1l , GI p1
M l φ2 = x 2 GI p2
将(a)和(c)式代入(b)式得
(c)
M l M l Tl = x1 + x 2 GI p1 GI p1 GI p2
由此解得
(d)
M x1 = M x 2 =
其中
I p2 I p1 + I p2
T
(e)
于是,卸载后薄壁管横截面上的最大剪应力为
2
3
4-4 变截面轴受力如图所示,图中尺寸单位为 mm。若已知 Me1=1765 N·m,Me2 =1171 N·m,材料的切变模量 G=80.4 GPa,求: 1.轴内最大剪应力,并指出其作用位置; 2.轴内最大相对扭转角 ϕ max 。
习题 4-4 图
解:1、确定最大剪应力 AB 段:

τ max ( AB ) =
Ts R3 = 3 0 4 Th R 2 (1 − n )
7
aw .
(d)Biblioteka co m由(a)式有
2 2 R0 = R2 − R12
将其代入(d)式,最后得到所要证明的结论:
3 3 3 2 Ts ( R 2 − R12 ) 2 (1 − n 2 ) 2 (1 − n 2 ) 2 1 − n2 = 3 = = = Th R 2 (1 − n 4 ) 1 − n4 (1 − n 2 )(1 + n 2 ) 1 + n2
τ 2 max =
Mx T = = 75.4MPa Wp πd 3 ⎛ ⎛ 1 ⎞ 4 ⎞ ⎜1 − ⎜ ⎟ ⎟ ⎟ 16 ⎜ ⎝ ⎝2⎠ ⎠
4
ww
r 0
τ 1max
Mx 3 × 10 3 × 16 T T = 70.7 MPa = = = = W P W P πd 3 π × 0.06 3 16
ρ⋅
τ max ( BC ) =
(
2、确定轴内最大相对扭转角 ϕ max
ϕmax = ϕ AB + ϕ BC
= = M xAB l1 M xBC l2 + GI P1 GI P2 2936 × 700 × 10−3 × 32 80.4 × 109 × π × 70 × 10-3
(
)
4
+
1171× 500 × 10−3 × 32 80.4 × 109 × π × 50 × 10-3

解:因为长度和质量相等,所以面积也相等。于是有
2 2 π R0 =π ( R2 − R12 )
后 答
Ts 1− n2 = Th 1+ n2

δπ D 2 δπ D2 2.证明开口圆管受扭时横截面上最大剪应力 根据狭长矩形扭转剪应力公式,有 3M x 3M x 3M x τ max = = = 2 2 hb π D ⋅δ δ 2π D

后 答


ww
2
习题 4-9
w. kh d
习题 4-8
aw .
习题 4-6
co m
材料力学习题详细解答之四 第 4 章 圆轴扭转时的强度与刚度计算
试判断哪一种是正确 扭转剪应力公式 τ ( ρ ) = M x ρ / I p 的应用范围有以下几种,
4- 1 的。
(A)等截面圆轴,弹性范围内加载; (B)等截面圆轴; (C)等截面圆轴与椭圆轴; (D)等截面圆轴与椭圆轴,弹性范围内加载。 解:推导公式 τ ( ρ ) = M x ρ I p 时利用了等截面圆轴受扭后,其横截面保持平面的假定,
co m
)
3
= 47 ⋅ 7 MPa
(
)
4
= 1.084 × 10−2 + 1.187 × 10−2 = 2.271× 10−2 rad
4
4-5 图示实心圆轴承受外加扭力矩 T,已知 T = 3kN·m。试求: 1.轴横截面上的最大剪应力; 2.轴横截面上半径 r = 15mm 以内部分承受的扭矩所占全部横截面上扭矩的百分比; 3.去掉 r = 15mm 以内部分,横截面上的最大剪应力增加的百分比。 解: 1、轴横截面上的最大剪应力
τ 2max =
将 Ip1、Ip2 值代入(f)得
I M x2 T T D = ⋅ p2 = ⋅ Wp2 I p1 + I p2 Wp2 I p1 + I p2 2
ww
w. kh d
9
πd 4 π = × 254 × 10−12 = 38349.5 × 10−12 m 4 32 32 4 4 πD 4 ⎡ ⎛ D − 2δ ⎞ ⎤ π × 754 ⎡ ⎛ 72.5 ⎞ ⎤ −12 I p2 = ⎢1 − ⎜ ⎥= ⎢1 − ⎜ ⎥ × 10 ⎟ ⎟ 32 ⎢ 32 ⎢ ⎣ ⎝ D ⎠ ⎥ ⎦ ⎣ ⎝ 75 ⎠ ⎥ ⎦ −12 4 = 393922 × 10 m
习题 4-7 图
w. kh d
aw .
co m
τ max ≈ τ max ≈
2M x
δπ D2
3M x
2.证明开口圆管受扭时横截面上最大剪应力
δ 2πD
3.画出两种情形下,剪应力沿壁厚方向的分布。 解:1.证明闭口圆管受扭时横截面上最大剪应力 由于是薄壁,所以圆环横截面上的剪应力可以认为沿壁厚均匀分布(图 a1) ,于是有
习题 4-5 图
2、轴横截面上半径 r = 15mm 以内部分承受的扭矩所占全部横截面上扭矩的百分比


Mr =

A1
ρ ⋅ τd A =

3、去掉 r = 15mm 以内部分,横截面上的最大剪应力增加的百分比

后 答
Mr 2π r4 2π r4 16 r 4 15 1 = = = = 16 × ( ) 4 = = 6.25% 4 4 Mx 4I p 60 16 π d d 4⋅ 32
后 答
焊接前 习题 4-9 解图


ww
焊接卸载后
焊接前,轴承受扭矩,轴发生扭转变形。这时,如果卸载,轴的扭转变形将全部恢复, 因而轴的横截面上将没有扭矩。 与薄壁管焊接后,再除去轴上的外加扭力矩,轴的扭转变形不能完全恢复,因而轴的横 截面上仍然存在扭矩,但已经不是加载时的扭矩,而是小于原来的扭矩。 二者焊接后形成一个整体, 如果用一个假想截面将整体截开, 这时的横截面由轴和薄壁 管的横截面组成,卸载后,没有外加扭力矩作用,仅仅轴的横截面上存在扭矩无法平衡,因 此,薄壁管的横截面上必然存在与之大小相等方向相反的扭矩,二者组成平衡力系,使截开 的部分保持平衡。设轴和薄壁管横截面上的扭矩分别为 Mx1 和 Mx2 ,于是有 Mx1= Mx2 2.确定轴和薄壁管横截面上的最大剪应力 设轴受 T = 73.6N·m 时,相对扭转角为 ϕ 0 ,于是,有
习题 4-7 解图
A
由此得到
τ=
2M x
3.画出两种情形下,剪应力沿壁厚方向的分布 两种情形下剪应力沿壁厚方向的分布分别如图 a1 和 b2 所示。
4-8 由同一材料制成的实心和空心圆轴,二者长度和质量均相等。设实心轴半径为 R0,空心圆轴的内、外半径分别为 R1 和 R2,且 R1/R2 = n,二者所承受的外扭转力偶矩分别 为 Ts 和 Th。若二者横截面上的最大剪应力相等,试证明:
[τ ]=60 MPa。求:结构所能承受的最大外力偶矩。
5
w. kh d
1 ( )4 1 = 2 = = 6.67% 1 15 1 − ( )4 2
aw .
co m
解:1、轴的强度计算 M T τ 轴 max = x = 1 3 ≤ 60 × 10 6 Wp1 π d 16
T1 ≤ 60 × 10 6 ×

解:1.分析卸载后轴和薄壁管横截面上的内力
dφ0 M x T = = dx GI p1 GI p1
w. kh d
(a)
8
习题 4-9 图
焊接后卸载,管承受扭转,其相对扭转角为 ϕ 2 ,轴上没有恢复的相对扭转角为
aw .
co m
ϕ1 = ϕ 0 − ϕ 2 ,即 ϕ1 + ϕ 2 = ϕ 0
(b)
4-9
直径 d = 25mm 的钢轴上焊有两个凸台,凸台上套有外径 D = 75mm、壁厚
δ =1.25mm 的薄壁管,当杆承受外扭转力遇矩 T = 73.6N·m 时,将薄壁管与凸台焊在一起,
然后再卸去外力偶。假定凸台不变形,薄壁管与轴的材料相同,剪切弹性模量 G = 40MPa。 试: 1.分析卸载后轴和薄壁管的横截面上有没有内力,二者如何平衡? 2.确定轴和薄壁管横截面上的最大剪应力。
2πM x r 4 Mx ρ ⋅ 2πρ d ρ = ⋅ 4 Ip Ip
∆τ
τ
=
τ 2 max − τ 1 max α = τ 1 max 1−α 4
4- 6
同轴线的芯轴 AB 与轴套 CD,在 D 处二者无接触,而在 C 处焊成一体。轴的 A
端承受扭转力偶作用, 如图所示。 已知轴直径 d=66 mm, 轴套外直径 D=80 mm, 厚度 δ = 6 mm;材料的许用剪应力
(B) (1 − α 4 ) 3 2 (1 − α 2 ) ; (C) (1 − α 4 )(1 − α 2 ) ; (D) (1 − α 4 ) 2 3 /(1 − α 2 ) 。 解:由 τ1 max = τ 2 max 得
16M x π
3 d1

4 32 (A) (1 − α ) ;
后 答
承受相同扭矩且长度相等的直径为 d1 的实心圆轴与内、外径分别为 d2 、 D2 (α = d 2 / D2 ) 的空心圆轴,二者横截面上的最大剪应力相等。关于二者重之比(W1/W2)有 如下结论,试判断哪一种是正确的。 4-3
相关文档
最新文档