古希腊数学(雅典时期)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽象化的数学精神
——古希腊数学分析与讨论
岭南学院经济学类 2012级4班苏博学号:12327203
在古希腊人的科学成就中,数学可谓是最抽象也是最迷人的科学体系。
古希腊数学可大致分为两个阶段,第一阶段是公元前600-公元前300的雅典时期,第二阶段是公元前300-641的亚历山大时期。本次讨论稿中将着重讨论雅典时期的古希腊数学。
这一时期始于泰勒斯为首的伊奥尼亚学派,其贡献在于开创了命题的证明,为建立几何的演绎体系迈出了第一步。伊奥尼亚学派否认神是世界的创造者,认为水是万物之基,崇尚自然规律,并对数学的一些基本定理做了科学论证。
“数学之父”泰勒斯在数学方面的划时代贡献是开始引入了命题证明的思想。命题的证明,就是借助一些公理或真实性业经确定的命题来论证某一命题真实性的思想过程。它标志着人们对客观事物的认识从经验上升到理论。这在数学史上是一次不寻常的飞跃。在数学中引入逻辑证明,它的重要意义可以从下面这几个方面看出来:一、保证命题的正确性,使理论立于不败之地;二、揭露各定理之间的内在联系,使数学构成一个严密的体系,为进一步发展打下基础;三、使数学命题具有充分的说服力,令人深信不疑。证明命题是希腊几何学的基本精神,而泰勒斯是希腊几何学的先驱。
《普罗克洛斯概要》写道:“泰勒斯是到埃及去将这种学问(几何学)带回希腊的第一人.他自己发现了许多命题,又将好些别的重要原理透露给他的追随者。他的方法有些是具有普遍意义的,也有一些只是经验之谈。”普罗克洛斯指出他发现的命题有:
(1)圆的直径将圆平分(2)等腰三角形两底角相等(3)两直线相交,对顶角相
等(4)有两角夹一边分别相等的两个三角形全等(5)对半圆的圆周角是直角
历史学家强调他证明了(至少是企图证明)这些命题.在数学中引入证明的
思想,这是难能可贵的.从此数学从具体的、实验的阶段过渡到抽象的、理论的阶段,逐渐形成一门独立的、演绎的科学。
稍后有毕达哥拉斯领导的学派,这是一个带有神秘色彩的政治、宗教、哲学团体,以万物皆数作为信条,毕达哥拉斯学派认为数是万物的本原,事物的性质是由某种数量关系决定的,万物按照一定的数量比例而构成和谐的秩序。毕达哥拉斯学派对古希腊数学发展的最重大推动作用,是其将数学理论从具体的事物中抽象出来,予数学以特殊独立的地位,这在当时,是非常难得的。
希腊人将数学抽象化,使之成为一种科学,持使用演绎证明。与之相比,古代中国的数学研究更多从实际出发,从《九章算术》可以看出,中国算学一般遵循小农经济体积下生产、政治等的实际需要,具有浓厚的应用数学的色彩。我想是自由贸易的经济体制催生了希腊人对数学的独立追求,从而演变成现代的数学科学(而并没有从中国起源)。
总括而言,希腊数学的成就是辉煌的,更重要的是:希腊数学产生了数学精神,即数学证明的演绎推理方法。数学的抽象化以及自然界依数学方式设计的信念使数学成为了一门独立的科学,现代的数学也由此而催生。
参考书目及期刊文摘:《西方的遗产》、《古今数学思想》、《张顺燕——数学的美与理》、《古希腊罗马哲学》,《梁宗巨著世界数学史简编》、《数学汇编》、《数
学史概论》。