二次函数图像对称变换前后系数的关系专题

合集下载

二次函数的图像与性质专题训练

二次函数的图像与性质专题训练

二次函数的图象与性质专题【知识点1 二次函数的配方法】二次函数y =ax 2+bx +c (a ≠0)配方成顶点式y =a (x +b 2a )2+4ac−b 24a 2, 对称轴为2b x a =−,顶点坐标为2424b ac b a a ⎛⎫−− ⎪⎝⎭,.【题型1 二次函数的配方法】【例1】用配方法将下列函数化成y =a (x -h )2+k 的形式,并指出抛物线的开口方向,对称轴和顶点坐标.(1)y =2x 2+4x -1 (2)y =12x 2﹣2x +3; (3)y =(1﹣x )(1+2x );【知识点2 二次函数的五点绘图法】利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =−+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.【题型2 二次函数的五点绘图法】【例2】已知抛物线y =x 2﹣2x ﹣3(1)写出该抛物线的开口方向、顶点坐标、对称轴、与x 、y 轴交点;(2)选取适当的数据填表格,并在直角坐标系内描点画出该抛物线的图象.【知识点3 二次函数的图象与各系数之间的关系】①二次项系数a :a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. ②一次项系数b :在a 确定的前提下,b 决定了抛物线对称轴的位置,概括的说就是“左同右异”. ③常数项c :总结起来,c 决定了抛物线与y 轴交点的位置.【题型3 二次函数的图象与各系数之间的关系】【例3-1】如图所示的四个二次函数图象分别对应 ①y =ax 2, ②y =bx 2, ③y =cx 2, ④y =dx 2,则a ,b ,c ,d 的大小关系为 .(用“>”连接)【例3-2】二次函数y=ax2+bx+c(a≠0)图像如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有()A.②④B.②⑤C.①②③D.②③⑤【例3-3】函数y=ax2﹣a与y=ax+a(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【知识点4 二次函数图象的平移变换】平移步骤:①将抛物线解析式转化成顶点式()2y a x h k=−+,确定其顶点坐标()h k,;②平移规律概括成八个字“左加右减,上加下减”.【题型4 二次函数图象的平移变换】【例4】要得到函数y=﹣(x﹣2)2+3的图象,可以将函数y=﹣(x﹣3)2的图象()A.向右平移1个单位,再向上平移3个单位B.向右平移1个单位,再向下平移3个单位C.向左平移1个单位,再向上平移3个单位D.向左平移1个单位,再向下平移3个单位【知识点5 二次函数图象的对称变换】2y ax bx c=++关于x轴对称,得到2y ax bx c=−−−;关于y轴对称,得到2y ax bx c=−+;()2y a x h k=−+关于x轴对称,得到()2y a x h k=−−−;关于y轴对称,得到()2y a x h k=++;2y ax bx c=++关于原点对称后,得到的解析式是2y ax bx c=−+−;()2y a x h k=−+关于原点对称后,得到的解析式是()2y a x h k=−+−;【题型5 二次函数图象的对称变换】【例5】在同一平面直角坐标系中,若抛物线y=x2+(2a﹣b)x+b+1与y=﹣x2+(a+b)x+a﹣4关于x轴对称,则a+b的值为()A.﹣5B.3C.5D.15【变式5-1】抛物线y=﹣(x+2)2关于y轴对称的抛物线的表达式为.【变式5-2】在平面直角坐标系中,将抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是()A.y=﹣(x﹣1)2﹣2 B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2+2D.y=﹣(x+1)2+2【题型6 利用二次函数的性质判断结论】【例6】对于抛物线y=﹣2(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1B.2C.3D.4【变式6-1】关于抛物线y =x 2﹣(a +1)x +a ﹣2,下列说法错误的是( )A .开口向上B .当a =2时,经过坐标原点OC .不论a 为何值,都过定点(1,﹣2)D .a >0时,对称轴在y 轴的左侧【变式6-2】对于二次函数y =x 2﹣2mx ﹣3,有下列结论:③ 它的图象与x 轴有两个交点;②如果当x ≤﹣1时,y 随x 的增大而减小,则m =﹣1;③如果将它的图象向左平移3个单位后过原点,则m =1;④如果当x =2时的函数值与x =8时的函数值相等,则m =5.其中一定正确的结论是 .(把你认为正确结论的序号都填上)【题型7 利用二次函数的性质比较函数值】【例7】已知二次函数y =x 2﹣2x ﹣3的自变量x 1,x 2,x 3对应的函数值分别为y 1,y 2,y 3.当﹣1<x 1<0, 1<x 2<2,x 3>3时,y 1,y 2,y 3三者之间的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3【变式7-1】抛物线y =x 2+x +2,点(2,a ),(﹣1,﹣b ),(3,c ),则a ,b ,c 的大小关系是( )A .c >a >bB .b >a >cC .a >b >cD .无法比较大小【变式7-2】已知点A (b ﹣m ,y 1),B (b ﹣n ,y 2),C (b +m+n 2,y 3)都在二次函数y =﹣x 2+2bx +c 的图象上, 若0<m <n ,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 1<y 2D .y 1<y 3<y 2 【题型8 利用二次函数的性质求字母的范围】【例8】已知抛物线y =﹣(x ﹣2)2+9,当m ≤x ≤5时,0≤y ≤9,则m 的值可以是( )A .﹣2B .1C .3D .4【变式8-1】若抛物线y =(x ﹣m )(x ﹣m ﹣3)经过四个象限,则m 的取值范围是( )A .m <﹣3B .﹣1<m <2C .﹣3<m <0D .﹣2<m <1【题型9 利用二次函数的性质求最值】【例9】若实数m 、n 满足m+n =2,则代数式2m 2+mn +m ﹣n 的最小值是_______.【变式9-2】抛物线y =ax 2+bx +3(a ≠0)过A (4,4),B (2,m )两点,点B 到抛物线对称轴的距离记为d ,满足0<d ≤1,则实数m 的取值范围是( )A .m ≤2或m ≥3B .m ≤3或m ≥4C .2<m <3D .3<m <4*【题型10 二次函数给定范围内的最值问题】【例10】若二次函数y =﹣x 2+mx 在﹣1≤x ≤2时的最大值为3,那么m 的值是( )A .﹣4或72B .﹣2√3或72C .﹣4 或2√3D .﹣2√3或2 √3【变式10-1】已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,则m =( )A .3B .﹣3或38C .3或−38D .﹣3或−38 【变式10-2】若二次函数y =x 2﹣2x +5在m ≤x ≤m +1时的最小值为6,那么m 的值是 .二次函数的图象与性质— 易错精选 —1. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下面五条信息:①c <0;②ab <0; ③a ﹣b +c >0;④2a ﹣3b =0;⑤c ﹣4b >0.你认为其中正确的个数有( )A .1个B .2个C .3个D .4个2. 如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论:①abc >0;②2a ﹣b =0;③4ac ﹣b 2<0;④若点B (﹣,y 1)、C (﹣,y 2)为函数图象上的两点,则y 1>y 2;⑤am 2+bm <a ﹣b (m 为任意实数);其中,正确结论的个数是( )A .1B .2C .3D .43. 在平面直角坐标系中,二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,现给出以下结论:①abc <0;②c +2a <0;③9a ﹣3b +c =0;④a ﹣b ≥m (am +b )(m 为实数),其中正确的结论有 .(只填序号)4. 已知二次函数y =ax 2+bx+c (a≠0)的图像如图,有下列6个结论:①abc<0;②b<a ﹣c ;③4a+2b+c>0;④2c<3b ;⑤a+b<m (am+b ),(m≠1的实数)⑥2a+b+c>0,其中正确的结论的有_____.5. 如图是抛物线21(0)y ax bx c a =++≠图像的一部分,抛物线的顶点坐标为(1,3)A ,与x 轴的一个交点为(4,0)B ,点A 和点B 均在直线2(0)y mx n m =+≠上.①20a b +=;②>0abc ;③抛物线与x 轴的另一个交点时(4,0)−;④方程23ax bx c ++=−有两个不相等的实数根;⑤4a b c m n −+<+;⑥不等式2mx n ax bx c +>++的解集为14x <<.上述六个结论中,其中正确的结论是_____________.(填写序号即可)6. 在同一个平面直角坐标系xOy 中,二次函数211y a x =,222y a x =,233y a x 的图象如图所示,则123,,a a a 的大小关系为___________(用“>”连接).。

专题05二次函数中的平移、旋转、对称(五大题型)解析版

专题05二次函数中的平移、旋转、对称(五大题型)解析版

专题05二次函数中的平移、旋转、对称(五大题型)通用的解题思路:1.二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x–h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.3.二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。

4.二次函数图象的翻折与旋转y=a(x-h)²+k绕原点旋转180°y=-a(x+h)²-k a、h、k 均变号沿x 轴翻折y=-a(x-h)²-k a、k 变号,h 不变沿y 轴翻折y=a(x+h)²+ka、h 不变,h 变号题型一:二次函数中的平移问题1.(2024•牡丹区校级一模)如图,在平面直角坐标系xOy 中,抛物线21(0)y ax bx a a=+-<与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示).(2)当B 的纵坐标为3时,求a 的值;(3)已知点11(,2P a-,(2,2)Q ,若抛物线与线段PQ 恰有一个公共点,请结合函数图象求出a 的取值范围.【分析】(1)令0x =,求出点A 坐标根据平移得出结论;(2)将B 的纵坐标为3代入求出即可;(3)由对称轴为直线1x =得出212y ax ax a =--,当2y =时,解得1|1|a a x a ++=,2|1|a a x a-+=,结合图象得出结论;【解答】解:(1)在21(0)y ax bx a a =+-<中,令0x =,则1y a =-,∴1(0,)A a-,将点A 向右平移2个单位长度,得到点B ,则1(2,)B a-.(2)B 的纵坐标为3,∴13a-=,∴13a =-.(3)由题意得:抛物线的对称轴为直线1x =,2b a ∴=-,∴212y ax ax a=--,当2y =时,2122ax ax a=--,解得1|1|a a x a ++=,2|1|a a x a-+=,当|1|2a a a -+≤时,结合函数图象可得12a ≤-,抛物线与PQ 恰有一个公共点,综上所述,a 的取值范围为12a ≤-.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.2.(2024•平原县模拟)已知抛物线212:23C y ax ax a =++-.(1)写出抛物线1C 的对称轴:.(2)将抛物线1C 平移,使其顶点是坐标原点O ,得到抛物线2C ,且抛物线2C 经过点(2,2)A --和点B (点B 在点A 的左侧),若ABO ∆的面积为4,求点B 的坐标.(3)在(2)的条件下,直线1:2l y kx =-与抛物线2C 交于点M ,N ,分别过点M ,N 的两条直线2l ,3l 交于点P ,且2l ,3l 与y 轴不平行,当直线2l ,3l 与抛物线2C 均只有一个公共点时,请说明点P 在一条定直线上.【分析】(1)根据抛物线的对称轴公式直接可得出答案.(2)根据抛物线2C 的顶点坐标在原点上可设其解析式为2y ax =,然后将点A 的坐标代入求得2C 的解析式,于是可设B 的坐标为21(,)2t t -且(2)t <-,过点A 、B 分别作x 轴的垂线,利用4ABO OBN OAM ABNM S S S S ∆∆∆=--=梯形可求得t 的值,于是可求得点B 的坐标.(3)设1(M x ,1)y ,2(N x ,2)y ,联立抛物线与直线1l 的方程可得出12x x k +=-,124x x =-.再利用直线2l 、直线3l 分别与抛物线相切可求得直线2l 、直线3l 的解析式,再联立组成方程组可求得交点P 的纵坐标为一定值,于是可说明点P 在一条定直线上.【解答】解:(1)抛物线1C 的对称轴为:212ax a=-=-.故答案为:1x =-.故答案为:1x =-.(2) 抛物线1C 平移到顶点是坐标原点O ,得到抛物线2C ,∴可设抛物线2C 的解析式为:2y ax = 点(2,2)A --有抛物线2C 上,22(2)a ∴-=⋅-,解得:12a =-.∴抛物线2C 的解析式为:212y x =-.点B 在抛物线2C 上,且在点A 的左侧,∴设点B 的坐标为21(,)2t t -且(2)t <-,如图,过点A 、B 分别作x 轴的垂线,垂足为点M 、N .ABO OBN OAM ABNMS S S S ∆∆∆=-- 梯形2211111()()22(2)(2)22222t t t t =⨯-⨯-⨯⨯-⨯+⨯--32311122424t t t t =--++++212t t =+,又4ABO S ∆=,∴2142t t +=,解得:13t +=±,4(2t t ∴=-=不合题意,舍去),则2211(4)822t -=-⨯-=-,(4,8)B ∴--.(3)设1(M x ,1)y ,2(N x ,2)y ,联立方程组:2122y xy kx ⎧=-⎪⎨⎪=-⎩,整理得:2240x kx +-=,122x x k ∴+=-,124x x =-.设过点M 的直线解析式为y mx n =+,联立得方程组212y xy mx n⎧=-⎪⎨⎪=+⎩,整理得2220x mx n ++=.①过点M 的直线与抛物线只有一个公共点,∴△2480m n =-=,∴212n m =.∴由①式可得:221112202x mx m ++⨯=,解得:1m x =-.∴2112n x =.∴过M 点的直线2l 的解析式为21112y x x x =-+.用以上同样的方法可以求得:过N 点的直线3l 的解析式为22212y x x x =-+,联立上两式可得方程组2112221212y x x x y x x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得1212212x x x y x x +⎧=⎪⎪⎨⎪=-⎪⎩,12x x k +=- ,124x x =-.∴(,2)2k P -∴点P 在定直线2y =上.(如图)【点评】本题考查了抛物线的对称轴、求二次函数的解析式、解一元二次方程、一元二次方程的根的情况、求直线交点坐标等知识点,解题的关键是利用所画图形帮助探索解法思路.3.(2024•和平区一模)已知抛物线21(y ax bx a =+-,b 为常数.0)a ≠经过(2,3),(1,0)两个点.(Ⅰ)求抛物线的解析式;(Ⅱ)抛物线的顶点为;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线.【分析】(Ⅰ)利用待定系数法即可求解;(Ⅱ)根据抛物线的顶点式即可求得;(Ⅲ)利用平移的规律即可求得.【解答】解:(1) 抛物线21y ax bx =+-经过(2,3),(1,0)两个点,∴421310a b a b +-=⎧⎨+-=⎩,解得10a b =⎧⎨=⎩,∴抛物线的解析式为21y x =-;(Ⅱ) 抛物线21y x =-,∴抛物线的顶点为(0,1)-,故答案为:(0,1)-;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线2(1)12y x =---,即2(1)3y x =--.故答案为:2(1)3y x =--.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象与几何变换,熟练掌握待定系数法是解题的关键.4.(2024•礼县模拟)如图,在平面直角坐标系中,抛物线23y ax bx =++交y 轴于点A ,且过点(1,2)B -,(3,0)C .(1)求抛物线的函数解析式;(2)求ABC ∆的面积;(3)将抛物线向左平移(0)m m >个单位,当抛物线经过点B 时,求m的值.【分析】(1)用待定系数法求函数解析式即可;(2)先求出点A 的坐标,然后切成直线BC 的解析式,求出点D 的坐标,再根据ABC ABD ACD S S S ∆∆∆=+求出ABC ∆的面积;(3)由(1)解析式求出对称轴,再求出点B 关于对称轴的对称点B ',求出BB '的长度即可;【解答】解:(1)把(1,2)B -,(3,0)C 代入23y ax bx =++,则933032a b a b ++=⎧⎨-+=⎩,解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数解析式为211322y x x =-++;(2) 抛物线23y ax bx =++交y 轴于点A ,(0,3)A ∴,设直线BC 的解析式为y kx n =+,把(1,2)B -,(3,0)C 代入y kx n =+得230k n k n -+=⎧⎨+=⎩,解得1232k n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+,设BC 交y 于点D,如图:则点D 的坐标为3(0,)2,33322AD ∴=-=,113()(31)3222ABC ABD ACD C B S S S AD x x ∆∆∆∴=+=-=⨯⨯+=,(3)211322y x x =-++ ,∴对称轴为直线122b x a =-=,令B 点关于对称轴的对称点为B ',(2,2)B ∴',3BB ∴'=,抛物线向左平移(0)m m >个单位经过点B ,3m ∴=.【点评】本题主要考查待定系数法求二次函数的解析式,二次函数图象与几何变换、二次函数的性质、三角形面积等知识,关键是掌握二次函数的性质和平移的性质.5.(2024•珠海校级一模)已知抛物线223y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)化成顶点是即可求解;(2)根据平移的规律得到2(1)4y x m =-+-+,把原点代入即可求得m 的值.【解答】解:(1)2223(1)4y x x x =+-=+- ,∴抛物线的顶点坐标为(1,4)--.(2)该抛物线向右平移(0)m m >个单位长度,得到的新抛物线对应的函数表达式为2(1)4y x m =+--, 新抛物线经过原点,20(01)4m ∴=+--,解得3m =或1m =-(舍去),3m ∴=,故m 的值为3.【点评】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,求得平移后的抛物线的解析式是解题的关键.6.(2024•关岭县一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =;函数2y 与坐标轴的交点坐标为;(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.【分析】(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式即可求出b 、c 值,再转化为顶点式即可;(2)根据抛物线平移规则“左加右减”得到2y 解析式,令20y =求出与x 轴的交点坐标即可;(3)利用待定系数法求出直线AB 解析式,再根据直线平移法则“上加下减”得到直线平移后解析式,联立消去y ,根据判别式为0解出n 值即可.【解答】解:(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式得:2022b c b c -+=⎧⎨++=⎩,解得11b c =⎧⎨=-⎩,∴抛物线解析式为2219212()48y x x x =+-=+-.∴抛物线解析式为:21192()48y x =+-.(2)将二次函数1y 向左平移1个单位,得函数22592()48y x =+-,令20y =,则2592(048x +-=,解得112x =-,22x =-,∴平移后的抛物线与x 轴的交点坐标为1(2-,0)(2-,0).故答案为:22592()48y x =+-,1(2-,0)(2-,0).(3)设直线AB 的解析式为y kx b =+,将(1,0)A -,点(1,2)B 代入得:02k b k b -+=⎧⎨+=⎩,解得11k b =⎧⎨=⎩,∴直线AB 解析式为:1y x =+.将直线AB 向下平移(0)n n >个单位后的解析式为1y x n =+-,与函数2y 联立消去y 得:2592(148x x n +-=+-,整理得:22410x x n +++=,直线AB 与抛物线有唯一交点,△1642(1))0n =-⨯+=,解得1n =.【点评】本题考查了二次函数的图象与几何变换,熟练掌握函数的平移法则是解答本题的关键.7.(2024•温州模拟)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式.(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.【分析】(1)由题意可得点A 、B 的坐标,利用待定系数法求解二次函数的表达式即可解答;(2)根据二次函数图象平移规律“左加右减,上加下减”得到平移后的抛物线的表达式,再代入B 的坐标求解即可.【解答】解:(1)令0x =,则1222y x =-+=,(0,2)B ∴,令0y =,则1202y x =-+=,解得4x =,(4,0)A ∴,抛物线2y x mx =-+经过点A ,1640m ∴-+=,解得4m =,∴二次函数的表达式为24y x x =-+;(2)224(2)4y x x x =-+=--+ ,∴抛物线向左平移n 个单位后得到2(2)4y x n =--++,经过点(0,2)B ,22(2)4n ∴=--++,解得2n =±,故n 的值为2-2+【点评】本题考查待定系数法求二次函数解析式、一次函数图象上点的坐标特征、二次函数的图象与几何变换,二次函数图象上点的坐标特征等知识,熟练掌握待定系数法求二次函数解析式是解答的关键.8.(2024•巴东县模拟)已知二次函数2y ax bx c =++图象经过(2,3)A ,(3,6)B 、(1,6)C -三点.(1)求该二次函数解析式;(2)将该二次函数2y ax bx c =++图象平移使其经过点(5,0)D ,且对称轴为直线4x =,求平移后的二次函数的解析式.【分析】(1)运用待定系数法即可求得抛物线解析式;(2)利用平移的规律求得平移后的二次函数的解析式.【解答】解:(1)把(2,3)A ,(3,6)B 、(1,6)C -代入2y ax bx c =++,得:4239366a b c a b c a b c ++=⎧⎪++=⎨⎪-+=⎩,解得:123a b c =⎧⎪=-⎨⎪=⎩,∴该二次函数的解析式为223y x x =-+;(2)若将该二次函数2y ax bx c =++图象平移后经过点(5,0)D ,且对称轴为直线4x =,设平移后的二次函数的解析式为2(4)y x k =-+,将点(5,0)D 代入2(4)y x k =-+,得2(54)0k -+=,解得,1k =-.∴将二次函数的图象平移后的二次函数的解析式为22(4)1815y x x x =--=-+.【点评】本题考查了待定系数法求解析式,抛物线的性质,熟知待定系数法和平移的规律是解题的关键.9.(2024•郑州模拟)在平面直角坐标系中,抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B .(1)求抛物线的解析式;(2)直线y x m =+经过点A ,判断点B 是否在直线y x m =+上,并说明理由;(3)平移抛物线2y x bx c =-++使其顶点仍在直线y x m =+上,若平移后抛物线与y 轴交点的纵坐标为n ,求n 的取值范围.【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求得直线y x m =+的解析式,然后代入点B 判断即可;(3)设平移后的抛物线为2()1y x p q =--++,其顶点坐标为(,1)p q +,根据题意得出2221511()24n p q p p p =-++=-++=-++,得出n 的最大值.【解答】解:(1) 抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B ,∴12421b c b c -++=⎧⎨-++=⎩,解得21b c =⎧⎨=⎩,∴抛物线的解析式为:221y x x =-++;(2)点B 不在直线y x m =+上,理由:直线y x m =+经过点A ,12m ∴+=,1m ∴=,1y x ∴=+,把2x =代入1y x =+得,3y =,∴点(2,1)B 不在直线y x m =+上;(3)∴平移抛物线221y x x =-++,使其顶点仍在直线1y x =+上,设平移后的抛物线的解析式为2()1y x p q =--++,其顶点坐标为(,1)p q +, 顶点仍在直线1y x =+上,11p q ∴+=+,p q ∴=,抛物线2()1y x p q =--++与y 轴的交点的纵坐标为21n p q =-++,2221511(24n p q p p p ∴=-++=-++=-++,∴当12p =-时,n 有最大值为54.54n ∴ .【点评】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.10.(2024•鞍山模拟)已知抛物线2246y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)将二次函数的解析式改写成顶点式即可.(2)将抛物线与x 轴的交点平移到原点即可解决问题.【解答】解:(1)由题知,2222462(21)82(1)8y x x x x x =+-=++-=+-,所以抛物线的顶点坐标为(1,8)--.(2)令0y =得,22460x x +-=,解得11x =,23x =-.又因为将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,所以30m -+=,解得3m =.故m 的值为3.【点评】本题考查二次函数的图象与性质,熟知利用配方法求二次函数解析式的顶点式及二次函数的图象与性质是解题的关键.11.(2023•原平市模拟)(1)计算:3211()(5)|2|3--+---⨯-;(2)观察表格,完成相应任务:x3-2-1-012221A x x =+-21-2-1-①72(1)2(1)1B x x =-+--721-2-②2任务一:补全表格;任务二:观察表格不难发现,当x m =时代数式A 的值与当1x m =+时代数式B 的值相等,我们称这种现象为代数式B 参照代数式A 取值延后,相应的延后值为1:换个角度来看,将代数式A ,B 变形,得到(A =③2)2-,22B x =-将A 与B 看成二次函数,则将A 的图象④(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式P =⑤.【分析】(1)先算乘方,负整数指数幂,绝对值,再算乘法,最后算加减法即可求解;(2)①把1x =分别代入代数式A ,B 即可求得;②根据代数式B 参照代数式A 取值延后,相应的延后值为1,即可得出二次函数A 、B 平移的规律是向右平移1个单位,据此即可得出代数式P 参照代数式A 取值延后,延后值为3的P 的代数式.【解答】解:(1)原式19(5)2=-+--⨯19(10)=-+--1910=-++18=;(2)任务一:将1x =代入2212A x x =+-=;代入2(1)2(1)11B x x =-+--=-,故答案为:①2,②1-;任务二:将代数式A ,B 变形,得到2(1)2A x =+-,22B x =-将A 与B 看成二次函数,则将A 的图象向右平移1个单位(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式22(13)2(2)2P x x =+--=--.故答案为:①2;②1-;③1x +;④向右平移1个单位;⑤2(2)2P x =--.【点评】本题考查二次函数图象与几何变换,二次函数图象上点的坐标特征,理解题意,能够准确地列出解析式,并进行求解即可.12.(2024•南山区校级模拟)数形结合是解决数学问题的重要方法.小明同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:【观察探究】:方程2(||1)1x --=-的解为:;【问题解决】:若方程2(||1)x a --=有四个实数根,分别为1x 、2x 、3x 、4x .①a 的取值范围是;②计算1234x x x x +++=;【拓展延伸】:①将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?画出平移后的图象并写出平移过程;②观察平移后的图象,当123y时,直接写出自变量x 的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数21(|21)3y x =---+的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①由图象可知,当函数值为1-时,直线1y =-与图象交点的横坐标就是方程2(||1)1x --=-的解.故答案为:2x =-或0x =或2x =.(2)问题解决:①若方程2(|1)x a --=有四个实数根,由图象可知a 的取值范围是10a -<<.故答案为:10a -<<.②由图象可知:四个根是两对互为相反数.所以12340x x x x +++=.故答案为:0.(3)拓展延伸:①将函数2(||1)y x =--的图象向右平移2个单位,向上平移3个单位可得到函数21(|2|1)3y x =---+的图象,②当123y 时,自变量x 的取值范围是04x .故答案为:04x.【点评】本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.13.(2023•花山区一模)已知抛物线2y x ax b =++的顶点坐标为(1,2).(1)求a ,b 的值;(2)将抛物线2y x ax b =++向下平移m 个单位得到抛物线1C ,存在点(,1)c 在1C 上,求m 的取值范围;(3)抛物线22:(3)C y x k =-+经过点(1,2),直线(2)y n n =>与抛物线2y x ax b =++相交于A 、B (点A 在点B 的左侧),与2C 相交于点C 、D (点C 在点D 的左侧),求AD BC -的值.【分析】(1)根据对称轴公式以及当1x =时2y =,用待定系数法求函数解析式;(2)根据(1)可知抛物线2223(1)2y x x x =-+=-+,再由平移性质得出抛物线1C 解析式,然后把点(,1)c 代入抛物线1C ,再根据方程有解得出m 的取值范围;(3)先求出抛物线2C 解析式,再求出A ,B ,C ,D 坐标,然后求值即可.【解答】解:(1)由题意得,1212aa b ⎧-=⎪⎨⎪++=⎩,解得23a b =-⎧⎨=⎩;(2)由(1)知,抛物线2223(1)2y x x x =-+=-+,将其向下平移m 个单位得到抛物线1C ,∴抛物线1C 的解析式为2(1)2y x m =-+-,存在点(,1)c 在1C 上,2(1)21c m ∴-+-=,即2(1)1c m -=-有实数根,10m ∴- ,解得1m,m ∴的取值范围为1m;(3) 抛物线22:(3)C y x k =-+经过点(1,2),2(13)2k ∴-+=,解得2k =-,∴抛物线2C 的解析式为2(3)2y x =--,把(2)y n n =>代入到2(1)2y x =-+中,得2(1)2n x =-+,解得1x =1x =(1A ∴-,)n ,(1B +)n ,把(2)y n n =>代入到2(3)2y x =--中,得2(3)2n x =--,解得3x =或3x =+(3C ∴)n ,(3D +,)n ,(3(12AD ∴=+--=+,(1(32BC =+--=-+,(2(24AD BC ∴-=+--+=.【点评】本题考查二次函数的几何变换,二次函数的性质以及待定系数法求函数解析式,直线和抛物线交点,关键对平移性质的应用.14.(2023•环翠区一模)已知抛物线2y x bx c =++经过点(1,0)和点(0,3).(1)求此抛物线的解析式;(2)当自变量x 满足13x -时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x时,y 的最小值为5,求m 的值.【分析】(1)利用待定系数法求解;(2)先求出1x =-及3x =时的函数值,结合函数的性质得到答案;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为(2)2y x m l =---,利用二次函数的性质,当25m +>,此时5x =时,5y =,即(52)215m ---=,设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)21y x m =-+-,利用二次函数的性质得到2m l -<,此时1x =时,5y =,即(12)215m ---=,然后分别解关于m 的方程即可.【解答】解:(1) 抛物线2y x bx c =++经过点(1,0)和点(0,3),∴103b c c ++=⎧⎨=⎩,解得43b c =-⎧⎨=⎩,∴此抛物线的解析式为243y x x =-+;(2)当1x =-时,1438y =++=,当3x =时,91230y =-+=,2243(2)1y x x x =-+=-- ,∴函数图象的顶点坐标为(2,1)-,∴当13x -时,y 的取值范围是18y - ;(3)设此抛物线x 轴向右平移m 个单位后抛物线解析式为(2)y x m =--21-,当自变量x 满足15x时,y 的最小值为5,25m ∴+>,即3m >,此时5x =时,5y =,即(52)m --215-=,解得13m =+,23m =-(舍去);设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)y x m =-+21-,当自变量x 满足15x时,y 的最小值为5,21m ∴-<,即1m >,此时1x =时,5y =,即2(12)15m ---=,解得11m =-+,21m =--(舍去),综上所述,m 的值为3+1+【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式,也考查了二次函数的性质.15.(2023•南宁一模)如图1,抛物线21y x c =-+的图象经过(1,3).(1)求c 的值及抛物线1y 的顶点坐标;(2)当132x - 时,求1y 的最大值与最小值的和;(3)如图2,将抛物线1y 向右平移m 个单位(0)m >,再向上平移2m 个单位得到新的抛物线2y ,点N 为抛物线1y 与2y 的交点.设点N 到x 轴的距离为n ,求n 关于m 的函数关系式,并直接写出当n 随m 的增大而减小时,m 的取值范围.【分析】(1)把(1,3)代入抛物线解析式求得c 的值;根据抛物线解析式可以直接得到顶点坐标;(2)根据抛物线的性质知:当0x =时,1y 有最大值为4,当3x =-时,1y 有最小值为5-.然后求1y 的最大值与最小值的和;(3)根据平移的性质“左加右减,上加下减”即可得出抛物线2y 的函数解析式;然后根据抛物线的性质分两种情况进行解答:当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.【解答】解:(1)抛物线21y x c =-+的图象经过(1,3),∴当0x =时,2113y c =-+=,解得4c =.∴214y x =-+.顶点坐标为(0,4);(2)10-< ,∴抛物线开口向下.当0x =时,1y 有最大值为4.当3x =-时,21(3)45y =--+=-.当12x =时,21115()424y =-+=.∴当3x =-时,1y 有最小值为5-.∴最大值与最小值的和为4(5)1+-=-;(3)由题意知,新抛物线2y 的顶点为(,42)m m +,∴22()42y x m m =--++.当12y y =时,22()424x m m x --++=-+,化简得:2220mx m m -+=.又0m > ,∴112x m =-.∴2211(1)4(2)424y m m =--+=--+.当21(2)404m --+=时,解得12m =-;26m =, 104-<,∴抛物线开口向下.当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.∴综上所述2213,06413,64m m m n m m m ⎧-++<⎪⎪=⎨⎪-->⎪⎩ (或21|(2)4|)4n m =--+.当26m <<时,n 随m 的增大而减小.【点评】本题属于二次函数综合题,主要考查了二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的图象与性质以及二次函数最值的求法.难度偏大.16.(2023•奉贤区一模)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(3,0).(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果//DE AC ,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q的坐标.【分析】(1)利用待定系数法解答即可;(2)①依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质和平行线的性质求得点E ,F 坐标,再利用四边形ACDE 的面积DFC EFCA S S ∆=+平行四边形解答即可;②依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质,勾股定理求得点E 坐标和线段DE ,再利用等腰三角形的判定与性质求得线段FQ ,则结论可求.【解答】解:(1) 抛物线23y ax bx =++的对称轴为直线2x =,经过点(3,0)C ,∴229330b a a b ⎧-=⎪⎨⎪++=⎩,解得:14a b =⎧⎨=-⎩,∴抛物线的表达式为243y x x =-+;(2)①2243(2)1y x x x =-+=-- ,(2,1)A ∴-.设抛物线的对称轴交x 轴于点G ,1AG ∴=.令0x =,则3y =,(0,3)D ∴,3OD ∴=.令0y =,则2430x x -+=,解得:1x =或3x =,(1,0)B ∴.如果//DE AC ,需将抛物线向左平移,设DE 交x 轴于点F ,平移后的抛物线对称轴交x 轴于点H ,如图, 点C 的坐标为(3,0),3OC ∴=.由题意:45ACB ∠=︒,//DE AC ,45DFC ACB ∴∠=∠=︒.3OF OD ∴==,(3,0)F ∴-,由题意:1EH =,1FH EH ∴==,(4,1)E ∴--.//AE x 轴,//DE AC ,∴四边形EFCA 为平行四边形,2(4)6AE =--= ,616EFCA S ∴=⨯=平行四边形.1163922DFC S FC OD ∆=⨯⋅=⨯⨯= ,∴四边形ACDE 的面积6915DFC EFCA S S ∆=+=+=平行四边形;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,DQE CDQ ∠=∠,如图,当点Q 在x 轴的下方时,设平移后的抛物线的对称轴交x 轴于F ,由题意:1EF =.3OD OC == ,45ODC OCD ∴∠=∠=︒,45FCE OCD ∴∠=∠=︒,1CF EF ∴==,(4,1)E ∴-.CD ==,CE ==DE CD CE ∴=+=DQE CDQ ∠=∠ ,EQ DE ∴==1QF EF EQ ∴=+=,(4,1)Q ∴-;当点Q 在x 轴的上方时,此时为点Q ',DQ E CDQ ∠'=∠' ,EQ DE ∴'==,1Q F EQ EF ∴'='-=,(4Q ∴',1)-.综上,当DQE CDQ ∠=∠时,点Q 的坐标为(4,1)--或(4,1)-.【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法,三角形面积,直角三角形性质,勾股定理,相似三角形判定和性质等,解题的关键是熟练运用分类讨论思想和方程的思想解决问题.17.(2023•下城区校级模拟)如图已知二次函数2(y x bx c b =++,c 为常数)的图象经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标:(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q的横坐标:若不存在,请说明理由.【分析】(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,即可求解;(2)求出平移后的抛物线的顶点(1,5)m -,再求出直线AC 的解析式4y x =-,当顶点在直线AC 上时,2m =,当M 点在AB 上时,4m =,则24m <<;(3)设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,分三种情况讨论:当CE 为菱形对角线时,CP CQ =,22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,Q 点横坐标为1;②当CP 为对角线时,CE CQ =,22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,Q 点横坐标为2;③当CQ 为菱形对角线时,CE CP =,222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,Q点横坐标为3【解答】解:(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,∴4931c b c =-⎧⎨++=-⎩,解得24b c =-⎧⎨=-⎩,224y x x ∴=--,2224(1)5y x x x =--=-- ,∴顶点(1,5)M -;(2)由题可得平移后的函数解析式为2(1)5y x m =--+,∴抛物线的顶点为(1,5)m -,设直线AC 的解析式为y kx b =+,∴431b k b =-⎧⎨+=-⎩,解得14k b =⎧⎨=-⎩,4y x ∴=-,当顶点在直线AC 上时,53m -=-,2m ∴=,//AB x 轴,(1,1)B ∴--,当M 点在AB 上时,51m -=-,4m ∴=,24m ∴<<;(3)存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形,理由如下:设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,点E 在点C 下方,4t ∴<-,Q点在第四象限,01q ∴<<,①当CE 为菱形对角线时,CP CQ =,∴22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,解得334q p t =⎧⎪=-⎨⎪=-⎩(舍)或116p q t =-⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为1;②当CP 为对角线时,CE CQ =,∴22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,解得222q p t =⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为2,不符合题意;③当CQ 为菱形对角线时,CE CP =,∴222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,解得332p q t ⎧=⎪⎪=⎨⎪=-+⎪⎩(舍)或332p q t ⎧=-⎪⎪=-⎨⎪=--⎪⎩,Q ∴点横坐标为3-综上所述:Q 点横坐标为1或3-【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,菱形的性质,分类讨论是解题的关键.18.(2023•即墨区一模)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为243y x x =-+.已知二次函数2y ax bx c =++的图象经过点(0,3)A ,(1,0)B ,.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:(2,1)C -(答案不唯一);(2)当函数值6y <时,自变量x 的取值范围:;(3)如图1,将函数243(0)y x x x =-+<的图象向右平移4个单位长度,与243(4)y x x x =-+ 的图象组成一个新的函数图象,记为L .若点(3,)P m 在L 上,求m 的值;(4)如图2,在(3)的条件下,点A 的坐标为(2,0),在L 上是否存在点Q ,使得9OAQ S ∆=.若存在,求出所有满足条件的点Q 的坐标;若不存在,请说明理由.【分析】(1)只需填一个在抛物线图象上的点的坐标即可;(2)求出6y =时,对应的x 值,再结合图象写出x 的取值范围即可;(3)求出抛物线向右平移4个单位后的解析式为2(6)3y x =--,根据题意可知3x =时,P 点在抛物线2(6)3y x =--的部分上,再求m 的值即可;(4)分两种情况讨论:当Q 点在抛物线2(6)3y x =--的部分上时,设2(,1233)Q t t t -+,由212(1233)92OAQ S t t ∆=⨯⨯-+=,求出Q 点坐标即可;当Q 点在抛物线243y x x =-+的部分上时,设2(,41)Q m m m -+,由212(41)92OAQ S m m ∆=⨯⨯-+=,求出Q 点坐标即可.【解答】解:(1)(2,1)C -,故答案为:(2,1)C -(答案不唯一);(2)243y x x =-+ ,∴当2436x x -+=时,解得2x =2x =-∴当6y <时,22x <<+,故答案为:22x -<<+;(3)2243(2)1y x x x =-+=-- ,∴抛物线向右平移4个单位后的解析式为2(6)1y x =--,当3x =时,点P 在抛物线2(6)1y x =--的部分上,8m ∴=;(4)存在点Q ,使得9OAQ S ∆=,理由如下:当Q 点在抛物线2(6)1y x =--的部分上时,设2(,1235)Q t t t -+,212(1235)92OAQ S t t ∆∴=⨯⨯-+=,解得6t =+6t =,4t ∴<,6t ∴=-(6Q ∴-,9);当Q 点在抛物线243y x x =-+的部分上时,设2(,43)Q m m m -+,212(43)92OAQ S m m ∆∴=⨯⨯-+=,解得2m =+或2m =-4m ,2m ∴=+,2Q ∴,9);综上所述:Q 点坐标为(6,9)或2+,9).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,数形结合解题是关键.19.(2023•武侯区模拟)定义:将二次函数l 的图象沿x 轴向右平移t ,再沿x 轴翻折,得到新函数l '的图象,则称函数l '是函数l 的“t 值衍生抛物线”.已知2:23l y x x =--.(1)当2t =-时,①求衍生抛物线l '的函数解析式;②如图1,函数l 与l '的图象交于(M ,)n ,(,N m -两点,连接MN .点P 为抛物线l '上一点,且位于线段MN 上方,过点P 作//PQ y 轴,交MN 于点Q ,交抛物线l 于点G ,求QNG S ∆与PNG S ∆存在的数量关系.(2)当2t =时,如图2,函数l 与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC .函数l '与x 轴交于D ,E 两点,与y 轴交于点F .点K 在抛物线l '上,且EFK OCA ∠=∠.请直接写出点K 的横坐标.【分析】(1)①利用抛物线的性质和衍生抛物线的定义解答即可;②利用待定系数法求得直线MN 的解析式,设2(,23)P m m m --+,则得到(,2)Q m m -,2(,23)G m m m --,利用m 的代数式分别表示出PQ ,QG 的长,再利用同高的三角形的面积比等于底的比即可得出结论;(2)利用函数解析式求得点A ,B ,C ,D ,E ,F 的坐标,进而得出线段OA ,OC ,OD ,OE ,AC ,OF 的长,设直线FK 的解析式为5y kx =-,设直线FK 交x 轴于点M ,过点M 作MN EF ⊥于点N ,用k 的代数式表示出线段OM .FM ,ME 的长,利用EFK OCA ∠=∠,得到sin sin EFK OCA ∠=∠,列出关于k 的方程,解方程求得k 值,将直线FK 的解析式与衍生抛物线l '的函数解析式联立即可得出结论.。

二次函数的图像与系数的关系(初三数学最全整理)

二次函数的图像与系数的关系(初三数学最全整理)

二次函数图象与系数的关系二次函数的图象与二次函数的系数a 、b 、c 有内在联系。

由系数可以得出二次函数的大致图象,由图象可以得出二次函数系数的取值范围,以下是二次函数的系数和图象之间联系的一些归纳和总结!一、知识点1 二次函数的图像与系数的关系(1)a 的符号由 决定: ①开口向 ⇔ a 0;①开口向 ⇔ a 0.(2)b 的符号由 决定:① 在y 轴的 ⇔b a 、 ;① 在y 轴的 ⇔b a 、 ;① 是 ⇔b 0.(3)c 的符号由 决定:①点(0,c )在y 轴正半轴 ⇔c 0;①点(0,c )在原点 ⇔c 0;①点(0,c )在y 轴负半轴 ⇔c 0.知识点2 二次函数与一元二次方程的关系[归纳概括]如果抛物线)0(2≠++=a c bx ax y 与x 轴有公共点,公共点的横坐标是0x ,那么当x= 时,函数的值是0,因此x= 就是方程02=++c bx ax 的一个根.[归纳概括]函数)0(2≠++=a c bx ax y 的图像与x 轴交点的个数(1)当042>-ac b 时,有 交点;(2)当042=-ac b 时,有 交点;(3)当042<-ac b 时,没有交点;二、例题讲解:例1 已知二次函数)0(2≠++=a c bx ax y 的图像如图所示,试确定代数式①a ;②b ;③c ;④b 2-4ac ;⑤2a+b ;⑥a+b+c ;⑦a-b+c ;⑧4a+2b+c 的符号.练习1:根据图象填空:(1)a _____0;(2)b 0;(3)c 0;(4)ac b 42- 0 ; (5)2a b +______0;(6)0a b c ++⎽⎽⎽⎽ ; (7)0a b c -+⎽⎽⎽⎽;练习2:二次函数y =ax 2+bx +c 的图象如图所示,对称轴是直线x =1.(1)试确定代数式的符号①abc ______0;②3a +c ______0;③(a +c )2﹣b 2______0; ④b 2-4ac ______0 ⑤a +b +2c _____0(2)证明:a +b ≤m (am +b )(m 为实数).练习3.在平面直角坐标系中,二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,证明: a ﹣b ≤m (am +b )(m 为实数);例2二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =2,(1)试确定代数式的符号4a +b 0;(2)9a +c 3b ;(2)证明:8a +7b +2c >0;(3)若点A (﹣3,y 1)、点B (﹣,y 2)、点C (,y 3)在该函数图象上,判断y 1,y 2,y 3的大小(4)若方程a (x +1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,判断﹣1,5,x 1,x 2的大小变式1:利用抛物线图象求解一元二次方程及二次不等式(1)方程02=++c bx ax 的根为___________;(2)方程23ax bx c ++=-的根为__________;(3)方程24ax bx c ++=-的根为__________;(4)不等式20ax bx c ++>的解集为 ;(5)不等式20ax bx c ++<的解集为 ;(6)若方程|ax 2+bx +c |=1有四个根,则这四个根的和为 ,变式2.抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,与x 轴的一个交点坐标为(4,0),抛物线的对称轴是直线x =1.下列结论中:①方程ax 2+bx +c =3有两个不相等的实数根;②抛物线与x 轴的另一个交点坐标为(﹣2,0);③若点A (m ,n )在该抛物线上,则am 2+bm +c ≤a +b +c .其中正确的有变式3.(1)抛物线2(0)y ax bx c a =++≠的图象全部在x 轴上方的条件是(2)抛物线2(0)y ax bx c a =++≠的图象全部在x 轴下方的条件是 例3.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),(1)求代数式(a +c )2﹣b 2的值(2)若方程|ax 2+bx +c |=2有四个根,求这四个根的和(3)求a 的取值范围 (4)求b 的取值范围例4.在同一平面直角坐标系xOy 中,一次函数y =ax 与二次函数y =ax 2+a 的图象可能是( ) A .B .C .D . 三、课后作业1.如图,抛物线y=ax2+bx+c交x轴于(﹣1,0),(3,0)两点,下列判断中,错误的是()A.图象的对称轴是直线x=1B.当x>2时,y随x的增大而减小C.当﹣1<x<1时,y<0D.一元二次方程ax2+bx+c=0的两个根是﹣1和32.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣3,0),顶点为P(﹣1,n).下列结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根3.如图,已知抛物线y=ax2+bx+c开口向上,与x轴的一个交点为(﹣1,0),对称轴为直线x=1.下列结论错误的是()A.abc>0B.b2>4acC.4a+2b+c>0D.2a+b=04.在同一坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.5.二次函数y=ax2+bx+c的图象如图所示(1).判断正误并说明理由:①abc<0②b2﹣4ac<0③2a>b(2)证明:(a+c)2<b26.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①abc<0;②2a﹣b<0;③﹣1<a<0;④b2+8a>4ac;⑤a+c<1.其中正确的是7.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=,且经过点(2,0).下列说法:①﹣2b+c=0;;②4a+2b+c<0;③若(0,y1),(1,y2)是抛物线上的两点,则y1=y2;④b+c>m(am+b)+c(其中m≠).其中正确的是8.二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的部分图象如图所示,图象顶点的坐标为(2,1),与x轴的一个交点在点(3,0)和点(4,0)之间,有下列结论:①abc<0;②a﹣b+c>0;③c﹣4a=1;④b2>4ac;⑤am2+bm+c≤1(m为任意实数).其中正确的是9.如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),且对称轴为直线x=,求证:无论a,b,c取何值,抛物线一定经过(,0)10.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个。

二次函数图像对称变换前后系数的关系(专题)

二次函数图像对称变换前后系数的关系(专题)

二次函数图像对称变换前后系数的关系课时学习目标:1.能熟练根据二次函数的解析式的系数确定抛物线的开口方向,顶点坐标,和对称轴、最值和增减性区域。

2.会根据二次函数的解析式画出函数的图像,并能从图像上描述出函数的一些性质。

3.能说出抛物线y=ax 2+bx+c ,关于x 轴、y 轴对称变换后的解析式、关于坐标原点对称变换前后的解析式系数变化规律,能根据系数变化规律,熟练写出函数图像对称变换后解析式。

学习重点:利用函数的图像,观察认识函数的性质,结合解析式,认识a 、b 、c 、ac b 42-的取值,对图像特征的影响。

学习难点:利用图像认识总结函数性质变化规律。

一、复习预备1.抛物线5)4(22-+-=x y 的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是 。

2.抛物线y=x 2-2x-3的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是____ 。

3.已知函数y= x 2 -2x -3 ,(1)把它写成k m x a y ++=2)(的形式;并说明它是由怎样的抛物线经过怎样平移得到的?(2)写出函数图象的对称轴、顶点坐标、开口方向、最值; (3)求出图象与坐标轴的交点坐标; (4)画出函数图象的草图;(5)设图像交x 轴于A 、B 两点,交y 轴于P 点,求△APB 的面积;(6)根据图象草图,说出 x 取哪些值时, ① y=0; ② y<0; ③ y>0.4.二次函数y=ax 2+bx+c(a ≠0)的图象如图—2所示,则:a 0; b 0;c 0;ac b 42- 0。

例3:已知二次函数的图像如图—3所示,下列结论: (1)a+b+c ﹤0, (2)a-b+c ﹥0, (3)abc ﹥0, (4)b=2a其中正确的结论的个数是( )A.1个,B.2个,C.3个,D.4个.二、归纳二次函数y=ax2+bx+c(a≠0)的图像2-的关系与系数a、b、c、acb4三、二次函数图像对称变换前后系数的关系探究例1. 某抛物线和函数y= -x2 +2x -3的图象关于y轴成轴对称, 请你求出该抛物线的关系式。

二次函数的图象与各项系数之间的关系

二次函数的图象与各项系数之间的关系

二次函数的图象与各项系数之间的关系姓名________ 组号_____一、知识基础1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上, ⑵ 当0a <时,抛物线开口向下,a 的值越大,函数图象越靠近y 轴,开口越小,反之a 的值越小,函数图象越远离y 轴,开口越大;一次函数图象有类似特点。

总结:a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴ 在0a >的前提下,当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a-<,即抛物线对称轴在y 轴的左侧. 总结:在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴ab x 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”3. 常数项c ⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结:c 决定了抛物线与y 轴交点的位置.总之,只要a b c,,都确定,那么这条抛物线就是唯一确定的.4.当x=1时,可以求出a+b+c的值;若x=1时,y>0,则a+b+c>0; 若x=1时,y<0,则a+b+c<0; 若x=1时,y=0,则a+b+c=0;当x=-1时,可以求出a-b+c的值;若x=-1时,y>0,则a-b+c>0; 若x=-1时,y<0,则a-b+c<0; 若x=-1时,y=0,则a-b+c=0;思考:x=2时,可以通过函数图象得出哪些值?5.根的别式b2-4ac,可以用来判断抛物线与x轴的交点个数,当b2-4ac>0时,方程2=++=0y ax bx c有两个根,也就是说y=0时,函数在x轴上可以找到2个对应的自变量值,即断抛物线与x轴有2个交点;同理b2-4ac=0,二次函数图象与x轴有一个交点;b2-4ac <0时,抛物线与x轴没有交点。

初中数学《二次函数图像与系数的六种关系》含解析

初中数学《二次函数图像与系数的六种关系》含解析

二次函数图像与系数的六种关系题型01a与图像的关系【典例分析】1(23-24九年级上·河北保定·期末)二次函数y=ax2的图象如图所示,则a的值可能为()A.2B.0C.-1D.-2【答案】A【分析】本题考查二次函数的图象与性质,根据二次函数的图象的开口方向求解即可.【详解】解:由图象知,二次函数y=ax2的图象开口向上,则a>0,故选项A符合题意,选项B、C、D不符合题意,故选:A2(2024九年级·全国·专题练习)在同一个平面直角坐标系中,二次函数y1=a1x2,y2=a2x2,y3=a3x2的图象如图所示,则a1,a2,a3的大小关系为.【答案】a3>a2>a1#a1<a2<a3【分析】本题考查了二次函数的性质,抛物线的开口方向和开口大小由a的值决定的,a 越大,开口越小,掌握抛物线的开口方向和开口大小由a的值决定是解题的关键.【详解】解:由抛物线开口方向可知,a1、a2、a3为正数,又由开口大小可得,a3>a2>a1,故答案为:a3>a2>a13(23-24九年级上·福建厦门·阶段练习)已知y=k+2x k2+k-4是二次函数,且当x<0时,y随x的增大而增大.求k的值,并画出它的图象;【答案】k=-3【分析】根据二次函数定义以及当x<0时,y随x的增大而增大.可得出函数解析式,再描点画图即可;【详解】解:由y=k+2x k2+k-4是二次函数,且当x<0时,y随x的增大而增大,得k2+k-4=2,k+2<0解得:k=-3或k=2(舍去);二次函数的解析式为y=-x2,如图所示:【变式演练】1(23-24九年级上·山东青岛·阶段练习)图中与抛物线y=13x2,y=2x2,y=-13x2,y=-2x2,的图象对应的是()A.①②④③B.②①④③C.①②③④D.②①③④【答案】B【分析】本题考查了二次函数的图象.抛物线的形状与a和a 有关,根据a 的大小即可确定抛物线的开口的宽窄.【详解】解:∵①②开口向上,则a>0,∵②的开口最宽,∴y=13x2是②,y=2x2是①,∵③④开口向下,则a<0,∵④的开口最宽,∴y=-13x2是④,y=-2x2是③,综上,依次②①④③,故选:B2(23-24九年级上·吉林松原·阶段练习)二次函数y=k+2x2的图象如图所示,则k的取值范围是.【答案】k>-2【分析】由图示知,该抛物线的开口方向向上,则系数k+2>0,据此易求k的取值范围.【详解】解:如图,抛物线的开口方向向上,则k+2>0,解得k>-2.故答案为:k>-2.【点睛】本题考查了二次函数的图象.二次函数y=ax2的系数a为正数时,抛物线开口向上;a为负数时,抛物线开口向下;a的绝对值越大,抛物线开口越小3(24-25九年级上·全国·假期作业)已知函数y=(m+3)x m2+3m-2是关于x的二次函数.(1)求m的值;(2)当m为何值时,该函数图像的开口向下?(3)当m为何值时,该函数有最小值?(4)试说明函数的增减性.【答案】(1)m=-4或m=1(2)当m=-4时,该函数图像的开口向下(3)当m=1时,原函数有最小值(4)见解析【分析】(1)由二次函数的定义可得m2+3m-2=2m+3≠0故可求m的值.(2)图像的开口向下,则m+3<0,结合(1)中的结果,即可得m的值;(3)函数有最小值,则m+3>0,结合(1)中的结果,即可得m的值;;(4)根据(1)中求得的m的值,先求出抛物线的解析式,函数的增减性由函数的开口方向及对称轴来确定.【详解】(1)根据题意,得m2+3m-2=2 m+3≠0,解得m1=-4,m2=1 m≠-3,∴当m=-4或m=1时,原函数为二次函数.(2)∵图像开口向下,∴m+3<0,∴m<-3,∴m=-4,∴当m=-4时,该函数图像的开口向下.(3)∵函数有最小值,∴m+3>0,则m>-3,∴m=1,∴当m=1时,原函数有最小值.(4)当m=-4时,此函数为y=-x2,开口向下,对称轴为y轴,当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小;当m=1时,此函数为y=4x2,开口向上,对称轴为y轴,当x<0时,y随x的增大而减小;当x>0时,y随x的增大而增大.【点睛】本题主要考查二次函数的性质,二次函数的最值,二次函数的增减性.二次函数的最值是顶点的纵坐标,当a>0时,开口向上,顶点最低,此时纵坐标为最小值;当a<0时,开口向下,顶点最高,此时纵坐标为最大值.考虑二次函数的增减性要考虑开口方向和对称轴两方面的因素,因此最好画图观察.题型02b与图像的关系【典例分析】1(21-22九年级上·安徽合肥·开学考试)已知二次函数y=-x2+2m-1x-3,当x>1时,y随x的增大而减小,则m的取值范围是()A.m<32B.m≤32C.m≤12D.m<-12【答案】B【分析】本题主要考查二次函数图象对称轴,增减性,解一元一次不等式的问题,根据题意可得二次函数图象的对称轴为x=2m-22,结合函数图象的增减性可得2m-12≤1,由此即可求解,掌握二次函数图象的性质,解不等式的方法是解题的关键.【详解】解:二次函数y=-x2+2m-3x-3中,a=-1<0,b=2m-1,c=-3,∴图象开口向下,对称轴为x=-2m-12×-1=2m-12,∵当x>1时,y随x的增大而减小,∴2m-12≤1,解得,m≤3 2,故选:B2(2023·九年级上·西藏日喀则·)已知抛物线γ=x²+mx的对称轴为直线x=2.则m的值是() A.-4 B.1 C.4 D.-1【答案】A【分析】本题考查了二次函数y=ax2+bx+c的图象与性质,对于二次函数y=ax2+bx+c,其对称轴为直线x=-b2a,据此即可求解.【详解】解:由题意得:抛物线γ=x²+mx的对称轴为直线:x=-b2a=-m2×1=-m2,∴-m2=2解得:m=-4故选:A3(23-24九年级上·安徽淮北·阶段练习)抛物线y=-x2+2ax+3的对称轴位于y轴的右侧,与x轴交于点A,B(点B在点A的右边),且AB=4.(1)此抛物线的顶点坐标为.(2)当-1≤x≤m时,-5≤y≤4,则m的值为.【答案】1,44【分析】(1)令y=0,则x2-2ax-3=0.设A x1,0,B x2,0,则x1+x2=2a,x1x2=-3.根据AB=4,得出x2-x1=4,结合完全平方公式得出x2-x12=x1+x22-4x1x2=16,求出a的值,即可求解;(2)根据二次函数的性质可得当x=1时,y取得最大值4.求出当x=-1时,y=0>-5,且-5≤y≤4,得出m>1,则当x=m时,y=-5,即可求解.【详解】解:(1)令y=0,则-x2+2ax+3=0,即x2-2ax-3=0.设A x1,0,B x2,0,则x1+x2=2a,x1x2=-3.∵AB=4,∴x2-x1=4,∴x2-x12=x1+x22-4x1x2=16,∴4a2+12=16,∴a=±1.∵抛物线的对称轴位于y轴的右侧,即a=1,∴y=-x2+2x+3=-x-12+4,∴抛物线的顶点坐标为1,4.(2)∵y=-x2+2x+3=-x-12+4,∴当x=1时,y取得最大值4.∵当x=-1时,y=0>-5,且-5≤y≤4,∴m>1,∴当x=m时,y=-5,∴-m2+2m+3=-5,∴m=4或m=2(舍去).故答案为:1,4,4.【点睛】本题主要考查了二次函数的图象和性质,解题的关键是掌握二次函数与x轴交点坐标的求法,将二次函数表达式化为顶点式的方法和步骤,以及二次函数的增减性【变式演练】1(22-23九年级上·福建厦门·期中)已知抛物线y=-x2+6-2mx-3的对称轴在y轴的右侧,当x >2时,y的值随着x值的增大而减小,则m的取值范围是()A.m≥1B.m<3C.-3<m≤1D.1≤m<3【答案】D【分析】先得出抛物线对称轴为直线x=3-m,根据抛物线y=-x2+6-2mx-3的对称轴在y轴的右侧,可得m<3,根据当x>2时,y的值随着x值的增大而减小,得出m≥1,即可求解.【详解】解:∵抛物线y=-x2+6-2mx-3的对称轴在y轴的右侧,∴x=-b2a =6-2m2=3-m>0,解得:m<3,又∵a=1<0,抛物线开口向下,当x>2时,y的值随着x值的增大而减小,则3-m≤2,解得:m≥1,综上所述,1≤m<3,故选:D.【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键2(23-24九年级上·重庆合川·期末)关于x的二次函数y=x2+a-1x-1在y轴的右侧,y随x的增大而增大,且使得关于y的分式方程a-12-y+1y-2=2有非负数解的所有整数a的值之和.【答案】19【分析】本题主要考查了二次函数的性质、分式方程的解以及解一元一次不等式,依据题意,解分式方程可先确定出a的取值范围,再由二次函数的性质可确定出a的范围,从而可确定出a的取值,可求得答案.【详解】解分式方程a-12-y+1y-2=2可得y=6-a2,∵关于y的分式方程a-12-y +1y-2=2有非负数解,∴y=6-a2≥0且y=6-a2≠2,∴a≤6且a≠2,∵y=x2+a-1x-1,∴抛物线开口向上,对称轴为x=1-a2,∴当x>1-a2,时,y随x的增大而增大.∵在x>0时,y随x的增大而增大,≤0,解得a≥1.∴1-a2综上1≤a≤6且a≠2,∴满足条件的整数a的值为1,3,4,5,6.∴所有满足条件的整数a的值之和是1+3+4+5+6=19.故答案为:19.3(23-24九年级上·浙江宁波·期末)如图,已知二次函数y=x2+ax+2的图象经过点E1,5.(1)求a的值和图象的顶点坐标.(2)若点F m,n在该二次函数图象上.①当m=-2时,求n的值.②若n≤2,请根据图象直接写出m的取值范围.【答案】(1)a=2;-1,1(2)①n=2;②-2≤m≤0【分析】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征是解题的关键.(1)把点E(1,5)代入y=x2+ax+2中,即可求出a;(2)①把m=-2代入解析式即可求n的值;②由n≤2,在此范围内求m即可.【详解】(1)把点E(1,5)代入y=x2+ax+2中,∴a=2,∴y=x2+2x+2=(x+1)2+1,∴顶点坐标为(-1,1);(2)①把m=-2代入n=m2+2m+2=(m+1)2+1,可得:n=2,②∵n≤2,对称轴为x=-1,∴-2≤m≤0.【典例分析】1(23-24九年级上·内蒙古呼和浩特·阶段练习)关于二次函数y=x2-6x+5下列说法中错误的是()A.用配方法可化成y=x-32-4 B.将它的图象向下平移5个单位,会经过原点C.函数有最小值,最小值为5D.当x<3时,y随x的增大而减小【答案】C【分析】本题考查了二次函数的性质,二次函数的图象和几何变换,掌握二次函数的图象与坐标轴交点的求法是解题的关键.运用配方法把一般式化为顶点式,由二次函数的顶点式可判断其开口方向、对称轴、顶点坐标;令x=0可求得与y轴的交点坐标;则可得出答案.【详解】解:y=x2-6x+5=x-32-4,故A正确,不符合题意;2-9+5=x-3∴其对称轴为直线x=3,开口向上,顶点坐标为3,-4,∴函数有最小值,最小值为-4,当x<3时,y随x的增大而减小,故C错误,符合题意,D正确,不符合题意;令x=0可得y=5,∴与y轴的交点坐标为0,5,∴将它的图象向下平移5个单位,会经过原点,故B正确,不符合题意;故选:C2(2023·九年级上·上海杨浦·)将抛物线y=x2-2x+3向下平移m个单位后,它的顶点恰好落在x轴上,那么m=.【答案】2【分析】将抛物线解析式改为顶点式,即可求出平移后的解析式,进而可求出平移后的顶点坐标,最后根据它的顶点恰好落在x轴上,即顶点的纵坐标为0,可求出答案.【详解】解:∵y=x2-2x+3=(x-1)2+2,∴该抛物线向下平移m个单位后的解析式为y=(x-1)2+2-m,∴此时顶点坐标为(1,2-m).∵此时它的顶点恰好落在x轴上,∴2-m=0,解得:m=2.故答案为:2.【点睛】本题考查二次函数图象的平移,二次函数的图象和性质.掌握二次函数图象的平移规律“上加下减,左加右减”是解题关键3(23-24九年级上·四川泸州·期中)写出抛物线y=-2x2-4x+5的开口方向、对称轴及顶点坐标,并指出抛物线y=-2x2-4x+5可由抛物线y=-2x2怎样平移得到.【答案】抛物线y=-2x2-4x+5开口向下,对称轴为x=-1,顶点坐标为-1,7,抛物线y=-2x2-4x+5可由y=-2x2向上平移7个单位长度,向左平移1个单位长度得到.【分析】本题考查的知识点是二次函数的图像与性质、二次函数图像的平移,解题关键是理解抛物线y=ax2+bx+c的性质及掌握抛物线平移规律.先将抛物线y=-2x2-4x+5经配方转换为y=-2x+12+7,即可直接根据表达式判断抛物线开口方向、对称轴和顶点坐标;另根据抛物线平移规律“上加下减,左加右减”即可得出y=-2x2到y=-2x2-4x+5=-2x+12+7的平移过程.【详解】解:依题得抛物线y=-2x2-4x+5=-2x+12+7,则可根据抛物线性质得:抛物线y=-2x2-4x+5开口向下,对称轴为x=-1,顶点坐标为-1,7,∵根据抛物线平移规律“上加下减,左加右减”,∴y=-2x2-4x+5=-2x+12+7可由y=-2x2向上平移7个单位长度,向左平移1个单位长度得到【变式演练】1(23-24九年级上·安徽合肥·期末)若将抛物线y=ax2(a>0)向右平移h(h>0)个单位,得到抛物线y=ax2+bx+c,则函数y=bx+c的图象可能是()A. B.C. D.【答案】C【分析】本题主要考查了二次函数及一次函数的图象,熟练掌握图象与系数的关系是关键.先根据题意判断 b<0,c>0,再判断经过的象限.【详解】∵将抛物线y=ax2(a>0)向右平移h(h>0)个单位,得到抛物线y=ax2+bx+c,∴y=ax2+bx+c对称轴在y轴的右侧,且交于y轴的正半轴,∴b<0,c>0,∴y=bx+c的图象过第一、二、四象限.故选:C2(22-23九年级上·浙江宁波·期末)将抛物线y=x2+3x-6向上平移m个单位后,得到的图象不经过第四象限,则m的值可能是()A.1B.3C.5D.7【答案】D【分析】根据将抛物线y=x2+3x-6向上平移m个单位后,得到的图象不经过第四象限可知-6+m≥0,即可得出结果.【详解】解:∵将抛物线y=x2+3x-6向上平移m个单位后,得到的图象不经过第四象限,∴-6+m≥0,∴m≥6,∴m的值可能是7,故选:D.【点睛】本题考查了二次函数图象与几何变换,二次函数的性质,熟练掌握二次函数的性质是解题的关键3(21-22九年级上·广东中山·阶段练习)已知二次函数y=x2-2x-3.(1)请写出函数图象顶点坐标和对称轴∶(2)当函数值y为正数时,自变量x的取值范围∶(3)将该函数图象向右平移1个单位,再向上平移4个单位后,求所得图象的函数表达式.【答案】(1)1,-4,直线x=1(2)x<-1或x>3(3)y=x-22【分析】本题考查了二次函数的顶点式,对称轴,平移,不等式解集的确定,熟练掌握二次函数的性质是解题的关键.(1)化成顶点式,确定对称轴和顶点坐标即可.(2)求得x2-2x-3=0的两个根,进而即可求解.(3)根据右减上加的平移规律,即可求解.【详解】(1)∵y=x2-2x-3=x-12-4.∴对称轴为直线x=1,顶点为1,-4.(2)根据题意,得x2-2x-3=0,解得x1=-1,x2=3,∵y=x2-2x-3=x-12-4开口向上,故当x<-1或x>3时,y>0.(3)∵y=x2-2x-3=x-12-4.平移后的解析式为y=x-1-122-4+4即y=x-2题型04a,b与图像的关系【典例分析】1(23-24九年级上·浙江金华·期末)已知二次函数y=-mx2+2mx+4m>0,点经过点A-2,y1 B1,y2,那么y1,y2,y3的大小关系为(),点C3,y3A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y3<y1<y2【答案】B【分析】本题考查利用二次函数性质比较函数值大小,涉及二次函数图像与性质、比较二次函数值大小等知识,根据二次函数图像与性质,利用图像上点到对称轴距离比较函数值大小即可得到答案,熟练掌握利用距离比较二次函数值大小的方法是解决问题的关键.【详解】解:由二次函数y=-mx2+2mx+4m>0可知抛物线开口向下,对称轴为x=-2m-2m=1,∴抛物线上点到对称轴距离越近,函数值y越大,∵二次函数y=-mx2+2mx+4m>0经过点A-2,y1,点B1,y2,点C3,y3,∴三个点A、B、C到对称轴的距离为3、0、2,∴y1<y3<y2,故选:B.2(23-24九年级上·广东广州·期中)若点A-134,y1B-1,y2,C53,y3为二次函数y=-ax2-4ax+5a<0图象上的三个点,则y1,y2,y3的大小关系是.【答案】y3>y1>y2【分析】本题考查了二次函数的图象及性质,根据题意得抛物线开口向上,对称轴为直线x=-2,则点A-134,y1关于直线x=-2的对称点54,y1在抛物线y=-ax2-4ax+5a<0上,根据二次函数的性质即可求解,熟练掌握二次函数的图象及性质是解题的关键.【详解】解:∵y=-ax2-4ax+5a<0,∴-a>0,对称轴为直线x=--4a2×-a=-2,∴抛物线开口向上,∴点A-134,y1关于直线x=-2的对称点54,y1在抛物线y=-ax2-4ax+5a<0上,∵-2<-1<54<53,∴y3>y1>y2,故答案为:y3>y1>y23(23-24九年级上·云南昆明·阶段练习)已知关于x的二次函数y=mx2+3m+1x+3.(1)求证:不论m为任何实数,方程mx2+3m+1x+3=0总有实数根;(2)若抛物线与x轴交于两个不同的整数点,m为正整数,点P x1,y1与Q x1+n,y2在抛物线上(点P, Q不重合),且y1=y2,求代数式4x21+12x1n+5n2+16n+8的值.【答案】(1)证明见解析;(2)24【分析】本题主要考查了二次函数与一元二次方程的关系以及二次函数的图象与性质等知识;(1)用根的判别式可以直接证明;(2)令y=0,方程可以化为mx+1x+3=0,解得x=-3或x=-1m,又m为正整数,可以求解m的值,进而可求出函数解析式;点P、Q在抛物线上,且y1=y2,可将x1、x1+n代入解析式联立方程,用含n的式子表示出x1,然后带入代数式化简求解即可.【详解】(1)解:由题意可知m≠0,∵Δ=b2-4ac=(3m+1)2-4m×3=(3m-1)2≥0∴此方程总有实数根;综上,不论m为任何实数时,方程总有实数根.(2)解:令y=0,则有mx+1x+3=0解得:x1=-3,x2=-1 m,因为抛物线与x轴交于两个不同的整数点,且m为正整数,所以m=1,所以抛物线为y=x2+4x+3.∵点P、Q在抛物线上,且y1=y2,∴x12+4x1+3=(x1+n)2+2(x1+n)+3∴2x1n+n2+4n=0即:n(2x1+n+4)=0,∵P、Q不重合,∴n≠0,∴2x1=-n-4∴4x12+12x1n+5n2+16n+8=(2x1)2+2x1∙6n+5n2+16n+8=(n+4)2+6n(-n-4)+5n2+16n+8=24所以代数式 4x21+12x1n+5n2+16n+8的值为24【变式演练】1(23-24九年级上·浙江杭州·期末)已知关于x的二次函数y=ax2-4ax a>0.若P m,n和Q5,b是抛物线上的两点,且n>b,则m的取值范围为()A.m<-1B.m>5C.m<-1或m>5D.-1<m<5【答案】C【分析】本题考查了二次函数图象上点的坐标特征,二次函数的性质,由抛物线的解析式可知开口方向和对称轴为直线x=2,根据函数的对称性和增减性即可求解;熟练掌握二次函数的对称性和增减性是解题的关键.【详解】解:∵二次函数y=ax2-4ax a>0.∴抛物线开口向上,对称轴为直线x=--4a2a=2,∵P m,n和Q5,b是抛物线上的两点,∴当n=b时,m=-1,∵抛物线上的点到对称轴的距离越远,函数值越大,∴n>b时,m的取值范围为m<-1或m>5;故选:C.2(23-24九年级上·浙江杭州·期末)已知二次函数y=ax2-4ax+2(a为常数,且a≠0) (1)若函数图象过点1,0,求a的值;(2)当2≤x≤5时,函数的最大值为M,最小值为N,若M-N=18,求a的值.【答案】(1)a=2 3(2)a=±2【分析】本题考查了求二次函数的表达式、二次函数的性质,熟练掌握二次函数的性质是解题的关键.(1)将点1,0的坐标代入表达式求解即可;(2)分类讨论a的正负,结合对称轴和图象的增减性即可得出答案.【详解】(1)解:函数图象过点1,0得a-4a+2=0解得:a=2 3(2)由y=ax2-4ax+2可知对称轴为直线x=2①当a>0时,开口方向向上,当2≤x≤5时当x=2时取最小值,当x=5时取最大值∴M=5a+2,N=-4a+2∵M-N=5a+2--4a+2=9a=18解得a=2,满足题意.②当a<0时,开口方向向下,当2≤x≤5时当x=2时取最大值,当x=5时取最小值∴M=-4a+2,N=5a+2∴M-N=-4a+2-5a+2=-9a=18解得a=-2 满足题意.综上所述:a=±2.3(23-24九年级上·安徽合肥·阶段练习)如图所示,抛物线y=ax2+bx+4(a≠0)经过点A(-1,0),点B(4,0),与y轴交于点C,连接AC,BC.点M是线段OB上不与点O、B重合的点,过点M作DM⊥x 轴,交抛物线于点D,交BC于点E.(1)求抛物线的表达式;(2)过点D作DF⊥BC,垂足为点F.设M点的坐标为M(m,0),请用含m的代数式表示线段DF的长,并求出当m为何值时DF有最大值,最大值是多少?【答案】(1)抛物线的表达式为:y=-x2+3x+4(2)当m=2时,DF有最大值为22【分析】(1)利用待定系数法求函数解析式.(2)先求出B,C所在直线解析式可得∠OBC=∠OCB=45°,通过DF=22DE可表示DF长度的代数式,再配方求解即可.【详解】(1)把点A(-1,0),点B(4,0)分别代入y=ax2+bx+4a≠0中,得:a-b+4=016a+4b+4=0解得:a=-1 b=3∴抛物线的表达式为:y=-x2+3x+4.(2)把x=0代入y=-x2+3x+4中,得:y=4∴C0,4设BC所在直线解析式为y=kx+b,把B4,0,C0,4代入y=kx+b中,得:0=4k+b 4=b解得k=-1 b=4∴y=-x+4设M m,0,则D(m,-m2+3m+4),E m,-m+4∴DE=-m2+3m+4+m-4=-m2+4m ∵OB=OC=4,OC⊥OB∴∠OBC=∠OCB=45°∵DM⊥x轴∴∠DEF=∠BEM=45°又∵DF⊥BC∴DF=22DE=22-m2+4m=-22(m-2)2+22∵-22<0∴当m=2时,DF有最大值为22.【点睛】本题考查二次函数与图形的结合,解题关键是掌握待定系数法求函数解析式,掌握配方法求代数式的最值题型05a,c与图像的关系【典例分析】1(23-24九年级上·广东梅州·期末)如图所示是二次函数y=ax2-x+a2-1的图象,则a的值是()A.a=-1B.a=12C.a=1D.a=1或a=-1【答案】C【分析】此题考查了二次函数的图象.由图象得,此二次函数过原点0,0,把点0,0代入函数解析式得a2 -1=0,解得a的值.【详解】解:由图象得,此二次函数过原点0,0,把点0,0代入函数解析式得a2-1=0,解得a=±1;又因为此二次函数的开口向上,所以a>0;所以a=1.故选:C.2(23-24九年级上·浙江丽水·期末)已知二次函数y=ax²+2x+c a≠0的图象如图所示.(1)写出c的值;(2)求出函数的表达式.【答案】(1)3(2)y=-x²+2x+3【分析】本题着重考查了待定系数法求二次函数解析式,综合利用已知条件求出抛物线的解析式是解题的关键.(1)将点0,3即可求出c;代入y=ax²+2x+c a≠0(2)把点A3,0即可求出函数表达式.代入y=ax²+2x+3a≠0【详解】(1)解:∵二次函数y=ax²+2x+c a≠0;的图象经过点0,3∴将点0,3得;代入y=ax²+2x+c a≠0c=3.(2)解:设函数的表达式为y=ax²+2x+3a≠0;∵函数图象经过点A3,0;∴把点A3,0得;代入y=ax²+2x+3a≠0a=-1;∴函数的表达式为:y=-x²+2x+33(23-24九年级上·广东广州·阶段练习)如图,二次函数y=ax2-2x+c的图象与x轴交于点A-3,0和点B,点y轴交于点C0,3.(1)求二次函数的解析式;(2)求B点坐标,并结合图象写出y<0时,x的取值范围;【答案】(1)y=-x2-2x+3;(2)B1,0,x<-3或x>1.【分析】本题主要考查了求二次函数的解析式,二次函数的图象和性质,熟练掌握二次函数的图象和性质,利用数形结合思想解答是解题的关键.(1)利用待定系数解答,即可求解;(2)根据当y=0时,-x2-2x+3=0,求出点B1,0,进而根据图象可得出答案.【详解】(1)解:∵二次函数y=ax2-2x+c的图象经过点A-3,0,C0,3,∴9a+6+c=0 c=3,解得:a=-1 c=3,∴该二次函数的解析式为y=-x2-2x+3;(2)解:由(1)可知,二次函数的解析式为y=-x2-2x+3,当y=0时,-x2-2x+3=0,解得x1=1,x2=-3,∴B1,0,根据图象可知,当y<0时,x的取值范围为x<-3或x>1【变式演练】1(23-24九年级上·广西崇左·期末)已知二次函数y=m+2x2+m2-9有最大值,且图象经过原点,则m的值为()A.±3B.3C.-3D.±4.5【答案】C【分析】本题考查二次函数的基本性质,根据二次函数有最大值得出m<-2,根据二次函数图象经过原点得出m=±3,即可得出答案,掌握二次函数的性质是解题的关键.【详解】解:∵二次函数的解析式为:y=m+2x2+m2-9有最大值,∴m+2<0,∴m<-2,∵二次函数y=m+2x2+m2-9的图象经过原点,∴m2-9=0,∴m=-3或m=3,∵m<-2,∴m=-3.故选:C2(20-21九年级上·全国·单元测试)如图所示,抛物线y=ax2-x+c的图象经过A-1,0、B0,-2两点.1 求此抛物线的解析式;2 求此抛物线的顶点坐标和对称轴;3 观察图象,求出当x取何值时,y>0?【答案】1 y=x2-x-2;2 抛物线的对称轴是直线x=12;顶点坐标是12,-94;3当x取x<-1或x>2时,y>0.【分析】(1)把A点和B点坐标代入y=ax2-x+c得到关于a、c的方程组,然后解方程组求出a、c即可得到抛物线解析式;(2)把一般式配成顶点式,然后根据二次函数的性质求解;(3)先通过解方程x2-x-2=0 得到抛物线y=x2-x-2与x轴的另一个交点的坐标为2,0.然后写出函数图象在x轴上方所对应的自变量的取值范围即可.【详解】1 ∵二次函数y=ax2-x+c的图象经过A-1,0、B0,-2,∴a+1+c=0c=-2,解得a=1c=-2∴此二次函数的解析式是y=x2-x-2;2 ∵y=x2-x-2=x-122-94,∴抛物线的对称轴是直线x=12;顶点坐标是12,-94 ;3 当y=0时,x2-x-2=0,解得x1=-1,x2=2,即抛物线y=x2-x-2与x轴的另一个交点的坐标为2,0.所以当x取x<-1或x>2时,y>0.【点睛】待定系数法求二次函数解析式, 二次函数的性质,二次函数与一元二次方程的关系等,掌握待定系数法求二次函数解析式是解题的关键3(23-24九年级上·江苏扬州·期末)如图,已知二次函数y=ax2+bx+3的图象经过点A1,0,B-2,3(1)求a+b的值;(2)用无刻度直尺画出抛物线的对称轴l;(用虚线表示画图过程,实线表示画图结果)(3)结合图象,直接写出当y≤3时,x的取值范围是.【答案】(1)a+b=-3(2)见解析(3)x≤-2或x≥0【分析】本题考查了待定系数法求二次函数的解析式、二次函数的图象与性质,熟练掌握二次函数的图象与性质,采用数形结合的思想是解此题的关键.(1)利用待定系数法求解即可;(2)根据二次函数图象的对称性可得出抛物线的对称轴;(3)观察函数图象,结合方程,即可得出结论.【详解】(1)解:将A1,0,B-2,3代入二次函数y=ax2+bx+3得:a+b+3=0 4a-2b+3=3,解得:a=-1 b=-2,∴a+b=-1+-2=-3;(2)解:如图,直线l为所求对称轴,,由(1)得二次函数的解析式为y=-x2-2x+3=-x+12+4,∴可以得出顶点坐标为-1,4,对称轴为直线x=-1;(3)解:令y=3,则-x2-2x+3=3,解得:x=0或x=-2,结合图象得:x≤-2或x≥0时,y≤3,故答案为:x≤-2或x≥0题型06a,b,c与图像的关系【典例分析】1(23-24九年级上·山东济南·期末)二次函数y=ax2+bx+c a≠0的图像如图所示,则下列结论中:①abc<0;②2a-b=0;③当-2<x<3时,y<0;④当x≥1时,y随x的增大而减小,正确的个数是()A.1B.2C.3D.4【答案】A【分析】本题考查二次函数图像与系数的关系,二次函数的性质.根据开口方向、对称轴、抛物线与y轴的交点,确定a、b、c的符号,根据对称轴和图像确定y<0时,x的范围,根据二次函数的性质确定增减性.掌握二次函数的图像和性质、灵活运用数形结合思想是解题的关键.【详解】解:①∵二次函数的图像开口向上,∴a>0,∵二次函数图像的对称轴在y轴的右侧,∴-b>0,2a∴b<0,∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,故结论①不正确;②∵a>0,b<0,∴2a-b>0,故结论②不正确;③∵二次函数的图像开口向上,对称轴为:x=1,该图像与x轴的位于对称轴左边的交点的坐标为-2,0,∴该图像与x轴的位于对称轴右边的交点的坐标为4,0,∴当-2<x<4时,y<0,∴当-2<x<3时,y<0,故结论③正确;④∵二次函数的图像开口向上,对称轴为:x=1,∴当x≥1时,y随x的增大而增大,故结论④不正确,∴正确的个数是1个.故选:A2(23-24九年级上·湖北随州·期末)已知二次函数y=ax2+bx+c的图象如图所示抛物线的顶点坐标是1,1在该抛物线上,则am2+bm ,有下列结论①a>0;②b2-4ac>0;③4a+b=1;④若点A m,n+c≥a+b+c.其中正确的结论是.【答案】①③④【分析】本题考查二次函数图象与系数之间的关系,开口方向判断①,与x轴的交点个数,判断②,特殊点判断③,最值判断④.【详解】解:∵抛物线的开口向上,∴a>0;故①正确;∵抛物线与x轴没有交点,∴b2-4ac<0;故②错误;∵顶点坐标为1,1,,图象过3,3∴a+b+c=1,9a+3b+c=3,两式相减,得:8a+2b=2,∴4a+b=1;故③正确;∵当x=1时y=a+b+c=1值最小,∴am2+bm+c≥a+b+c,故④正确;故答案为:①③④3(23-24九年级上·河南洛阳·期末)已知二次函数y=ax2+2ax-m.(1)当a=1时,二次函数y=ax2+2ax-m的图象与x轴有两个交点,求m的取值范围;(2)若二次函数y=ax2+2ax-m的部分图象如图所示,①求二次函数y=ax2+2ax-m图象的对称轴;②求关于x的一元二次方程ax2+2ax-m=0的解.【答案】(1)m>-1(2)①直线x=-1;②x1=1,x2=-3【分析】(1)将a=1代入二次函数y=ax2+2ax-m中,然后根据当a=1时,二次函数y=ax2+2ax-m的图象与x轴有两个交点,可知 22-4×1×-m>0,然后即可求得m的取值范围;(2)①将函数解析式化为顶点式,即可得到该函数的对称轴;②根据图象与x轴的一个交点和二次函数的性质,可以写出该函数图象与x轴的另一个交点,然后即可写出关于x的一元二次方程ax2+2ax-m=0的解;本题考查了抛物线与x轴的交点、二次函数的性质,解题的关键是明确题意,利用数形结合熟练掌握以上知识的应用.【详解】(1)当 a=1时,y=ax2+2ax-m,∵当a=1时,二次函数y=ax²+2ax-m的图象与x轴有两个交点,∴22-4×1×-m>0,解得m>-1;(2)①∵y=ax2+2ax-m=a x+12-a-m,∴二次函数y=ax2+2ax-m的图象的对称轴是直线x=-1;②由图象可知:二次函数y=ax2+2ax-m的图象与x轴交于点(1,0),由①知,该函数的对称轴为直线x=-1,∴该函数与x轴的另一个交点为-3,0,∴关于x的一元二次方程ax2+2ax-m=0的解是x1=1,x2=-3【变式演练】1(23-24九年级上·云南昭通·阶段练习)二次函数y=ax2+bx+c的图象如图所示,下列结论中正确的是()A.b<0B.当x>0时,y>0C.a-3=cD.2a+b=0【答案】D【分析】本题考查抛物线与坐标轴的交点、二次函数的性质.解答本题的关键是明确题意,利用数形结合的思想解答.根据函数图象的开口方向,对称轴,与y轴的交点位置,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图象可得,A.该函数图象的开口向下,∴a<0,∵对称轴位于y轴右侧,∴-b>0,2a∴b>0,故此选项不符合题意;B.由图象可得:当x>0时,y不一定大于0,故此选项不符合题意;C.该函数图象与y轴交于正半轴,∴c>0,而a<0,∴a-c<0,∴a-c=3错误,即a-3=c错误;故此选项不符合题意;D.该函数的对称轴为直线x=1,=1,∴x=-b2a∴b=-2a,即2a+b=0,故选项符合题意.故选:D2(23-24九年级上·宁夏吴忠·阶段练习)二次函数y=ax2+bx+c的图象如图所示,则下列结论:①ac<0;②a+b=0;③a+b+c>0;④b2-4ac<0.其中正确的是.(填序号)。

二次函数平移变换和对称变化规律

二次函数平移变换和对称变化规律

平移变换这一部分记住八字口诀就行“左加右减,上加下减”例如y=2x^2-3x+4①向上平移1个单位变为y=2x^2-3x+4+1②向下平移2个单位变为y=2x^2-3x+4-2③向左平移3个单位变为y=2(x+3)^2-3(x+3)+4④向右平移4个单位变为y=2(x-4)^2-3(x-4)+4注意:以上变换我均未化简,最后的解析式最好化简成一般式。

上下移动比较简单,在常数项部分直接加减,左右移动稍复杂,在带X的部分进行加减,具体可以参考我刚才给出的四个例子。

这种类型的题会有两种变化,一种是题目会说“往左平移2个单位,再往下平移1个单位之后,得到新的解析式,求原解析式”这种就需要将新解析式移回去了。

还有一种是题目会说“将X轴往上平移2个单位,Y轴往右平移三个单位,求得到的新的抛物线解析式”,这个也比较容易错,你需要明白的是X轴往上平移2个单位,Y轴往右平移三个单位其实就是抛物线往下平移2个单位,再往左平移3个单位。

同学们在做题的时候一定要注意审题,看清楚究竟是如何平移的,和题目要求什么,这种题就变成送分题了。

对称变换对称变换分为三大类:关于X轴对称,关于Y轴对称和关于原点对称。

例如y=ax^2+bx+c①关于X轴对称变为y=-ax^2-bx-c②关于Y轴对称变为y=ax^2-bx+c③关于原点对称变为y=-ax^2+bx-c具体推导过程我在暑假,秋季,一轮复习中都讲过,在这里就不再赘述了,同学们好好看看课程。

记住这些其实也有个口诀:“关于X轴对称,符号全变;关于Y轴对称,只有一次项系数变;关于原点对称,只有一次项系数不变。

”同学们结合我上面三个例子好好理解一下。

对称变换之后出大题的可能性很大,尤其是原点对称,往往会在新老两个抛物线之间存在连线,而这根线上会有动点,然后就和相似,勾股定理等常见考点结合起来了。

另外需要注意的是,因为关于原点对称即是中心对称图形,可能会和其他中心对称图形结合起来,比如平行四边形,个人感觉抛物线与平四结合是最难的一类,难度远大于三角。

(完整版)二次函数的图象与各项系数之间的关系知识点,推荐文档

(完整版)二次函数的图象与各项系数之间的关系知识点,推荐文档

总结起来, a 决定了抛物线开口的大小和方向, a 的正负决定开口方向, a 的大小决
定开口的大小. 2. 一次项系数 b 在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴. ⑴ 在 a 0 的前提下, 当 b 0 时, b 0 ,即抛物线的对称轴在 y 轴左侧; 2a 当 b 0 时, b 0 ,即抛物线的对称轴就是 y 轴; 2a 当 b 0 时, b 0 ,即抛物线对称轴在 y 轴的右侧. 2a ⑵ 在 a 0 的前提下,结论刚好与上述相反,即 当 b 0 时, b 0 ,即抛物线的对称轴在 y 轴右侧; 2a 当 b 0 时, b 0 ,即抛物线的对称轴就是 y 轴; 2a 当 b 0 时, b 0 ,即抛物线对称轴在 y 轴的左侧. 2a 总结起来,在 a 确定的前提下, b 决定了抛物线对称轴的位置.
二次函数的图象与各项系数之间的关系
1. 二次项系数 a
二次函数 y ax2 bx c 中, a 作为二次项系数,显然 a 0 .
⑴ 当 a 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越 大;
⑵ 当 a 0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,开口越 大.
y ax2 bx c 关于 x 轴对称后,得到的解析式是 y ax2 bx c ;
y ax h2 k 关于 x 轴对称后,得到的解析式是 y ax h2 k ;
2. 关于 y 轴对称 y ax2 bx c 关于 y 轴对称后,得到的解析式是 y ax2 bx c ;
⑶ 当 c 0 时,抛物线与 y 轴的交点在 x 轴下方,即抛物线与 y 轴交点的纵坐标为 负.
总结起来, c 决定了抛物线与 y 轴交点的位置.
总之,只要 a ,, b c 都确定,那么这条抛物线就是唯一确定的.

二次函数图象的平移和对称变换

二次函数图象的平移和对称变换

2二次函数图象的平移、旋转、轴对称专题有关图象的变换一般可采用两种基本的方法,其一是利用特殊点进行变换,其二是利用坐标变换的规律进行变换。

所谓利用特殊点进行变换,即选取原图象上一些特殊的点,把这些点按指定的要求进行变换,再把变换后的点代入到新的解析式中,从而求出变换后的解析式,利用特殊点进行变换,又可以从一般形式入手,选取图象上的三个特殊的点进行变换,也可以把一般形式化为顶点式,选取顶点作为特殊点,然后进行变换。

利用坐标变换的方法,根据题目的要求,利用坐标变换的规律,从而进行变换。

下面由具体的例子进行说明。

一 、 平 移 。

例1、 把抛物线 y=x -4x+6 向左平移 3 个单位,再向下平移 4 个单位后,求其图象的解析式。

法(一)选取图象上三个特殊的点,如(0, 6),( 1, 3),( 2,2)【选取使运算最简单的点】,然后把这三个点按要求向左平移3 个单位,再向下平移4 个单位后得到三个新点( -3 , 2),( -2 , -1 ),(-1 ,-2 ),把这三个新点代入到新的函数关 系式的一般形式 y=ax 2+bx+c 中,求出各项系数即可。

例 2、已知抛物线 y=2x 位,求其解析式。

法(二)2-8x+5, 求其向上平移 4 个单位,再向右平移 3 个单先利用配方法把二次函数化成y a( x h)2 k 的形式,确定其顶点( 2,-3 ),然后把顶点( 2, -3 )向上平移 4 个单位,再向右平移 3 个单位后得到新抛物线的顶点为( 5, 1),因为是抛物线的平移,因此平移前后 a 的值应该相等,这样我们就得到新的抛物线的解析式中 a=2,且顶点为( 5, 1),就可以求出其解析式了。

22222【平移规律:在原有函数的基础上“左加右减、上加下减”】 .法(三)根据平移规律进行平移,不论哪种抛物线的形式,平移规律为 “左右平移即把解析式中自变量 x 改为 x 加上或减去一个常数,左加右减,上下平移即把整个解析式加上或减去一个常数,上加下减。

二次函数的图像与系数a,b,c之间的关系(解析版)

二次函数的图像与系数a,b,c之间的关系(解析版)

专题03 二次函数图像与系数之间关系类型一、判断图像位置关系例1.如图,一次函数1y x =与二次函数22y x bx c =++的图像相交于P 、Q 两点,则函数()21y x b x c =+-+的图像可能是( )A .B .C .D .【答案】A【详解】解: 由2y =x 2+bx +c 图象可知,对称轴x =2b ->0,0c <, 0b ∴<,抛物线21y x b x c =+-+()与y 轴的交点在x 轴下方,故选项B ,C 错误, 抛物线21y x b x c =+-+()的对称轴为1122b b x --=-=,∴102b ->, ∴抛物线y =x 2+(b -1)x +c 的对称轴在y 轴的右侧,故选项D 错误,故选:A .【变式训练1】二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =-+的图象大致是( ).A .B .C .D .【答案】C【详解】解:观察二次函数2y ax bx c =++的图象得:0,02b a a<-<, ∴0b <,0a ->,∴一次函数y ax b =-+的图象经过第一、三、四象限.故选:C【变式训练2】在同一平面直角坐标系中,函数()20y ax bx a =+≠与y ax b =+的图象可能是( ) A .B .C .D .【答案】A【详解】解:函数()20y ax bx a =+≠经过原点(0,0),则B 错误;当a <0时,y ax b =+经过二、四象限,则D 错误;当02b a->时,b >0, y ax b =+经过一、二、四象限,则C 错误; 当a >0,02b a ->时,b <0, y ax b =+经过一、三、四象限,则A 符合题意. 故选:A .【变式训练3】在同一平面直角坐标系中,函数2y ax bx =+与y =ax +b 的图象不可能是( )A .B .C .D .【答案】D【详解】解:当a >0,b >0时,y =ax 2+bx 的开口上,与x 轴的一个交点在x 轴的负半轴,y =ax +b 经过第一、二、三象限,且两函数图象交于x 的负半轴,无选项符合; 当a >0,b <0时,y =ax 2+bx 的开口向上,与x 轴的一个交点在x 轴的正半轴,y =ax +b 经过第一、三、四象限,且两函数图象交于x 的正半轴,故选项A 正确,不符合题意题意; 当a <0,b >0时,y =ax 2+bx 的开口向下,与x 轴的一个交点在x 轴的正半轴,y =ax +b经过第一、二、四象限,且两函数图象交于x 的正半轴,C 选项正确,不符合题意;当a <0,b <0时,y =ax 2+bx 的开口向下,与x 轴的一个交点在x 轴的负半轴,y =ax +b 经过第二、三、四象限,B 选项正确,不符合题意;只有选项D 的两图象的交点不经过x 轴, 故选D.【变式训练4】如图,一次函数1y x =与二次函数22y ax bx c =++的图像相交于P ,Q 两点,则函数()21y ax b x c =+-+的图像可能是( )A .B .C .D .【答案】D【详解】∴一次函数1y x =与二次函数22y ax bx c =++的图像相交于P ,Q 两点, ∴一元二次方程()210ax b x c +-+=有两个不相等的实数根,∴函数()21y ax b x c =+-+与x 轴有两个交点, 由题意可知:02b a ->,0a >,∴110222b b a a a --=-+>, ∴函数()21y ax b x c =+-+的对称轴102b x a -=->,∴选项D 符合条件. 故选D .类型二、根据图像判断a ,b ,c 之间关系例1.二次函数()20y ax bx c a =-+≠的图象如图所示,下列选项错误的是( )A .0ac <B .1x >时,y 随x 的增大而增大C .0a b c ++>D .方程20ax bx c ++=的根是11x =-,23x =【答案】C 【详解】A.由二次函数的图象开口向上可得a >0,由抛物线与y 轴交于x 轴下方可得c <0,所以ac <0,正确;B.由a >0,对称轴为x =1,可知x >1时,y 随x 的增大而增大,正确;C.把x =1代入()20y ax bx c a =-+≠得,y =a +b +c ,由函数图象可以看出x =1时二次函数的值为负,错误;D.由二次函数的图象与x 轴交点的横坐标是-1或3,可知方程20ax bx c ++=的根是121,3x x =-=,正确. 故选:C .例2.如图,已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ≠)经过点()2,0,且对称轴为直线12x =,有下列结论:①0abc >;②0a b +>;③4330a b c ++<;④无论a ,b ,c 取何值,抛物线一定经过,02c a ⎛⎫ ⎪⎝⎭;⑤2440am bm b +-≥;⑥一元二次方程21ax bx c ++=有两个不相等的实数根,其中正确结论有( )A .2个B .3个C .4个D .5个【答案】D 【详解】解:①∴抛物线图象开口朝上,0a > ,∴抛物线对称轴为直线12x =,∴122b a -=, ∴0b a =-<,即0a b +=,故②错误;∴抛物线图象与y 轴交点位于x 轴下方,∴c <0,0abc ∴>,故①正确;③2y ax bx c =++经过()2,0,420a b c ∴++=又由①得c <0,0b <,4330a b c ∴++<,故③正确;④根据抛物线的对称性,得到2x =与1x =-时的函数值相等,∴当1x =-时0y =,即0a b c -+= a b =-,20a c ∴+=即12c a =-,∴2y ax bx c =++经过,02c a ⎛⎫ ⎪⎝⎭,即经过(1,0)-,故④正确; ⑤当12x =时,1142y a b c =++,当x m =时,2y am bm c =++, 0a >,∴函数有最小值1142a b c ++,∴21142am bm c a b c ++≥++, ∴2442am bm a b +≥+,∴2440am bm b +-≥,故⑤正确;⑥方程21ax bx c ++=的解即为抛物线2y ax bx c =++与直线1y =的交点的横坐标,结合函数图象可知,抛物线2y ax bx c =++与直线1y =有两个不同的交点,即方程21ax bx c ++=有两个不相等的实数根,故⑥正确;综上所述:①③④⑤⑥正确.故选D .【变式训练1】如图,二次函数2(0)y ax bx c a =++≠图象的一部分与x 轴的一个交点坐标为()1,0,对称轴为1x =-,结合图象给出下列结论:①0a b c ++=;②20a b c -+<;③关于x 的一元二次方程20(a 0)++=≠ax bx c 的两根分别为-3和1;④若点()14,y -,()22,y -,()33,y 均在二次函数图象上,则123y y y <<;⑤()a b m am b -<+(m 为任意实数).其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【解析】∴二次函数2(0)y ax bx c a =++≠图象的一部分与x 轴的一个交点坐标为()1,0, ∴当x =1时,0a b c ++=,故结论①正确;根据函数图像可知,当10x y =-<,,即0a b c -+<,对称轴为1x =-,即12b a-=-, 根据抛物线开口向上,得0a >,∴20b a =>,∴0a b c b -+-<,即20a b c -+<,故结论②正确; 根据抛物线与x 轴的一个交点为()1,0,对称轴为1x =-可知:抛物线与x 轴的另一个交点为(-3,0), ∴关于x 的一元二次方程20(a 0)++=≠ax bx c 的两根分别为-3和1,故结论③正确;根据函数图像可知:213y y y <<,故结论④错误;当x m =时,2()y am bm c m am b c =++=++,∴当1m =-时,()a b c m am b c -+=++,即()a b m am b -=+,故结论⑤错误,综上:①②③正确,故选:C .【变式训练2】二次函数2y ax bx c =++的部分图象如图所示,有以下结论:①3a -b =0;②240b ac ->;③520a b c -+>;④430b c +>,其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【详解】解:由图象可知a <0,c >0,对称轴为32x =-,∴322b x a=-=-,∴3b a =,①正确; ∴函数图象与x 轴有两个不同的交点,∴240b ac ∆=->,②正确;当1x =-时,0a b c -+>,当3x =-时,930a b c -+>,∴10420a b c -+>,∴520a b c -+>,③正确;由对称性可知1x =时对应的y 值与4x =-时对应的y 值相等,∴当1x =时,0a b c ++<,∴3b a =,∴433333330b c b b c b a c a b c +=++=++=++()<,∴430b c +<,④错误;故选:C .【变式训练3】抛物线2y ax bx c =++(0a ≠)如图所示,下列结论中:①20a b +=;②0a b c -+>;③当1x ≠时,2a b ax bx +>+;④24ac b <.正确的个数是( )A .1个B .2个C .3个D .4个【答案】C 【详解】解:从图象上可以看出二次函数的对称轴是直线x =1.∴12b a -=.∴2a b =-.∴20a b +=.故①符合题意.从图象上可以看出当x =-1时,二次函数的图象在x 轴下方.∴当x =-1时,y <0即()()2110a b c a b c ⨯-+⨯-+=-+<.故②不符合题意.从图象上可以看出当x =1时,二次函数取得最大值.∴当1x ≠时,2211ax bx c a b c a b c ++<⨯+⨯+=++.∴2ax bx a b +<+.故③符合题意.从图象上可以看出二次函数图象与x 轴有两个交点.∴240b ac ->.∴24b ac >.故④符合题意.故①③④共3个符合题意.故选:C .【变式训练4】已知二次函数y =ax 2−4ax −5a +1(a >0)下列结论正确的是( )①已知点M (4,y 1),点N (−2,y 2)在二次函数的图象上,则y 1>y 2;②该图象一定过定点(5,1)和(-1,1);③直线y =x −1与抛物线y =ax 2−4ax −5a +1一定存在两个交点;④当−3≤x ≤1时,y 的最小值是a ,则a =110 A .①④B .②③C .②④D .①②③④ 【答案】B【详解】解:二次函数y =ax 2−4ax −5a +1(a >0),开口向上,且对称轴为x =-42a a-=2, ①点N (−2,y 2)关于对称轴对称的点为(6,y 2) ,∴a >0,∴y 随x 的增加而增加,∴4<6,∴y 1<y 2;故①错误;②当y =1时,ax 2−4ax −5a +1=1,即x 2−4x −5=0,解得:x =5或x =-1,该图象一定过定点(5,1)和(-1,1);故②正确;③由题意得方程:ax 2−4ax −5a +1= x −1,整理得:ax 2−(4a +1)x −5a +2=0,()()241452a a a =+--+=16a 2+8a +1+20a 2-8a =36a 2+1>0, 直线y =x −1与抛物线y =ax 2−4ax −5a +1一定存在两个交点;故③正确;④当−3≤x ≤1时,y 随x 的增加而减少,∴当x =1时,y 有最小值为a ,即a −4a −5a +1=a ,解得:a =19,故④错误;综上,正确的有②③,故选:B .【变式训练5】抛物线2y ax bx c =++的对称轴是直线2x =-.抛物线与x 轴的一个交点在点()4,0-和点(3,0)-之间,其部分图象如图所示,下列结论:①40a b -=;②3c a ≤;③关于x 的方程22ax bx c ++=有两个不相等实数根;④若()15,y -,()22,y 是抛物线上的两点,则12y y <;⑤224b b ac +>.正确的个数有( )A .1个B .2个C .3个D .4个【答案】C【详解】解:∴抛物线的对称轴为直线x =-2b a =-2, ∴4a -b =0,所以①正确;∴与x 轴的一个交点在(-3,0)和(-4,0)之间,∴由抛物线的对称性知,另一个交点在(-1,0)和(0,0)之间,∴x =-1时,y >0,且b =4a ,即a -b +c =a -4a +c =-3a +c >0,∴c >3a ,所以②错误;∴抛物线与x 轴有两个交点,且顶点为(-2,3),∴抛物线与直线y =2有两个交点,∴关于x 的方程ax 2+bx +c =2有两个不相等实数根,所以③正确;∴抛物线的对称轴为直线x =-2b a =-2,∴22(5)2-----<, ∴a <0,∴12y y >所以④错误;∴抛物线的顶点坐标为(-2,3),∴2434ac b a-=,∴b 2+12a =4ac , ∴4a -b =0,∴b =4a ,∴b 2+3b =4ac ,∴a <0,∴b =4a <0,∴b 2+2b >4ac ,所以⑤正确;∴正确的为①③⑤.故选:C【变式训练6】如图,抛物线()20y ax bx c a =++≠的对称轴为直线1x =,与x 轴的一个交点坐标为()1,0-,其部分图象如图所示,下列结论:①24ac b <,②30a c ->,③方程20ax bx c ++=的两个根是11x =-,23x =,④当0y >时,x 的取值范围是13x ,其中正确的有( )A .①②B .①②③C .①③④D .①②④【答案】C 【详解】解:∴抛物线的对称轴为直线1x =,,与x 轴的一个交点坐标为()1,0-,∴抛物线与x 轴的另一个交点坐标为()3,0,12b a-=, ∴2b a =-,2=40b ac ∆->,即24ac b <,故①正确;∴抛物线开口向下,与y 轴交于y 轴正半轴,∴00a c <>,,∴30a <,∴30a c -<,故②错误;∴抛物线与x 轴的交点坐标为(-1,0),(3,0),∴方程20ax bx c ++=的两个根是11x =-,23x =,故③正确;由函数图象可知当0y >时,x 的取值范围是13x ,故④正确; 故选C .11。

二次函数图象与系数的关系(压轴题专项讲练)(解析版)—2024-2025学年九年级数学上册(浙教版)

二次函数图象与系数的关系(压轴题专项讲练)(解析版)—2024-2025学年九年级数学上册(浙教版)

二次函数图象与系数的关系数形结合思想:所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3所给的等式或代数式的结构含有明显的几何意义。

一、二次函数图象与系数的关系对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a 与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置.【典例1】如图,抛物线y=ax2+bx+c与x轴正半轴交于A,B两点,与y轴负半轴交于点C.若点B (4,0),则下列结论中:①abc>0②4a+b>0;③M(x1,y1)与N(x2,y2)是抛物线上两点,若0<x1<x2,则y1>y2;④若抛物线的对称轴是直线x=3,m为任意实数,则a(m―3)(m+3)<b(3―m);⑤AB≥3,则4b+3c>0,正确的个数是()A.5B.4C.3D.2本题考查了二次函数的图象和性质.根据图象可知,a<0,c<0,b>0,即可判断①结论;根据图象可得对称轴在直线x=2右侧,即―b2a>2,即可判断②结论;根据二次函数的增减性,即可判断③结论;根据对称轴,得出b=―6a,再利用作差法,即可判断④结论;根据抛物线与x轴的交点B(4,0),整理得出a =―4b+c 16,再根据AB ≥3,得到y =a +b +c ≥0,进而得出4b +5c ≥0,再结合c <0,即可判断⑤结论.根据图象得出二次函数表达式各系数符号是解题关键.解:∵抛物线开口线下,与y 轴交于负半轴,∴a <0,c <0,∵对称轴在x 轴正半轴,∴a 、b 异号,∴b >0,∴abc >0,①结论正确;∵抛物线与x 轴正半轴交于A 、B 两点,且点B (4,0),∴对称轴在直线x =2右侧,即―b 2a >2,∴2―<0,∴4a+b2a <0,∵a <0,∴4a +b >0,②结论正确;M (x 1,y 1)与N (x 2,y 2)是抛物线上两点,且0<x 1<x 2,∵0<x <―b 2a 时,y 随x 的增大而增大;x >―b2a 时,y 随x 的增大而减小;∴无法判断y 1和y 2的大小,③结论错误;∵抛物线的对称轴是直线x =3,∴―b 2a =3,即b =―6a ,∴ a (m ―3)(m +3)―b (3―m )=a (m ―3)(m +3)+6a (3―m )=a (m ―3)(m +3―6)=a (m ―3)2,∵a <0,(m ―3)≥0,∴a (m ―3)2≤0,∴ a (m ―3)(m +3)≤b (3―m ),④结论正确;∵抛物线与x 轴正半轴交于A 、B 两点,且点B (4,0),∴当x =4时,y =16a +4b +c =0,∴a =―4b+c 16,∵AB ≥3,∴点A 的横坐标0<x A ≤1,∴当x =1时,y =a +b +c ≥0;∴―4b+c 16+b +c ≥0,整理得:4b +5c ≥0,∴4b +3c ≥―2c ,∵c <0,∴2c >0,∴4b +3c >0,⑤结论正确;∴正确的结论有①②④⑤,共4个,故选:B .1.(2024·湖北宜昌·模拟预测)如图,已知二次函数y =ax 2+bx +c 的图象关于直线x =―1对称,与x 轴的一个交点在原点和(1,0)之间,下列结论错误的是( )A .abc <0B .b =2aC .4a ―2b +c >0D .a ―b ≤m (am +b )(m 为任意实数)【思路点拨】本题考查二次函数的图象与性质,数形结合是解题的关键.根据抛物线开口向上,对称轴,与y 轴交点位置,即可判断选项A ;根据抛物线对称轴即可判断选项B ;根据“对称轴为直线x =―1,0<x 1<1”可判断选项C ; 当x =―1时,y =ax 2+bx +c =a ―b +c 为最小值,据此可判断选项D.【解题过程】解:A.∵抛物线开口向上,∴a>0,∵对称轴为直线x=―1,=―1,∴―b2a∴b=2a>0,∵抛物线与y轴交于负半轴,∴c<0,∴abc<0,原题结论正确,故此选项不符合题意;B.∵对称轴为直线x=―1,=―1,∴―b2a∴b=2a,故选项正确,不符合题意;C.∵对称轴为直线x=―1,0<x2<1,∴―3<x1<―2,∴当x=―2时,y=4a―2b+c<0原题结论错误,故此选项符合题意;D.当x=―1时,y=ax2+bx+c=a―b+c为最小值,∴a―b+c≤am2+bm+c,∴a―b≤am2+bm,∴a―b≤m(am+b),原题结论正确,故此选项不符合题意.故选:C.2.(2024·黑龙江绥化·中考真题)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=―1,则下列结论中:>0②am2+bm≤a―b(m为任意实数)③3a+c<1①bc④若M(x1,y)、N(x2,y)是抛物线上不同的两个点,则x1+x2≤―3.其中正确的结论有()A.1个B.2个C.3个D.4个【思路点拨】本题考查了二次函数的图象与性质,根据抛物线的开口方向,对称轴可得a<0,b=2a<0即可判断①,x=―1时,函数值最大,即可判断②,根据x=1时,y<0,即可判断③,根据对称性可得x1+x2=―2即可判段④,即可求解.【解题过程】解:∵二次函数图象开口向下∴a<0∵对称轴为直线x=―1,=―1∴x=―b2a∴b=2a<0∵抛物线与y轴交于正半轴,则c>0<0,故①错误,∴bc∵抛物线开口向下,对称轴为直线x=―1,∴当x=―1时,y取得最大值,最大值为a―b+c∴am2+bm+c≤a―b+c(m为任意实数)即am2+bm≤a―b,故②正确;∵x=1时,y<0即a+b+c<0∵b=2a∴a+2a+c<0即3a+c<0∴3a+c<1,故③正确;∵M(x1,y)、N(x2,y)是抛物线上不同的两个点,∴M,N关于x=―1对称,∴x1+x22=―1即x1+x2=―2故④不正确正确的有②③故选:B3.(2024·四川眉山·中考真题)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(3,0),与y轴交于点B,对称轴为直线x=1,下列四个结论:①bc<0;②3a+2c<0;③ax2+bx≥a+b;④若―2<c<―1,则―83<a+b+c<―43,其中正确结论的个数为()A.1个B.2个C.3个D.4【思路点拨】此题考查了二次函数的图象和性质,数形结合是解题的关键,利用开口方向和对称轴的位置即可判断①,利用对称轴和特殊点的函数值即可判断②,利用二次函数的最值即可判断③,求出c=―3a,进一步得到1 3<a<23,又根据b=―2a得到a+b+c=a―2a―3a=―4a,即可判断④.【解题过程】解:①∵函数图象开口方向向上,∴a>0;∵对称轴在y轴右侧,∴a、b异号,∴b<0,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴bc>0,故①错误;②∵二次函数y=ax2+bx+c的图象与x轴交于点A(3,0),与y轴交于点B,对称轴为直线x=1,∴―b2a=1,∵b=―2a,∴x=―1时,y=0,∴a―b+c=0,∴3a+c=0,∴3a+2c<0,故②正确;③∵对称轴为直线x=1,a>0,∴y=a+b+c最小值,ax2+bx+c≥a+b+c,∴ax2+bx≥a+b,故③正确;④∵―2<c<―1,∴根据抛物线与相应方程的根与系数的关系可得x1x2=(―1)×3=―3=ca,∴c=―3a,∴―2<―3a<―1,∴13<a<23,∵b=―2a,∴a+b+c=a―2a―3a=―4a,∴―83<a+b+c<―43,故④正确;综上所述,正确的有②③④,故选:C4.(23-24九年级上·黑龙江哈尔滨·阶段练习)如图,抛物线y=ax2+bx+c经过点1,1,m,0,3,0,若c<0,则下列结论中错误的是()A.ab<0B.4ac―b2<4aC.3a+b<0D.点2+m,1必在该抛物线上【思路点拨】根据抛物线开口向下,与y轴交于负半轴,对称轴在y轴右边,可得a<0,c<0,b>0,即可判断A;将抛物线化为顶点式,由顶点在第一象限得到4ac―b24a>1,结合a<0即可判断B;由点3,0在抛物线上得到3a+b=―c3,再由c<0即可判断C;由抛物线的对称性即可判断D.【解题过程】解:∵抛物线开口向下,与y轴交于负半轴,对称轴在y轴右边,∴a<0,c<0,―b2a>0,∴b>0,∴ab<0,故A正确,不符合题意;∵y=ax2+bx+c=a x++4ac―b24a ,抛物线的顶点在第一象限,经过点1,1,对称轴为直线x=m+32>1,∴4ac―b24a>1,∵a<0,∴4ac―b2<4a,故B正确,不符合题意;∵抛物线y=ax2+bx+c经过点3,0,∴9a+3b+c=0,∴3a+b=―c3,∵c<0,∴―c3>0,∴3a+b=―c3>0,故C错误,符合题意;∵抛物线y=ax2+bx+c经过点1,1,m,0,3,0,∴对称轴为直线x=m+32,∵1+2+m2=m+32,∴1,1和2+m,1关于对称轴对称,∴点2+m,1必在该抛物线上,故D正确,不符合题意;故选:C.5.(23-24九年级上·河南周口·期末)抛物线y=ax²+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是直线x=1.下列结论:①abc>0;②2a+b=0;③4a―2b+c=0;④方程ax²+bx+c=2有两个不相等的实数根;⑤若点A(m,n)在该抛物线上,则am²+bm+c≤a+b+c.其中正确的个数有()A.2个B.3个C.4个D.5个【思路点拨】由开口方向及与y轴的交点可判断,a<0,c>0,再根据“左同右异”的方法可判断b的符号,从而可判断可判断②;由图象得x2=4和对称轴可求x1=―2,可得抛物线与x的另一个交点为①;由对称轴x=―b2a(―2,0),代入即可判断③;设y1=2,则图象为过(0,2)且垂直于y轴的一条直线,并且与抛物线有两个交点,=a+b+c,即可判断⑤.可判断④;当x=1时,y最大【解题过程】解:由图得:a<0,c>0,∵对称轴在y轴右侧,∴b>0,∴abc<0,故①错误;∵抛物线的对称轴是直线x=1,∴―b=1,2a∴2a+b=0,故②正确;由图象得x 2=4,∴1―x 1=4―1解得:x 1=―2,∴抛物线与x 的另一个交点为(―2,0),∴a ×(―2)2+(―2)b +c =0,即:4a ―2b +c =0,故③正确;设y 1=2,则图象为过(0,2)且垂直于y 轴的一条直线,与抛物线有两个交点,∴方程ax²+bx +c =2有两个不相等的实数根;故④正确;∵抛物线的对称轴是直线x =1,且a <0,∴当x =1时,y 最大=a +b +c ,∴ am²+bm +c ≤a +b +c ,故⑤正确;综上所述:正确的有②③④⑤,共4个;故选:C .6.(23-24九年级上·山东菏泽·期末)如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为x =12,且经过点(2,0).下列说法:①abc <0;②―2b +c =0;③4a +2b +c <0;④若―52,y 1y 2是抛物线上的两点,则y 1<y 2;⑤14b >m (am +b )(其中m ≠12),其中说法正确的是( )A .①②③B .①②④C .①②④⑤D .②③④⑤【思路点拨】本题考查了二次函数的图象与性质,图象与系数的关系,掌握二次函数的图象与性质是解题的关键.利用抛物线的开口方向、对称轴和与y轴的交点位置来判定①,利用抛物线与x轴的两个交点的坐标、结合一元二次方程根与系数的关系来判定②,把点(2,0)代入二次函数的解析式来判定③,观察图象可得:距离对称轴越近的点的纵坐标越大,据此判定④,根据二次函数的最大值判定⑤.【解题过程】解:∵抛物线开口向下,∴a<0,抛物线对称轴为x=―b2a =12,∴b=―a>0,抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;对称轴为x=12,且经过点(2,0),抛物线与x轴的另一个交点为(―1,0),∴一元二次方程ax2+bx+c=0的两个根为2和―1,∴2×(―1)=ca,整理,得c=―2a,∴―2b+c=2a+(―2a)=0,所以②正确;抛物线经过(2,0),∴当x=2时,y=0,∴4a+2b+c=0,所以③错误;∵a<0,∴距离对称轴越近的点的纵坐标越大,∵1 2―(―52)>52―12,∴y1<y2所以④正确;∵对称轴为x =12,∴当x =12时,y 有最大值,y 的最大值=14a +12b +c ,∴当x =m ≠12时,14a +12b +c >am 2+bm +c ,整理,得14a +12b >am 2+bm =m(am +b),∵b =―a ,即a =―b ,∴14a +12b =―14b +12b =14b ,即14b >m (am +b ),所以⑤正确.其中说法正确的是①②④⑤.故选:C .7.(23-24九年级上·黑龙江齐齐哈尔·期末)如图,抛物线y =ax 2+bx +c 与x 轴交于两点(x 1,0)、(2,0),其中0<x 1<1.下列四个结论:①abc <0;②a +b +c >0;③2a ―c >0;④点(―2,y 1),(4,y 2)都在抛物线上,则有y 1>y 2;⑤不等式ax 2+bx +c <―c x 1x +c 的解集为0<x <x 1.其中正确结论的个数是( )A .1B .2C .3D .4【思路点拨】本题考查了抛物线图像综合,根据抛物线开口向上,a >0;对称轴在原点的右边,―b 2a >0,得到b <0,c >0,判断abc <0;结合图像,a +b +c <0;根据对称轴,增减性,数形结合思想计算判断即可.【解题过程】解:∵抛物线开口向上,∴a >0;∵对称轴在原点的右边,―b 2a >0,∴b <0,∵抛物线与y 轴交点位于坐标轴上,∴c >0,∴abc <0;故①正确;结合图像,a +b +c <0;故②错误;∵抛物线y =ax 2+bx +c 与x 轴交于两点(x 1,0)、(2,0),其中0<x 1<1.∴1<x 1+22<32,4a +2b +c =0,∴1<―b 2a <32,2b =―c ―4a ,∴―3a <b <―2a ,2b =―c ―4a ,∴2b >―6a ,b +2a <0,∴―4a ―c >―6a ,∴2a ―c >0,故③正确;∵点(―2,y 1),(4,y 2)∴y 1=4a ―2b +c,y 2=16a +4b +c ,∴y 1―y 2=4a ―2b +c ―(16a +4b +c )=―6(2a +b ),∵b +2a <0,∴―6(2a +b )>0∴y 1>y 2;故④正确;设直线y =―cx 1x +c ,根据题意,直线经过点(x 1,0)和(0,c ),故直线y =―c x 1x +c 与y =ax 2+bx +c 的交点为点(x 1,0)和(0,c ),画草图如下,x+c的解集为0<x<x1.故不等式ax2+bx+c<―c x1故⑤正确;故选D.8.(23-24九年级上·江苏扬州·期末)已知二次函数y=ax2+bx+c(a≠0)图像的一部分如图所示,该函数图像经过点(5,0),对称轴为直线x=2.对于下列结论:①b>0;②a+c<b;③多项式ax2+bx+c 可因式分解为(x+1)(x―5);④无论m为何值时,代数式am2+bm―4a―2b的值一定不大于0.其中正确个数有()A.1个B.2个C.3个D.4个【思路点拨】=2可得抛物线与x轴的另一个交先根据图像的开口方向和对称轴可判断①;由抛物线的对称轴为x=x1+x22点为(―1,0),由此可判断②;根据抛物线与x轴的两个交点坐标可判断③;根据函数的对称轴为x=2可知x=2时y有最大值,由此可判断④.本题主要考查了二次函数的图像和性质,解题的关键是熟练掌握二次函数图像和系数的关系.【解题过程】解:∵抛物线开口向下,∴a<0,>0,∵对称轴为直线x=―b2a∴b>0,∴结论①正确;∵抛物线与x轴的一个交点为(5,0),且对称轴为直线x=2,由5+x 22=2,得x 2=―1,∴抛物线与x 轴的另一个交点为(―1,0),即当x =―1时,y =0,∴a ―b +c =0,∴a +c =b ,∴结论②错误;∵抛物线y =ax 2+bx +c 与x 轴的两个交点为(―1,0),(5,0),∴多项式ax 2+bx +c 可因式分解为a(x +1)(x ―5),∴结论③错误;∵对称轴为直线x =2,且函数开口向下,∴当x =2时,y 有最大值,由y =ax 2+bx +c 得,x =2时,y =4a +2b +c ,x =m 时,y =am 2+bm +c ,∴无论m 为何值时,am 2+bm +c ≤4a +2b +c ,∴am 2+bm ―4a ―2b ≤0∴结论④正确;综上:正确的有①④.故选:B9.(23-24九年级上·四川德阳·阶段练习)如图,抛物线y =ax 2+bx +c 与x 轴交于点A (―1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2)、(0,3)之间(包含端点).正确结论的个数是( )①当x >3时,y <0;②3a +b >0;③―1≤a ≤―23;④83≤n ≤4.A.1个B.2个C.3个D.4个【思路点拨】本题考查了二次函数的图象和性质,二次函数的图象与系数的关系;二次函数与一元二次方程的关系;熟练掌握二次函数的图象与系数之间的关系是解题的关键.①根据题意可得抛物线的对称轴为直线x=1,得到另一个交点坐标,结合函数图象即可对于①作出判断;②根据抛物线开口方向得出a<0,由对称轴x=―b求得b与a的关系,代入3a+b,即可判定3a+b的符2a,号;③根据二次函数与x轴的交点坐标即为对应一元二次方程的解,结合一元二次方程两根之积x1⋅x2=ca 得到c与a的关系,然后根据c的取值范围,利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解c,根据c的取值范围,利用不等式的性质来求得n的取值范围.析式得到n=a+b+c=43【解题过程】解:①∵抛物线y=ax2+bx+c的顶点坐标为(1,n),∴对称轴直线是x=1,∵抛物线y=ax2+bx+c与x轴交于点A(―1,0),∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图象可得,当x>3时,y<0;故①正确;②a<0;=1,∵对称轴x=―b2a∴b=―2a;∴3a+b=3a―2a=a<0,即3a+b<0;故②错误;③∵抛物线与x轴的两个交点坐标分别是(―1,0),(3,0),即方程ax2+bx+c=0的解是x1=―1和x2=3,∴x1⋅x2=―1×3=―3,=―3,即ca;则a=―c3∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴―1≤―c3≤―23;即―1≤a≤―23;故③正确;④∵a=―c3;b=―2a∴b=―2a=23c,∵抛物线y=ax2+bx+c的顶点坐标为(1,n),即n=a+b+c=43c∵2≤c≤3,∴8 3≤43c≤4,即83≤n≤4;故④正确;综上所述,正确的说法有①③④.故选:C.10.(23-24九年级下·广东广州·阶段练习)如图,二次函数y=ax²+bx+c(a≠0)的图象与x轴负半轴交于―12,0,对称轴为直线x=1.有以下结论∶①abc<0;②3a+c>0;③若点(―3,y1),(3,y2),(0,y3)均在函数图象上,则y1>y3>y2;④若方程a(2x+1)(2x―5)=1的两根为x1、x2,且x1<x2则x1<―1 2<52<x2;⑤点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得,则a的范围为a≥23.其中结论正确的个数为()A.1个B.2个C.3个D.4个【思路点拨】本题考查二次函数的图象及性质,由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线对称性进行推理,进而对所得结论进行判断,熟练掌握二次函数的图象及性质,能从图象中获取信息是解题的关键.【解题过程】解:∵对称轴为直线x =1,函数图象与x 轴负半轴交于 ―12,0,∴x =―b 2a =1,∴b =―2a ,由图象可知 a >0,c <0,∴b =―2a <0,∴abc >0,故①错误;由图可知,当x =―1时,y =a ―b +c >0 ,∴a +2a +c >0,即3a +c >0,故②正确;∵点(―3,y 1),(3,y 2),(0,y 3)均在函数图象上,对称轴为直线x =1,开口向上,∴|―3―1|>|3―1|>|0―1|,则 y 1>y 2>y 3,故③错误;由抛物线对称性可知,抛物线与x ,0,∴抛物线解析式为:y =a x令a x ―=14,则a (2x +1)(2x ―5)=1,如图,作y =14,由图形可知x 1<―12<52<x 2 ,故④正确;由题意可知:M ,N 到对称轴的距离为32,当抛物线的顶点到x 轴的距离不小于 32时,在x 轴下方的抛物线上存在点P ,使得PM ⊥PN ,即4ac―b 24a ≤―32,∵y =a x =ax 2―2ax ―54a ,∴c =―54a ,b =―2a ,≤―32,解得:a ≥23,故⑤正确,综上可知②④⑤正确,共3个,故选:C .11.(23-24九年级下·山东烟台·期中)已知二次函数y =ax 2+bx +c(a ≠0),图象的一部分如图所示,该函数图象经过点(―2,0),顶点坐标为―12,m .对于下列结论:①abc <0;②a +b +c =0;③若关于x 的一元二次方程ax 2+bx +c ―3=0无实数根,则m <3;④am 2+bm <14(a ―2b ))(其中m ≠―12)﹔⑤若A (x 1,y 1)和B (x 2,y 2)均在该函数图象上,且x 1>x 2>1,则y 1>y 2.其中正确结论有( )A .②③④B .②③⑤C .②③D .④⑤【思路点拨】本题考查了二次函数的图象与性质、二次函数图象与直线交点问题,掌握二次函数图象与系数关系,二次根据抛物线与x 轴的一个交点(―2,0)以及其对称轴,求出抛物线与x 轴的另一个交点(1,0),利用待定系数法求函数解析式,再根据抛物线开口朝下,可得a <0,进而可得b <0,c >0,再结合二次函数的图象和性质逐条判断即可.【解题过程】解:∵抛物线开口方向向下,∴a <0,∵抛物线的对称轴为直线x =―12,∴―b 2a =―12∴b =a <0∵抛物线与抛物线与轴交点在正半轴上,∴c >0,∴abc >0,故①错误;∵抛物线的对称轴为直线x =―12,且抛物线与x 轴的一个交点坐标为(―2,0),∴抛物线与x 轴的另一个交点坐标为(1,0),把(1,0)代入y =ax 2+bx +c(a ≠0),可得:a +b +c =0,故②正确;∵关于x 的一元二次方程ax 2+bx +c ―3=0无实数根,∴二次函数y =ax 2+bx +c(a ≠0)的图象与直线y =3无交点,∵抛物线的顶点坐标为―12,m ,抛物线开口方向向下,∴m <3,故③正确;∵am 2+bm =am 2+am =a m +―14a ,14(a ―2b)=14(a ―2a)=―14a ,∴am 2+bm ―14(a ―2b)=a(m +12)2,又∵a <0,m ≠―12,∴a m <0,即am 2+bm <14(a ―2b)(其中m ≠―12),故④正确;∵抛物线的对称轴为直线x =―12,且抛物线开口朝下,∴可知二次函数,在x >―12时,y 随x 的增大而减小,∵x 1>x 2>1>―12,∴y 1<y 2,故⑤错误,正确的有②③④,故选:A .12.(2024·四川达州·三模)如图,函数y =ax 2+bx +c 的图象过点(―1,0)和(m,0),请思考下列判断:①abc <0;②4a +c <2b ;③b c +1m =1;④am 2+(2a +b )m +b +c <0;⑤|am +a |=确的结论有( )个.A .2B .3C .4D .5【思路点拨】本题考查了二次函数图象与系数的关系①利用图象信息即可判断;②根据x =―2时,y <0即可判断;③根据m 是方程ax 2+bx +c =0的根,结合两根之积―m = c a ,即可判断;④根据两根之和―1+m =― b a ,可得ma =a ―b ,可得am 2+(2a +b)m +b +c =2a ―b <0;⑤根据抛物线与x 轴的两个交点之间的距离,列出关系式即可判断.【解题过程】解:∵抛物线开口向下,∴a <0,∵抛物线交y 轴于正半轴,∴c >0,∵― b 2a >0,∴b >0,∴abc <0,故①正确,∵x =―2时,y <0,∴4a ―2b +c <0,即4a +c <2b ,故②正确,∵ y =ax 2+bx +c 的图象过点(―1,0)和(m,0),∴―1×m = c a ,am 2+bm +c =0,则am c =―1,∴ b c =0,∴ b c +1m =1,故③正确,∵―1+m =― ba ,∴―a +am =―b ,∵am2+(2a+b)m+b+c=am2+bm+c+2am+b=2a―2b+b=2a―b∵a<0,b>0∴2a―b<0,故④正确,对于ax2+bx+c=0,可得:x=由函数图象交点可知x=m或x=―1,∴m+1=,∴m+1=,∴|am+a|=⑤正确,故选:D.13.(23-24八年级下·云南·期末)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(―1,0)下列结论:①b2>4ac;②4a+b=0;③4a+c>2b;④―3b+c=0;⑤若顶点坐标为(2,4),则方程ax2 +bx+c=5没有实数根.其中正确的结论有()A.2个B.3个C.4个D.5个【思路点拨】本题主要考查二次函数与系数a,b,c相关代数式的判断问题,会利用对称轴求b与a的关系,以及二次函数与方程之间的转换,掌握根的判别式的熟练运用,是解题的关键.由抛物线的开口方向判断a<0,将点(―1,0)代入y=ax2+bx+c(a≠0),得a―b+c=0,由图象可得对称轴为x=2,可得b=―4a,代入上式可得c=―5a,再将五个结论分别分析即可由得到答案.【解题过程】解:将点(―1,0)代入y=ax2+bx+c(a≠0),∵图象可得二次函数y=ax2+bx+c(a≠0)的对称轴为x=2,开口向下,=2,a<0,∴―b2a即b=―4a>0,将b=―4a代入a―b+c=0,可得c=―5a>0.①∵b=―4a、c=―5a,∴b2=(―4a)2=16a2,4ac=4a×(―5a)=―20a2,∴16a2>―20a2,∴b2>4ac,故①正确.②∵b=―4a,∴4a+b=4a―4a=0,故②正确.③∵b=―4a、c=―5a,∴4a+c=4a―5a=―a,2b=―8a,∵a<0,∴―a<―8a,∴4a+c<2b,故③错误.④∵b=―4a、c=―5a,故―3b+c=―3×(―4a)―5a=12a―5a=7a,∵a<0,∴7a≠0,∴―3b+c≠0,故④错误.⑤将(2,4)代入y=ax2+bx+c(a≠0),即4a+2b+c=4,再将b=―4a、c=―5a代入上式,化简可得a=―2,∴b=―4a=8,c=―5a=10,将a=―2,b=8,c=10,代入则方程ax2+bx+c=5中,即―2x2+8x+5=0,根据根的判别式Δ=82―4×(―2)×5=104>0,可得方程ax2+bx+c=5没有两个不相同的实数根,故⑤错误.综上作述,正确的结论有两个,故选A.14.(23-24九年级上·湖北省直辖县级单位·阶段练习)抛物线y=ax2+bx+c经过点(―1,0),与y轴的交点在(0,―2)与(0,―3)之间(不包括这两点),对称轴为直线x=2.下列结论:①a+b+c<0;②若点M(0.5,y1)、N(2.5,y2)在图象上,则y1<y2;③若m为任意实数,则a(m2―4)+b(m―2)≥0;④―24≤5 (a+b+c)<―16.其中正确结论的序号为.【思路点拨】本题考查二次函数的图象与系数的关系,根据二次函数的性质;二次函数图象上点的坐标特征;一次函数图象上点的坐标特征逐一判断即可,解题的关键是熟练运用二次函数的图象与性质.【解题过程】解:∵二次函数y=ax2+bx+c(a≠0)的图象与x轴相交于点A(―1,0),对称轴为直线x=2,∴二次函数y=ax2+bx+c(a≠0)x轴相交于点A(―1,0),(5,0),∵二次函数与y轴的交点B(0,―2)与(0,―3)之间(不包括这两点),大致图象如图:当x=1时,y=a+b+c<0,故结论①正确;∵二次函数的对称轴为直线x=2,且a>0,2―0.5=1.5,2.5―2=0.5,∴y1>y2,故结论②不正确;∵x=2时,函数有最小值,∴am2+bm+c≥4a+2b+c(m为任意实数),∴a(m2―4)+b(m―2)≥0,故结论③正确;∵―b2a=2,∴b=―4a,∵一元二次方程ax2+bx+c=0的两根为―1和5,∴―1×5=ca,∴c=―5a,∵―3<c<―2,∴2 5<a<35,∴当x=1时,y=a+b+c=―8a,―245<―8a<―165,∴―24<5(a+b+c)<―16,故结论④正确;故答案为:①③④.15.(23-24九年级上·湖北武汉·阶段练习)已知二次函数y=ax2+bx+c(a≠0)的图象过点A(―2023,n),B(2024,n),M(―1,0),且交y轴的正半轴于点N,下列结论:①abc<0;②4a+2b+c=0;③若直线y=ax+d与抛物线只有一个公共点T(x T,y T),则x T=1;④抛物线上的两点P(x1,y1),Q(x2,y2),P在Q的左边,若x1+x2>2,则y1<y2;⑤b2―4ac<―4a,请将所有正确的序号填在横线上.【思路点拨】本题考查了二次函数图象与系数的关系及二次函数的性质,抛物线与x轴的交点,抛物线的对称性等知识点,根据二次函数的图象进行逐项分析即可,灵活运用有关知识来分析是解题的关键.【解题过程】解:∵图象过点A(―2023,n),B(2024,n),M(―1,0),∴抛物线对称轴为直线x=12,a―b+c=0,∴与x轴交于点(2,0),即有4a+2b+c=0,故②正确;∵交y轴的正半轴于点N,∴抛物线开口向下,∴a<0,c>0,b>0,则abc<0,故①正确;由抛物线对称轴为直线x=12,∴―b2a =12,则b=―a,∴代入a―b+c=0得:c=―2a,∴抛物线y=ax2―ax―2a,直线y=ax+d与抛物线只有一个公共点T(x T,y T),∴ax2―ax―2a=ax+d,整理得:ax2―2ax―2a―d=0∴(―2a)2―4a(―2a―d)=0,解得:d=―3a,∴直线y=ax―3a,代入得:x=1,∴x T=1,故③正确;∵抛物线上的两点P(x1,y1),Q(x2,y2),∴y1=ax12―ax1―2a,y2=ax22―ax2―2a,∴y1―y2=a(x1+x2)(x1―x2)―a(x1―x2)=a(x1―x2)(x1+x2―1),∵x1<x2,a<0,x1+x2>2,即y1―y2>0,∴y1>y2,故④错误;∵b2―4ac=(―a)2―4a×(―2a)=a2+8a2=9a2>0,∴b2―4ac<―4a错误,∴①②③正确;故答案为:①②③.16.(23-24九年级上·湖北武汉·阶段练习)已知二次函数y=ax2+bx+c(a<0)的图像与x轴交于不同两点,与y轴的交点在y轴正半轴,它的对称轴为直线x=1.有以下结论:①abc<0,②a+c>0,③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2,④设x1,x2是方程ax2+bx+c=0的两根,若am2+bm+c=p,则p(m―x1)(m―x2)≤0.其中正确的结论是(填入正确结论的序号).【思路点拨】由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判断b与0的关系,可判断①;通过取特殊值可判断②;根据抛物线的增减性可判断③;根据抛物线与x轴交点情况分三种情况进行讨论,可判断④.【解题过程】解:∵二次函数y=ax2+bx+c(a<0)的图像与y轴的交点在y轴正半轴,∴c>0,∵对称轴为直线x=1,=1,即b=―2a,∴―b2a∵a<0,∴b>0,∴abc<0,故结论①正确;当x=1+y=a(12―2a(1++c=a+c,即当x=1(a+c)与0的大小关系,故结论②错误;∵a<0,∴二次函数y=ax2+bx+c的图像开口向下,∴抛物线上的点离对称轴越远其函数值就越小,∵点P(x1,y1)和Q(x2,y2)在抛物线上,且x1<1<x2,x1+x2>2,∴x2―1>1―x1,即x2到1的距离大于x1到1的距离,∴y1>y2,故结论③正确;∵二次函数y=ax2+bx+c(a<0)的图像与x轴交于不同两点,设左边交点的横坐标为x1,右边交点的横坐标为x2,即x1<x2,如图所示,若m<x1,则p<0,m―x1<0,m―x2<0,∴p(m―x1)(m―x2)<0,若x1≤m<x2,则p≥0,m―x1≥0,m―x2<0,∴p(m―x1)(m―x2)≤0,若m≥x2,则p≤0,m―x1>0,m―x2≥0,∴p(m―x1)(m―x2)≤0,综上所述,p(m―x1)(m―x2)≤0,故结论④正确,∴正确的结论是①③④.故答案为:①③④.17.(23-24九年级上·山东威海·期末)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②9a+6b+c=0,③(4a+c)2<4b2;④方程cx2+bx+a=0的解为x1=1,x2=―1;3⑤a+b>m(am+b)(m≠1).其中正确的结论有(填序号).【思路点拨】本题考查的是二次函数的图象与性质,各项系数的符号与解析式的关系,根据图象先判断a<0,c>0,b>0,再结合函数的对称轴,最值,与坐标轴的交点,逐一分析判断即可.【解题过程】解:由图象可知:a<0,c>0,>0,∵―b2a∴b>0,∴abc<0,故①错误;=1,∵对称轴为x=―b2a∴b=―2a,∵a<0,c>0,∴9a+6b+c=9a―12a+c=c―3a>0,故②错误,∵抛物线与x轴的交点在―1与0之间,对称轴为x=1,另一个交点在2与3之间,∴当x=―2时,y=4a―2b+c<0,当x=2时,y=4a+2b+c>0,∴(4a―2b+c)(4a+2b+c)<0,∴(4a+c)2―4b2<0,∴(4a +c )2<4b 2,故③符合题意;∵二次函数y =ax 2+bx +c (a ≠0)当x =1时,有最大值,∴a +b +c >0,若方程cx 2+bx +a =0的解为x 1=1,则a +b +c =0,∴④错误;当x =1时,y 的值最大.此时,y =a +b +c ,而当x =m (m ≠1)时,y =am 2+bm +c ,∴a +b +c >am 2+bm +c ,∴a +b >am 2+bm ,即a +b >m (am +b ),故⑤正确;综上:正确的有③⑤,故答案为:③⑤.18.(23-24九年级上·山东烟台·期中)已知二次函数y =ax 2+bx +c(a ≠0),图象的一部分如图所示,该函数图象经过点(―2,0),对称轴为直线x =―12.对于下列结论:①abc <0;②b 2―4ac >0;③a +b +c =0;④am 2+bm <14(a ―2b)(其中m ≠―12);⑤若A (x 1,y 1)和B (x 2,y 2)均在该函数图象上,且x 1>x 2>1,则y 1>y 2.其中正确结论有 .(填写序号)【思路点拨】本题考查了二次函数的图象与性质.根据抛物线与x 轴的一个交点(―2,0)以及其对称轴,求出抛物线与x 轴的另一个交点(1,0),利用待定系数法得到b =a,c =―2a ,再根据抛物线开口朝下,可得a <0,进而可得b <0,c >0,即可得到③正确,①错误,根据抛物线与与x 轴两个交点可以判断出②正确,根据am 2+bm =a (m +12)2―14a ,14(a ―2b)=―14a ,a <0,m ≠―12,可以得到a(m +12)2<0,从而得到④正确;根据抛物线的对称性和增减性可以判断出⑤错误,问题得解.【解题过程】解:∵抛物线的对称轴为直线x =―12,且抛物线与x 轴的一个交点坐标为(―2,0),∴抛物线与x 轴的另一个交点坐标为(1,0),把(―2,0),(1,0)代入y =ax 2+bx +c(a ≠0),可得:4a ―2b +c =0a +b +c =0 ,解得b =a c =―2a ,∴a +b +c =a +a ―2a =0,故③正确;∵抛物线开口方向向下,∴a <0,∴b =a <0,c =―2a >0,∴abc >0,故①错误;∵抛物线与x 轴两个交点,∴当y =0时,方程ax 2+bx +c =0有两个不相等的实数根,∴b 2―4ac >0,故②正确;∵am 2+bm =am 2+am =a(m +12)2―14a ,14(a ―2b)=14(a ―2a)=―14a ,∴am 2+bm ―14(a ―2b)=a(m +12)2,又∵a <0,m ≠―12,∴a(m +12)2<0,即am 2+bm <14(a ―2b)(其中m ≠―12),故④正确;∵抛物线的对称轴为直线x =―12,且抛物线开口朝下,∴可知二次函数,在x >―12时,y 随x 的增大而减小,∵x 1>x 2>1>―12,∴y 1<y 2,故⑤错误,正确的有②③④,共3个,故答案为:②③④.19.(2024·四川德阳·中考真题)如图,抛物线y =ax 2+bx +c 的顶点A 的坐标为―13,n ,与x 轴的一个交点位于0和1之间,则以下结论:①abc>0;②5b+2c<0;③若抛物线经过点(―6,y1),(5,y2),则y1> y2;④若关于x的一元二次方程ax2+bx+c=4无实数根,则n<4.其中正确结论是(请填写序号).【思路点拨】本题考查了二次函数的图象与系数的关系,根的判别式,二次函数图象上点的坐标特征,解题的关键是掌握二次函数的图象与性质.①利用抛物线的顶点坐标和开口方向即可判断;②利用抛物线的对称轴求出a=32b,根据图象可得当x=1时,y=a+b+c<0,即可判断;③利用抛物线的对称轴,设(―6,y1),(5,y2)两点横坐标与对称轴的距离为d1,d2,求出距离,根据图象可得,距离对称轴越近的点的函数值越大,即可判断;④根据图象即可判断.【解题过程】解:①∵抛物线y=ax2+bx+c的顶点A的坐标为―13,n,∴―b2a =―13,∴b 2a =13>0,即ab>0,由图可知,抛物线开口方向向下,即a<0,∴b<0,当x=0时,y=c>0,∴abc>0,故①正确,符合题意;②∵直线x=―13是抛物线的对称轴,∴―b2a =―13,∴b 2a =13>0,∴a=32b由图象可得:当x=1时,y=a+b+c<0,b+c<0,即5b+2c<0,故②正确,符合题意;∴52是抛物线的对称轴,③∵直线x=―13设(―6,y1),(5,y2)两点横坐标与对称轴的距离为d1,d2,则d1=|―6―=173,d2=|5――=163,∴d2<d1,根据图象可得,距离对称轴越近的点的函数值越大,∴y1<y2,故③错误,不符合题意;④如图,∵关于x的一元二次方程ax2+bx+c=4无实数根,∴n<4,故④正确,符合题意.故答案为:①②④20.(23-24九年级上·湖北武汉·期中)抛物线y=ax2+bx+c(a,b,c为常数,c<0)经过(1,1),(m,0),>1;③当n=3时,若点(2,t)在该抛物线上,则(n,0)三点,且n≥3.下列四个结论:①b<0;②4ac―b24at>1;④若关于x的一元二次方程ax2+bx+c=x有两个相等的实数根,则0<m≤1,其中正确的是3(填序号即可).【思路点拨】①根据图象经过1,1,c<0,且抛物线与x轴的一个交点一定在3,0或3,0的右侧,判断出抛物线的开口向下,即a<0,再把1,1代入y=ax2+bx+c得a+b+c=1,即可判断①错误;>1,根②先得出抛物线的对称轴在直线x=1.5的右侧,得出抛物线的顶点在点1,1的右侧,得出4ac―b24a据4a<0,利用不等式的性质即可得出4ac―b2<4a,即可判断②正确;③先得出抛物线对称轴在直线x=1.5的右侧,得出1,1到对称轴的距离大于2,t到对称轴的距离,根据a<0,抛物线开口向下,距离抛物线的对称轴越近的函数值越大,即可得出③正确;④根据方程有两个相等的实数解,得出Δ=(b―1)2―4ac=0,把1,1代入y=ax2+bx+c得a+b+c=1,即1―b=a+c,求出a=c,根据根与系数的关系得出mn=ca =1,即n=1m,根据n≥3,得出1m≥3,求出m的取值范围,即可判断④正确.【解题过程】解:①图象经过1,1,c<0,即抛物线与y轴的负半轴有交点,如果抛物线的开口向上,则抛物线与x 轴的交点都在1,0的左侧,∵(n,0)中n≥3,∴抛物线与x轴的一个交点一定在(3,0)或(3,0)的右侧,∴抛物线的开口一定向下,即a<0,把1,1代入y=ax2+bx+c得:a+b+c=1,即b=1―a―c=1―(a+c),∵a<0,c<0,∴a+c<0,∴b>0,故①错误;②∵a<0,b>0,c<0,ca>0,∴方程ax2+bx+c=0的两个根的积大于0,即mn>0,∵n≥3,∴m>0,∴m+n2>1.5,即抛物线的对称轴在直线x=1.5的右侧,∴抛物线的顶点在点1,1的上方或者右上方,。

二次函数图象与各项系数之间的关系、对称

二次函数图象与各项系数之间的关系、对称

万邦一对一个性化辅导方案教师: 学生: 上课时间: 8.15 第 次课 课题二次函数(三) 考 点分 析1、熟练掌握二次函数图象与各项系数之间的关系2、熟练掌握二次函数的对称性质 重 点难 点 识记性知识的熟记 问题解决能力的提升授课内容:一、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴ 在0a >的前提下,当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.二、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称 2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a =--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.课堂训练:1. (2011四川攀枝花,13,4分)在同一平面内下列4个函数;①y=2(x+1)2﹣1;②y=2x 2+3;③y=﹣2x 2﹣1;④y=21x 2-1错误!未找到引用源。

二次函数系数关系、图象共存和对称变换

二次函数系数关系、图象共存和对称变换

星期六教案:二次函数的图象与各项系数之间的关系1、二次项系数a二次函数2=++中,a作为二次项系数,显然0y ax bx ca≠.⑴当0a>时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;⑵当0a<时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大.总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小.2、一次项系数b在二次项系数a确定的前提下,b决定了抛物线的对称轴.概括的说就是“左同右异”(即对称轴在左边,a、b同号,对称轴若在右边,则a、b异号)3、常数项c⑴当0c>时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当0c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当0c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.科翰——竭力打造中学课外辅导第一品牌典型例题:1、(2009•黄石)已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1其中所有正确结论的序号是()A、①②B、①③④C、①②③⑤D、①②③④⑤2、(2009•贵港)如图,抛物线y=ax2+bx+c的对称轴是x=错误!未找到引用源。

,小亮通过观察得出了下面四条信息:①c<0,②abc<0,③a﹣b+c>0,④2a﹣3b=0.你认为其中正确的有()A、1个B、2个C、3个D、4个3、(2009•鄂州)已知二次函数y=ax2+bx+c的图象如图.则下列5个代数式:ac,a+b+c, 4a﹣2b+c,2a+b,2a﹣b中,其值大于0的个数为()A、2B、3C、4 D 、5(第1题)(第2题)(第3题)4、(2008•天门)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③a﹣b+c<0;④a+c>0,其中正确结论的个数为()A、4个B、3个C、2个D、1个5、(2008•乐山)已知二次函数y=ax2+bx+c的图象如图所示,令M=|4a﹣2b+c|+|a+b+c|﹣|2a+b|+|2a﹣b|,则()A、M>0B、M<0C、M=0D、M 的符号不能确定(第4题)(第5题)总结:c决定了抛物线与y轴交点的位置.总之,只要a b c,,都确定,那么这条抛物线就是唯一确定的。

九年级上数学专题复习二:二次函数图象与系数的关系(含答案)

九年级上数学专题复习二:二次函数图象与系数的关系(含答案)

专题复习二 二次函数图象与系数的关系(1)系数a 决定抛物线的开口方向和大小,a>0时,开口向上;a<0时,开口向下.(2)对称轴在y 轴的左侧,a ,b 同号;对称轴在y 轴的右侧,a ,b 异号.(3)c>0时,图象与y 轴交点在x 轴上方;c=0时,图象过原点;c<0时,图象与y 轴交点在x 轴下方.(4)b 2-4ac 的符号决定抛物线与坐标轴的交点个数.1.已知二次函数y=ax 2+bx 的图象如图所示,那么a ,b 的符号为(C ).A.a >0,b >0B.a <0,b >0C.a >0,b <0D.a <0,b <0(第1题) (第2题) (第5题)2.如图所示为二次函数y=ax 2+bx+c 的图象,对称轴是直线x=1,则下列结论错误的是(D ).A.c >0B.2a+b=0C.b 2-4ac >0D.a-b+c >03.二次函数y=ax 2-a 与反比例函数y=xa (a ≠0)在同一平面直角坐标系中可能的图象为(A ).A. B. C. D.4.二次函数y=x 2+bx+c ,若b+c=0,则它的图象一定过点(D ).A.(-1,-1)B.(1,-1)C.(-1,1)D.(1,1)5.抛物线y=ax 2+bx+c 的顶点为D(-1,2),与x 轴的一个交点A 在(-3,0)和(-2,0)之间,其部分图象如图所示,则下列结论:①b 2-4ac <0;②a+b+c <0;③c-a=2;④方程ax 2+bx+c-2=0有两个相等的实数根.其中正确的结论有(C ).A.1个B.2个C.3个D.4个6.已知抛物线y=ax 2+2x+c 与x 轴的交点都在原点的右侧,则点M(a ,c)在第 三 象限.7.如图所示为二次函数y=ax 2+bx+c 图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出以下结论:(第7题)①abc <0;②b 2-4ac >0;③4b+c <0;④若B (-25,y 1),C (-21,y 2)为函数图象上的两点,则y 1>y 2; ⑤当-3≤x ≤1时,y ≥0.其中正确的结论有 ②③⑤ (填序号).8.已知二次函数y=ax 2+bx+c 的图象开口向下,顶点落在第二象限.(1)试确定a ,b ,b 2-4ac 的符号,并简述理由.(2)若此二次函数的图象经过原点,且顶点在直线x+y=0上,顶点与原点的距离为32,求抛物线的二次函数的表达式.【答案】(1)∵抛物线开口向下,∴a <0.∵顶点在第二象限,∴⎪⎪⎩⎪⎪⎨⎧>-<-044022ab ac a b ,∴b <0,b 2-4ac >0.(2)由题意可得c=0,此时顶点坐标为(-a b 2,-a b 42).∵顶点在直线x+y=0上,∴-a b 2-a b 42=0. ∴b=-2.此时顶点坐标为(a 1,-a 1).∴21a +21a =(32)2.∴a=-31或a=31 (舍去).∴抛物线的函数表达式为y=-31x 2-2x. 9.已知函数y=x 2-2mx 的顶点为点D.(1)求点D 的坐标(用含m 的代数式表示).(2)求函数y=x 2-2mx 的图象与x 轴的交点坐标.(3)若函数y=x 2-2mx 的图象在直线y=m 的上方,求m 的取值范围.【答案】(1)y=x 2-2mx=(x-m)2-m 2,∴顶点D(m ,-m 2).(2)令y=0,得x 2-2mx=0,解得x 1=0,x 2=2m.∴函数的图象与x 轴的交点坐标为(0,0),(2m ,0).(3)∵函数y=x 2-2mx 的图象在直线y=m 的上方,∴顶点D 在直线y=m 的上方.∴-m 2>m ,即m 2+m <0.∴m 的取值范围是-1<m <0.10.已知抛物线y=ax 2+3x+(a-2),a 是常数且a <0,下列选项中,可能是它大致图象的是(B).A.B.C.D.11.二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则下列结论:①4ac-b 2<0;②4a+c <2b ;③3b+2c <0;④m(am+b)+b <a(m ≠-1).其中正确的结论有(B ).A.4个B.3个C.2个D.1个(第11题) (第12题) (第14题)(第15题)12.函数y=x 2+bx+c 与y=x 的图象如图所示,则下列结论:①b 2-4c <0;②c-b+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b-1)x+c <0.其中正确结论的个数为(C ).A.1B.2C.3D.413.二次函数y=ax 2+bx+1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t 的取值范围是 0<t <2 .14.二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则a b 的值为 -2 ,a c 的取值范围是 -8<ac <-3 . 【解析】∵抛物线的对称轴为直线x=1,∴x=-a b 2=1,即a b =-2.由图象知当x=-2时,y >0,即4a-2b+c >0①,当x=-1时,y <0,即a-b+c <0②,将b=-2a 代入①②,得c >-8a ,c <-3a. 又∵a >0,∴-8<ca <-3.15.如图所示为抛物线y=ax 2+bx+c 的图象,A ,B ,C 为抛物线与坐标轴的交点,且OA=OC=1,则a ,b 之间满足的关系式为 a-b+1=0 .(第16题)16.如图所示为二次函数y=ax 2+bx+c(a ≠0)的图象.(1)判断a ,b ,c 及b 2-4ac 的符号.(2)若OA=OB ,求证:ac+b+1=0.【答案】(1)a>0,b<0,c<0,b 2-4ac>0.(2)∵OA=OB ,且OB=|c|=-c ,∴ax 2+bx+c=0有一根为x=c.∴ac 2+bc+c=0.∴ac+b+1=0.17.对于二次函数y=ax 2+bx+c ,如果当x 取任意整数时,函数值y 都是整数,那么我们把该函数的图象叫做整点抛物线(例如:y=x 2+2x+2).(1)请你写出一个二次项系数的绝对值小于1的整点抛物线的函数表达式: y=21x 2+21x .(不必证明) (2)请探索:是否存在二次项系数的绝对值小于21的整点抛物线?若存在,请写出其中一条抛物线的表达式;若不存在,请说明理由.【答案】(1)y=21x 2+21x (2)假设存在符合条件的抛物线,则对于抛物线y=ax 2+bx+c ,当x=0时,y=c;当x=1时,y=a+b+c. 由整点抛物线定义知:c 为整数,a+b+c 为整数,∴a+b 必为整数.又当x=2时,y=4a+2b+c=2a+2(a+b )+c 是整数,∴2a 必为整数.∴|a|≥21.∴不存在二次项系数的绝对值小于21的整点抛物线.(第18题)18.【攀枝花】二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则下列命题中,正确的是(D ).A.a >b >cB.一次函数y=ax+c 的图象不经过第四象限C.m(am+b)+b <a(m 是任意实数)D.3b+2c >0【解析】由二次函数的图象可知a >0,c <0;由x=-1得-ab 2=-1,故b >0,b=2a ,则b >a >c ,故A 错误.∵a >0,c <0,∴一次函数y=ax+c 的图象经过第一、三、四象限,故B 错误.当x=-1时,y 最小,即a-b+c 最小,故a-b+c <am 2+bm+c ,即m(am+b)+b >a ,故C 错误. 由图象可知当x=1时y >0,即a+b+c >0,∵b=2a ,∴a=21b.∴21b+b+c >0.∴3b+2c >0,故D 正确.故选D.19.【杭州】在平面直角坐标系中,设二次函数y 1=(x+a)(x-a-1),其中a ≠0.(1)若函数y 1的图象经过点(1,-2),求函数y 1的表达式.(2)若一次函数y 2=ax+b 的图象与y 1的图象经过x 轴上同一点,探究实数a ,b 满足的表达式.(3)已知点P(x 0,m)和点Q(1,n)在函数y 1的图象上,若m <n ,求x 0的取值范围.【答案】(1)函数y 1的图象经过点(1,-2),得(a+1)(-a)=-2,解得a 1=-2,a 2=1.当a1=-2时,y1=(x-2)(x+2-1)=x 2-x-2;当a2=1时,y1=(x+1)(x-2)=x 2-x-2.综上所述,函数y1的表达式为y=x 2-x-2.(2)当y=0时,(x+a)(x-a-1)=0,解得x 1=-a ,x 2=a+1.∴y 1的图象与x 轴的交点是(-a ,0),(a+1,0).当y2=ax+b 经过(-a ,0)时,-a 2+b=0,即b=a 2;当y2=ax+b 经过(a+1,0)时,a 2+a+b=0,即b=-a 2-a.(3)由题意知,函数y 1的对称轴为直线x=21.当点P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,(1,n)与(0,n)关于对称轴对称,由m <n ,得0<x 0≤21;当点P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得21<x 0<1.综上所述,m <n ,所求x 0的取值范围0<x 0<1.20.如图所示,二次函数y=ax 2+2ax-3a(a ≠0)图象的顶点为H ,与x 轴交于A ,B 两点(点B 在点A 右侧),点H ,B 关于直线l:y=33x+3对称.(1)求A ,B 两点坐标,并证明点A 在直线l 上.(2)求二次函数的表达式.(3)过点B 作直线BK ∥AH 交直线l 于点K,M,N 分别为直线AH 和直线l 上的两个动点,连结HN,NM,MK ,求HN+NM+MK 的最小值.(第20题)图1图2(第20题答图)【答案】(1)由题意得ax 2+2ax-3a=0(a ≠0),解得x 1=-3,x 2=1.∴点A 的坐标为(-3,0),点B 的坐标为(1,0).∵直线y=33x+3,当x=-3时,y=33×(-3)+ 3=0,∴点A 在直线l 上.(2)∵点H ,B 关于过点A 的直线y=33x+3对称,∴AH=AB=4.∵AH=BH ,∴△ABH 为正三角形.如答图1所示,过顶点H 作HC ⊥AB 于点C ,则AC=21AB=2,HC=23,∴顶点H(-1,23),代入二次函数表达式,解得a=-23.∴二次函数表达式为y=-23x 2-3x+233. (3)易求得直线AH 的函数表达式为y=3x+33,直线BK 的函数表达式为y=3x-3.由⎪⎩⎪⎨⎧-=+=33333x y x y ,解得⎩⎨⎧==323y x ,即K(3,23).∴BK=4.∵点H ,B 关于直线AK 对称,∴HN+MN 的最小值是MB.如答图2所示,过点K 作直线AH 的对称点Q,连结QK,交直线AH 于点E ,则QM=MK,QE=EK=KD=23,则QK=43,AE ⊥QK.∴BM+MK 的最小值是BQ,即BQ 的长是HN+NM+MK 的最小值.∵BK ∥AH,∴∠BKQ=∠HEQ=90°.由勾股定理可求得QB=8.∴HN+NM+MK 和的最小值为8.。

专题1.2 二次函数的图象【六大题型】(举一反三)(浙教版)(解析版)

专题1.2 二次函数的图象【六大题型】(举一反三)(浙教版)(解析版)

专题1.2 二次函数的图象【六大题型】【浙教版】【题型1 二次函数的配方法】 (1)【题型2 二次函数的五点绘图法】 (4)【题型3 二次函数的图象与各系数之间的关系】 (9)【题型4 二次函数图象的平移变换】 (12)【题型5 二次函数图象的对称变换】 (14)【题型6 利用对称轴、顶点坐标公式求值】 (16)【题型1 二次函数的配方法】【例1】(2022秋•饶平县校级期末)用配方法将下列函数化成y=a(x+h)2+k的形式,并指出抛物线的开口方向,对称轴和顶点坐标.(1)y=12x2﹣2x+3;(2)y=(1﹣x)(1+2x).【分析】(1)利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)化为一般式后,利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:(1)y=12x2﹣2x+3=12(x﹣2)2+1,开口向上,对称轴是直线x=2,顶点坐标(2,1);(2)y=(1﹣x)(1+2x)=﹣2x2+x+1=﹣2(x―14)2+98,开口向下,对称轴是直线x=14,顶点坐标(14,98).【变式1-1】(2022•西华县校级月考)用配方法确定下列二次函数图象的对称轴与顶点坐标.(1)y=2x2﹣8x+7;(2)y=﹣3x2﹣6x+7;(3)y=2x2﹣12x+8;(4)y=﹣3(x+3)(x﹣5).【分析】(1)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标;(2)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标;(3)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标;(4)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标.【解答】解:(1)y=2(x2﹣4x)+7=2(x2﹣4x+4﹣4)+7=2(x﹣2)2﹣1,对称轴为x=2,顶点坐标为(2,﹣1);(2)y=﹣3(x2+2x)+7=﹣3(x2+2x+1﹣1)+7=﹣3(x+1)2+10,对称轴为x=﹣1,顶点坐标为(﹣1,10);(3)y=2x2﹣12x+8=2(x2﹣6x+9﹣9)+8=2(x﹣3)2﹣10,对称轴为x=3,顶点坐标为(3,﹣10);(4)y=﹣3(x+3)(x﹣5)=﹣3(x2﹣2x﹣15)=﹣3(x2﹣2x+1﹣1﹣15)=﹣3(x﹣1)2+16 3,对称轴为x=1,顶点坐标为(1,163).【变式1-2】(2021•邵阳县月考)把下列二次函数化成顶点式,即y=a(x+m)2+k的形式,并写出他们顶点坐标及最大值或最小值.(1)y=﹣2x﹣3+1 2 x2(2)y=﹣2x2﹣5x+7(3)y=ax2+bx+c(a≠0)【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,可把一般式转化为顶点式,从而求出函数图象的顶点坐标及最值.【解答】解:(1)y=﹣2x﹣3+1 2 x2=12(x2﹣4x+4)﹣2﹣3=12(x﹣2)2﹣5,顶点坐标是(2,﹣5),最小值是﹣5;(2)y=﹣2x2﹣5x+7=﹣2(x2+52x+2516)+258+7=﹣2(x+54)2+818,顶点坐标是(―54,818),最大值是818;(3)y=ax2+bx+c=a(x2+bax+b24a2)―b24a+c=a(x+b2a)2+4ac b24a,顶点坐标是(―b2a,4ac b24a),当a<0时,最大值是4ac b24a;当a>0时,最小值是4ac b24a.【变式1-3】(2022•监利市期末)用配方法可以解一元二次方程,还可以用它来解决很多问题例如:因为5a2≥0,所以5a2+1≥1,即:当a=0时,5a2+1有最小值1.同样,因为﹣5(a2+1)≤0,所以﹣5(a2+1)+6≤6有最大值1,即当a=1时,﹣5(a2+1)+6有最大值6.(1)当x= 2 时,代数式﹣3(x﹣2)2+4有最 大 (填写大或小)值为 4 .(2)当x= 2 时,代数式﹣x2+4x+4有最 大 (填写大或小)值为 8 .(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是14m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?【分析】(1)由完全平方式的最小值为0,得到x=2时,代数式的最大值为4;(2)将代数式前两项提取﹣1,配方为完全平方式,根据完全平方式的最小值为0,即可得到代数式的最大值及此时x的值;(3)设垂直于墙的一边长为xm,根据总长度为14m,表示出平行于墙的一边为(14﹣2x)m,表示出花园的面积,整理后配方,利用完全平方式的最小值为0,即可得到面积的最大值及此时x的值.【解答】解:(1)∵(x﹣2)2≥0,∴当x=2时,(x﹣2)2的最小值为0,则当x=2时,代数式﹣3(x﹣2)2+4的最小值为4;(2)代数式﹣x2+4x+4=﹣(x﹣2)2+8,则当x=2时,代数式﹣x2+4x+4的最大值为8;(3)设垂直于墙的一边为xm,则平行于墙的一边为(14﹣2x)m,∴花园的面积为x(14﹣2x)=﹣2x2+14x=﹣2(x2﹣7x+494)+492=―2(x―72)2+492,则当边长为3.5米时,花园面积最大为492m2.故答案为:(1)2,大,4;(2)2,大,8;【题型2 二次函数的五点绘图法】【例2】(2022•东莞市模拟)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…01234…y…52125…(1)求该二次函数的表达式;(2)当x=6时,求y的值;(3)在所给坐标系中画出该二次函数的图象.【分析】(1)由表格可知抛物线顶点坐标(2,1),设抛物线解析式为y=a(x﹣2)2+1,利用待定系数法即可解决问题.(2)把x=6代入(1)中的解析式即可.(3)利用描点法画出图象即可.【解答】解:(1)由表格可知抛物线顶点坐标(2,1),设抛物线解析式为y=a(x﹣2)2+1,∵x=0时,y=5,∴5=4a+1,∴a=1,∴二次函数解析式为y=(x﹣2)2+1即y=x2﹣4x+5.(2)当x=6时,y=(6﹣2)2+1=17.(3)函数图象如图所示,.【变式2-1】(2022•竞秀区一模)已知抛物线y=x2﹣2x﹣3(1)求出该抛物线顶点坐标.(2)选取适当的数据填入表格,并在直角坐标系内描点画出该抛物线的图象.x……y……【分析】(1)直接利用配方法求出二次函数的顶点坐标即可;(2)利用描点法画出二次函数的图象.【解答】解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,故该抛物线顶点坐标为:(1,﹣4);(2)如图所示:x…﹣10123…y…0﹣3﹣4﹣30….【变式2-2】已知二次函数y=ax2﹣2的图象经过(﹣1,1).(1)求出这个函数的表达式;(2)画出该函数的图象;(3)写出此函数的开口方向、顶点坐标、对称轴.【分析】(1)直接把(﹣1,1)代入y=ax2﹣2中求出a的值即可得到抛物线解析式;(2)利用描点法画函数图象;(2)根据二次函数的性质求解.【解答】解:(1)把(﹣1,1)代入y=ax2﹣2得a﹣2=1,解得a=3,所以抛物线解析式为y=3x2﹣2;(2)如图:(3)抛物线的开口向上,顶点坐标为(0,﹣2),对称轴为y轴.【变式2-3】(2022•越秀区模拟如图,已知二次函数y=―12x2+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)求该二次函数图象的顶点坐标、对称轴以及二次函数图象与x 轴的另一个交点;(3)在右图的直角坐标系内描点画出该二次函数的图象及对称轴.【分析】(1)根据图象经过A (2,0)、B (0,﹣6)两点,把两点代入即可求出b 和c ,(2)把二次函数写成顶点坐标式,据此写出顶点坐标,对称轴等,(3)在坐标轴中画出图象即可.【解答】解:(1)∵的图象经过A (2,0)、B (0,﹣6)两点,∴―2+2b +c =0c =―6,解得b =4,c =﹣6,∴这个二次函数的解析式为y =―12x 2+4x ―6,(2)y =―12x 2+4x ―6=―12(x 2﹣8x +16)+8﹣6=―12(x ﹣4)2+2,∴二次函数图象的顶点坐标为(4,2)、对称轴为x =4、二次函数图象与x 轴相交时:0=―12(x ﹣4)2+2,解得:x =6或2,∴另一个交点为:(6,0),(3)作图如下.【题型3 二次函数的图象与各系数之间的关系】【例3】(2022春•玉山县月考)函数y=ax2﹣a与y=ax+a(a≠0)在同一坐标系中的图象可能是( )A.B.C.D.【分析】根据题目中的函数解析式、二次函数的性质和一次函数的性质,利用分类讨论的方法可以得到函数y=ax2﹣a与y=ax+a(a≠0)在同一坐标系中的图象可能是哪个选项中的图象.【解答】解:当a>0时,函数y=ax2﹣a的图象开口向上,顶点坐标为(0,﹣a),y=ax+a(a≠0)的图象经过第一、二、三象限,故选项A、D错误;当a<0时,函数y=ax2﹣a的图象开口向下,顶点坐标为(0,﹣a),y=ax+a(a≠0)的图象经过第二、三、四象限,故选项B错误,选项C正确;故选:C.【变式3-1】(2022•邵阳县模拟)二次函数y=ax2+b的图象如图所示,则一次函数y=ax+b的图象可能是( )A.B.C.D.【分析】直接利用二次函数图象得出a,b的符号,进而利用一次函数的图象性质得出答案.【解答】解:如图所示:抛物线开口向下,交y轴的正半轴,则a<0,b>0,故一次函数y=ax+b的图象经过第一、二、四象限.故选:C.【变式3-2】(2022•凤翔县一模)一次函数y=kx+k与二次函数y=ax2的图象如图所示,那么二次函数y=ax2﹣kx﹣k的图象可能为( )A.B.C.D.【分析】由二次函数y=ax2的图象知:开口向上,a>0,一次函数y=kx+k图象可知k>0,然后根据二次函数的性质即可得到结论.【解答】解:由二次函数y=ax2的图象知:开口向上,a>0,一次函数y=kx+k图象可知k>0,∴二次函数y=ax2﹣kx﹣k的图象开口向上,对称轴x=―k2a在y轴的右侧,交y轴的负半轴,∴B选项正确,故选:B.【变式3-3】(2022•澄城县三模)已知m,n是常数,且n<0,二次函数y=mx2+nx+m2﹣4的图象是如图中三个图象之一,则m的值为( )A.2B.±2C.﹣3D.﹣2【分析】可根据函数的对称轴,以及当x=0时,y的值来确定符合题意的函数式,进而确定m的值.【解答】解:∵y=mx2+nx+m2﹣4,∴x=―n2m,因为n<0,所以对称轴不可能是x=0,所以第一个图不正确.二,三两个图都过原点,∴m2﹣4=0,m=±2.第二个图中m>0,开口才能向上.对称轴为:x=―n2m>0,所以m可以为2.第三个图,m<0,开口才能向下,x=―n2m<0,而从图上可看出对称轴大于0,从而m=﹣2不符合题意.故选:A.【题型4 二次函数图象的平移变换】【例4】(2022•绍兴县模拟)把抛物线y=ax2+bx+c的图象先向右平移2个单位,再向上平移2个单位,所得的图象的解析式是y=(x﹣3)2+5,则a+b+c= 3 .【分析】先得到抛物线y=(x﹣3)2+5的顶点坐标为(3,5),通过点(3,5)先向左平移2个单位再向下平移2个单位得到点的坐标为(1,3),然后利用顶点式写出平移后的抛物线解析式,再把解析式化为一般式即可得到a、b和c的值.【解答】解:∵y=(x﹣3)2+5,∴顶点坐标为(3,5),把点(3,5)先向左平移2个单位再向下平移2个单位得到点的坐标为(1,3),∴原抛物线解析式为y=(x﹣1)2+3=x2﹣2x+4,∴a=1,b=﹣2,c=4.∴a+b+c=3,故答案为3.【变式4-1】(2022•澄城县二模)要得到函数y=﹣(x﹣2)2+3的图象,可以将函数y=﹣(x﹣3)2的图象( )A.向右平移1个单位,再向上平移3个单位B.向右平移1个单位,再向下平移3个单位C.向左平移1个单位,再向上平移3个单位D.向左平移1个单位,再向下平移3个单位【分析】根据抛物线顶点的变换规律得到正确的选项.【解答】解:抛物线y=﹣(x﹣3)2的顶点坐标是(3,0),抛物线y=﹣(x﹣2)2+3的顶点坐标是(2,3),所以将顶点(3,0)向左平移1个单位,再向上平移3个单位得到顶点(2,3),即将函数y=﹣(x﹣3)2的图象向左平移1个单位,再向上平移3个单位得到函数y=﹣(x﹣2)2+3的图象.故选:C.【变式4-2】(2022秋•滨江区期末)将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则4a﹣2b﹣1的值是 2 .【分析】根据二次函数的平移得出平移后的表达式,再将点(﹣2,5)代入,得到4a﹣2b=3,最后整体代入求值即可.【解答】解:将抛物线y=ax2+bx﹣1向上平移3个单位长度后,表达式为:y=ax2+bx+2,∵经过点(﹣2,5),代入得:4a﹣2b=3,则4a﹣2b﹣1=3﹣1=2.故答案为:2.【变式4-3】(2022•澄城县二模)二次函数y=(x﹣1)(x﹣a)(a为常数)图象的对称轴为直线x=2,将该二次函数的图象沿y轴向下平移k个单位,使其经过点(0,﹣1),则k的值为( )A.3B.4C.2D.6【分析】根据抛物线解析式得到抛物线与x轴的交点横坐标,结合抛物线的轴对称性质求得a的值,结合抛物线解析式求平移后图象所对应的二次函数的表达式,利用待定系数法求得k的值.【解答】解:由二次函数y=(x﹣1)(x﹣a)(a为常数)知,该抛物线与x轴的交点坐标是(1,0)和(a,0).∵对称轴为直线x=2,∴1a2=2.解得a=3.则该抛物线解析式是:y=x2﹣4x+3.∴抛物线向下平移k个单位后经过(0,﹣1),∴﹣1=3﹣k.∴k=4.故选:B.【题型5 二次函数图象的对称变换】【例5】(2022•绍兴县模拟)在同一平面直角坐标系中,若抛物线y=x2+(2a﹣b)x+b+1与y=﹣x2+(a+b)x+a﹣4关于x轴对称,则a+b的值为( )A.﹣5B.3C.5D.15【分析】根据关于x轴对称,函数y是互为相反数即可求得.【解答】解:∵抛物线y=x2+(2a﹣b)x+b+1与y=﹣x2+(a+b)x+a﹣4关于x轴对称,∴﹣y=﹣x2﹣(2a﹣b)x﹣b﹣1,∴―(2a―b)=a+b ―b―1=a―4,解得a=0,b=3,∴a+b=3,故选:B.【变式5-1】(2022•苍溪县模拟)抛物线y=﹣(x+2)2关于y轴对称的抛物线的表达式为 y=﹣(x﹣2)2 .【分析】写出顶点关于y轴对称的点,把它作为所求抛物线的顶点,这样就可确定对称后抛物线的解析式.【解答】解:抛物线y=﹣(x+2)2顶点坐标为(﹣2,0),其关于y轴对称的点的坐标为(2,0),∵两抛物线关于y轴对称时形状不变,∴抛物线y=﹣(x+2)2关于y轴对称的抛物线的表达式为y=﹣(x﹣2)2.故答案是:y=﹣(x﹣2)2.【变式5-2】(2022•蜀山区校级二模)在平面直角坐标系中,将抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是( )A.y=﹣(x﹣1)2﹣2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2+2D.y=﹣(x+1)2+2【分析】先利用配方法得到抛物线y=x2+2x+3的顶点坐标为(﹣1,2),再写出点(﹣1,2)关于原点的对称点为(1,﹣2),由于旋转180°,抛物线开口相反,于是得到抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是y=﹣(x﹣1)2﹣2.【解答】解:y=x2+2x+3=(x+1)2+2,抛物线y=x2+2x+3的顶点坐标为(﹣1,2),点(﹣1,2)关于原点的对称点为(1,﹣2),所以抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是y=﹣(x﹣1)2﹣2.故选:A.【变式5-3】(2022春•仓山区校级期末)在平面直角坐标系中,已知抛物线L1:y=kx2+4kx+8(k≠0)与抛物线L2关于x轴对称,且它们的顶点相距8个单位长度,则k的值是( )A.﹣1或3B.1或﹣2C.1或3D.1或2【分析】先求出抛物线L1的顶点坐标,再根据顶点相距8个单位长度列方程即可解得答案.【解答】解:∵y=kx2+4kx+8=k(x+2)2+8﹣4k,∴抛物线L1:y=kx2+4kx+8顶点为(﹣2,8﹣4k),∵抛物线L1:y=kx2+4kx+8(k≠0)与抛物线L2关于x轴对称,它们的顶点相距8个单位长度,∴8﹣4k=82或8﹣4k=―82,解得k=1或k=3,故选:C.【题型6 利用对称轴、顶点坐标公式求值】【例6】(2022•苍溪县模拟)已知二次函数y=(a﹣1)x2﹣x+a2﹣1图象经过原点,则a的取值为( )A.a=±1B.a=1C.a=﹣1D.a=0【分析】把(0,0)代入函数解析式求出a的值,再由a﹣1≠0求解.【解答】解:把(0,0)代入y=(a﹣1)x2﹣x+a2﹣1得0=a2﹣1,解得a=1或a=﹣1,∵a﹣1≠0,∴a=﹣1,故选:C.【变式6-1】(2022•合肥模拟)如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是4,则c的值等于 7或15 .【分析】根据抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是4,可知顶点的纵坐标的绝对值是4,然后计算即可.【解答】解:∵抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是4,∴|4×1×(c2)(6)24×1|=4,解得c1=7,c2=15,故答案为:7或15.【变式6-2】(2022•襄城区模拟)已知二次函数y=x2+bx+c的顶点在x轴上,点A(m﹣1,n)和点B (m+3,n)均在二次函数图象上,求n的值为 4 .【分析】根据题意得出b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A 的坐标代入即可求得n的值.【解答】解:∵点A(m﹣1,n)和点B(m+3,n)均在二次函数y=x2+bx+c图象上,∴―b2=m1m32,∴b=﹣2(m+1),∵二次函数y=x2+bx+c的顶点在x轴上,∴b2﹣4c=0,∴[﹣2(m +1)]2﹣4c =0,∴c =(m +1)2,∴y =x 2﹣2(m +1)x +(m +1)2,把A 的坐标代入得,n =(m ﹣1)2﹣2(m +1)(m ﹣1)+(m +1)2=4,故答案为:4.【变式6-3】(2022•公安县期中)已知二次函数y =x 2+mx +m ﹣1,根据下列条件求m 的值.(1)图象的顶点在y 轴上.(2)图象的顶点在x 轴上.(3)二次函数的最小值是﹣1.【分析】(1)将二次函数配方成顶点式y =(x +m 2)2―m 24m 44,由图象的顶点在y 轴上可得―m 2=0,即m =0;(2)由图象的顶点在x 轴上可得m 24m 44=0,解之即可;(3)由二次函数的最小值是﹣1可得―m 24m 44=―1,解之即可.【解答】解:(1)y =x 2+mx +m ﹣1=x 2+mx +m 24―m 24+m ﹣1=(x +m 2)2―m 24m 44,∴抛物线的顶点坐标为(―m 2,―m 24m 44)∵图象的顶点在y 轴上,∴―m 2=0,即m =0;(2)∵图象的顶点在x 轴上,∴m 24m 44=0,解得m =2;(3)∵二次函数的最小值是﹣1,∴―m 24m 44=―1,解得:m =0或m =4.。

二次函数图象与系数的关系最全总结

二次函数图象与系数的关系最全总结

二次函数图象与系数的关系最全总结二次函数是初中数学的重点也是难点内容之一,它的图象是一条抛物线,其形状、开口方向、位置等与表达式中的系数的关系非常密切。

所以,二次函数图象与a、b、c的关系是非常重要的一个知识点,今天,小培就为大家总结一下二次函数图像与系数的关系变化。

1. a决定抛物线的开口方向及大小具体内容:•a>0,抛物线开口向上•a<0,抛物线开口向下•|a|越大,抛物线的开口越小•|a|越小,抛物线的开口越大我们知道抛物线平移前后形状及开口方向不变,只是位置发生改变,那么只要两个二次函数的a相同,那么就可以由其中一个二次函数通过平移得到另一个二次函数.图象:抛物线开口向上,a>0,抛物线开口向下,a<0,开口大的抛物线的|a|小于开口小的抛物线的|a|.图象示例:2. a、b共同决定抛物线对称轴的位置对称轴的位置具体内容:•b=0时,对称轴为y轴•b/a>0,对称轴在y轴左侧(即a、b同号,则对称轴在y轴左侧,简记为“左同”)•b/a<0,对称轴在y轴右侧(即a、b异号,则对称轴在y轴右侧,简记为“右异”)上述当b≠0时,a、b的符号及对称轴与y轴的位置可简记为“左同右异”图象:对称轴在y轴,则b=0,对称轴在y轴左侧,根据“左同右异”判断a、b同号,对称轴在y轴右侧,根据“左同右异”判断a、b异号.图象示例:3. c决定抛物线与y轴交点的位置具体内容:•c=0,抛物线过原点•c>0,抛物线与y轴交于正半轴•c<0,抛物线与y轴交于负半轴可根据c是抛物线与y轴交点的纵坐标来理解记忆这一点内容图象示例:4. b2-4ac决定抛物线与x轴的交点的个数具体内容:•b2-4ac=0时,与x轴有唯一交点(即顶点)•b2-4ac>0时,与x轴有两个交点(即开口向上时顶点在x轴下方,开口向下顶点在x轴上方)•b2-4ac<0时,与x轴没有交点(即开口向上时顶点在x轴上方,开口向下顶点在x轴下方)图象示例:5. 特例•当x=1时,y=a+b+c•当x=-1时,y=a-b+c•当x=2时,y=4a+2b+c•当x=-2时,y=4a-2b+c•若a+b+c<0,即当x=1时,y<0•若a-b+c>0,即当x=-1时,y>0•当对称轴为直线x=1时,则2a+b=0•当对称轴为直线x=-1时,则2a-b=0从上述中我们可以得出从二次函数的图象也可以得出关于系数a、b、c的相关信息,做此类问题一定要注意数形结合.例题讲解例1二次函数y=ax2+bx+c的图象如图所示,则点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据图象开口向下可得a<0,根据对称轴在y轴右侧可得a、b异号,则b>0,抛物线与y轴交于正半轴,可得c>0,所以<0,则点M(b,)符合第四想象点的坐标特征(+,-),故选D.例2若抛物线y=ax2+3x+1与x轴有两个交点,则a的取值范围是()A.a>0B.a>- 4/9C.a>9/4D.a<9/4且a≠0【分析】根据抛物线与x轴有两个交点,则b2-4ac>0,即32-4a×1>0,解得a<9/4,根据二次函数定义可知a≠0.故选D.▲易错警示▲不要忽视二次函数表达式中二次项系数不为0这一条件.例3 已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①a+b+c<0,②a-b+c>0;③abc>0;④b=2a 中正确个数为()A.4个B.3个C.2个D.1个【分析】•a+b+c是当x=1时y的值,根据图象可知当x=1时,图象上对应的点在x轴下方,则y=a+b+c<0,故①正确;•a-b+c是当x=-1时y的值,根据图象可知当x=-1时,图象上对应的点在x 轴上方,则y=a-b+c>0,故②正确;•根据图象开口向下可得a<0,根据对称轴在y轴左侧,可得a、b同号,故b<0,根据图象与y轴交于正半轴可得c>0,所以abc>0,故③正确;•由图象得抛物线的对称轴为直线•x=-b/2a=-1,则b=2a,故④正确;故本题选A.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数图像对称变换前后系数的关系课时学习目标:1.能熟练根据二次函数的解析式的系数确定抛物线的开口方向,顶点坐标,和对称轴、最值和增减性区域。

2.会根据二次函数的解析式画出函数的图像,并能从图像上描述出函数的一些性质。

3.能说出抛物线y=ax 2+bx+c ,关于x 轴、y 轴对称变换后的解析式、关于坐标原点对称变换前后的解析式系数变化规律,能根据系数变化规律,熟练写出函数图像对称变换后解析式。

学习重点:利用函数的图像,观察认识函数的性质,结合解析式,认识a 、b 、c 、ac b 42的取值,对图像特征的影响。

学习难点:利用图像认识总结函数性质变化规律。

一、复习预备1.抛物线5)4(22x y 的顶点坐标是,对称轴是,在侧,即x_____时, y 随着x 的增大而增大;在侧,即x_____时, y 随着x 的增大而减小;当x=时,函数y 最值是。

2.抛物线y=x 2-2x-3的顶点坐标是,对称轴是,在侧,即x_____时, y 随着x 的增大而增大;在侧,即x_____时, y 随着x 的增大而减小;当x=时,函数y 最值是____ 。

3.已知函数y= x 2-2x -3 ,(1)把它写成k m xa y 2)(的形式;并说明它是由怎样的抛物线经过怎样平移得到的?(2)写出函数图象的对称轴、顶点坐标、开口方向、最值;(3)求出图象与坐标轴的交点坐标;(4)画出函数图象的草图;(5)设图像交x 轴于A 、B 两点,交y 轴于P 点,求△APB 的面积;(6)根据图象草图,说出 x 取哪些值时,① y=0;② y<0;③ y>0.4.二次函数y=ax 2+bx+c(a ≠0)的图象如图—2所示,则:a 0; b 0;c 0;ac b 420。

例3:已知二次函数的图像如图—3所示,下列结论:(1)a+b+c ﹤0, (2)a-b+c ﹥0, (3)abc ﹥0, (4)b=2a其中正确的结论的个数是()A.1个,B.2个,C.3个,D.4个.二、归纳二次函数y=ax 2+bx+c(a ≠0)的图像与系数a 、b 、c 、ac b42的关系系数的符号图像特征a 的符号决定开口方向a>0. 抛物线开口向a<0 抛物线开口向a 、b 的符号决定对称轴方位ab>0,同号抛物线对称轴在y 轴的侧ab=0,b=0 抛物线对称轴在ab<0,异号抛物线对称轴在y 轴的侧c 的符号决定y 轴交点方位c>0.抛物线与y 轴交于C=0 抛物线与y 轴交于c<0抛物线与y 轴交于ac b42的符号决定与x 轴交点个数ac b42>0. 抛物线与x 轴有个交点ac b 42=0 抛物线与x 轴有个交点ac b42<0抛物线与x 轴有个交点三、二次函数图像对称变换前后系数的关系探究例1. 某抛物线和函数y= -x 2+2x -3的图象关于y 轴成轴对称, 请你求出该抛物线的关系式。

例2. 某抛物线和函数y= -x 2+2x -3的图象关于x 轴成轴对称, 请你求出该抛物线的关系式。

例3.某抛物线和函数y= -x 2+2x -3的图象关于原点成中心对称,请你求出该抛物线的关系式。

例4.某抛物线和函数y= -x 2+2x -3的图象关于顶点坐标成轴对称, 请你求出该抛物线的关系式。

例5.某抛物线和函数y= -x 2+2x -3的图象关于点(3,2)成中心对称, 请你求出该抛物线的关系式。

函数y= ax 2+bx+c 的图象对称变换后,解析式系数变化规律:变换形式图像关系系数关系原因关于轴x 轴对称变换a 系数a 互为相反数开口方向相反b 系数b 互为相反数值不变,a 、b 同变c 系数c 互为相反数两交点关于x 轴对称的点关于轴y 轴对称变换a系数a 不变开口方向相同b 系数b 互为相反数变号,a 不变b 变c系数c 不变两交点重合关于原定中心对称变换a 系数a 互为相反数开口方向相反b系数b 不变变号,a 变号b 不变c 系数c 互为相反数两交点关于x 轴对称的点四、达标检测1. 二次函数y= ax 2+bx+c(a ≠0)的图象如图所示,则点A(a,b)在( ) A.第一象限 B.第二象限 C.第三象限 D. 第四象限2.二次函数y= ax 2 +bx+c(a ≠0)的图象如图所示,则下列条件不正确的是( ) A.a<0,b>0,c<0 B.b2-4ac<0 C.a+b+c<0 D.a-b+c>0 3.二次函数y= 6x 2+7x -3的图象关于x 轴对称的图象解析式为___________,关于y 轴对称的图象解析式为________________,关于坐标原点对称的解析式___________________.a2ba2b a2b (1)(2)yxyx二次函数图象变换规律一、二次函数图象的平移变换(1)具体步骤:先利用配方法把二次函数化成2()y a x h k的形式,确定其顶点(,)h k,然后做出二次函数2y ax的图像,将抛物线2y ax平移,使其顶点平移到(,)h k.具体平移方法如图所示:(2)平移规律:在原有函数的基础上“左加右减,上加下减”.二、二次函数图象的对称变换二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2y ax bx c关于x轴对称后,得到的解析式是2y ax bx c;2y a x h k关于x轴对称后,得到的解析式是2y a x h k;2. 关于y轴对称2y ax bx c关于y轴对称后,得到的解析式是2y ax bx c;2y a x h k关于y轴对称后,得到的解析式是2y a x h k;3. 关于原点对称2y ax bx c关于原点对称后,得到的解析式是2y ax bx c;2y a x h k关于原点对称后,得到的解析式是2y a x h k;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c关于顶点对称后,得到的解析式是222by ax bx ca;2y a x h k关于顶点对称后,得到的解析式是2y a x h k.5. 关于点m n,对称2y a x h k关于点m n,对称后,得到的解析式是222y a x h m n k无论抛物线作何种对称变换,形状不变,a不变.求抛物线的对称抛物线的表达式时,先确定已知抛物线的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,再写出其对称抛物线的表达式.【习题分类】一、二次函数图象的平移变换1、函数23(2)1y x 的图象可由函数23y x 的图象平移得到,那么平移的步骤是:()A.右移两个单位,下移一个单位 B.右移两个单位,上移一个单位C.左移两个单位,下移一个单位D.左移两个单位,上移一个单位2、函数22(1)1y x 的图象可由函数22(2)3yx 的图象平移得到,那么平移的步骤是()A.右移三个单位,下移四个单位B.右移三个单位,上移四个单位C.左移三个单位,下移四个单位D.左移四个单位,上移四个单位3、二次函数2241y xx 的图象如何移动就得到22yx的图象()A.向左移动1个单位,向上移动3个单位.B.向右移动1个单位,向上移动3个单位.C.向左移动1个单位,向下移动3个单位. D.向右移动1个单位,向下移动3个单位.4、将函数2y x x 的图象向右平移0a a 个单位,得到函数232y x x 的图象,则a 的值为()A .1B .2C .3D .45、把抛物线2y ax bx c 的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是235y x x ,则a b c ________________.6、对于每个非零自然数n ,抛物线221111n yxxn n n n 与x 轴交于n n A B 、两点,以n n A B 表示这两点间的距离,则112220092009A B A B A B …的值是()A .20092008B .20082009C .20102009D .200920107、把抛物线2yx 向左平移1个单位,向上平移3个单位,则平移后抛物线的解析式为( )A .213yx B .213yx C .213yx D .213y x 8、将抛物线22y x 向下平移1个单位,得到的抛物线是()A .221y xB .221y xC .221y x D .221y x9、将抛物线23yx 向上平移2个单位,得到抛物线的解析式是()A.232yxB.23yxC.23(2)y x D.232y x10、一抛物线向右平移3个单位,再向下平移2个单位后得抛物线224y x x ,则平移前抛物线的解析式为________________.11、如图,ABCD Y 中,4AB ,点D 的坐标是(0,8),以点C 为顶点的抛物线2y ax bx c 经过x 轴上的点A ,B .⑴求点A ,B ,C 的坐标.⑵若抛物线向上平移后恰好经过点D ,求平移后抛物线的解析式.12、抛物线254y axxa 与x 轴相交于点A B 、,且过点54C ,.⑴求a 的值和该抛物线顶点P 的坐标.⑵请你设计一种平移的方法,使平移后抛物线的顶点落要第二象限,并写出平移后抛物线的解析式.D CBAO二、二次函数图象的对称变换1、函数2y x是函数2y x的y x的图象关于______________对称,也可以认为2y x与2图象绕__________旋转得到.2、已知二次函数221y x x,求:⑴关于x轴对称的二次函数解析式;⑵关于y轴对称的二次函数解析式;⑶关于原点对称的二次函数解析式.3、在平面直角坐标系中,先将抛物线22y x x关于x轴作轴对称变换,再将所得的抛物线关于y轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为()A.22y x xy x x B.22C.22y x x D.22y x x4、已知二次函数2441y ax ax a的图象是1c.⑴求1c关于10R,成中心对称的图象2c的函数解析式;⑵设曲线12、与y轴的交点分别为A Bc cAB时,求a的值.,,当185、已知抛物线265y x x,求⑴关于y轴对称的抛物线的表达式;⑵关于x轴对称的抛物线的表达式;⑶关于原点对称的抛物线的表达式.6、设曲线C为函数20y ax bx c a的图象,C关于y轴对称的曲线为1C,1C关于x轴对称的曲线为2C,则曲线2C的函数解析式为________________.7、对于任意两个二次函数:221111222212y a xb xc y a xb xc a a ,,当12a a 时,我们称这两个二次函数的图象为全等抛物线,现有ABM ,1010AB ,,,,记过三点的二次函数抛物线为“C W W W ”(“□□□”中填写相应三个点的字母).图3图2图1yxO AB My xOABMMN BAO xy⑴若已知01M ,,ABM ABN ≌(图1),请通过计算判断ABM C 与ABN C 是否为全等抛物线;⑵在图2中,以A B M 、、三点为顶点,画出平行四边形.①若已知0M n ,,求抛物线ABM C 的解析式,并直接写出所有过平行四边形中三个顶点且能与ABM C 全等的抛物线解析式.②若已知M m n ,,当m n 、满足什么条件时,存在抛物线ABMC ?根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与ABM C 全等的抛物线.若存在,请写出所有满足条件的抛物线“C W W W ”;若不存在,请说明理由.8、已知:抛物线2:(2)5f y x .试写出把抛物线f 向左平行移动2个单位后,所得的新抛物线1f 的解析式;以及f 关于x 轴对称的曲线2f 的解析式.画出1f 和2f 的略图,并求:⑴x 的值什么范围,抛物线1f 和2f 都是下降的;⑵x 的值在什么范围,曲线1f 和2f 围成一个封闭图形;⑶求在1f 和2f 围成封闭图形上,平行于y 轴的线段的长度的最大值.二次函数图形变换综合压轴题1、在平面直角坐标系xoy 中,抛物线322mx mxy(m ≠0)与x 轴交于A (3,0),B 两点.(1)求抛物线的表达式及点B 的坐标.(2)当-2<x <3时的函数图像记为G ,求此时函数y 的取值范围.(3)在(2)的条件下,将图像G 在x 轴上方的部分沿x 轴翻折,图像G 的其余部分保持不变,得到一个新图像M.若经点C(4,2)的直线y=kx+b (k ≠0)与图像M 在第三象限内有两个公共过点,结合图像求b 的取值范围.2、已知关于x 的一元二次方程0132k xx 有实数根,k 为正整数.(1)求k 的值;(2)当此方程有两个不为0的整数根时,将关于x 的二次函数132k x xy 的图象向下平移2个单位,求平移后的函数图象的解析式;(3)在(2)的条件下,将平移后的二次函数图象位于y 轴左侧的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象G .当直线5y x b 与图象G 有3个公共点时,请你直接写出b 的取值范围.3、已知:抛物线C1:5442a ax axy 的顶点为P,与x 轴相交于A,B 两点(点A 在点B的左边),点B 的横坐标是1(1)求抛物线的解析式和顶点坐标;(2)将抛物线沿x 轴翻折,再向右平移,平移后的抛物线C2的顶点为M ,当点P ,M 关于点B 成中心对称时,求平移后的抛物线C2的解析式;(3)直线y=-53x+m 与抛物线C1,C2的对称轴分别交于点E,F ,设由点E ,P ,F ,M 构成的四边形的面积为S ,试用含m 的代数式表示S 。

相关文档
最新文档