变压器短路损坏的常见部位(正式版)
分析变压器运行中短路损坏的常见部位及原因
分析变压器运行中短路损坏的常见部位及原因摘要:变压器设备是在整个电力系统中起着重要作用的设备之一,它是电力传输系统的枢纽设备,变压器如果不能够正常地运转,会直接影响到整个电力系统的正常运转。
深入地研究导致变压器线圈短路的原因并作深入地解析、对已经发生的问题要找出完整的解决方案、对于未发生的要充分地做好预案,这对整个电力系统的正常运转来说具有重要的意义。
关键词:变压器;短路损坏;部位;原因分析随着经济的快速发展,电力系统整体已经达到一个相当大的体量,国家电网已经成为我国经济建设中必不可少的支持力量。
但是总体体量的增大也同样会带来这样或者那样的问题,如因为日益扩大的规模,网络接线就越来越复杂,由于电力资源分布的不均匀需要进行远程传输,这就需要容量比较大的、高参数、高电压的变压器,这种变压器的特点就是功率大,对于电力传输工作必不可少,尤其是我国作为最大的发展中国家,幅员辽阔需要的大功率变压器就更多,这种质与量上的剧增必定会带来使用上特别是维护工作中的各种问题。
而最常见的问题就是变压器出现短路,电流产生的高温损伤甚至损毁变压器,有数据表明近年来变压器的损坏大多是因为外部短路而引起的,而这种短路对变压器的损坏程度也是最大的,很多变压器是直接被损毁的。
1变压器短路类型1.1结构性短路造成结构性短路的原因有:第一种情况是温度与绕线方式造成的短路。
对于线圈来说,尤其是通电的线圈,导线的温度及强度都是直接受到环境温度影响的,随着周边环境温度的变化,导线的温度也会随着变化,导线温度会直接影响到导线的弯度韧性及线圈所具有的强度,还有就是变压器的线圈所使用的导线一般是在常温下设计的,这样的设计是将变压器的实际运转温度排除在外的,而变压器的通常状态就是运行,运行中的变压器由于电流的通过造成线圈温度的不断上升,而随着时间的累积温度会上升到易引发故障的程度,没有得到及时的排查会直接造成线圈烧毁短路,进而烧毁整个变压器。
第二种情况是一些生产厂家为节省成本而采用机械强度较低的导线。
变压器运行中短路损坏的常见部位与分析
变压器运行中短路损坏的常见部位与分析摘要:近年来,我国电力工业发展迅速,取得了一系列成绩,但随着时代的进步,电力系统的供电需求也越来越高。
对于电流互感器的现状,仍然存在许多问题。
短路故障严重影响电力系统运行的稳定性和安全性。
因此,短路故障的处理变得越来越重要。
关键词:变压器运行;短路;损坏;分析前言在整个电力系统当中,变压器是保证入户端电力能源电压稳定的关键,也是当前电网体系的核心之一,这一设备的性能不仅关系着电力系统的安全性同时也关系着用户的利益,但电力能源重要性大幅提升的当代,也就更需要强化变压器部件的抗短路能力,从而推动电力系统运行稳定性的提升。
1 短路故障的成因以及危害电力系统需要保持长时间、不间断的运行,这也就会让电力系统当中的组件都处在负荷状态下,并且各种电力系统组件所处的环境存在差异,环境因素的异常也可能给电力系统组件带来影响,因此在电力系统运行中会对变压器设备产生影响的成因较多。
而从各种干扰因素危害程度来看,绝缘结构损坏是对变压器设备运行稳定性构成影响的关键因素,当变压器中的线路出现损坏之后,也就会导致变压器设备的运行出现故障。
其次,在对变压器设备进行维护的时候未能及时的发现设备故障、未能落实故障维护操作、在变压器设备设计方案存在不足或者是安装阶段操作存在问题都有可能是导致变压器设备绝缘结构破损的成因。
短路故障对于变压器设备造成的实际损坏程度不一,短路故障发生的时候,电流值越大、短路故障持续时间越长则对于设备所造成的损坏也就越强。
短路故障中出现电流往往带有巨大的毁灭力量,一旦变压器设备当中的导线以及其他部件没有良好的稳定性以抗短路能力,那么就难以有效的应对变压器故障。
而在一些短裤故障当中,由于短路故障的电流能量过高,所以即便电流持续的时间较短,但也会在瞬间让设备以及导体结构的温度被加热到较高的条件,直接导致绝缘层的损坏,并且还可能造成部分金属出现退火的情况,最终导致金属出现变形或者是损坏。
配电变压器的常见故障及解决措施
配电变压器的常见故障及解决措施一、变压器绕组故障1.绕组短路故障:受潮、绝缘老化、压力不足等原因,导致绕组短路。
解决措施一般是对绕组进行绝缘处理或更换绕组绝缘。
2.绕组接地故障:绕组与地之间存在电气接触,可能导致严重的线圈烧毁。
解决措施是修复绕组,并确保绕组与地之间有足够的绝缘距离。
3.绕组开路故障:线圈中其中一或多个线圈断开。
解决措施是找出断路点并进行修复,或更换受损线圈。
二、变压器油泄漏故障1.电缆间隙泄漏:导致变压器油泄漏的原因包括油封老化、电缆接头疏忽等。
解决措施是更换老化的油封,修复或更换疏忽的电缆接头。
2.绝缘子泄漏:绝缘子破裂或老化会导致变压器油泄漏。
解决措施是更换破裂或老化绝缘子,并将泄漏油进行处理。
三、变压器过载故障1.长时间过负荷运行:长时间的过负荷工作可能导致变压器过热,损坏线圈绝缘。
解决措施是及时检测负载情况,合理调整负载,避免过负荷运行。
2.短时间高电流冲击:电力系统突然发生故障,导致变压器承受过大电流。
解决措施是安装合适的保护装置,及时切断故障电路。
四、变压器绝缘老化故障1.变压器老化:随着使用时间的增加,变压器绝缘老化加剧,可能导致绝缘击穿。
解决措施是定期进行变压器绝缘测试,及时更换老化的绝缘材料。
2.外部污秽:变压器绝缘面附着污秽物质,可能引发局部击穿。
解决措施是定期进行外部清洁,确保绝缘表面的干净。
五、变压器过电压故障1.电力系统中的浪涌:电力系统发生突发的过电压,可能造成绕组绝缘击穿或线圈损坏。
解决措施是选择合适的过电压保护装置,及时切断故障电路。
2.雷电击穿:雷电击穿可能导致变压器绝缘击穿。
解决措施是安装合适的避雷装置,提高抗雷电击穿能力。
六、变压器损耗故障1.内部损耗过大:变压器内部部件老化、松动等原因,导致损耗增加。
解决措施是定期进行变压器内部检修,修复或更换受损部件。
2.损耗产生过多热量:变压器损耗产生的热量积累过多,可能导致变压器过热。
解决措施是根据变压器的额定功率和负荷情况,合理选择散热方式和冷却方式。
变压器容易出现的故障及原因
定期检查
对变压器进行定期的检查,包括油样分析、绕组绝缘检测、 套管检查等,及时发现潜在的故障隐患。
预防性试验
按照规定的试验周期,对变压器进行预防性试验,如耐压 试验、介质损耗试验等,以全面评估变压器的性能状况。
异常处理与维修
根据检查结果和试验数据,对存在故障隐患的变压器进行 处理和维修,同时对维修后的变压器进行再次检查和试验, 确保其性能恢复良好。
提高变压器制造质量
选用优质材料
确保变压器使用的材料质量可靠, 具有优良的电气和机械性能,能 够承受高温、高压等恶劣环境。
严格控制制造工艺
加强制造过程中的质量控制,确保 每个工艺环节都符合标准要求,避 免因制造缺陷导致变压器故障。
强化出厂试验
对成品变压器进行严格的出厂试验, 确保各项性能指标符合标准,及时 发现并处理潜在问题。
铁芯故障
总结词
铁芯故障通常是由于铁芯多点接地、 铁芯片间短路或铁芯硅钢片松动引起 的。
详细描述
铁芯故障可能导致变压器空载损耗增 加、噪音增大或过热,严重时可能烧 毁变压器。
变压器油故障
总结词
变压器油故障主要包括油质劣化、油面过低或油位异常升高。
详细描述
油质劣化可能是由于油中水分、杂质或氧化产物过多引起的;油面过低可能影 响变压器的散热和绝缘性能;油位异常升高可能表明变压器内部存在严重故障。
变压器附件故障原因
储油柜故障
储油柜密封不良或呼吸器堵塞,导致 储油柜故障,影响变压器的正常工作。
散热器故障
压力释放阀故障
压力释放阀设置不当或动作不灵敏, 导致变压器内部压力无法正常释放, 可能引发严重事故。
散热器堵塞或散热片损坏,导致变压 器散热不良,影响变压器的正常工作。
变压器短路事故概述通用版
安全管理编号:YTO-FS-PD652变压器短路事故概述通用版In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities.标准/ 权威/ 规范/ 实用Authoritative And Practical Standards变压器短路事故概述通用版使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。
文件下载后可定制修改,请根据实际需要进行调整和使用。
变压器事故时有发生,而且有增长的趋势。
从变压器事故情况分析来看,抗短路能力不够已成为电力变压器事故的首要原因,对电网造成很大危害,严重影响电网安全运行。
变压器经常会发生以下事故:外部多次短路冲击,线圈变形逐渐严重,最终绝缘击穿损坏;外部短时内频繁受短路冲击而损坏;长时间短路冲击而损坏;一次短路冲击就损坏。
变压器短路损坏的主要形式有以下几种:1、轴向失稳。
这种损坏主要是在辐向漏磁产生的轴向电磁力作用下,导致变压器绕组轴向变形。
2、线饼上下弯曲变形。
这种损坏是由于两个轴向垫块间的导线在轴向电磁力作用下,因弯矩过大产生永久性变形,通常两饼间的变形是对称的。
3、绕组或线饼倒塌。
这种损坏是由于导线在轴向力作用下,相互挤压或撞击,导致倾斜变形。
如果导线原始稍有倾斜,则轴向力促使倾斜增加,严重时就倒塌;导线高宽比例大,就愈容易引起倒塌。
端部漏磁场除轴向分量外,还存在辐向分量,二个方向的漏磁所产生的合成电磁力致使内绕组导线向内翻转,外绕组向外翻转。
变压器铜损 短路损耗
变压器铜损短路损耗
变压器的铜损和短路损耗是造成能量损耗的主要因素。
1. 铜损:变压器的铜线圈内流过电流会产生电阻,导致能量转化为热能而损耗。
铜损的大小取决于电流的大小和铜线圈的电阻。
一般来说,铜损随着电流的增加而增加,而随着线圈截面积的增加而减小。
2. 短路损耗:变压器的短路损耗是指在额定负载电流下,变压器的铁心和线圈之间的磁通产生的涡流耗散能量。
这部分能量主要转化为热能,导致损耗。
短路损耗与变压器的设计、材料和负载有关,一般来说,短路损耗随着变压器容量的增加而增加。
为了降低变压器的铜损和短路损耗,可以采取以下措施:
- 选择合适的线圈材料和设计,以降低电阻和涡流损耗;
- 控制变压器的负载,避免超过额定负载,减少能量损耗;
- 优化变压器的绕组结构和冷却系统,提高散热效果,降低损耗;
- 选择高效的变压器设计和制造工艺,以提高整体能效。
通过以上措施,可以有效降低变压器的能量损耗,提高变压器的工作效率和可靠性。
变压器运行中短路损坏的原因分析标准范本
解决方案编号:LX-FS-A87224变压器运行中短路损坏的原因分析标准范本In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior oractivity reaches the specified standard编写:_________________________审批:_________________________时间:________年_____月_____日A4打印/ 新修订/ 完整/ 内容可编辑变压器运行中短路损坏的原因分析标准范本使用说明:本解决方案资料适用于日常工作环境中对未来要做的重要工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。
资料内容可按真实状况进行条款调整,套用时请仔细阅读。
根据近几年的变压器因出口短路而发生损坏的情况,变压器在短路故障时,其损坏主要有以下几种特征及产生的原因。
1.1轴向失稳这种损坏主要是在辐向漏磁产生的轴向电磁力作用下,导致变压器绕组轴向变形,该类事故占整个损坏事故的32.9%。
1.1.1线饼上下弯曲变形这种损坏是由于两个轴向垫块间的导线在轴向电磁力作用下,因弯矩过大产生永久性变形,通常两饼间的变形是对称的。
1.1.2绕组或线饼倒塌这种损坏是由于导线在轴向力作用下,相互挤压或撞击,导致倾斜变形。
如果导线原始稍有倾斜,则轴向力促使倾斜增加,严重时就倒塌;导线高宽比例大,就愈容易引起倒塌。
端部漏磁场除轴向分量外,还存在辐向分量,二个方向的漏磁所产生的合成电磁力致使内绕组导线向内翻转,外绕组向外翻转。
变压器绕组匝间短路、相间短路或对地击穿时的现象
变压器绕组匝间短路、相间短路或对地击穿时的现象在变压器的运行中,可能会发生绕组匝间短路、相间短路或对地击穿等故障。
这些故障会导致变压器的失效和危险。
本文将介绍这些故障的现象。
绕组匝间短路变压器绕组匝间短路是指变压器绕组中两个不同的匝之间形成连接电路,导致电流从一个匝之间流到另一个匝之间,从而使变压器电路路径短路。
当出现绕组匝间短路时,变压器会出现以下几个现象:电压下降绕组匝间短路会导致电压下降。
这是因为电流在流经绕组时会遇到短路路径,从而导致电压降低。
电流增加绕组匝间短路会导致电流增加。
这是因为在短路的路径上,电阻减小,因此电流增加。
温度升高绕组匝间短路会导致局部电路电阻减小,因此电能被转化成热能,从而使短路部分的温度升高。
这也可能导致变压器绕组局部的绝缘失效。
绕组匝间短路会产生额外的电磁力,从而使变压器输出的声音增加。
相间短路相间短路是指变压器两个相之间形成连接电路,导致电流从一个相流到另一个相之间,从而使变压器电路路径短路。
当出现相间短路时,变压器会出现以下几个现象:电流增加相间短路会导致电流增加。
这是因为电路路径更短,电阻更小。
温度升高相间短路会导致局部电路电阻减小,因此电能被转化成热能,从而使短路部分的温度升高。
这也可能导致变压器绕组局部的绝缘失效。
噪音增加相间短路会产生额外的电磁力,从而使变压器输出的声音增加。
对地击穿对地击穿是指变压器绕组接地,导致电流流向地面。
当出现对地击穿时,变压器会出现以下几个现象:电流增加对地击穿会导致电流增加。
这是因为接地会导致电路路径更短,电阻更小。
对地击穿会导致绕组部分电压下降,电阻减小,因此电能被转化成热能,从而使接地部分的温度升高。
这也可能导致变压器绕组局部的绝缘失效。
电压变化对地击穿会导致变压器绕组与地之间形成较低阻抗的电路,因此会改变输出电压的大小。
结论绕组匝间短路、相间短路或对地击穿都会对变压器产生不同的影响。
为了保证变压器正常运行和延长变压器的寿命,应该定期检查变压器是否存在这些故障,并及时进行处理。
变压器的常见故障、故障的判断方法以及故障的处理方法
变压器的常见故障、故障的判断方法以及故障的处理方法本文就先介绍变压器的一些常见故障,以及故障的推断方法,最终共享故障的处理方法,以供大家参考。
一、变压器的常见故障变压器的常见故障主要表现在下面三个方面:1.外部故障。
变压器外部故障主要是变压器套管和引出线上发生的相间短路和接地短路。
2.内部故障。
变压器内部故障主要包括绕组相间短路、绕组匝间短路及中性点接地系统绕组地接地短路等。
3.变压器的渗漏是变压器故障的常见问题,特殊是一些运行年限已久的变压器更为普遍,轻者污染设备外表影响美观,重者威逼设备平安运行甚至人员生命,变压器的渗漏包括进出空气正常经吸湿器进入的空气除外和渗漏油。
造成渗漏的缘由主要有两个方面:一方面是在变压器设计及制造工艺过程中埋伏下来的;另一方面是由于变压器的安装和维护不当引起的。
变压器主要渗漏部位常常消失在散热器接口、平面碟阀帽子、套管、瓷瓶、焊缝、砂眼、法兰等部位。
(1)进出空气进出空气是一种看不见的渗漏形式。
例如套管头部、储油柜的隔膜、平安气道的玻璃、焊缝砂眼以及钢材夹砂等部位的进出空气都是看不见的。
多年来,电力系统的主要恶性事故大多是绕组的烧伤事故和因变压器低压出口短路对器身的严峻损坏。
(2)渗漏油的分类变压器的渗漏油可分为内漏和外漏两种,而外漏又可分为焊缝渗漏和密封面渗漏两种。
1)内漏:内漏最普遍的就是充油套管中的油以及有载调压装置切换开关油室的油向变压器本体渗漏。
2)外漏:外漏分为焊缝渗漏和密封面渗漏两种:焊缝渗漏:焊缝渗漏是由于钢板焊接部位存在砂眼所造成的。
密封面渗漏:密封面渗漏状况比较简单,要详细问题详细分析。
在变压器大修或安装过程中应把防止密封面渗漏作为一项重要工作。
二、变压器的故障推断方法一般状况下,若变压器的各项绝缘预防性试验结果都符合预试规程的要求,则认为该设备绝缘状况良好能够投入运行,但是往往有时消失个别项目部合格,达不到预试规程的要求,或者设备结构特别,无详细规定、无标准可参照时,可依据以下四个方面进行综合分析推断,最终作出客观、正确的结论。
变压器常见故障分析
变压器常见故障分析变压器是电力系统中常见的重要设备之一,负责将高电压输电线路的电能转换为适合分配和使用的低电压,以满足终端用户的需求。
然而,由于操作不当、设备老化、环境因素等原因,变压器常常会发生各种故障。
本文将就变压器常见的故障进行分析,并提供相应的解决方案。
一、外部故障1.雷击:在雷暴天气中,变压器容易受到雷电击打,导致绕组和绝缘体损坏,甚至引发火灾事故。
解决方法:安装避雷设施,如避雷针和避雷线等,以提高变压器的防雷性能。
2.外力损伤:变压器可能会受到外部冲击,造成各种绝缘部件的损坏。
解决方法:加强安全教育和培训,提高操作人员的安全意识,确保周围环境的安全。
3.污染:变压器可能会受到周围环境的污染,如灰尘、湿度过高等,导致绝缘性能下降。
解决方法:定期清理变压器外表面,确保周围环境的清洁。
4.水淹:由于自然灾害或设备故障,变压器可能会进水,导致绝缘损坏。
解决方法:安装防水设备,如防水柜和排水装置等,确保变压器的安全运行。
二、内部故障1.绕组短路:绕组内部可能会出现短路故障,导致电流异常增大、温升过高等。
解决方法:检查绕组间的绝缘状况,及时更换绝缘件,确保绕组的正常运行。
2.绝缘老化:长时间运行后,绝缘材料容易老化,导致介电强度降低,容易引发故障。
解决方法:定期检测绝缘材料的状况,及时更换老化的绝缘件,延长变压器的使用寿命。
3.内部连接松动:由于设备老化、外力振动等原因,变压器内部的连接件可能会松动,导致接触不良、电流过大等故障。
解决方法:定期检查各个连接点的紧固情况,及时修复和加固连接件。
4.油漏:变压器的绝缘介质是植物油,长时间运行后,容易出现渗漏和泄漏现象,导致绝缘性能下降。
解决方法:定期检查变压器的油位和油质,及时更换老化的植物油,确保绝缘性能的稳定。
三、其他故障1.过载:由于用户需求增加或系统故障等原因,变压器可能会发生过载,导致温度升高、绝缘损坏等故障。
解决方法:合理规划负载,增加变压器容量,确保变压器的额定工作范围内运行。
变压器短路产生的原因及短路措施
变压器短路产生的原因及短路措施摘要:电网的运行要求安全性和稳定性,作为变电过程中的重要设备变压器,其安全性尤为重要。
由于变压器成本很高,变压器短路事故不仅会造成资金和资源的浪费,同时也不利于电力系统的供电安全可靠性。
本文对变压器短路产生的原因及防治措施进行了详细研究,提出的建议对于变压器以及电网的安全稳定运行具有重要的工程实际意义。
关键词:变压器;换位导线;机械应力1 变压器短路1.1 变压器短路产生原因变压器短路产生的原因很多,主要分为以下两类:一是结构短路因素;二是运行短路因素。
下面就分别阐述:1.1.1 结构短路。
(1)温度、绕线方式等是造成变压器短路的重要因素。
温度对导线的弯度和强度都有很大的影响,随着导线温度的升高,其弯度、强度均有不同程度的下降,同时,导线的延伸率也会随着下降。
而变压器中导线的设计通常是在常温下进行的,没有考虑到实际运行工况,实际额定运行变压器的绕组温度大大高于常温,能够达到100℃以上。
而随着绕组温度的升高,其抗弯强度和抗拉强度均会明显下降。
绕线松散、导线与线匝间固化措施较差使得导线在运行中易发生变形,造成变压器短路。
(2)采用导线类型不同对变压器短路产生的效果也不尽相同。
普通的换位导线由于其机械强度较差,在外力作用下出现变形、露铜的情况时有发生。
在额定电流下,扭矩较大的两个部位包括换位导线爬坡处以及绕组两端的线饼,扭矩大的直接结果就是导致导线扭曲甚至变形,从而大大增加了变压器内部短路的风险。
软导线是早期造成变压器短路的最主要的原因。
由于认识不足以及成本问题,厂家在生产时采用软导线而不是硬导线,使得由于导线类型造成的变压器短路成为较为主要的原因。
1.1.2 运行短路。
长时间的短路电流是造成运行短路的主要原因。
一般情况下,当在电流速断保护范围内发生短路故障时,继电保护装置能够保证在无延时情况下迅速切除故障,考虑到机械作用固有延时等情况,短路电流持续的时间一般不会超过250ms,但是实际情况却与此有所不同:首先,由于继电保护的选择性,配电侧的保护一般不采用电流速断保护,而是采用定时限过电流保护,配电侧也正是短路多发部分;其次,继电保护虽然要求速动性、选择性、灵敏性和可靠性,可是也不免发生继电保护装置拒动的情况,而当保护拒动时,故障存在时间会较长,有时会到好几分钟甚至几小时,这时变压器导线承受大的短路电流的时间大大增加,超过其热稳定性就会造成短路故障;最后,电力系统的安全稳定可靠运行要求继电保护需配备重合闸装置,如果故障为永久性故障,那么重合闸的过程就会对变压器产生二次冲击,短路刚发生时产生的过电流已经使变压器导线温度急剧升高,导线的扛弯性已经很差,二次冲击电流则很可能导致变压器发生短路事故。
变压器运行中短路损坏的原因分析
变压器运行中短路损坏的原因分析第一篇:变压器运行中短路损坏的原因分析变压器运行中短路损坏的原因分析【内容摘要】通过近几年短路造成变压器损坏的具体实例分析,主要原因由于低压侧过载、违章加油等。
在、就该原因提出了防止变压器损坏的对策。
【关键字】:配电变压器过载损坏论文内容:一、原因分析在广大农村,配电变压器时常损坏,特别是在农村用电高峰期和雷雨季节更是时有发生,笔者通过长期跟踪调查发现导致配电变压器损坏的主要原因有以下几个方面:一)、过载一是随着人们生活的提高,用电量普遍迅速增加,原来的配电变压器容量小,小马拉大车,不能满足用户的需要,造成变压器过负载运行。
二是由于季节性和特殊天气等原因造成用电高峰,使配电变压器过载运行。
由于变压器长期过载运行,造成变压器内部各部件、线圈、油绝缘老化而使变压器烧毁。
二)、绕组绝缘受潮一是配电变压器的负荷大部分随季节性和时间性分配,特别是在农村农忙季节配电变压器将在过负荷或满负荷下使用,在夜晚又是轻负荷使用,负荷曲线差值很大,运行温度最高达80℃以上,而最低温度在10℃。
而且农村变压器容量小没有安装专门的呼吸装置,多在油枕加油盖上进行呼吸,所以空气中的水分在绝缘油中会逐渐增加,从运行八年以上的配电变压器的检修情况来看,每台变压器底部水分平均达100g以上,这些水分都是通过变压器油热胀冷缩的呼吸空气从油中沉淀下来的。
二是变压器内部缺油使油面降低造成绝缘油与空气接触面增大,加速了空气中水分进入油面,降低了变压器内部绝缘强度,当绝缘降低到一定值时变压器内部就发生了击穿短路故障。
二)、运行中注意事项对配电变压器在运行管理中必须做好如下内容:1、在使用配电变压器的过程中,一定要定期检查三相电压是否平衡,如严重失衡,应及时采取措施进行调整。
同时,应经常检查变压器的油位、温度、油色正常,有无渗漏,呼吸器内的干燥剂颜色有无变化,如已失效要及时更换,发现缺陷及时消除。
2、定期清理配电变压器上的污垢,必要时采取防污措施,安装套管防污帽,检查套管有无闪络放电,接地是否良好,有无断线、脱焊、断裂现象,定期摇测接地电阻。
2023年配电变压器的常见故障及处理
2023年配电变压器的常见故障及处理配电变压器是供电系统中的重要设备,负责将高压电能转换为低压电能,并将电能分配给用户。
然而,由于长期运行和环境因素,变压器可能会发生一些故障。
本文将介绍一些2023年配电变压器的常见故障及处理方法。
一、变压器内部故障1. 铁芯短路:变压器铁心受潮、油泡击穿等原因,导致铁芯中心短路。
处理方法:发现铁芯短路故障,应立即停机检修,更换故障铁芯。
2. 线圈短路:线圈绝缘老化、接线松动或线圈绕制缺陷等,导致线圈短路。
处理方法:发现线圈短路,应及时停机检修,更换故障线圈。
3. 绝缘老化:长时间运行和环境因素会导致绝缘材料老化,绝缘性能下降。
处理方法:定期进行绝缘电阻测试,一旦发现绝缘老化问题,应立即进行更换绝缘材料。
二、变压器外部故障1. 漏油:变压器油箱密封不好或机械损伤等原因,导致油箱内的绝缘油泄漏。
处理方法:发现变压器漏油,应立即停机检修,修复泄漏点,补充绝缘油。
2. 温升过高:变压器运行过程中,由于负载过大或散热不良,导致变压器温度升高。
处理方法:检修故障风扇,清理风道,增加变压器冷却方法等。
3. 绝缘子损坏:变压器绝缘子绝缘性能不良或受到机械损伤等原因,导致绝缘子破损。
处理方法:发现绝缘子损坏,应立即停机检修,更换损坏绝缘子。
三、变压器维护与保养措施1. 定期检测和维护:定期进行变压器的绝缘电阻测试、油质分析、温升测试等,及时发现变压器问题,并采取相应的维修措施。
2. 清理维护:定期清理变压器的外表面和周围环境,防止灰尘、杂物等对变压器的影响。
3. 油质维护:定期对变压器内部的绝缘油进行检测和过滤,确保油质的良好状态,延长变压器的使用寿命。
4. 环境管理:变压器应远离有腐蚀性、易燃、易爆等物质的环境,保持变压器周围的良好通风和干燥条件,避免影响变压器的正常运行。
综上所述,2023年配电变压器常见故障及处理方法主要包括内部故障如铁芯短路、线圈短路和绝缘老化等,以及外部故障如漏油、温升过高和绝缘子损坏等。
变压器绕组短路故障排除
变压器绕组短路故障排除
三、相间短路故障的原因及修理 3.排除故障方法。修理过程中必须采取正确的操作方法,
防止拆装变压器时在拧紧和松动螺母中再造成软铜线接片相碰 ,如选用的活动扳手大小要适中,用力要均匀。对不好拧的应 在螺母和螺栓丝处滴一些润滑油,稍停片刻再拧。当螺母上的 螺纹乱扣或锈蚀严重时,应更换同规格尺寸的新螺栓、螺母, 以免在运行中受电磁力作用而振动,再次造成螺栓转动,带动 软铜连接片移动相碰而短路。
变压器绕组短路故障排除
三、相间短路故障的原因及修理 1.相间短路出现较多的是在各类中小型变压器壳内两
相线圈引线上的软铜线接线卡(缓冲器)相碰引起的短 路。
2.故障原因:引起变压器绕组相间短路多数是在检修 中修理人员操作不当,在拆、装变压器过程中,紧固或 松动引线螺母时,造成两相软铜线接片相碰致使相间短 路。
变压器绕组短路 故1.绕组发热,导致变压器过热; 2.出现强大的短路电流,变压器振动大; 3.变压器三相电压及绕组直流电阻不平衡; 4.严重的组短路还会造成变压器烧毁事故。
变压器绕组短路故障排除
二、 绕组短路故障类别 1.匝间短路; 2.相间短路; 3.绕组股间短路; 4.一、二次绕组间短路; 5.绕组短路造成变压器内部组件变形。
行业技术贴士:解析变压器运行中短路损坏的原因
行业技术贴士:解析变压器运行中短路损坏的原因
近年来,变压器油浸式电力变压器10KV级S11-M 事故时有发生,而且有增长的趋势。
从变压器事故情况分析来看,抗短路能力不够已成为电力变压器事故的首要原因,对电网造成很大危害,严重影响电网安全运行。
本文就上海市电力公司近十多年来因电力变压器外部短路而造成损坏事故的情况作一分类分析,进而提出目前有关电磁线选用存在的问题和减少这一类事故的措施,以促进制造厂对产品的改进和完善,同时促使运行单位进一步提高运行管理水平。
变压器短路事故情况从1993年1月至2002年12月,上海电网变压器累计发生短路损坏事故17台次,占整个损坏事故的77.3%,为主要损坏原因,总容2750MVA。
其中500kV级2台次、220kV级13台次、110kV级2台,低压线圈调压器线圈严重变形不得不更换线圈的220kV级1台,110kV级1台,在变压器改造中发现220kV级低压绕组有变形现象4台,运行中发现500kV绕组有变形迹象有2台。
特别自1995年以来,变压器损坏事故呈上升趋势,而且事故影响范围不断在扩大,其事故主要表现形式为:外部多次短路冲击,线圈变形逐渐严重,最终绝缘击穿损坏居多;外部短时内频繁受短路冲击而损坏;长时间短路冲击而损坏;一次短路冲击就损坏。
变压器短路损坏的主要形式根据近几年的变压器因出口短路而发生损坏的情况,变压器在短路故障时,其损坏主要有以下几种特征及产生的原因。
轴向失稳这种损坏主要是在辐向漏磁产生的轴向电磁力作用下,导致变压器绕组轴向变形,该类事故占整个损坏事故的52.9%。
线饼上下弯曲变形这种损坏是由于两个轴向垫块间的导线在轴向电磁力作用下,因弯矩过大产生永久性变形,通常两饼间的变形是对称的。
变压器常见的故障部位
变压器常见的故障部位1.绕组的主绝缘和匝间绝缘故障:变压器绕组的主绝缘和匝间绝缘是容易发生故障的部位。
其主要原因是:由于长期过负荷运行,或散热条件差,或使用年限长,使变压器绕组绝缘老化脆裂,抗电强度大大降低;变压器多次受短路冲击,使绕组受力变形,隐藏着绝缘缺陷,一旦遇有电压波动就有可能将绝缘击穿;变压器油中进水,使绝缘强度大大降低而不能承受允许的电压,造成绝缘击穿;在高压绕组加强段处或低压绕组部位,因统包绝缘膨胀,使油道阻塞,影响散热,使绕组绝缘由于过热而老化,发生击穿短路;由于防雷设施不完善,在大气过电压作用下,发生绝缘击穿。
2.引线绝缘故障:变压器引线通过变压器套管内腔引出与外部电路相连,引线是靠套管支撑和绝缘的。
由于套管上端帽罩(将军帽)封闭不严而进水,引线主绝缘受潮而击穿,或变压器严重缺油使油箱内引线暴露在空气中,造成内部闪络,都会在引线处发生故障。
3.铁芯绝缘故障:变压器铁芯由硅钢片叠装而成,硅钢片之间有绝缘漆膜。
由于硅钢片紧固不好,使漆膜破坏产生涡流而发生局部过热。
同理,夹紧铁芯的穿芯螺丝、压铁等部件,若绝缘破坏,也会发生过热现象。
此外,若变压器内残留有铁屑或焊渣,使铁芯两点或多点接地,都会造成铁芯故障。
4.变压器套管闪络和爆炸:变压器高压侧(110kV及以上)一般使用电容套管,由于瓷质不良故而有沙眼或裂纹;电容芯子制造上有缺陷,内部有游离放电;套管密封不好,有漏油现象;套管积垢严重等,都可能发生闪络和爆炸。
5.分接开关故障:变压器分接开关是变压器常见故障部位之一。
分接开关分无载调压和有载调压两种,常见故障的原因是:1)无载分接开关:由于长时间靠压力接触,会出现弹簧压力不足,滚轮压力不均,使分接开关连接部分的有效接触面积减小,以及连接处接触部分镀银磨损脱落,引起分接开关在运行中发热损坏;分接开关接触不良,引出线连接和焊接不良,经受不住短路电流的冲击而造成分接开关被短路电流烧坏而发生故障;由于管理不善,调乱了分接头或工作大意造成分接开关事故。
变压器运行中的短路故障定位及原因探究
变压器运行中的短路故障定位及原因探究摘要:变压器是电力系统中必不可少的设备,变压器的正常运行对于保证电力供应质量有着重要的作用。
但在实际工作过程之中,变压器时常会出现短路故障,给电力系统的稳定性和安全性带来了巨大的威胁。
因此,本文通过对变压器短路故障的定位和故障原因进行探究,并对变压器短路故障的维修方法进行分析,以期为电力系统的安全稳定运行提供建议支持。
关键词:变压器;短路故障;定位;引言随着社会经济的飞速发展,人们对电力的需求越来越高。
而变压器作为电力系统中的核心设备之一,在电力生产、传输和分配中都扮演着至关重要的角色。
但是在变压器的使用过程中,短路故障十分常见,严重时甚至会造成设备损毁和人身伤亡。
如何及时准确地定位和解决变压器短路故障,成为了电力系统工作者需要解决的重要问题之一。
一、变压器短路故障的定位1.电流法电流法是定位变压器短路故障位置最常用的方法之一,其原理是通过单相短路电流测试仪、反演算法等技术检测变压器中的电流大小和方向,从而找到短路点的位置。
其中,单相短路电流测试仪可以实现对变压器每个相的电流进行单独测试,可以有效地确定短路位置;反演算法则是根据电路模型和测量数据进行计算,从而得出短路点位置。
使用电流法进行变压器故障位置的定位操作简单、准确度较高,但需要专业人员进行操作。
1.继电器保护法继电器保护法是变压器短路故障定位中另一种常用的方法。
其工作原理是在变压器的输入、输出等部位设置保护继电器,当变压器出现异常电流、电压等情况时,继电器会自动跳闸,从而起到保护变压器作用。
在故障定位方面,可以通过判断保护继电器的投入位置和时间,初步确定短路点的位置。
这种方法操作简便,能够及时发现变压器短路问题,但需要对保护继电器进行设置和调试。
1.声音定位法声音定位法也是一种比较常规的故障定位方法。
它主要是利用超声波检测技术对变压器发出的声音进行检测和分析,从而确定短路点的位置。
这种方法操作简单、费用低廉,但精度较低,只适用于一些表面短路或者局部短路的场合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文件编号:TP-AR-L9930
In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives.
(示范文本)
编订:_______________
审核:_______________
单位:_______________
变压器短路损坏的常见
部位(正式版)
变压器短路损坏的常见部位(正式版)
使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。
材料内容可根据实际情况作相应修改,请在使用时认真阅读。
根据近几年的变压器因出口短路而发生损坏的情况,变压器在短路故障时,其绕组损坏部位主要有以下几种。
1.对应铁轭下的部位
该部位发生变形原因有:
(1)短路电流所产生的磁场是通过油和箱壁或铁心闭合,由于铁轭的磁阻相对较小,故大多通过油路和铁轭间闭合,磁场相对集中,作用在线饼的电磁力也相对较大;
(2)内绕组套装间隙过大或铁心绑扎不够紧实,导致铁心片二侧收缩变形,致使铁轭侧绕组曲翘变
形;
(3)在结构上,轭部对应绕组部分的轴向压紧是最不可靠的,该部位的线饼往往难以达到应有的预紧力,因而该部位的线饼最易变形。
2.调压分接区域及对应其他绕组的部位
该区域由于:
(1)安匝不平衡使漏磁分布不均衡,其幅向额外产生的漏磁场在线圈中产生额外轴向外力,这些力的方向总是使产生这些力的不对称性增大。
轴向外力和正常幅向漏磁所产生的轴向内力一样,使线饼向竖直方向弯曲,并压缩线饼件的垫块,除此之外,这些力还部分地或全部地传到铁轭上,力求使其离开心柱,出现线饼向绕组中部变形或翻转现象;
(2)该部位的线饼为力求安匝平衡或分接区间的应有绝缘距离,往往要增加较多的垫块,较厚的垫块
致使力的传递延时,因而对线饼撞击也较大;
(3)绕组套装后不能确保中心电抗高度对齐,致使安匝进一步加剧不平衡;
(4)运行一段时间后,较厚的垫块自然收缩量较大,一方面加剧安匝不平衡现象,另一方面受短路力时跳动加剧;
(5)在设计时间为力求安匝平衡,分接区的电磁线选用了较窄或较小截面的线规,抗短力能力低。
3.换位部位
这部位的变形常见于换位导线的换位和单螺旋的标准换位处。
换位导线的换位,由于其换位的爬坡较普通导线的换位为陡,使线匝半径不同的换位处产生相反的切向力,这对大小相等方向相反的切向力,致使内绕组的换位向直径变小,方向变形,外绕组的换位力求线
匝半径相同,使换位拉直,内换位向中心变形,外换位向外变形,而且换位导线厚度越厚,爬坡越陡,变形越严重。
另外,换位处还存在轴向短路电流分量,所产生的附加力,致使线饼变形加剧。
单螺旋的标准换位,在空间上要占一匝的位置,造成该部位安匝不平衡,同时又具有换位导线换位变形特征,因此该部位的线饼更容易变形。
4.绕组的引出线
常见于斜口螺旋结构的绕组,该结构的绕组,由于二个螺旋口安匝不平衡,轴向力大,同时又有轴向电流存在,使引出线拐角部位产生一个横向力而发生扭曲变形现象。
另外螺旋绕组在绕制过程中,有剩余应力存在,会使绕组力求恢复原状现象,故螺旋结构的绕组,受短路电流冲击下更容易扭曲变形。
5.引线间
常见于低压引线间,低压引线由于电压低流过电流大,相位120度,使引线相互吸引,如果引线固定不当的话,会发生相间短路。
此处输入对应的公司或组织名字
Enter The Corresponding Company Or Organization Name Here。