周建方版材料力学习题解答[第八章]DOC
家电公司研发部资料材料力学习题答案(八)
第八章 组合变形及连接部分的计算8-1 矩形截面简支梁其受力如图所示,试求梁截面上的最大正应力,并指出中性轴的位置。
(截面尺寸单位:mm )答:σmax =12MPa解:将F 分解成两个力对杆作用效果之和,133 4.52y M kN m =⨯⨯= , 13462z M kN m =⨯⨯=, 131504.52620015012y y M z MPa I σ⨯===⨯,2320062615020012z zM y MPa I σ⨯===⨯; 则1212MPa σσσ=+=;由3320015012tan tan 0.4515020012y zI I θϕ⨯===⨯,24.23θ=.:8-2 图示圆截面简支梁,直径d =200mm, F 1=F 2=5kN, 试求梁横截面上的最大正应力。
答:σmax =4.74MPa解:由于截面为圆形在可以用和弯矩求解max σ,即求max F ,且max F 最大在截面2-2处,由图可知max3.727F kN =, 则3max23.727100.14.740.264PM MPa I ρσπ⨯⨯===⨯A150题 8 - 1 图FF 2题 8 - 2 图8-3 图示悬臂梁,由试验测得εA =2.1×10-4,εB =3.2×10-4, 已知材料的E =200GPa ,试求P 和β值。
答:F =1.03kN,β='2131ο解:由已知74.210AA E Pa σε==⨯,76.410B B E Pa σε==⨯,又有y A z zF ly My I I σ==得y F =875N ,同理z F =535N 则F =1.03kN,'arctan()3021zyF F β== 8-4图示圆截面轴在弯矩M 和扭矩T 联合作用下,由试验测得A 点沿轴向的线应变为0ε=5×10-4,B 点与轴线成45°方向的线应变为ε45°=4.3×10-4。
《材料力学》第八章课后习题参考答案
解题方法与技巧归纳
受力分析
在解题前首先要对物体进行受力分析, 明确各力的大小和方向,以便后续进 行应力和应变的计算。
图形结合
对于一些复杂的力学问题,可以画出 相应的示意图或变形图,帮助理解和 分析问题。
公式应用
熟练掌握材料力学的相关公式,能够 准确应用公式进行计算和分析。
检查结果
在解题完成后,要对结果进行检查和 验证,确保答案的正确性和合理性。
压杆稳定
探讨细长压杆在压缩载荷作用下的稳定性问题。
解题方法与技巧
准确理解题意
仔细审题,明确题目要求和考查的知识点。
选择合适的公式
根据题目类型和所给条件,选用相应的公式 进行计算。
注意单位换算
在计算过程中,要注意各物理量的单位换算, 确保计算结果的准确性。
检查答案合理性
得出答案后,要检查其是否符合实际情况和 物理规律,避免出现错误。
相关题型拓展与延伸
组合变形问题
超静定问题
涉及多种基本变形的组合,如弯曲与扭转 的组合、拉伸与压缩的组合等,需要综合 运用所学知识进行分析和计算。
超静定结构是指未知力数目多于静力平衡 方程数目的结构,需要通过变形协调条件 或力法、位移法等方法进行求解。
稳定性问题
疲劳强度问题
研究细长压杆在压力作用下的稳定性问题 ,需要考虑压杆的临界力和失稳形式等因 素。
研究材料在交变应力作用下的疲劳破坏行为 ,需要了解疲劳极限、疲劳寿命等概念和计 算方法。
THANKS FOR WATCHING
感谢您的观看
重点知识点回顾
材料的力学性质
包括弹性、塑性、强度、硬度等基本概念和 性质。
杆件的拉伸与压缩
涉及杆件在拉伸和压缩状态下的应力、应变及 变形分析。
材料力学课后习题答案
材料⼒学课后习题答案8-1 试求图⽰各杆的轴⼒,并指出轴⼒的最⼤值。
(1) ⽤截⾯法求内⼒,取1-1、2-2截⾯;(2) 取1-1(3) 取2-2(4) 轴⼒最⼤值: (b)(1) 求固定端的约束反⼒;(2) 取1-1(3)取2-2截⾯的右段;(4) 轴⼒最⼤值: (c)(1) ⽤截⾯法求内⼒,取1-1、2-2、3-3截⾯;(2) 取1-1(3) 取2-2截⾯的左段;(4) 取3-3截⾯的右段;(c)(d)N 1F RF N 1F RF N 2F N 1N 2(5) 轴⼒最⼤值: (d)(1) ⽤截⾯法求内⼒,取1-1、2-2截⾯;(2) 取1-1(2) 取2-2(5) 轴⼒最⼤值:8-2 试画出8-1所⽰各杆的轴⼒图。
解:(a) (b)(c) (d)8-5段的直径分别为d 1=20 mm 和d 2=30 mm F 2之值。
解:(1) (2) 求1-1、2-2截⾯的正应⼒,利⽤正应⼒相同;8-6 题8-5图所⽰圆截⾯杆,已知载荷F 1=200 kN ,F 2=100 kN ,AB 段的直径d 1=40 mm ,如欲使AB 与BC 段横截⾯上的正应⼒相同,试求BC 段的直径。
解:(1) ⽤截⾯法求出1-1、2-2截⾯的轴⼒;(2) 求1-1、2-2截⾯的正应⼒,利⽤正应⼒相同;8-7 图⽰⽊杆,承受轴向载荷F =10 kN 作⽤,杆的横截⾯⾯积A =1000 mm 2,粘接⾯的⽅位⾓θ= 450,试计算该截⾯上的正应⼒与切应⼒,并画出应⼒的⽅向。
F N 3F N 1F N 2解:(1)(2)8-14 图⽰桁架,杆1d 1=30 mm 与d 2=20 mm ,两杆材料相同,许⽤应⼒[σ]=160 MPa 。
该桁架在节点A 处承受铅直⽅向的载荷F =80 kN 作⽤,试校核桁架的强度。
解:(1) 对节点A(2) 列平衡⽅程解得:(2) 所以桁架的强度⾜够。
8-15 图⽰桁架,杆1为圆截⾯钢杆,杆2为⽅截⾯⽊杆,在节点A 处承受铅直⽅向的载荷F 作⽤,试确定钢杆的直径d 与⽊杆截⾯的边宽b 。
材料力学习题解答周建方
� � � � � AB �
MM 0 dx � EI
FN FN 0 dx � 2
l
(
2 F)x �
2 xdx �
2
l 2 F � 2 dx
EA
EI 0 2
2
EA 0 2
2
Fl 3 =
�
Fl
(移开)
3EI EA
当不考虑轴力的影响时� � AB �
Fl 3 3 EI
(移开)
1
9-10 题 9-10 图所示简单桁架�两杆截面积为 A�材料应力~应变关系为�� � C� 2 。试求 结点 B 的垂直位移△V。 解�由节点 B 的平衡条件求出 BD 杆的轴力和应力�再由应力-应变关系求出应变。结果为�
l 2GI p
l1 2GI p1
M x 2 ( x)dx
�
M
2 x
�
l
(
1
�
1)
l2 2GI p 2
2G 2 I p1 I p2
�
M
2 x
l
4G
32 (�d14
�
512
81� d
4 1
)
�
776
M
2 x
l
81�
d
4 1
G
9-4 试用互等定理求题 9-4 图所示结构跨度中点 C 的挠度�设 EI=常数。 题 9-4a 解�设力 F 为第一组力�设想在 C 处作用一单位
EI
x1 )
dx 1
�
l l 2
F (x2
� l)� 2
EI
1 4
x2
dx 2
�
5l 4 l
�
Fl
(x3 � 2 EI
周建方版材料力学习题解答2-8章
2-1求图中所示各杆指定截面上的轴力,并绘制轴力图。
解:a) b)FFc) d)题2-1图2-2 求下图所示各个轴指定截面上的扭矩,并绘制扭矩图 解:a) b)2kN·m20kN·m题2-2图2-3图中传动轴的转速n=400rpm,主动轮2输入功率P 2=60kW,从动轮1,3,4和5的输出功率分别是P 1=18kW, P 3=12kW, P 4=22kW, P 5=8kW,试绘制该轴的扭矩图. 解:mN T mN T mN T mN T m N T ⋅=⨯=⋅=⨯=⋅=⨯=⋅=⨯=⋅=⨯=191400895492.5254002295495.2864001295494.14324006095497.42940018954922321 题2-3图429.7N·m2-4 求图中所示各梁指定截面上的剪力和弯矩,设q 和F 均为已知.a )b)A qlql 2/2Bc)d)qlF QAM图F Q 图题2-4图2-5试绘制下图所示各梁的剪力图和弯矩图,并求出剪力和弯矩的最大值.设F q l 均为已知.a)b)A F Q2M图F Q 图c)d)F QF Q 图M图e) f)F QM图qlql 2/2ql 2/8F Q M图g)h)F Q M图9ql 2/128F Q M图题2-5图2-6不列方程,绘制下面各梁的剪力图和弯矩图,并求出剪力和弯矩绝对值的最大值.设F 、q 、l 均为已知。
a)b)F Q M图ql 2/2qlF Qc) d)F Q 图M图2FlF Q 图M图e) f)F Q 图M图F Q M图题2-6图2-7绘制下图所示各梁的剪力图和弯矩图,求出|F Q |max 和|M|max ,并且用微分关系对图形进行校核.a) b)F Q 图M图F Q 图M图Flc)d)F Q 图M图2F Q题2-7图2-8试判断图中所示各题的F Q ,M 图是否有错,如有错误清指出错误原因并加以改正。
材料力学教程习题解答-第八章
M
F2 4 F2 4 15 103 N 2 7.64 Mpa 2 A d 0.05 T 16M e 16 1.2 103 T 48.89 Mpa 2 3 Wp d 0.05
F1l
T
Me
则: r 3
36.67 7.64 4 48.892 Mpa
2
107.35Mpa 160 Mpa 则强度符合要求
8-12
l
A
T F1a
B
a
C F1
F2 M F2 a
1 A截面是危险截面 F
F2
T
r4
M N 3 T 2
2
F1a
FN
M F2
M F1
M合
F2 a F1l
2 1 2 3 1 E D 2 2 1 2 3 1 0 0 E D 45 45 M 2 1 2 1 2 4 1 1 2
2 2
x y
1 38.28Mpa 40 Mpa
则 1 38.28Mpa, 2 0, 3 18.28Mpa则应用第一强度理论进行校核:
8-4
则 1 , 2 0, 3 。根据第一强度理论则: 1 则第一强度理论有: 第二强度理论: r2 1 2 3 0 1 许用切应力为: 脆性材料纯剪切,则 max min
8-22
t
若剪应力采用薄壁圆筒的剪应力公式时有:
x
M
pD pD x , t , T 4 2
周建方版材料力学习题解答[第八章9]分析
8-49现用某种黄铜材料制成的标准圆柱形试件做拉伸试验。
已知临近破坏时,颈缩中心部位的主应力比值为113321::::=σσσ;并已知这种材料当最大拉应力达到770MPa 时发生脆性断裂,最大切应力达到313MPa 时发生塑性破坏。
若对塑性破坏采用第三强度理论,试问现在试件将发生何种形式的破坏?并给出破坏时各主应力之值。
解: 令主应力分别为:σσ31=,σσσ==32脆性断裂时,由第一强度理论=1r σσσ31==770MPa所以,塑性破坏时,由第三强度理论 所以故,试件将发生脆性断裂。
破坏时MPa 7701=σ,MPa 25732==σσ8-50 钢制圆柱形薄壁压力容器(参见图8-13),其平均直径mm d 800=,壁厚mm 4=δ,材料的M P a ][120=σ,试根据强度理论确定容器的许可内压p 。
解:在压力容器壁上取一单元体,其应力状态为二向应力状态。
p pd 504'==δσ ,p pd1002"==δσ 其三个主应力为p 100"1==σσ, p 50'2==σσ,03=σ据第三强度理论所以 ,MPa p 2.13≤,许可内压MPa p 2.13= 据第四强度理论所以,MPa p 39.14≤,许可内压MPa p 39.14=8-51 空心薄壁钢球,其平均内径mm d 200=,承受内压MPa p 15=,钢的MPa ][160=σ。
试根据第三强度理论确定钢球的壁厚δ。
解:钢球上任一点应力状态如图示 其三个主应力为:σσσ==21,03=σ而 MPa MPa d p R R p δδδδππσ4342.0152222=⨯=⋅=⋅⋅=据第三强度理论 所以 mm m 69.41069.41601433=⨯=⨯≥-δ 8-52 图8-77所示两端封闭的铸铁圆筒,其直径mm d 100=,壁厚mm 10=δ,承受内压MPa p 5=,且在两端受压力kN F 100=和外扭矩m kN T ⋅=3作用,材料的许用拉应力MPa ][40=+σ,许用压应力MPa ][160=-σ,泊松比250.=ν,试用莫尔强度理论校核其强度。
材料力学习题解答81
30
40 sin( 60 ) 20 cos( 60 ) 2 20 0.866 20 0.5 7.32 MPa
30
80
习题27(b)图
27.如图所示各平面应力状态,各应力分量的单位为 MPa ,用解析法求指定截面上的正应力和切应力。 (b)
x y x y cos 2 xy sin 2 2 2 x y sin 2 xy cos 2 2
2) y 0, x 0
F
0
45
结论: 横力弯曲梁截面上的 剪力所产生的剪切变形 将使梁的截面产生微小 的翘曲效应。
2.58 45
y
h
b
1m
1m
2m
35.如图所示平面应力状态,各应力分量的单位为 MPa
3 材料的弹性模量 E 200 GPa ,泊松比 0.,求该点的应变分量
28.如图所示平面三角形单元体的斜面为自由表面, 角度 30 ,各应力分量的单位为MPa,求 x 和 xy 解:
x ? y 40 MPa xy ?
x
n
60
x y x y cos 2 xy sin 2 2 2 x y sin 2 xy cos 2 40 2 x 40 x 40 cos120 xy sin 120 0 2 2 x 40 40 sin 120 xy cos 120 0 xy x tan 120 2 2 x 40 x 40 40 cos120 x tan 120 sin 120 0 2 2 2 x 40 ( x 40)(0.5 1.732 0.866) 0
材料力学作业及练习题参考答案(8、9章)
八章2题: 解:查槽钢表,每根槽钢,A=25.669 cm2,W=141 cm3, 则两根槽钢制成的梁:A=2A=51.538 cm2, W=2W=282 cm3 在B截面左侧的上边缘处: =-FN/A+M/W=-50×103/(51.538×10-4)+37.5×103/(282×10-6) =123.24×106 Pa, 即在该处为拉应力123.24 MPa ; 在B截面左侧的下边缘处: =-FN/A-M/W=-50×103/(51.538×10-4)-37.5×103/(282×10-6) =-142.72×106 Pa, 即在该处为压应力142.72 MPa ; 在B截面右侧的上边缘处: =M/W=37.5×103/(282×10-6)=132.98×106 Pa, 即在该处为拉应力132.98 MPa ; 在B截面右侧的下边缘处: =-M/W=-37.5×103/(282×10-6)=-132.98×106 Pa, 即在该处为压应力132.98 MPa。
材料力学课后习题答案详细
N1 N 2 0.5F 0.5 20 10(kN )
10
(2)求 C 点的水平位移与铅垂位移。 变形协调图
A
点的铅垂位移:l1
N1l EA1
10000N 1000mm 210000N / mm2 100mm2
0.476mm
B 点的铅垂位移: l2
材料可认为符合胡克定律,其弹性模量 E 10GPa 。如不计柱的自重,试求:
(1)作轴力图;
(2)各段柱横截面上的应力;
(3)各段柱的纵向线应变;
(4)柱的总变形。
解:(1)作轴力图
N AC 100kN NCB 100 160 260(kN )
轴力图如图所示。
(2)计算各段上的应力
第二章 轴向拉(压)变形
[习题 2-1] 试求图示各杆 1-1 和 2-2 横截面上的轴力,并作轴力图。 (a) 解:(1)求指定截面上的轴力
N11 F N 22 2F F F
(2)作轴力图 轴力图如图所示。
(b) 解:(1)求指定截面上的轴力
N11 2F N 22 2F 2F 0
如以 表示斜截面与横截面的夹角,试求当 0o ,30o ,45o ,60o ,90o 时各斜截面
上的正应力和切应力,并用图表示其方
向。
解:斜截面上的正应力与切应力的公式
为:
5
0 cos 2
0 2
sin 2
式中, 0
N A
10000 N 100mm 2
100MPa ,把
示。
由平平衡条件可得:
X 0
N EG N EA cos 0
材料力学课后答案
- 1 -第8章 杆件的拉伸与压缩8-1 填空题:8-1(1) 如图拉杆的左半段是边长为b 的正方形,右半段是直径为b 的圆杆。
两段许用应力均为 ][σ,则杆的许用荷载 =][F ][4π2σb 。
8-1(2) 图示拉杆由同种材料制成,左部分是内径为D 、外径为D 2的空心圆杆,右部分为实心圆杆,要使两部分具有相同的强度,右部分的直径应取 D3 。
8-1(3) 杆件轴向拉伸或压缩时,其斜截面上切应力随截面方位的不同而不同,而切应力的最大值发生在与轴线间的夹角为 45° 的斜截面上。
8-1(4) 图中两斜杆的抗拉刚度为EA ,A 点的竖向位移为EAFa 2 。
8-1(5) 图中结构中两个构件的厚度b 相同,则它们的挤压面积 =A αcos ab。
8-1(6) 图中结构中,若 h d D 32==,则螺栓中挤压应力、拉伸应力和剪切应力三者的比例关系是 9:24:8 。
题 8-1(5) 图题 8-1(1) 图题 8-1(2) 图题 8-1(6)图F题 8-1(4) 图- 2 -分析:222bs 3π4)(π4d F d D F =−=σ, 2tπ4d F =σ, 22π3πd F hd F ==τ,故有 9:24:883:1:31::tbs ==τσσ。
8-2 单选题:8-2(1) 图示的等截面杆左端承受集中力,右端承受均布力,杆件处于平衡状态。
1、3两个截面分别靠近两端,2截面则离端部较远。
关于1、2、3这三个截面上的正应力的下列描述中,正确的是 C 。
A .三个截面上的正应力都是均布的 B .1、2两个截面上的正应力才是均布的 C .2、3两个截面上的正应力才是均布的 D .1、3两个截面上的正应力才是均布的8-2(2) 若图示两杆的材料可以在铸铁和钢中选择,那么,综合强度和经济性两方面的因素, C 更为合理。
A .两杆均选钢 B .两杆均选铸铁C .① 号杆选钢,② 号杆选铸铁D .① 号杆选铸铁,② 号杆选钢8-2(3) 图示承受轴向荷载的悬臂梁中,在加载前的一条斜直线KK 在加载过程中所发生的变化是 D 。
材料力学课后习题答案8章
由于式中 α 为任意值,故原命题得证。
8-7
已知某点 A 处截面 AB 与 AC 的应力如图所示(应力单位为 MPa) ,试用图解法
求主应力的大小及所在截面的方位。
题 8-7 图 解:根据题图所给的已知应力,可画出应力圆来,如图 8-7 所示。
图 8-7 从所画的应力圆上可以量得两个主应力,它们是:
由
tanα 0 = −
得 σ 1 的方位角为
τx 2.25 =− = −0.07458 σ x − σ min 30.0 + 0.1678
α 0 = −4.27 o
对于应力图 c,其切应力为
τC =
3FS 3 × 20 × 103 N = = 3.00 × 106 Pa = 3.00MPa 2 2 A 2 × 0.050 × 0.200m
σα = (
30 + 10 + 20sin 90 o )MPa = 40.0MPa 2 30 − 10 sin 90 o )MPa = 10.0MPa τα = ( 2
(b)解:由题图所示应力状态可知,
1
σ x = −30MPa,σ y = 10MPa,τ x = 20MPa,α = 22.5 o
(a) (b) (c)
= 350 × 10 −6
将式(a)和(b)代入式(c),得
γ xy = (550 − 700) × 10 −6 = −150 × 10 −6
(d)
将以上所得结果(a),(b)和(d)代入平面应变状态任意方位的正应变公式,计算 ε135o 应有 的测量值为
ε135o =
1 1 (450 + 100) × 10 −6 + (450 − 100) × 10 −6 cos270 o 2 2 1 − × (−150 × 10 −6 )sin270 o = 200 × 10 −6 2
(材料力学课件)第8章组合变形作业
D4.17m, 取: D4.17 m
8-11 解: (a) (1) 截面几何性质
z
①
④
A 82 0 10 6 0 52 4 10 6 0 0 .4m 1 2 1
4
第 Iy Iz 8 0 8 1 3 0 0 1 2 0 10 24 54 4 1 0 10 2 0 .0m 4 3800
合 变 形
C 1 D C2 D (22 .4 3 )2 8 1.2 8 2 6 2.7 1 M 1 C P1 a A C 3 A maxCD 121.71MP
作
业 题
1 O 1 A C 1 A O C 2.7 1 1 (22 .4 3 ) 8 3.4 3 M 5 Pa
2 0
3 O 3 O A C C 3 A 1.7 1 4 2.7 1 1 9 .9M 7 Pa
23
1O 4
y
8 章
iy2iz2IA y 00..401310.07m 32
组
③
②
合 (2) 中性轴的截距(m) ay 0.4,az 0
800
变
形 作 业
y
iy2 ay
0.18,3z
0
确定点1
同理求出点2,3,4
题
当中性轴绕棱角点旋转时,外力作用点移动轨迹为直线。
故点1和2间亦为直线。
8-12 解:
题 90.91MPa[bs]
Fs
Fs
Fs
3F/4
Fs
F
1F
(3) 板拉伸强度计算
上板轴力图
F/4
(+)
2 孔 F 面 A N 4 ( b 3 F 2 d d ) 4 ( 8 1 0 3 2 8 0 2 1 0 3 1 2 ) 0 1 0 6 0 1.7 6 M 6 [P ] a
材料力学习题册答案-第8章 组合变形
第 八 章 组 合 变 形一、选择题1、偏心拉伸(压缩)实质上是(B )的组合变形。
A .两个平面弯曲B .轴向拉伸(压缩)与平面弯曲C .轴向拉伸(压缩)与剪切D .平面弯曲与扭转 2、图示平面曲杆,其中AB ⊥BC 。
则AB 部分的 变形为( B )。
A . 拉压扭转组合B .弯曲扭转组合C .拉压弯曲组合D .只有弯曲二、计算题1、如图所示的悬臂梁,在全梁纵向对称平面内承受均布荷载 q=5kN/m ,在自由端的水平对称平面内受集中力P=2kN 的作用。
已知截面为25a 工字钢,材料的弹性模量E=2×105MPa ,求: (1)梁的最大拉、压应力(2)若[σ]=160MPa ,校核梁的强度是否安全。
解:(1)固定端截面为危险截面。
22max 115210kN m 22z M ql ==⨯⨯=⋅max 224kN m y M Pl ==⨯=⋅查表得:3348.283cm ,401.883cm y z W W ==由于截面对称,最大拉、压应力相等。
33max max max max661010410()Pa 108MPa 401.8831048.28310y z t c z y M M W W σσ--⨯⨯==+=+=⨯⨯(2)校核梁的强度[]max 108MPa 160MPaσσ=<=可见,梁的强度是足够的。
2、矩形截面木檩条,尺寸及受载情况如图所示。
已知q=2.1kN/m,木材许用拉应力[σt ]=11MPa ,许用挠度[w]= l /200,弹性模量E=10GPa 。
校核其强度和刚度。
ABCq解:(1)受力分析,计算内力。
根据梁的受力特点可知梁将产生斜弯曲。
因此,将载荷q 沿两对称轴分解为cos y q q ϕ= , sin z q q ϕ=在q 作用下,梁跨中截面的弯矩最大,为危险截面。
由q z 、q y 引起的最大弯矩M ymax 、M zmax 为202max 202max112.1sin 2634'4 1.88kN m 88112.1cos 2634'43.76kN m 88y z z y M q l M q l ==⨯⨯⨯=⋅==⨯⨯⨯=⋅(2)确定危险点位置,计算危险点应力。
材料力学课后习题答案详细
CB
CB E
6.5MPa 10 103 MPa
6.5 104
(4)计算柱的总变形
l AC AC l AC CB lCB (2.5 1500 6.5 1500) 104 1.35(mm)
[ 习 题 2-9] 一 根 直 径 d 16mm 、 长 l 3m 的 圆 截 面 杆 , 承 受 轴 向 拉 力
(2)作轴力图
N33 F 2F 2F F
轴力图如图所示。
1
(c)
解:(1)求指定截面上的轴力
N11 2F N22 F 2F F
(2)作轴力图
N33 2F F 2F 3F
轴力图如图所示。
(d)
解:(1)求指定截面上的轴力
N11 F
N 22
如以 表示斜截面与横截面的夹角,试求当 0o ,30o ,45o ,60o ,90o 时各斜截面
上的正应力和切应力,并用图表示其方
向。
解:斜截面上的正应力与切应力的公式
为:
5
0 cos 2
0 2
sin 2
式中, 0
N A
10000 N 100mm 2
100MPa ,把
AC
N AC A
100 103 N 200 200mm2
2.5MPa 。
CB
N CB A
260 103 N 200 200mm2
6.5MPa ,
(3)计算各段柱的纵向线应变
7
AC
AC E
2.5MPa 10 103 MPa
2.5 104
《材料力学》第8章 组合变形及连接部分的计算 习题解
第八章 组合变形及连接部分的计算 习题解[习题8-1] 14号工字钢悬臂梁受力情况如图所示。
已知m l 8.0=,kN F 5.21=,kN F 0.12=,试求危险截面上的最大正应力。
解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因钢材的拉压性能相同,故只计算最大拉应力:式中,z W ,y W 由14号工字钢,查型钢表得到3102cm W z =,31.16cm W y =。
故MPa Pa mm N m m N 1.79101.79101.168.0100.11010228.0105.236363363max=⨯=⨯⨯⨯+⨯⨯⨯⨯⨯=--σ [习题8-2] 受集度为 q 的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为 030=α,如图所示。
已知该梁材料的弹性模量 GPa E 10=;梁的尺寸为m l 4=,mm h 160=,mm b 120=;许用应力MPa 12][=σ;许用挠度150/][l w =。
试校核梁的强度和刚度。
解:(1)强度校核)/(732.1866.0230cos 0m kN q q y =⨯== (正y 方向↓))/(15.0230sin 0m kN q q z =⨯== (负z 方向←))(464.34732.1818122m kN l q M y zmaz ⋅=⨯⨯== 出现在跨中截面)(241818122m kN l q M z ymaz ⋅=⨯⨯== 出现在跨中截面)(5120001601206161322mm bh W z =⨯⨯==)(3840001201606161322mm hb W y =⨯⨯==最大拉应力出现在左下角点上:yy z z W M W M maxmax max +=σ MPa mmmm N mm mm N 974.1138400010251200010464.33636max=⋅⨯+⋅⨯=σ因为 MPa 974.11max =σ,MPa 12][=σ,即:][max σσ<所以 满足正应力强度条件,即不会拉断或压断,亦即强度上是安全的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
令 可求得 kN即许可载荷F为56.88kN .
图8-51
8.19截面为I10的工字钢梁AB,在D点由圆钢杆DC支承(图8-52),已知梁及杆的 ,试求允许均布载荷 及圆杆的直径d。
图8-52
解:由静力平衡可求得拉杆CD的拉力为
画弯矩图,
按AB梁设计载荷:
令 已知 ,可求得均布载荷q=15680 N/m=15.68kN/m
联立①②两式可得梁长l=2m,许可载荷F=14800N=14.8kN。
8.23测定材料剪切强度的剪切器的示意图如图8-56所示。设圆试件的直径 ,当压力 时,试件被剪断,试求材料的名义剪切极限应力。若剪切许用应力为 ,试问安全系数等于多大?
图8-56
解:由公式(8-9)可求名义剪切极限应力
MPa=89.13MPa
8.22在工字钢梁I18上作用着可移动的载荷 (图8-55)。为提高梁的承载能力,试确定 的合理数值及相应的许可载荷。设 。
图8-55
解:当F作用在CD之间时,作用在其中点处为最坏情况.可作弯矩图如图所示,此时
令 MPa
则有 ①
当作用在梁外伸段时,F作用在端截面处最危险,此时弯矩图如图所示
令 则有
②
题8-7图
解:一个螺栓能传递的剪力,
在 半径上: 在 半径上:
所有螺栓能传递的扭矩为:
所有螺栓可传递的功率:
8-8 图8-41所示为 的矩形截面轴,受外力偶矩 和 作用,已知 , , ,试求 的许用值及自由端截面A的转角。
题8-8图
解:计算[T2]:
所以
计算A截面的转角:
8-9 实心轴与空心轴通过牙嵌离合器相连接(图8-42),已知轴的转速 ,传递功率 ,材料许用应力 。试确定实心轴的直径d和空心轴的内、外径d1和D1。已知 。
8-6 图8-39所示AB轴的转速 ,从B轮输入功率 马力,功率的一半通过锥形齿轮传给垂直轴C,另一半由水平轴H输出。已知 , , , , , 。试对各轴进行强度校核。
题8-6图
解:轴C的转速:
轴上各段的扭矩计算:
应力计算:
8-7 联轴器采用直径为d的螺栓连接,螺栓排到如图8-40所示,在半径为R1的圆上有四个,在半径为R2的圆上有六个,螺栓的许用应力为 ,轴每分钟转数为 ,若不计圆盘间的摩擦,试求该联轴器所能传递的功率。
为了满足剪应力要求
代入数值
为满足挤压强度要求
代入数值 mm取两者较大值50mm
8.28图8-61所示装置中键的长度 ,许用应力 , ,试求作用在手柄上的F力最大许用值.
图8-61
解:键所受的剪切力为F×60剪切面积A=5×35mm2
N
键所受的挤压力也等于60F,挤压面积Ac=2.5×35mm2
令 N
确定拉杆尺寸:
令 可求得圆杆直径d=16.76mm
8.20由I16工字钢制成的简支梁AB,跨度 ,在中点作用一集中力F(图8-53),为了测得F得大小。在距中点0.25m处的下沿C处布置一应变片,梁受力后测得其应变 ,已知钢材的弹性模量 ,求集中力F的大小。
图8-53
解:1.画弯矩图,C处弯矩
2.求C处正应力
题8-4图
解:由平静方程可以解出:
许可载荷确定:
所以:
结构断裂载荷确定:
8-5 图8-38所示卧式拉床的油缸内径 ,活塞杆直径 ,许用应力 。缸盖由六个 的螺栓与缸体联结, 螺栓的内径 ,许用应力 。试按活塞杆和螺栓的强度确定最大油压 。
题8-5图
解:轴力计算:
所以:
按螺栓强度计算:
所以:
所以最大油压p=6.5MPa
题8-11图
解:如图所示弯矩图,分别校核C、B截面的弯曲正应力,
8-12图8-45所示槽形截面梁有三块矩形板条粘结而成。已知 , , 。试校核该梁的强度。
题8-12图
解:确定形心
8-13 一设计起重量为50 的吊车梁(图8-4a),跨度 ,由Ⅰ字钢I45a制成, , 。现需起吊一70kN的重物,问其强度是否足够?如不够,则在上、下翼缘各加焊一块 的钢板(图8-46b),试决定钢板的最小长度。已知电葫芦重 (梁的自重不考虑)。
图8-59
解:为了满足冲头强度的要求,需:
代入数值 解得能冲剪的圆孔最小直径
冲剪的圆孔直径最小时,板厚可取得最大值
mm
8.27试求图8-60所示联结螺栓所需的直径,已知F=200kN,δ=20mm,螺栓材料的许用应力[τ]=80MPa,[σC]=200MPa(联结板的强度不考虑)。
图8-60
解:螺栓受剪切应力和挤压应力两种作用
题8-9图
解:离合器传递的扭矩:
实心轴直径:
空心轴直径:
8-10 如图8-43所示,已知主动轮输入功率 马力,从动轮输出的功率分别为 马力, 马力, 马力。轴的转速 , ,试选择轴的直径。
题8-10图
解:计算各轮的扭矩:
所以AD段的扭矩为最大:
8-11 图8-44所示圆轴的外伸部分系空心圆截面,已知材料的许用应力 ,试校核该轴的强度。
8.30图8-63所示螺钉在拉力F作用下,已知材料的许用剪切应力 和许用拉伸应力 之间的关系为 ,求螺钉直径d与钉头高度h的合理比值。
解:螺钉横截面正应力
螺钉头剪应力为
d、h的合理比值应使σ、τ同时达到许用值
, ,代入到
图8-63
先按正应力设计,再校核剪应力
令 则
若选工字钢可选25号工字钢,并查表知
MPa<[τ]
若选两槽钢,可选20号槽钢,无法校核其剪切强度
8.17当 力直接作用在梁AB中点时,梁内的最大正应力超用许用应力30%。为了消除过载现象,配置了如图8-50所示的辅助梁CD,试求此辅助梁的跨度。
图8-50
解:先由静力平衡求出支座反力:
解:钢板的拉应力为
钢板与铆钉的挤压应力为
Pa=294.12MPa< [σc]=320MPa
铆钉剪切应力为 Pa=110MPa<[τ]=120MPa
8-26 如图8-59所示冲床的最大冲压力为400kN,冲头材料的许用应力 ,被冲剪的板材剪切强度极限 ,求在最大冲力作用下所能冲剪的圆孔最小直径d和板的最大厚度 。
由胡克定律得C处线应变,
代入已知条件ε=4.01×10-4得F=47.5kN
8.21AB梁的截面形状及其所承受的载荷如图8-54所示。已知截面的形心主惯性矩 ,材料的许用应力为 , , ,试问此梁的截面应如何放置才合适?梁的截面经合理放置后,若 不变,试求许可载荷 值。
解:首先作剪力图,弯矩图,由图可知CB梁段弯矩为5KNm
若截面T形放置,则 MPa>[σ+]
不合理,因此必须 放置
放置时 MPa<[σ-]
MPa<[σ+]CB段满足强度要求
A截面处
令 可得F<=30kN
由于A截面处 所以,压应力条件一定满足
图8-54
剪应力: MPa<[τ]不满足
MPa=7.26MPa>[τ]
为使 MPa,F应缩小7.26/3倍,即 kN
1矩形截面:
②工字钢截面:查表得I10的
③圆形:
④圆环:
8-15 一工厂为了起吊一重量 的大型设备,采用了一台150 吊车、一台200 吊车及一根辅助梁(图8-48),已知梁的 , 。试求:(1)重物在梁的什么位置,才能保证两台吊车都不超载;(2)若用Ⅰ字钢作辅助梁,应选择多大型号。
题8-15图
解:
取AC段建立弯矩方程:
当X=2m时:
取I50b,
8.16一简支梁由两个槽钢组成,受四个集中力作用(图8-49)。已知 , , , ,许用应力 , 。试选择槽钢的型号。
图8-49
解:由静力平衡方程可求得FA=138kNFB=64kN
画剪力图和弯矩图,如图所示,可知最大剪力为138kN,最大弯矩为62.4kNm
画AB梁的弯矩图如图所示
使梁承载能力增大30%,即所加辅梁后的最大应力达到原水平时,载荷可为原载荷的1.3倍,可得如下关系:
由上式解得a=0.231l,a越大 越小,因此当a>=0.231l时,承载能力可提高30%以上.
8.18I20a工字钢梁的支承及受力如图8-51所示。若 ,试求许可载荷F。
解:由静力平衡方程求得:
题8-13图
解:当吊车运行到梁中点时为最危险工况,
查表I45a的几何特性参数为:
在上、下翼缘各加焊一块 的钢板,根据正应力强度计算:
根据 来确定
则
8-14 如图8-47所示外伸梁,已知 ,试分别选择矩形 、Ⅰ字钢、圆形及圆环形 四种截面,并比较其横截面面积大小。
题8-14图
解:ቤተ መጻሕፍቲ ባይዱ
梁的弯矩图如图b)所示。
取较小者,F最大不得超过291.67N。
8.29车床的传动光杆装有安全联轴器(图8-62),当载荷超过一定值时,安全销即被剪断。已知安全销的平均直径为5mm,其剪切极限应力 ,求安全联轴器所能传递的力偶矩 。
图8-62
解:安全销承受剪切作用,受剪面积 mm2
所能承受的最大剪力为 N
N
安全联轴器所能够传递的力偶矩 Nm=145.3Nm
8-1图8-34所示结构,杆AB为5号槽钢,许用应力 ,杆BC为矩形截面, , ,许用应力 ,承受载荷 ,试校核该结构的强度。
题8-1图
解:由平衡条件解得,
8-2 在图8-35所示结构中,钢索BC由一组直径 的钢丝组成。若钢丝的许用应力 ,AC梁受有均布载荷 ,试求所需钢丝的根数。又若将BC杆改为由两个等边角钢焊成的组合截面,试确定所需等边角钢的型号。角钢的 。
安全系数
8.24木楔接头如8-57所示。 。试求接头的剪切和挤压应力。