数值分析整理版试题及答案
数值分析试题与答案
一、单项选择题(每小题3分,共15分)1. 和分别作为π(de)近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y (de)拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x =B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =(de)根(de)牛顿法收敛,则它具有( )敛速.A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到(de)第3个方程( ).A .232x x -+=B .232 1.5 3.5x x -+=C .2323x x -+=D .230.5 1.5x x -=-二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根.5. 取步长0.1h =,用欧拉法解初值问题()211y y yx y ⎧'=+⎪⎨⎪=⎩(de)计算公式 .0,1,2分 人三、计算题(每题15分,共60分)1. 已知函数211y x =+(de)一组数据:求分段线性插值函数,并计算()1.5f (de)近似值.1. 解 []0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---[]1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--所以分段线性插值函数为()[][]10.50,10.80.31,2x x L x x x ⎧-∈⎪=⎨-∈⎪⎩ ()1.50.80.3 1.50.35L =-⨯=2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X (保留小数点后五位数字).1.解 原方程组同解变形为1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m =高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间(de)近似根(1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到. 3. 解()331f x x x =--,()130f =-<,()210f =>()233f x x '=-,()12f x x ''=,()2240f =>,故取2x =作初始值4. 写出梯形公式和辛卜生公式,并用来分别计算积分111dxx+⎰.四、证明题(本题10分)确定下列求积公式中(de)待定系数,并证明确定后(de)求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得(de)近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商 ()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X .4.求方程 21.250x x --= (de)近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么 1______x =。
数值分析试题及答案
数值分析试题及答案一、选择题1. 下列哪个方法不适合用于求解非线性方程的根?A. 二分法B. 牛顿法C. 弦截法D. 正割法2. 当使用二分法求解非线性方程的根时,需要满足的条件是:A. 函数f(x)在区间[a, b]上连续B. 函数f(x)在区间[a, b]上单调递增C. 函数f(x)在区间[a, b]上存在根D. 函数f(x)在区间[a, b]上可导3. 数值积分是通过将定积分转化为求和的方法来近似计算积分值的过程。
下列哪个方法是常用的数值积分方法?A. 矩形法则B. 辛普森规则C. 梯形规则D. 高斯-勒让德法则4. 龙格-库塔法是常用于求解常微分方程的数值解法。
以下哪个选项是描述龙格-库塔法的特点?A. 该方法是一种多步法B. 该方法是一种多项式插值法C. 该方法是一种单步法D. 该方法是一种数值积分法5. 用有限差分法求解偏微分方程时,通常需要进行网格剖分。
以下哪个选项是常用的网格剖分方法?A. 多边形剖分法B. 三角剖分法C. 矩形剖分法D. 圆形剖分法二、解答题1. 将函数f(x) = e^x 在区间[0, 1]上用复化梯形规则进行数值积分,分为6个子区间,求得的近似积分值为多少?解:将区间[0, 1]等分为6个子区间,每个子区间的长度为h = (1-0)/6 = 1/6。
根据复化梯形规则的公式,近似积分值为:I ≈ (1/2) * h * [f(0) + 2f(1/6) + 2f(2/6) + 2f(3/6) + 2f(4/6) + 2f(5/6) +f(1)]≈ (1/2) * (1/6) * [e^0 + 2e^(1/6) + 2e^(2/6) + 2e^(3/6) + 2e^(4/6) +2e^(5/6) + e^1]2. 使用二分法求解方程 x^3 - 3x + 1 = 0 在区间[1, 2]上的根。
要求精确到小数点后三位。
解:首先需要判断方程在区间[1, 2]上是否存在根。
数值分析习题和答案解析(最新整理)
(1)
要使
应满足().
(2) 已知方程组
,则解此方程组的
Jacobi 迭代法是否收敛().它的渐近收敛速度 R(B)=
公式(6.13)直接计算即可。
对
,取 n=8,在分点处计算 f(x)的值构造函数表。
按式(6.11)求出
,按式(6.13)求得
,
积分
2. 用 Simpson 公式求积分 ,并估计误差 解:直接用 Simpson 公式(6.7)得
由(6.8)式估计误差,因
,故
3. 确定下列求积公式中的待定参数,使其代数精确度尽量 高,并指明求积公式所具有的代数精确度.
专业知识分享
WORD 格式
编辑整理
11. 填空题
(1) 满 足 条 件
的插值多项式
p(x)=( ).
(2)
,则 f[1,2,3,4]=( ),f[1,2,3,4,5]
=( ).
(3) 设
为互异节点, 为对应的四次插值基函
数,则
=( ),
=( ).
(4) 设
是区间[0,1]上权函数为 ρ(x)=x 的最
WORD 格式
编辑整理
误差估计由公式(5.19)得
这里 仍为 0.565 8. 求 一 个 次 数 不 高 于 四 次 的 多 项 式 p(x),使 它 满 足
解:这种题目可以有很多方法去做,但应以简单为宜。此处
可先造 使它满足
,显然 p(x)=x2(2-x)+Ax2(x-1)2
,再令
由 p(2)=1 求出 A= ,于是
5.计算
取 ,利用 :
式计算误差最小。
四个选项: 第二、三章 插值与函数逼近
习题二、三
数值分析试题与答案
一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。
(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。
(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。
(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。
(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。
数值分析试卷及答案
数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
(完整版)数值分析整理版试题及答案,推荐文档
9
1
xdx T4
h[ 2
f
1
3
2 k 1
f
xk
f
9]
2[ 1 2 3 5 7 9] 2
17.2277
(2)用 n 4 的复合辛普森公式
由于 h 2 , f x
x
,
xk
1
2k k
1, 2,3,
x
k
1
2
2k k
0,1, 2,3,所以,有
2
3
9
1
xdx S4
h[ 6
f
1
若 span1, x,则0 (x) 1 ,1(x) x ,这样,有
2
1
0 ,0 1dx 1
0
1,1
1 0
x2dx
1 3
0
,1
1,0
1
0
xdx
1 2
1
f ,0 exdx 1.7183
0
1
f ,1 xexdx 1
0
所以,法方程为
1
1
1
2 1
a0
a1
1.7183 1
1 0
1
23
2 1
a0
a1
6 1
12
3
再回代解该方程,得到
a1
4
,
a0
11 6
故,所求最佳平方逼近多项式为
S1*
(
x)
11 6
4x
例 3、 设 f (x) ex , x [0,1] ,试求 f (x) 在[0, 1]上关于 (x) 1 , span1, x的最
佳平方逼近多项式。 解:
1
4
x1
1 5
数值分析试题及答案
数值分析试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法是数值分析中用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 梯度下降法D. 蒙特卡洛方法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的共同点是:A. 都是多项式插值B. 都使用差商C. 都只适用于等距节点D. 都需要预先知道所有数据点答案:A3. 在数值积分中,辛普森(Simpson)公式比梯形公式的误差:A. 更大B. 更小C. 相同D. 无法比较答案:B4. 以下哪个是数值稳定性分析中常用的方法?A. 条件数B. 收敛性C. 收敛速度D. 误差分析答案:A5. 在求解常微分方程的数值解时,欧拉方法属于:A. 单步法B. 多步法C. 隐式方法D. 显式方法答案:A6. 以下哪个是数值分析中求解非线性方程的迭代方法?A. 高斯-约当消元法B. 牛顿-拉弗森方法C. 雅可比迭代法D. 高斯-赛德尔迭代法答案:B7. 线性插值公式中,如果给定两个点\( (x_0, y_0) \)和\( (x_1, y_1) \),插值多项式是:A. \( y = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \)B. \( y = y_0 + \frac{y_1 - y_0}{x_0 - x_1}(x - x_0) \)C. \( y = y_0 + \frac{x - x_0}{x_1 - x_0}(y_1 - y_0) \)D. \( y = y_1 + \frac{x_1 - x}{x_1 - x_0}(y_0 - y_1) \)答案:C8. 以下哪个是数值分析中用于求解特征值问题的算法?A. 幂法B. 共轭梯度法C. 牛顿法D. 欧拉法答案:A9. 在数值微分中,使用有限差分法来近似导数时,中心差分法的误差:A. 与步长成正比B. 与步长的平方成正比C. 与步长的立方成正比D. 与步长的四次方成正比答案:B10. 以下哪个是数值分析中用于求解线性最小二乘问题的算法?A. 梯度下降法B. 牛顿法C. 奇异值分解法D. 共轭梯度法答案:C二、简答题(每题10分,共30分)1. 简述数值分析中病态问题的特点及其对算法的影响。
数值分析练习题附答案
目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。
数值分析试题及答案
1. 和分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x = B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =的根的牛顿法收敛,则它具有( )敛速。
A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到的第3个方程( ).A .232x x -+= B .232 1.5 3.5x x -+=C .2323x x -+= D .230.5 1.5x x -=-单项选择题答案二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根。
5. 取步长0.1h =,用欧拉法解初值问题()211yy yx y ⎧'=+⎪⎨⎪=⎩的计算公式 .填空题答案1. 9和292.()()0101f x f x x x --3. 18 4. ()()120f f < 5. ()1200.11.1,0,1,210.11k k y y k k y +⎧⎛⎫⎪ ⎪=+⎪ ⎪=+⎨⎝⎭⎪=⎪⎩得 分 评卷人三、计算题(每题15分,共60分)1. 已知函数211y x =+的一组数据:求分段线性插值函数,并计算()1.5f 的近似值.计算题1.答案()101x L x -=-()12x L x -=-()10.8L x ⎧-⎪=⎨⎪⎩()1.50.8L =2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X(保留小数点后五位数字).计算题2.答案1.解 原方程组同解变形为 1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m =高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间的近似根 (1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到.计算题3.答案4. 写出梯形公式和辛卜生公式,并用来分别计算积分1011dx x +⎰.计算题4.答案四、证明题(本题10分)确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明题答案证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求积公式,并令其左右相等,得一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得的近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X 。
数值分析详细答案(全)
第二章 插值法习题参考答案2.)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0)(2+-+-⋅+------⋅-+-+-+⋅=x x x x x x x L3723652-+=x x . 3. 线性插值:取510826.0,693147.0,6.0,5.01010-=-===y y x x ,则620219.0)54.0()54.0(54.0ln 0010101-=-⋅--+=≈x x x y y y L ;二次插值:取510826.0,693147.0,916291.0,6.0,5.0,4.0210210-=-=-====y y y x x x ,则)54.0(54.0ln 2L ≈))(()54.0)(54.0())(()54.0)(54.0())(()54.0)(54.0(120210221012012010210x x x x x x y x x x x x x y x x x x x x y ----⋅+----⋅+----⋅==-0.616707 .6. i) 对),,1,0(,)(n k x x f k==在n x x x ,,,10 处进行n 次拉格朗日插值,则有)()(x R x P x n n k +=)())(()!1(1)(0)1(0n n ni k j j x x x x f n x x l --++=+=∑ ξ由于0)()1(=+ξn f,故有kni k j jxx x l≡∑=0)(.ii) 构造函数,)()(kt x x g -=在n x x x ,,,10 处进行n 次拉格朗日插值,有∑=-=ni j k j n x l t x x L 0)()()(.插值余项为 ∏=+-+=--nj j n n kx x n g x L t x 0)1()()!1()()()(ξ, 由于).,,2,1(,0)()1(n k g n ==+ξ故有 .)()()()(0∑=-==-ni j k j n kx l t x x L t x令,x t =即得 ∑==-ni j k jx l t x)()(.8. 截断误差].4,4[),)()((61)(2102-∈---=ξξx x x x x x e x R其中 ,,1210h x x h x x +=-= 则hx x 331+=时取得最大值321044392|))()((|max h x x x x x x x ⋅=---≤≤- .由题意, ,10)392(61|)(|6342-=⋅⋅≤h e x R所以,.006.0≤h16. ;1!7!7!7)(]2,,2,2[)7(71===ξf f .0!7)(]2,,2,2[)8(810==ξf f19. 采用牛顿插值,作均差表:i x)(i x f一阶均差 二阶均差0 1 20 1 11 0-1/2],,[))((],[)()()(210101000x x x f x x x x x x f x x x p x p --+-+=))()()((210x x x x x x Bx A ---++)2)(1()()2/1)(1(0--++--++=x x x Bx A x x x又由 ,1)1(,0)0(='='p p 得,41,43=-=B A 所以 .)3(4)(22-=x x x p第三章 函数逼近与计算习题参考答案4.设所求为()g x c =,(,)max(,),max (),min ()a x ba x bf g M c m c M f x m f x ≤≤≤≤∆=--==,由47页定理4可知()g x 在[],a b 上至少有两个正负交错的偏差点,恰好分别为()f x 的最大值和最小值处,故由1(),()2M c m c c M m -=--=+可以解得1()()2g x M m =+即为所求。
数值分析试题及答案
数值分析试题及答案一、选择题(每题3分,共30分)1. 下列关于数值分析的说法,错误的是()。
A. 数值分析是研究数值方法的科学B. 数值分析是研究数值方法的数学理论C. 数值分析是研究数值方法的误差分析D. 数值分析是研究数值方法的数学理论、误差分析及数值方法的实现答案:B2. 在数值分析中,插值法主要用于()。
A. 求解微分方程B. 求解积分方程C. 求解线性方程组D. 通过已知数据点构造一个多项式答案:D3. 线性方程组的解法中,高斯消元法属于()。
A. 直接方法B. 迭代方法C. 矩阵分解方法D. 特征值方法答案:A4. 牛顿法(Newton's method)是一种()。
A. 插值方法B. 拟合方法C. 迭代方法D. 优化方法答案:C5. 在数值分析中,下列哪种方法用于求解非线性方程的根?A. 高斯消元法B. 牛顿法C. 雅可比方法D. 斯托尔-温格尔方法答案:B6. 下列关于误差的说法,正确的是()。
A. 绝对误差总是大于相对误差B. 相对误差总是小于绝对误差C. 误差是不可避免的D. 误差总是可以消除的答案:C7. 在数值分析中,下列哪个概念与数值稳定性无关?A. 条件数B. 截断误差C. 舍入误差D. 插值多项式的阶数答案:D8. 用泰勒级数展开函数f(x)=e^x,下列哪一项是正确的?A. f(x) = 1 + x + x^2/2! + x^3/3! + ...B. f(x) = 1 - x + x^2/2! - x^3/3! + ...C. f(x) = x + x^2/2 + x^3/6 + ...D. f(x) = x - x^2/2 + x^3/6 - ...答案:A9. 插值多项式的次数最多为()。
A. n-1B. nC. n+1D. 2n答案:B10. 下列关于数值积分的说法,错误的是()。
A. 梯形法则是一种数值积分方法B. 辛普森法则是一种数值积分方法C. 龙格法则是数值积分方法中的一种D. 数值积分方法总是精确的答案:D二、填空题(每题3分,共15分)1. 在数值分析中,条件数是衡量问题的______。
数值分析试题及答案汇总
数值分析试题一、填空题(2 0×2′) 1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =0.231是精确值x *=0.229的近似值,则x 有 2 位有效数字。
2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 ,f [20,21,22,23,24,25,26,27,28]= 0 。
3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __。
4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。
5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。
6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。
7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。
8. 要使20的近似值的相对误差小于0.1%,至少要取 4 位有效数字。
9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。
10. 由下列数据所确定的插值多项式的次数最高是 5 。
11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。
12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。
数值分析试题及答案
数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。
A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。
A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。
A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。
A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。
A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。
A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。
A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。
A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。
A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。
A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。
答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。
答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。
答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。
数值分析试题及答案汇总
数值分析试题及答案汇总一、单项选择题(每题5分,共20分)1. 在数值分析中,下列哪个方法用于求解线性方程组?A. 牛顿法B. 插值法C. 迭代法D. 泰勒展开法答案:C2. 以下哪个选项是数值分析中用于求解非线性方程的迭代方法?A. 高斯消元法B. 牛顿法C. 多项式插值D. 辛普森积分法答案:B3. 以下哪个选项是数值分析中用于数值积分的方法?A. 牛顿法B. 辛普森积分法C. 牛顿-拉弗森迭代D. 拉格朗日插值答案:B4. 在数值分析中,下列哪个方法用于求解常微分方程的初值问题?A. 欧拉法B. 牛顿法C. 辛普森积分法D. 高斯消元法答案:A二、填空题(每题5分,共20分)1. 插值法中,拉格朗日插值法的插值多项式的阶数是______。
答案:n2. 泰勒展开法中,如果将函数展开到第三阶,那么得到的多项式是______阶多项式。
答案:三3. 在数值分析中,牛顿法求解非线性方程的迭代公式为______。
答案:x_{n+1} = x_n - f(x_n) / f'(x_n)4. 辛普森积分法是将积分区间分为______等分进行近似计算。
答案:偶数三、简答题(每题10分,共30分)1. 请简述数值分析中插值法的基本原理。
答案:插值法的基本原理是根据一组已知的数据点,构造一个多项式函数,使得该函数在给定的数据点上与数据值相等,以此来估计未知数据点的值。
2. 解释数值分析中误差的概念,并说明它们是如何影响数值计算结果的。
答案:数值分析中的误差是指由于计算方法或计算工具的限制,导致计算结果与真实值之间的差异。
误差可以分为舍入误差和截断误差。
舍入误差是由于计算机表示数值的限制而产生的,而截断误差是由于计算方法的近似性质而产生的。
这些误差会影响数值计算结果的准确性和稳定性。
3. 请说明在数值分析中,为什么需要使用迭代法求解线性方程组。
答案:在数值分析中,迭代法用于求解线性方程组是因为对于大规模的方程组,直接方法(如高斯消元法)的计算成本很高,而迭代法可以在较少的计算步骤内得到近似解,并且对于稀疏矩阵特别有效。
数值分析整理版试题和答案
例1、 已知函数表求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。
解:(1)插值基函数分别为()()()()()()()()()()1200102121()1211126x x x x x x l x x x x x x x ----===--------()()()()()()()()()()021*******()1211122x x x x x x l x x x x x x x --+-===-+---+-()()()()()()()()()()0122021111()1121213x x x x x x l x x x x x x x --+-===-+--+-故所求二次拉格朗日插值多项式为()()()()()()()()()()()2202()11131201241162314121123537623k k k L x y l x x x x x x x x x x x x x ==⎡⎤=-⨯--+⨯-+-+⨯+-⎢⎥⎣⎦=---++-=+-∑(2)一阶均差、二阶均差分别为[]()()[]()()[][][]010*********011201202303,11204,41234,,52,,126f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----===----===---均差表为故所求Newton 二次插值多项式为()()[]()[]()()()()()20010012012,,,35311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-++++-=+-例2、 设2()32f x xx =++.[0,1]x ∈.试求()f x 在[0, 1]上关于()1x ρ=.{}span 1,x Φ=的最佳平方逼近多项式。
数值分析整理版试题及答案
例1、已知函数表求的解:(1)故所求二次拉格朗日插值多项式为(2)一阶均差、二阶均差分别为例2、设,,试求在[0,1]上关于,的最佳平方逼近多项式。
解:若,则,,且,这样,有所以,法方程为,经过消元得再回代解该方程,得到,故,所求最佳平方逼近多项式为例3、设,,试求在[0, 1]上关于,的最佳平方逼近多项式。
解:若,则,,这样,有所以,法方程为解法方程,得到,,故,所求最佳平方逼近多项式为例4、用的复合梯形和复合辛普森公式计算积分。
解:(1)用的复合梯形公式由于,,,所以,有(2)用的复合辛普森公式由于,,,,所以,有例5、用列主元消去法求解下列线性方程组的解。
解:先消元再回代,得到,,所以,线性方程组的解为,,例6、用直接三角分解法求下列线性方程组的解。
解:设则由的对应元素相等,有,,,,,,,,因此,解,即,得,,解,即,得,,所以,线性方程组的解为,,1、若是阶非奇异阵,则必存在单位下三角阵和上三角阵,使唯一成立。
()2、当时,Newton-cotes型求积公式会产生数值不稳定性。
()3、形如的高斯(Gauss)型求积公式具有最高代数精确度的次数为。
()4、矩阵的2-范数=9。
()5、设,则对任意实数,方程组都是病态的。
(用)()6、设,,且有(单位阵),则有。
()7、区间上关于权函数的直交多项式是存在的,且唯一。
()1、(Ⅹ) 2、(∨)3、(Ⅹ) 4、(∨)5、( Ⅹ)6、(∨)7、(Ⅹ) 8、( Ⅹ)一、判断题(10×1′)1、若A是n阶非奇异矩阵,则线性方程组AX=b一定可以使用高斯消元法求解。
( ×)2、解非线性方程f(x)=0的牛顿迭代法在单根x*附近是平方收敛的。
( √)3、若A为n阶方阵,且其元素满足不等式则解线性方程组AX=b的高斯-—塞德尔迭代法一定收敛。
(×) 4、样条插值一种分段插值。
(√)5、如果插值结点相同,在满足相同插值条件下所有的插值多项式是等价的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析整理版试题及答案例1、 已知函数表x-1 1 2 ()f x-3 0 4求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。
解:(1)k x -1 1 2 k y -3 0 4插值基函数分别为()()()()()()()()()()1200102121()1211126x x x x x x l x x x x x x x ----===--------()()()()()()()()()()021*******()1211122x x x x x x l x x x x x x x --+-===-+---+-()()()()()()()()()()0122021111()1121213x x x x x x l x x x x x x x --+-===-+--+-故所求二次拉格朗日插值多项式为()()()()()()()()()()()2202()11131201241162314121123537623k k k L x y l x x x x x x x x x x x x x ==⎡⎤=-⨯--+⨯-+-+⨯+-⎢⎥⎣⎦=---++-=+-∑(2)一阶均差、二阶均差分别为[]()()[]()()[][][]010*********011201202303,11204,41234,,52,,126f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----===----===---kx ()kf x一阶 二阶-1-31 0 3/2 2 445/6故所求Newton 二次插值多项式为()()[]()[]()()()()()20010012012,,,35311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-++++-=+-例2、 设2()32f x xx =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式。
解:若{}span 1,x Φ=,则0()1x ϕ=,1()x x ϕ=,且()1x ρ=,这样,有()()()()()()()()1120011011201100012101,11,,3123,,,,32269,324dx x dx xdx f x x dx f x x x dx ϕϕϕϕϕϕϕϕϕϕ========++==++=⎰⎰⎰⎰⎰ 所以,法方程为01123126119234a a ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦,经过消元得01231162110123a a ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ 再回代解该方程,得到14a =,0116a =故,所求最佳平方逼近多项式为*111()46S x x =+例3、 设()xf x e =,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式。
解:若{}span 1,x Φ=,则0()1x ϕ=,1()x x ϕ=,这样,有()()()()()()100012110101100100110,111,31,,2, 1.7183,1x x dx x dx xdx f e dx f xe dx ϕϕϕϕϕϕϕϕϕϕ===========⎰⎰⎰⎰⎰所以,法方程为0111 1.7183211123a a ⎡⎤⎢⎥⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎣⎦解法方程,得到00.8732a =,1 1.6902a =, 故,所求最佳平方逼近多项式为*1()0.8732 1.6902S x x =+例4、 用4n =的复合梯形和复合辛普森公式计算积分1xdx ⎰。
解:(1)用4n =的复合梯形公式由于2h =,()f x x =()121,2,3k x k k =+=,所以,有()()()4131[129]22[123579]217.2277k k xdx T hf f x f =≈=++=⨯+=⎰∑(2)用4n =的复合辛普森公式由于2h =,()f x x =()121,2,3k x k k =+=,()12220,1,2,3k xk k +=+=,所以,有()()()41331012[1429]61[14246823573]317.3321k k k k xdx S hf f x f x f +==≈⎛⎫⎪=+++ ⎪⎝⎭=+⨯+⨯+=⎰∑∑例5、 用列主元消去法求解下列线性方程组的解。
123123123123315183156x x x x x x x x x -+=⎧⎪-+-=-⎨⎪++=⎩解:先消元()1212331518311511161831151233151116r r A b ↔-⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦---⎡⎤⎢⎥−−−→-⎢⎥⎢⎥⎣⎦212131312332322,31,186,718311501750761718316183115076171831601735183107617100m m m m r r m m =-⨯-+→=-⨯-+→↔=-⨯-+→---⎡⎤⎢⎥−−−−−−−−−−−−−→-⎢⎥⎢⎥⎣⎦---⎡⎤⎢⎥−−−→⎢⎥⎢⎥-⎣⎦--−−−−−−−−−−−−−→第1行()第2行第2行第1行()第3行第3行第2行()第3行第3行158********-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦再回代,得到33x =,22x =,11x =所以,线性方程组的解为11x =,22x =,33x =例6、 用直接三角分解法求下列线性方程组的解。
123123123111945611183451282x x x x x x x x x ⎧++=⎪⎪⎪++=⎨⎪⎪++=⎪⎩解: 设1112132122233132331114561001111003451001122u u u A l u u LU l l u ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦则由A LU =的对应元素相等,有1114u =,1215u =,1316u =, 2111211433l u l =⇒=,311131122l u l =⇒=,2112222211460l u u u +=⇒=-,2113232311545l u u u +=⇒=-,3112322232136l u l u l +=⇒=-,31133223333313215l u l u u u ++=⇒=因此,11110045641110036045236113015A LU ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎥⎣⎦解Ly b =,即1231094108382361y y y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎣⎦,得19y =,24y =-,3154y =- 解Ux y =,即123111456911046045154130015x x x ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦,得3177.69x =-,2476.92x =,1227.08x =- 所以,线性方程组的解为1227.08x =-,2476.92x =,3177.69x =-1、若A 是n n ⨯阶非奇异阵,则必存在单位下三角阵L 和上三角阵U ,使LU A =唯一成立。
( )2、当8≥n 时,Newton -cotes 型求积公式会产生数值不稳定性。
( )3、形如)()(1i ni i ba x f A dx x f ∑⎰=≈的高斯(Gauss )型求积公式具有最高代数精确度的次数为12+n 。
( )4、矩阵⎪⎪⎪⎭⎫ ⎝⎛=210111012A 的2-范数2A =9。
( )5、设⎪⎪⎪⎭⎫ ⎝⎛=a a a a A 000002,则对任意实数0≠a ,方程组b Ax =都是病态的。
(用∞⋅) ( )6、设n n R A ⨯∈,nn RQ ⨯∈,且有I Q Q T=(单位阵),则有22QA A =。
( )7、区间[]b a ,上关于权函数)(x W 的直交多项式是存在的,且唯一。
( )1、( Ⅹ ) 2、( ∨ ) 3、( Ⅹ ) 4、( ∨ ) 5、( Ⅹ ) 6、( ∨ )7、( Ⅹ ) 8、( Ⅹ )一、 判断题(10×1′) 1、若A 是n 阶非奇异矩阵,则线性方程组AX =b 一定可以使用高斯消元法求解。
( × ) 2、解非线性方程f (x )=0的牛顿迭代法在单根x *附近是平方收敛的。
( √ )3、若A 为n 阶方阵,且其元素满足不等式),...,2,1( 1n i a a nij j ij ii =≥∑≠=则解线性方程组AX =b 的高斯——塞德尔迭代法一定收敛。
( × ) 4、样条插值一种分段插值。
( √ ) 5、如果插值结点相同,在满足相同插值条件下所有的插值多项式是等价的。
( √ ) 6、从实际问题的精确解到实际的计算结果间的误差有模型误差、观测误差、截断误差及舍入误差。
( √ ) 7、解线性方程组的的平方根直接解法适用于任何线性方程组AX =b 。
( × ) 8、迭代解法的舍入误差估计要从第一步迭代计算的舍入误差开始估计,直到最后一步迭代计算的舍入误差。
( × ) 9、数值计算中的总误差如果只考虑截断误差和舍入误差,则误差的最佳分配原则是截断误差=舍入误差。
( √ )10、插值计算中避免外插是为了减少舍入误差。
( × )1. 用计算机求1000100011n n =∑时,应按照n 从小到大的顺序相加。
( )2. 为了减少误差,2001199920011999+进行计算。
( 对 )3. 用数值微分公式中求导数值时,步长越小计算就越精确。
( )4. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。
( )复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。
答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。