2020-2021《比例和反比例 》单元测试题

合集下载

(完整版)六年级下比例单元测试题

(完整版)六年级下比例单元测试题

《比例》单元测试题一、填空题:(每空3分)1、用2、3、4、6写出比例式:( )。

2、在一个比例中,如果两个外项的积是21,其中一个内项是32,则另一个内项是( )。

3、在A ×B=C 中,当B 一定时,A 和C 成( )比例,当C 一定时,A 和B 成( )比例。

4、一种精密零件长5毫米,把它画在比例尺是12:1的零件图上,长应画( )厘米。

5、在一幅中国地图上量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是180千米。

这幅地图的比例尺是( )。

6、A 的32与B 的43相等,那么A ∶B =( )∶( ).7、在比例尺是1:2000000的地图上,量得两地距离是38厘米,这两地的实际距离是( ) 千米.二、判断题:(每题3分)8、工作总量一定,工作效率和工作时间成反比例。

( ) 9、在一幅地图上,图上距离和实际距离成正比例。

( )10、X 和Y 表示两种相关联的量,同时5X-7Y=0,X 和Y 不成比例。

( ) 11、如果3a=5b ,那么a :b=5:3。

( )12、在一定的距离内,车轮周长和它转动的圈数成反比例。

( ) 13、一个正方形按3∶1放大后,周长和面积都扩大了3倍。

( ) 三、选择题:(每题3分)14、一条路的长度一定,已经修好的部分和剩下的部分( )。

A .成正比例 B .成反比例 C .不成比例 15、比例尺 表示 ( )A 、图上距离是实际距离的24000001。

B 、实际距离是图上距离的800000倍。

C 、实际距离与图上距离的比为1 :800000 16、表示x 和y 成正比例的关系式是( )。

A 、x+y=k (一定)B 、xy= k C 、y x = k (一定) D 、xy=k (一定)17、在下面各比中,能与31:41组成比例的比是( )。

A 、4:3 B 、3:4 C 、41:3 D 、41:31 18、下面第( )组的两个比能组成比例。

第一章《反比例函数》(基础卷)(解析版)

第一章《反比例函数》(基础卷)(解析版)

2022-2023学年湘教版九年级上册期末真题单元冲关测卷(基础卷)第一章反比例函数一、选择题(每小题4分,共40分)1.(2021-2022·湖南·期末试卷)下列函数中,是反比例函数的是()A.y=5B.y=x2C.y=2x+1D.2y=xx【答案】A【解析】根据反比例函数的定义,可得答案.解:形如y=k(k≠0)的函数是反比例函数,故只有选项A符合题意.x2.(2021-2022·广东·单元测试)若函数y=(m2−1)x m2−m−3是反比例函数,则m的值是()A.±1B.2C.−1或2D.−1【答案】B【解析】因为函数y=(m2−1)x m2−m−3是反比例函数,所以m2−m−3=−1,m2−1≠0,所以m=2.3.(2021-2022·河南·月考试卷)下列关于反比例函数y=−3的结论中正确的是()xA.图象过点(1,3)B.图象在一、三象限内C.当x<0时,y随x的增大而增大D.当x>−1时,y>3【答案】C4.(2021-2022·河南·月考试卷)已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为I=U,当电压为定值时,关于R的函数图象是()RA. B. C. D.【答案】A5.(2021-2022·广东·单元测试)已知反比例函数y=kx的图象经过点P(3,−4),则这个反比例函数的解析式为()A.y=12x B.y=−12xC.y=3xD.y=4x【答案】B【解析】将P(3,−4)代入y=kx,得k=3×(−4)=−12.故反比例函数解析式为y=−12x.6.(2021-2022·安徽·期末试卷)若点A(−3,2)关于x轴的对称点A′恰好在反比例函数y=kx(k≠0)的图象上,则k的值为()A.−5B.−1C.6D.−6【答案】C7.(2021-2022·广东·同步练习)如图,点P在反比例函数y=kx(k≠0)的图象上,PA⊥x轴于点A ,△PAO的面积为2,则k的值为()A.1B.2C.4D.6【答案】C【解析】根据反比例函数系数k的几何意义可知,△PAO的面积=12|k|,再根据图象所在象限求出k的值既可.解:依据比例系数k的几何意义可得,△PAO的面积=1|k|,2即1|k|=2,解得,k=±4,由于函数图象位于第一、三象限,故k=4.28.(2021-2022·广东·月考试卷)若点A(−3,y1),B(−1,y2),C(3,y3)都在反比例函数y=k(k>0)的x图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y1>y3>y2【答案】B9.(2021-2022·安徽·月考试卷)已知正比例函数y=k1x和反比例函数y=k2,在同一直角坐标x系下的图象如图所示,其中符合k1⋅k2>0的是()A.①②B.①④C.②③D.③④【答案】B【解析】根据正比例函数和反比例函数的图象逐一判断即可.10.(2021-2022·广东·单元测试)如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(4a,a)是反比例函数y=k(k>0)的图象上与正方形的一个交点,若x图中阴影部分的面积等于16,则k的值为( )A.16B.1C.4D.−16【答案】C【解析】根据正方形的对称性及反比例函数的的对称性,由割补法可以得出阴影部分的面积就是一个小正方形的面积,又阴影部分的面积是16,故一个小正方形边长为4,根据点的坐标与图形的性质即可得出|4a=4,求解得出a的值,再根据反比例函数图象上的点的坐标特点即可求出k的值.解:如图:∵图中阴影部分的面积等于16,∴正方形OABC的面积=16.∵P点坐标为(4a, a),∴OA=OC=4a,∴4a×4a=16,∴a=1(a=−1舍去),∴P点坐标为(4, 1).把P(4, 1)代入y=kx,得k=4×1=4.二、填空题(本题共计6小题,每题4分,共计24分)11.(2021-2022·广东·期末试卷)若函数y=mx m2+3m−1是反比例函数,则m=________.【答案】−3【解析】直接利用反比例函数的定义分析得出即可.【解答】解:∵函数y=mx m2+3m−1是反比例函数,∴m2+3m−1=−1且m≠0,解得:m=−3.12.(2020-2021·湖南·期中试卷)已知反比例函数y=(m−2)x m2−10的图象,在每一象限内y随x 的增大而减小,则反比例函数的解析式为________.【答案】y=1x【解析】根据反比例函数的定义得到得m−2≠0m2−10=−1,可解得m=3或−3,再根据反比例函数的性质得到m−2>0,则m=3,然后把m=3代入y=(m−2)x m2−10即可.解:根据题意得m−2≠0,m2−10=−1,解得m=3或−3,∵反比例函数在每一象限内y随x的增大而减小,∴m−2>0,∴m>2, ∴m=3,∴y=(3−2)x−1=1x,13.(2021-2022·全国·中考复习)计划修建铁路1200km,那么铺轨天数y(d)是每日铺轨量x的________比例函数解,其表达式为________.【答案】反,y=1200x【解析】本题考查反比例函数的定义.解:故答案为:反,y=1200x.14.(2021-2022·河南·中考复习)已知函数y=−1x,当自变量的取值为−1<x<0或x≥2时,函数值y的取值为________.【答案】y>1或−12≤y<0解:画出函数y=−1x的图象,如图所示:当x=−1时,y=1,当x=2时,y=−12.由图象可得:当−1<x<0时,y>1,当x≥2时,−12≤y<0.15.(2021-2022·河南·月考试卷)已知(−3, y1),(−2, y2),(1, y3)是抛物线y=3x2+12x+m上的点,则y1,y2,y3的大小关系为________.A.y2<y3<y1B.y1<y2=y3C.y2<y1<y3D.y3<y2<y1【答案】C【解析】利用二次函数解析式求出其对称轴,再利用二次函数的对称性可得到点(−3,y1)关于对称轴对称的点的坐标(−1y1);利用二次函数的增减性比较−2,−1,1的大小关系,就可得到y1,y2,y3的大小关系.解:A(−3,y1),B(−2,y2),C(1,y3)在二次函数y=3x2+12x+m的图象上,=−2,开口向上,y=3x2+12x++m的对称轴x=−b2a∴当x=−3与x=−1关于x=−2对称,:A在对称轴左侧,y随x的增大而减小,则y1>y2C在对称轴右侧,y随x的增大而增大,1>−1, ∵y3>y1, ∵y3>y1>y216.(2021-2022·河南·中考复习)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半的图象经过菱形OB-CD对角线的交点A,若点D的坐标为(6,8),则k 轴上,反比例函数y=kx的值为________.【答案】32解:∵点D的坐标为(6, 8),∴OD==10,∵四边形OBCD是菱形,∴OB=OD=10,∴点B的坐标为:(10, 0),∵AB=AD,即A是BD的中点,∴点A的坐标为:(8, 4),的图象上,∵点A在反比例函数y=kx∴k=xy=8×4=32.三、解答题(本题共计8小题,每题10分,共计86分)17.(2021-2022·广东·单元测试)已知函数y=(m2+2m)x m2−m−1.(1)如果y是x的正比例函数,求m的值;(2)如果y是x的反比例函数,求出m的值,并写出此时y与x的函数关系式.解:(1)由y=(m2+2m)x m2−m−1是正比例函数,得m2−m−1=1且m2+2m≠0,解得m=2或m=−1;(2)由y=(m2+2m)x m2−m−1是反比例函数,得m2−m−1=−1且m2+2m≠0,解得m=1,.故y与x的函数关系式y=3x18.(2020·广东·单元测试)已知函数y=(k−2)x k2−5为反比例函数.(1)求k的值;(2)它的图象在第________象限内,在各象限内,y随x增大而________;(填变化情况)时,y的取值范围.(3)求出−2≤x≤−12解:由题意得:k2−5=−1,解得:k=±2,∵k−2≠0,∴k=−2;∵k=−2<0,∴反比例函数的图象在二、四象限,在各象限内,y随着x增大而增大;故答案为:二、四,增大;∵反比例函数表达式为y=−4,x时,y=8,∴当x=−2时,y=2,当x=−12时,2≤y≤8.∴当−2≤x≤−1219.(2021-2022·吉林·月考试卷)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象与在第一象限内的图象交于点C,连接CO x轴交于点A(−4,0),与y轴交于点B,与反比例函数y=kx.(1)求b的值;(2)若S△OBC=2,则k的值是________.解:(1)∵一次函数y=x+b经过点A(−4,0)∴0=−4+b∴b=4.∴B(0,4).(2)∵S△OBC=2 ∴1×4×x C=2 ∴x C=12∴点C横坐标为1.把x=1代入y=x+4得,y=5 ∴C(1,5).∵反比例函数y=k过点C,∴k=1×5=5,x20.(2021-2022·甘肃·月考试卷)如图,一次函数y=kx+b与反比例函数y=m的图象相交于xA(−1, 4),B(2, n)两点,直线AB交x轴于点D.(1)求一次函数与反比例函数的表达式;(2)过点B 作BC ⊥y 轴,垂足为C ,连接AC 交x 轴于点E ,求△AED 的面积S · .解:(1)把A(−1, 4)代入反比例函数y =mx 得,m =−1×4=−4所以反比例函数的解析式为y =4x ;把B(2, n)代入y =−4x 得,2n =−4.解得n =−2,所以B 点坐标为(2, −2),把A(−1, 4)和B(2, −2)代入一次函数y =kx +b 得{−k +b =42k +b =−2,解得{k =−2b =2,所以一次函数的解析式为y =−2x +2;(2)∵ BC ⊥y 轴,垂足为C ,B(2, −2),∴ C 点坐标为(0, −2).设直线AC 的解析式为y =px +q ,∵ A(−1, 4),C(0, −2),∴ {−p +q =4q =−2,解得{p =−6q =−2∴ 直线AC 的解析式为y =−6x−2,当y =0时,−6x−2=0,解得x =−13,∴ E 点坐标为(−13, 0),∵ 直线AB 的解析式为y =−2x +2,∴ 直线AB 与x 轴交点D 的坐标为(1, 0)·∴ DE =1−(−13)=43,∴ △AED 的面积s =12×43×4=83.21.(2021-2022·山东·月考试卷)Rt△OAB在直角坐标系内的位置如图所示,BA⊥OA,反比例函数y=k(k≠0)在第一象限内的图像与AB交于点C(8,1)与OB交于点D(4,m).x(1)求该反比例函数的解析式及图像为直线OB的正比例函数解析式;(2)求BC的长., 解得:k=8,解:(1)将点C(8,1)代入反比例函数解析式中,得1=k8∴反比例函数解析式为y=8,x,解得:m=2,将点D(4,m)代入反比例函数解析式中,得m=84∴点D(4,2),设直线OB的正比例函数解析式为y=ax,将点D(4,2)代入,得2=4a,解得:a=1,2∴直线OB的解析式为y=1x;2(2)∵BA⊥OA即BC⊥x轴,∴点B的横坐标等于点C的横坐标8,将x=8代入y=1x中,解得y=4,∴点B的坐标为(8, 4),2∴AB=4,∵点C(8,1),∴AC=1,∴BC=AB−AC=3.22.(2021-2022·河南·月考试卷)如图,平行四边形OABC的边OA在x轴上,点D是对角线OB 的中点,反比例函数y=k(x>0)的图象经过点D.点B的坐标为(10,4),点C的坐标为(3,4)x(1)求反比例函数的解析式;(2)求平行四边形OABC 的周长.解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,∵ 点D 是OB 的中点∴ 点E 是OF 的中点,且DE =12BF ,∴ OE =5, DE =2 ∴ 点D 的坐标为(5,2).∵ 反比例函数y =k x (x >0)的图象经过点D ,∴ 2=k 5,解得k =10,∴ 反比例函数的解析式为y =10x .(2)∵ 点B 的坐标为 (10,4),点C 的坐标为 (3,4) ,∴ BC =10−3=7.由勾股定理易得OC ==5,所以平行四边形OABC 的周长为 (5+7)×2=24.23.(2021-2022·山东·月考试卷)如图,在平面直角坐标系中,直线y =x +2与双曲线y =k x 交于A ,B 两点,已知点A 的横坐标为1.(1)求k 的值; (2)求△OAB 的面积;(3)直接写出关于x 的不等式x +2>k x 的解集.解:(1)∵ 点A 的横坐标为1,∴ 将x =1二代入y =x +2中,得y =3,∴ 点A 的坐标为(1,3),∵ 直线y =x +2与双曲线y =k x 交于A ,B 两点∴ 将A (1,3)代入y =k x 中,得k =3.(2)∵直线y=x+2与双曲线y=3x交于A,B两点∴解y=x+2y=3x,得x=1x=−3∴点A的坐标为(1,3)点B的坐标为(−3,−1)∵如图,直线y=x+2与y轴交于点C∴点C的坐标为(0,2),∴OC=2,∴S△OAB=CO⋅(x A−x B)2=2×[1−(−3)]2=4,即△OAB的面积为4.(3)x>1或−3<x<0.24.(2021-2022·安徽·月考试卷)校园里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10∘C,加热到100∘C停止加热,水温开始下降,此时水温y(∘C)与开机后用时x(min)成反比例关系,直至水温降至40∘C,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为40∘C时接通电源,水温y(∘C)与时间x(min)的关系如图所示:(1)分别写出图中水温上升和下降阶段y与x之间的函数关系式;(2)小明同学想喝高于50∘C的水,请问他最多需要等待多长时间?解:(1)观察图象,可知:当x=6(min)时,水温y=100(∘C),当0≤x≤6时,设y关于x的函数关系式为:y=kx+b,b=40,6k+b=100,得k=10,b=40,即当0≤x≤6时,y关于x的函数关系式为y=10x+40;当x>6时,设y=ax,100=a6,得a=600,即当x>6时,y关于x的函数关系式为y=600x,∴ y与x的函数关系式为:y=10x+40,600x.(2)将y=50代入y=10x+40,得x=1,∴P(1,50),将y=50代入y=600x,得x=12,∴M(12,50),当y=40时,x1=0,x2=15,∴Q(15,40),因为饮水机关机即刻自动开机,重复上述自动程序,如图,∴N(16,50),∴MN=4,∴他最多要等4分钟.。

反比例函数单元测试题(含答案)

反比例函数单元测试题(含答案)

反比例函数练习题一. 选择题1. 函数y m x m m =+--()2229是反比例函数,则m 的值是( )A. m =4或m =-2B. m =4C. m =-2D. m =-1 2. 下列函数中,是反比例函数的是( ) A. y x =-2 B. y x =-12 C. y x =-11 D. y x =123. 函数y kx =-与y k x=(k ≠0)的图象的交点个数是( ) A. 0 B. 1 C. 2 D. 不确定 4. 函数y kx b =+与y k x kb =≠()0的图象可能是( )A B C D5. 若y 与x 成正比,y 与z 的倒数成反比,则z 是x 的( )A. 正比例函数B. 反比例函数C. 二次函数D. z 随x 增大而增大6. 下列函数中y 既不是x 的正比例函数,也不是反比例函数的是( )A. y x =-19B. 105=-x y :C. y x =412 D.152xy =- 二. 填空题7. 一般地,函数__________是反比例函数,其图象是__________,当k <0时,图象两支在__________象限内。

8. 已知反比例函数y x=2,当y =6时,x =_________。

9. 反比例函数y a x a a =---()3224的函数值为4时,自变量x 的值是_________。

10. 反比例函数的图象过点(-3,5),则它的解析式为_________11. 若函数y x =4与y x =1的图象有一个交点是(12,2),则另一个交点坐标是_________。

三. 解答题12. 直线y kx b =+过x 轴上的点A (32,0),且与双曲线y k x =相交于B 、C 两点,已知B 点坐标为(-12,4),求直线和双曲线的解析式。

13. 已知一次函数y x =+2与反比例函数y k x =的图象的一个交点为P (a ,b ),且P 到原点的距离是10,求a 、b 的值及反比例函数的解析式。

【小学】2021北师大版六年级数学下册《 正比例与反比例》单元测试题有答案

【小学】2021北师大版六年级数学下册《 正比例与反比例》单元测试题有答案

2021-2021学年北师大版小学六年级数学下册《第4章正比例与反比例》单元测试题一.选择题(共10小题)1.下列等式中,a与b(a、b均不为0)成反比例的是()A.2a=5b B.a×7=C.a×=12.正方形的边长和它的周长()A.成正比例B.成反比例C.不成比例3.如图,将莫比乌斯带沿虚线剪开,结果是()A.一条长纸条B.两个套在一起的纸环C.两个独立的纸环D.一个大的纸环4.把5克盐放入50克水中,盐和盐水的比是()A.1:9B.1:11C.1:10D.1:85.书法兴趣小组共有学生36人,男生人数和女生人数的比可能是()A.3:2B.6:5C.7:56.下列图象表示正比例关系的是()A.B.C.D.7.下列各题中,两种量成比例关系的是()A.圆的面积和圆的半径B.路程一定,已走路程和剩下的路程C.平行四边形的面积一定,这平行四边形的底和高8.下列两种量的关系成正比例关系的是()A.圆的半径和圆的面积B.写字总数一定,写一个字所用时间和写字总时间C.写字总数一定,每分钟写字个数和写字总时间D.两个互相咬合的齿轮,齿轮的齿数和转数9.下列说法不正确的是()A.若=3y,那么y和成反比例B.24:36和:能组成比例C.在一个比例中,若两个内项互为倒数,则两个外项一定互为倒数D.圆的面积和它的半径成反比例10.总价一定,单价和数量()A.成正比例B.成反比例C.不成比例D.以上都不对二.填空题(共8小题)11.比例尺一定,图上距离和实际距离成比例;作文本的总价一定,单价与所买的本数成比例。

12.购买笔记本的总价一定,笔记本的单价与数量成比例.13.如果甲数与乙数的比是1:,那么乙数与甲数的比是:。

14.如图,人行走在这样的带子上,不越过边缘,(填“能”或“不能”)到达带子上的任意一点.15.一个零件的实际长度是4毫米,画在图纸上长8厘米,这张图纸的比例尺是,零件的宽度是3毫米,在图纸上应画厘米。

六年级数学下册典型例题系列之第六单元正比例和反比例在图表中的应用专项练习(解析版)(苏教版)

六年级数学下册典型例题系列之第六单元正比例和反比例在图表中的应用专项练习(解析版)(苏教版)

2021-2022学年六年级数学下册典型例题系列之第六单元正比例和反比例在图表中的应用专项练习(解析版)一、填空题。

1.(2021·河北邯郸·小升初真题)如图表示一辆汽车在公路上行驶的时间与路程的关系,这辆汽车行驶的时间与路程成()比例。

照这样计算,2.2小时行驶()千米。

【解析】(1)根据图可知:路程÷时间=速度(一定),商一定,所以路程和时间成正比例关系;(2)100÷1×2.2=100×2.2=220(千米)2.(2021·河北保定·小升初真题)观察关于购买衣服的统计表:购买衣服的数量和总价成( )比例。

【解析】70÷2=35105÷3=35140÷4=35175÷5=35210÷6=35总价÷数量=35(一定),商一定,所以购买衣服的数量和总价成正比例。

3.(2021·云南玉溪·六年级期末)如图表示一辆汽车在公路上行驶的时间与路程的关系,这辆汽车行驶的时间与路程成( )比例。

照这样计算,该汽车6.6时行驶( )km。

【解析】6.6×100=660(千米)这辆汽车行驶的时间与路程成正比例。

照这样计算,该汽车6.6时行驶660km。

4.(2021·陕西·延安市宝塔区蟠龙镇初级中学六年级期末)莎莎骑车到相距5千米的书店买书,买完书立刻返回家中。

如图是她离开家的距离与时间的统计图。

(1)莎莎去书店每小时行( )千米,用了( )分钟,这段时间内她骑车的路程和时间成( )比例。

(2)莎莎从书店返回家中的速度是每小时( )千米,用了( )分钟。

(3)莎莎返回时的速度比去时慢( )%。

【解析】(1)5÷0.5=10(千米),所以,莎莎去书店每小时行10千米,用了30分钟,这段时间内她骑车的路程和时间成正比例;(2)5÷1.25=4(千米),所以,莎莎从书店返回家中的速度是每小时4千米,用了75分钟;(3)(10-4)÷10=6÷10=60%所以,莎莎返回时的速度比去时慢60%。

反比例函数》单元测试题(含答案)-

反比例函数》单元测试题(含答案)-

反比例函数》单元测试题(含答案)-1.给定双曲线经过点(-2,3),求解析式。

解析:双曲线的一般式为y=k/x,代入点(-2,3)可得3=k/(-2),解得k=-6,所以双曲线的解析式为y=-6/x。

2.已知y与x成反比例,且y=1时,x=4,求x=2时的y 值。

解析:由反比例函数的定义可知,y1*x1=y2*x2,代入y=1,x=4可得1*4=y2*2,解得y2=2,所以当x=2时,y=2.3.已知反比例函数和正比例函数的图象都经过点A(-1,-2),求它们的解析式。

解析:正比例函数的图象为直线y=kx,代入点A可得-2=k*(-1),解得k=2,所以正比例函数的解析式为y=2x。

反比例函数的图象为双曲线y=k/x,代入点A可得-2=k/(-1),解得k=2,所以反比例函数的解析式为y=2/x。

4.某厂有1500吨煤,求这些煤能用的天数y与每天用煤的吨数x之间的函数关系式。

解析:假设每天用煤的吨数为x,那么1500吨煤能用的天数为y=1500/x,所以函数关系式为y=1500/x。

5.若点(3,6)在反比例函数y=k/x(k≠0)的图象上,那么下列各点在此图象上的是()解析:由反比例函数的图象可知,其图象为双曲线,因此点(3,6)在图象上,而点(-3,-6)、(2.-9)、(2.9)、(3.-6)不在图象上。

6.已知反比例函数的图象过(2,-2)和(-1,n),求n的值。

解析:反比例函数的图象为双曲线,过点(2,-2)和(-1,n)的双曲线有两个分支,分别为y=k/x和y=-k/x,因此可列出方程组-2=k/2和n=-k/-1,解得k=4,n=4,所以n的值为4.7.反比例函数y=k^3/x的图像经过(-,5)点、(a,-3)及(10,b)点,求k、a、b的值。

解析:代入三个点可得5=k^3/-,-3=k^3/a^3,b=k^3/10,解得k=∛(-50),a=∛(k^3/-3),b=10∛(-50)。

(必考题)初中数学九年级数学上册第六单元《反比例函数》检测卷(有答案解析)(4)

(必考题)初中数学九年级数学上册第六单元《反比例函数》检测卷(有答案解析)(4)

一、选择题1.关于反比例函数y =4x,下列说法不正确的是( ) A .图象关于原点成中心对称 B .当x >0时,y 随x 的增大而减小C .图象与坐标轴无交点D .图象位于第二、四象限 【答案】D【分析】根据反比例函数图象的性质判断即可.【详解】解:根据反比例函数的性质可知,图象关于原点成中心对称,图象与坐标轴无交点,所以A 、C 不符合题意;因为比例系数是4,大于0,所以当x >0时,y 随x 的增大而减小,故B 不符合题意; 因为比例系数是4,大于0,所以图象位于第一、三象限,故D 错误,符合题意; 故选:D .【点睛】本题考查了反比例函数图象的性质,解题关键是掌握反比例函数图象的性质并熟练运用.2.如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S +=( )A .4B .3C .2D .1【答案】A【分析】 先根据反比例函数系数k 的几何意义得S 1+S 阴影及S 2+S 阴影的值,进而可得出S 1+S 2的值.【详解】解:∵点A 、B 是双曲线3y x=上的点, ∴S 1+S 阴影=S 2+S 阴影=3,∵S 阴影=1∴S 1=S 2=3-S 阴影=3-1=2,∴12224S S +=+=.故选A .【点睛】本题考查反比例函数系数k 的几何意义,是常考点,需要学生熟练掌握.3.若点()12,y -()21,y -、()31,y 都在反比例函数()0k y k x =<的图象上,则有( ) A .123y y y >>B .312y y y >>C .213y y y >>D .132y y y >> 【答案】C【分析】 先根据反比例函数y =k x中k <0判断出函数图象所在的象限,再得出在每一象限内函数的增减性,再根据三点横坐标的值即可判断出y 1,y 2,y 3的大小.【详解】 解:∵反比例函数y =k x中k <0, ∴函数图象的两个分支位于二四象限,且在每一象限内y 随x 的增大而增大,∵﹣2<﹣1<0,∴y 2>y 1>0,∵1>0,∴y 3<0,∴y 2>y 1>y 3.故选:C .【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.4.已知ABC 为直角三角形,且30A ∠=︒,若ABC 的三个顶点均在双曲线(0)k y k x=>上,斜边AB 经过坐标原点,且B 点的纵坐标比横坐标少3个单位长度,C 点的纵坐标与B 点横坐标相等,则k =( )A .4B .92C .32D .5【答案】B【分析】 设(,)(0)k B x k x>,再分别表示出B ,C ,由直角三角形的性质得出BC OB =,联立方程组求出k 的值即可.【详解】 解:在k y x=中,设(,)(0)k B x k x >, 则3k x x +=,(,)k C x x∵AB 经过坐标原点, ∴(,)k A x x-- ∵ABC 为直角三角形,且30A ∠=︒,∴∠60B =︒ ∴1,22BC AB AB BC == 又∵2AB OB =∴BC OB = ∴22222()3k k x x x x k x x +=-⎪+=⎪⎩解得,92=k【点睛】本题属于反比例函数综合题,考查了反比例函数的性质,待定系数法,中心对称的性质等知识,解题的关键是学会利用中心对称的性质解决问题.5.某班“数学兴趣小组”探究出了有关函数1223y x =-+(图象如图)的三个结论:①方程12203x -=+有1个实数根,该方程的根是3x =;②如果方程1223a x -=+只有一个实数根,则a 的取值范围是2a =或0a =;③如果方程1223a x -=+有2个实数根,则a 的取值范围是02a <<或2a >.你认为正确的结论个数有( )A .3B .2C .1D .0 【答案】A【分析】 利用函数图像结合图像性质分析求解.【详解】解:结合函数图像可以看出当y=12203x -=+时,函数图像与x 轴有1个交点,(3,0),∴方程12203x -=+有1个实数根,该方程的根是3x =,故①正确; 如果方程1223a x -=+只有一个实数根,由①可得a=0, 若a=2,则12223x -=+,此时只有12=43x +,解得x=0(经检验,是原方程的解) ∴方程1223a x -=+只有一个实数根,则a 的取值范围是2a =或0a =,故②正确; 由②可得当2a =或0a =时,y=1223a x -=+有一个实数根∴方程1223a x -=+有2个实数根,则a 的取值范围是02a <<或2a >,故③正确 正确的共3个,故选:A .【点睛】本题考查了函数的性质,函数与方程等知识,学会利用图象,数形结合思想解题是关键.6.如图,在x 轴正半轴上依次截取1122320202021OA A A A A A A ====,过点1A .2A ,3A 、、2020A 、2021A 分别作x 轴的垂线,与反比例函数2y x =的图象依次相交于1P ,2P 、3P 、 、2021P ,得到11OP A ∆、122O P A ∆、、202020212021A P A ∆,并设其面积分别为1S 、2S 、、2021S ,则2021S 的值为( )A .12021B .12020C .22021D .11010【答案】A【分析】 设OA 1=A 1A 2=A 2A 3=…=A 2020A 2021=t ,利用反比例函数图象上点的坐标特征得到P 1(t ,2t ),P 2(2t ,22t ),P 3(3t ,23t),…,P 2021(2021t ,22021t ),然后根据三角形面积公式可计算出S 2021.【详解】解:设OA 1=A 1A 2=A 2A 3=…=A 2010A 2021=t ,则P 1(t ,2t ),P 2(2t ,22t),P 3(3t ,23t),…,P 2021(2021t ,22021t ), 所以S 2021=121=220212021t t ⨯⨯.【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y=k x的图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数图象上点的坐标特征.7.如图,点P 在反比例函数y =k x的图象上,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,且△APB 的面积为2,则k 等于( )A .-4B .-2C .2D .4【答案】A【分析】 根据反比函数定义去思考求解即可.【详解】设点P 的坐标为(x ,y),∵PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,∴PA=y ,PB=-x ,∵△APB 的面积为2,∴122PA PB ⋅=, ∴-xy=4,即xy=-4, ∵点P 在反比例函数y =k x的图象上, ∴k=xy=-4,故选A.【点睛】本题考查了根据反比例函数图像一点,向坐标轴引垂线构成三角形面积求k ,熟练运用点与函数的关系,坐标与线段之间的关系,三角形面积的定义是解题的关键.8.对于反比例函数2y x=-,下列说法正确的是( ) A .图象经过点()2,1--B .已知点()12,P y -和点()26,Q y ,则12y y <C .其图象既是轴对称图形也是中心对称图形D .当0x >时,y 随x 的增大而减小【答案】C【分析】根据反比例函数的性质进行判断即可.【详解】 解: A 、把点 ()2,1-- 代入反比例函数y=2x-,得-1≠2--2,故不正确; B 、把点 ()12,P y - 代入反比例函数y 1=221--=,把点 ()26,Q y 代入反比例函数y 2=2361-=-,12y y >,故不正确; C 、其图象既是轴对称图形也是中心对称图形,符合题意;D 、k=-2<0,∴在每一象限内y 随x 的增大而增大,故不正确;故选C .【点睛】 本题考查了反比例函数y= k x(k≠0)的性质: ①当k>0 时,图象分别位于第一、 三象限;当k<0时, 图象分别位于第二、 四象限;②当k>0时,在同一个象限内, y 随x 的增大而减小;当k<0时, 在同一个象限, y 随x 的增大而增大.9.已知点A 、点B 在反比例函数(0)k y k x=≠图象的同一支曲线上,则点A 、点B 的坐标有可能是( )A .A (2,3)、B (-2,-3)B .A (1,4)、B (4,1)C .A (4,3)、B (4,-3)D .A (3,3)、B (2,2) 【答案】B【分析】在反比例函数图象的同一支上,一定满足同一函数解析式且在同一象限.【详解】解:A. A (2,3)、B (-2,-3)两点均在同一反比例函数图象上,但不在同一支上,故选项A 不符合题意;B. A (1,4)、B (4,1)两点均在同一反比例函数图象上,且在同一支上,故选项B 符合题意;C. A (4,3)、B (4,-3)两点不在同一反比例函数图象上,故选项C 不符合题意;D. A (3,3)、B (2,2)两点不在同一反比例函数图象上,故选项D 不符合题意. 故选:B .【点睛】本题主要考查了反比例函数图象的特点,掌握两点在反比例函数图象的同一支曲线上的条件是解答本题的关键.10.如图所示,反比例函数k y x =(0k ≠,0x ≥)的图象经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为等于8,则k 的值等于( )A .1B .2C .3D .4 【答案】B【分析】过D 作DE ⊥OA 于E ,设,k D a a ⎛⎫ ⎪⎝⎭,于是得到OA=2a ,2k OC a=,根据矩形的面积列方程即可得到结论.【详解】解:过D 作DE OA ⊥于点E ,如图,设,k D a a ⎛⎫ ⎪⎝⎭, ∴OE a =,k DE a=, ∵点D 是矩形OABC 的对角线AC 的中点,∴2OA a =,2k OC a=, ∵矩形OABC 的面积为8, ∴228k OA OC a a⋅=⨯=,解得2k =, 故选:B .【点睛】本题考查了反比例函数系数k 的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.11.下列各点中,在反比例函数12y x =-图象上的是( ) A .()2,6--B .()2,6-C .()3,4D .()4,3-- 【答案】B【分析】利用反比例函数图象上点的坐标特征进行判断.【详解】解:∵-2×(-6)=12,-2×6=-12,3×4=12,-4×(-3)=12,∴点(-2,6)在反比例函数12y x=-图象上. 故选:B .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=-(k 为常数,k≠0)的图象是双曲线;图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .12.函数1y x =与函数1y x=-的图像可以通过图形变换得到,给出下列变换:①平移,②旋转,③轴对称,④相似(相似比不为1),则可行的是( ) A .①②B .②③C .①④D .③④ 【答案】B【分析】 由于反比例函数的图象是一个中心对称图形,也是轴对称图形,即函数1y x =的图象可以经过旋转得到1y x=-的图象,而不能经过平移,由于两函数表达式相同,故两函数的图象相似,且相似比为1.【详解】解:已知函数1y x =与函数1y x=-, 且反比例函数图象是中心对称图形,也是轴对称图形,故函数图象不可以通过平移来完成,故①错误;②正确;③正确;又因为两函数图象完全相同,即两函数图象相似,且相似比为1,故④错误; 综上所述,可行的是②③.故选:B .【点睛】本题通过反比例函数图象的性质和图象的旋转问题,要求学生具有一定的猜想和探究能力.二、填空题13.如图,在平面直角坐标系中,Rt △ABC 的顶点A ,B 分别在y 轴、x 轴上,OA =2,OB =1,斜边AC ∥x 轴.若反比例函数y =k x(k >0,x >0)的图象经过AC 的中点D ,则k 的值为 ___________.14.若点(4,3)A ,(2,)B m 在同一个反比例函数的图象上,则m 的值为_______. 15.已知点,C D 分别在反比例函数(32550,2)p p p y y p x x -=≠=≠⎛⎫ ⎪⎝⎭的图象上,若点C 与点D 关于x 轴对称,则p 的值为______.16.若点()5,A a -,()3,B b ,()6,C c 都在反比例函数4y x=的图象上,则a ,b ,c 中最大的是___.17.如图,在以O 为原点的平面直角坐标系中,矩形OABC 的两边OC .OA 分别在x 轴、y轴的正半轴上,反比例函数(0)k y x x =>的图象与AB 相交于点D ,与BC 相交于点E ,若3BD AD =,且ODE 的面积是6,则k 的值为________.18.如图所示,点A 、B 在反比例函数y =k x(k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为______.19.在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P 1(x 1 , y 1)、P 2(x 2 , y 2)两点,若x 1>x 2 , 则y 1________y 2(填“>”或“<”).20.分别以矩形OABC 的边OA ,OC 所在的直线为x 轴,y 轴建立平面直角坐标系,点B 的坐标是(4,2),将矩形OABC 折叠使点B 落在G(3,0)上,折痕为EF ,若反比例函数k y x=的图象恰好经过点E ,则k 的值为_______.三、解答题21.已知一次函数223y x =+的图象分别与坐标轴相交于A 、B 两点(如图所示),与反比例函数()0k y x x=>的图象相交于C 点.(1)直接写出A 、B 两点的坐标;(2)作CD x ⊥轴,垂足为D ,如果OB 是ACD △的中位线,求反比例函数()0k y k x =>的关系式. (3)请根据图象直接写出在第一象限内,反比例函数值大于一次函数值时自变量x 的取值范围.22.如图,直线11y k x b =+与反比例函数22k y x=的图象交于A 、B 两点,已知点(),4A m ,(),2B n ,AD x ⊥轴于点D ,BC x ⊥轴于点C ,3DC =.(1)求m ,n 的值及反比例函数的解析式;(2)结合图象,当21k k x b x+≤时,直接写出自变量x 的取值范围; (3)若P 是x 轴上的一个动点,当ABP △的周长最小时,求点P 的坐标.23.已知双曲线k y x=与直线14y x =相交于A 、B 两点.第一象限上的点(),M m n (在A 点左侧)是双曲线k y x=点上的动点,过点B 作//BD y 轴交x 轴于点D .过()0,N n -作//NC x 轴交双曲线k y x =于点E ,交BD 于点C . (1)若点D 坐标是()8,0-,求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.24.如图,一次函数1y x =+与反比例函数k y x =的图像相交于点()2,3A 和点B . (1)求反比例函数的解析式; (2)过点B 作BC x ⊥轴于C ,求ABC S ;(3)是否在y 轴上存在一点D ,使得BD CD +的值最小,并求出D 坐标.25.直线y kx b =+与反比例函数4(0)y x x=>的图象分别交于点(,4)A m 和点(4,)B n ,与坐标轴分别交于点C 和点D .(1)求直线AB 的解析式;(2)观察图象,当0x >时,直接写出4kx b x+>的解集; (3)若点P 是y 轴上一动点,当COD △与ACP △相似时,直接写出点P 的坐标.26.如图,直线y=12x与双曲线y=kx(k>0)交于A、B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线y=kx(k>0)上一点C的纵坐标为8,求△AOC的面积.(3)若12kxx>>,直接写出x的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无二、填空题13.5【分析】作CE ⊥x 轴于E 根据平行于x 轴的直线上任意两点纵坐标相同即可求得CE=OA=2T 通过证得△AOB ∽△BEC 求得BE=4进而得到D 点坐标代入y=利用待定系数法求出k 【详解】解:作CE ⊥x 轴于解析:5【分析】作CE ⊥x 轴于E ,根据平行于x 轴的直线上任意两点纵坐标相同,即可求得CE =OA =2,T 通过证得△AOB ∽△BEC ,求得BE =4,进而得到D 点坐标,代入y =k x,利用待定系数法求出k .【详解】解:作CE ⊥x 轴于E ,∵AC ∥x 轴,OA =2,OB =1,∴OA =CE =2,∵∠ABO +∠CBE =90°=∠OAB +∠ABO ,∴∠OAB =∠CBE , ∵∠AOB =∠BEC , ∴△AOB ∽△BEC ,∴BE CE OA OB =,即221BE =, ∴BE =4,∴OE =5,∵点D 是AB 的中点, ∴D (52,2). ∵反比例函数y =k x(k >0,x >0)的图象经过点D ,∴k =52×2=5. 故答案为:5.【点睛】本题考查了反比例函数图象上点的坐标特征,三角形相似的判定和性质等知识,求出D 点坐标是解题的关键.14.;【分析】设反比例函数解析式为y=根据反比例函数图象上点的坐标特征得到k=4×3=2m 然后解关于m 的方程即可【详解】解:设反比例函数解析式为y=根据题意得k=4×3=2m 解得m=6故答案为6【点睛】解析:6;【分析】设反比例函数解析式为y=k x ,根据反比例函数图象上点的坐标特征得到k=4×3=2m ,然后解关于m 的方程即可.【详解】解:设反比例函数解析式为y=k x, 根据题意得k=4×3=2m ,解得m=6.故答案为6.【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 15.1【分析】根据题意设出点C 和点D 的坐标再根据点C 与点D 关于x 轴对称即可求得p 的值【详解】解:∵点分别在反比例函数的图象上∴设点C 的坐标为点D 的坐标为∵点与点关于轴对称∴∴p=1故答案为:1【点睛】本 解析:1【分析】根据题意,设出点C 和点D 的坐标,再根据点C 与点D 关于x 轴对称,即可求得p 的值【详解】解:∵点,C D 分别在反比例函数(32550,2)p p p y y p x x -=≠=≠⎛⎫ ⎪⎝⎭的图象上, ∴设点C 的坐标为3m m ,⎛⎫ ⎪⎝⎭p ,点D 的坐标为2p 5(,)-n n , ∵点C 与点D 关于x 轴对称,∴3p 2p 5-m n mn =⎧⎪-⎨=⎪⎩ ∴p=1故答案为:1【点睛】本题考查反比例函数图象上点的坐标特征、关于x 轴、y 轴对称的点的坐标特点,解答本题的关键是明确题意,利用函数的思想解答.16.b 【分析】先根据反比例函数中k >0判断出函数图象所在的象限及增减性再根据各点横坐标的特点即可得出结论【详解】解:∵k=4>0∴图象在第一三象限在每个象限内y 随x 的增大而减小∵-5<0∴A (-5a )位解析:b【分析】先根据反比例函数中k >0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】解:∵k=4>0,∴图象在第一、三象限,在每个象限内,y 随x 的增大而减小,∵-5<0,∴A (-5,a )位于第三象限,∴a <0,∵0<3<6,∴点B (3,b ),C (6,c )位于第一象限,∴b >c >0.∴a ,b ,c 中最大的是b .故答案为:b .【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17.【分析】根据所给的三角形面积等于长方形面积减去三个直角三角形的面积然后即可求出B 的横纵坐标的积即是反比例函数的比例系数【详解】解:∵四边形OCBA 是矩形∴AB=OCOA=BC 设B 点的坐标为(ab )∵ 解析:165【分析】根据所给的三角形面积等于长方形面积减去三个直角三角形的面积,然后即可求出B 的横纵坐标的积即是反比例函数的比例系数.【详解】解:∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (14a ,b ) ∵D 、E 在反比例函数的图象上, ∴4ab =k , 设E 的坐标为(a ,y ),∴ay=k∴E (a ,k a), ∵1113()62224ODE AOD OCE BDE OCBA a k S S S S S ab k k b a ∆∆∆∆=--=---⋅-=-⋅矩形, ∴334688ab k k k --+=, 解得:165k =. 故答案为:165【点睛】 本题考查反比例函数系数k 的几何意义,矩形在平面直角坐标系中的坐标,解题的关键是利用过某个点,这个点的坐标应适合这个函数解析式;所给的面积应整理为和反比例函数上的点的坐标有关的形式.18.4【分析】设OM 的长度为a 利用反比例函数解析式表示出AM 的长度再求出OC 的长度然后利用三角形的面积公式列式计算恰好只剩下k 然后计算即可得解【详解】设∵点A 在反比例函数的图象上∴∵∴∴∴故答案为:4【 解析:4【分析】设OM 的长度为a ,利用反比例函数解析式表示出AM 的长度,再求出OC 的长度,然后利用三角形的面积公式列式计算恰好只剩下k ,然后计算即可得解.【详解】设OM a =,∵点A 在反比例函数k y x =的图象上, ∴k AM a=, ∵OM MN NC ==,∴3OC a =, ∴11336222AOC k S OC AM a k a =⋅=⋅⋅==, ∴4k =.故答案为:4.【点睛】本题综合考查了反比例函数与三角形的面积,根据反比例函数的特点,用OM 的长度表示出AM 、OC 的长度,相乘恰好只剩下k 是解题的关键,本题设计巧妙,是不错的好题. 19.<【分析】根据一次函数的性质当k <0时y 随x 的增大而减小进行判断即可【详解】解:∵一次函数y=-2x+1中k=-2<0∴y 随x 的增大而减小∵x1>x2∴y1<y2故答案为<【点睛】此题主要考查了一次解析:<【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小进行判断即可.【详解】解:∵一次函数y =-2x +1中k =-2<0,∴y 随x 的增大而减小,∵x 1>x 2,∴y 1<y 2.故答案为<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y =kx +b ,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.20.3【分析】设CE 的长为a 利用折叠的性质得到EG=BE=4-aED=3-a 在Rt △EGD 中利用勾股定理可求得a 的值得到点E 的坐标即可求解【详解】过G 作GD ⊥BC 于D 则点D(32)设CE 的长为a 根据折叠解析:3【分析】设CE 的长为a ,利用折叠的性质得到EG=BE=4-a ,ED=3-a ,在Rt △EGD 中,利用勾股定理可求得a 的值,得到点E 的坐标,即可求解.【详解】过G 作GD ⊥BC 于D ,则点D(3,2),设CE 的长为a ,根据折叠的性质知:EG=BE=4-a ,ED=3-a ,在Rt △EGD 中,222EG ED DG =+,∴()()2224a 3a 2-=-+, 解得:32a =, ∴点E 的坐标为(32,2), ∵反比例函数k y x =的图象恰好经过点E , ∴3232k xy ==⨯=, 故答案为:3.【点睛】本题考查了矩形的性质,折叠的性质,勾股定理的应用,反比例函数图象上点的特征,作出辅助线构造直角三角形是解题的关键.三、解答题21.(1)()30A -,,()0,2B ;(2)()120y x x =>;(3)03x << 【分析】(1)分别令一次函数解析式中y=0、x=0求出x 、y 的值,从而得出点A 、B 的坐标; (2)由A 、B 点的坐标结合中位线的性质,找出线段OD 、DC 的长度,从而找出点C 的坐标,再由点C 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的系数k ,从而得出结论;(3)观察函数图象,根据两函数图象的上下关系结合交点的坐标,即可得出结论.【详解】解:(1)令一次函数223y x =+中y=0,则23x+2=0, 解得:x=-3,∴点A 的坐标为(-3,0); 令一次函数223y x =+中x=0,则y=2, ∴点B 的坐标为(0,2); (2)∵OB 是ACD △的中位线,∴2224CD BO ==⨯=,3==OD OA ,∴C 点坐标()3,4,∴3412k =⨯=,∴反比例函数的关系式()120y x x =>.(3)由图象可知,当03x <<时,反比例函数值大于一次函数值. 【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数与一次函数的交点问题以及三角形中位线的性质,本题属于基础题,难度不大,解决该题型题目时,找出点的坐标,根据反比例函数图象上点的坐标特征求出反比例系数k 是关键. 22.(1)3m =,6n =,212y x=;(2)03x <≤或6x ≥;(3)点P 的坐标为()5,0.【分析】(1)把点A 、B 的坐标代入反比例函数中,得到2n m =,由CD=3可知 ,3n m -=即可求出m 、n 的值;(2)根据图象可直接写出x 的取值范围;(3)作点B 关于x 轴的对称点()62F -,,连接AF 交x 轴于点P ,此时ABP △的周长最小,求出坐标即可; 【详解】(1)∵点()4A m ,,()2B n ,在反比例函数22k y x=的图象上, ∴242k m n ==, 即2n m =; ∵3DC =, ∴3n m -=, ∴3m =,6n =,∴点()34A ,,点()62B ,, ∴23412k =⨯=, ∴反比例函数的解析式为212y x=; (2)∵点()34A ,,点()62B ,, ∴当21k k x b x+≤时:03x <≤或6x ≥; (3)如图,作点B 关于x 轴的对称点()62F -,,连接AF 交x 轴于点P ,此时ABP △的周长最小;设直线AF 的解析式为y kx a =+,3462k a k a +=⎧⎨+=-⎩解得210k a =-⎧⎨=⎩∴直线AF 的解析式为210y x =-+, 当0y =时,5x =,∴点P 的坐标为()50,.【点睛】本题考查了反比例函数与一次函数的解析式以及求x 的取值范围,还有在反比例函数中出现的动点问题,属于中等难度.23.(1)()8,2A ;B ()8,2--;k=16;(2)2233y x =+ 【分析】(1)根据D 点的横坐标为-8,求出点B 的横坐标代入14y x =中,得2y =-,得出B 点的坐标,即可得出A 点的坐标,再根据求出即可;(2)根据111122,,2222∆∆======DCNO DBO OEN S mn k S mn k S mn k ,即可得出k 的值,进而得出B ,C 点的坐标,再求出解析式即可. 【详解】解:(1)∵(),80D -, ∴B 点的横坐标为8-,代14y x =入中,得2y =-. ∴B 点坐标为()8,2--. ∵A 、B 两点关于原点A 对称, ∴()8,2A . ∴8216k xy ==⨯=;(2)∵()0,N n -,B 是CD 的中点,A 、B 、M 、E 四点均在双曲线上,∴mn k =,2,2n B m ⎛⎫-- ⎪⎝⎭,()2,C m n --,(),E m n --.22DCNO S mn k ==矩形,1122DBO S mn k ==△,1122OEN S mn k ==△,∴4DBOOENDCNO OBCE S S S Sk =--==矩形四边形.∴4k =.∵2,2n B m ⎛⎫-- ⎪⎝⎭在双曲线4y x =与直线14y x =上, ∴()()2421242n m n m ⎧⎛⎫-⨯-= ⎪⎪⎪⎝⎭⎨⎪⨯-=-⎪⎩, 解得1122m n =⎧⎨=⎩或2222m n =-⎧⎨=-⎩(舍去) ∴()4,2C --,()2,2M .设直线CM 的解析式是y ax b =+,把()4,2C --和()2,2M 代入得:4222a b a b -+=-⎧⎨+=⎩,解得23a b ==. ∴直线CM 的解析式是2233y x =+. 【点睛】本题考查反比例函数解析式,一次函数解析式,掌握反比例函数解析式,一次函数解析式待定系数求法,关键是点B 横纵坐标关系,以及4DBOOENDCNO OBCE S S S Sk =--==矩形四边形构造方程组解决问题. 24.(1)6y x=;(2)5;(3)存在,()0,1D - 【分析】(1)将A 的坐标代入反比例函数解析式中,求出k 的值,即可确定出反比例函数解析式;(2)将反比例函数解析式与一次函数解析式联立组成方程组,求出方程组的解,根据B 所在的象限即可得到B 的坐标;三角形ABC 的面积可以由BC 为底边,A 横坐标绝对值与B 横坐标绝对值之和为高,利用三角形的面积公式求出即可.(3)作C 关于y 轴的对称点C′,连接BC′交y 轴上一点D ,连接CD ,求出BC′的直线解析式,即可求出D 的坐标. 【详解】(1)∵一次函数1y x =+与反比例函数ky x=相交于()2,3A 6k x y =⋅=6y x∴=(2)如图:16y x y x =+⎧⎪∴⎨=⎪⎩,∴123,2x x =-=. ∴()3,2B -- 过B 作BC x ⊥轴12552ABCS∴=⨯⨯= (3)存在.作C 关于y 轴的对称点C ',连接BC '交y 轴上一点D , 连接CD ,()3,0C '设BC '的直线方程(0)y mx n m =+≠3032m n m n +=⎧⎨-+=-⎩∴131m n ⎧=⎪⎨⎪=-⎩ 113y x ∴=-令0,1x y ==-∴()0,1D - 【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:因式分解法解一元二次方程,待定系数法确定函数解析式,坐标与图形性质,以及三角形面积公式,待定系数法是数学中重要的思想方法,学生做题时注意灵活运用.25.(1)5y x =-+;(2)14x <<;(3)点P 的坐标为(0,4)或(0,3). 【分析】(1)将点A ,B 坐标代入双曲线中即可求出m ,n ,最后将点A ,B 坐标代入直线解析式中即可得出结论;(2)根据点A ,B 坐标和图象即可得出结论;(3)根据直线AB 的解析式先求出点C ,D 坐标,进而求出CO ,DO ,设出点P 坐标,最后分两种情况利用相似三角形得出比例式建立方程求解即可得出结论. 【详解】解:(1)∵点(,4)A m 和点(4,)B n 在4y x=图象上, ∴441,144m n ====, 即(1,4),(4,1)A B把(1,4),(4,1)A B 两点分别代入y kx b =+中得441k b k b +=⎧⎨+=⎩解得:15k b =-⎧⎨=⎩,所以直线AB 的解析式为:5y x =-+; (2)由图象可得,当0x >时,4kx b x+>的解集为14x <<;(3)设点P 的坐标为P(0,a), ①如图:当COD △与CPA 相似时,∵直线AB 的解析式为:5y x =-+ ∴C(0,5),D (5,0) ∴CO=DO=5 则CP CO AP DO = 即5-515a = ,解得:a=4∴P(0,4);②如图:由①得2222112CP AP+=+=当COD△与CAP相似时,222=2,∴OP=CO-CP=5-2=3∴P(0,3);∴点P的坐标为(0,4)或(0,3)时,COD△与ACP△相似.【点睛】此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键.26.(1)8;(2)15;(3)0<x<4【分析】(1)把点A的横坐标代入y=12x,求出A点坐标,再用待定系数法求k值;(2)把纵坐标代入,求出C点坐标,过点C作CM⊥x轴于M,过点A作AN⊥x轴于N,根据△AOC的面积等于梯形CMNA的面积可求;(3)观察图象可直接得出答案.【详解】解:(1)∵点A的横坐标为4,点A在直线y=12x上,∴点A的纵坐标为y=12×4=2,即A(4,2).又∵点A(4,2)在双曲线y=kx上,∴k=2×4=8;(2)∵点C在双曲线y=8x上,且点C纵坐标为8,∴C(1,8).如已知图,过点C作CM⊥x轴于M,过点A作AN⊥x轴于N.∵S △COM =12CM OM ⨯⨯=4, S △AON =12AN ON ⨯⨯=4, S △AOC =S 四边形OCAN - S △AON ,S 梯形CMNA =S 四边形OCAN - S △COM , ∴S △AOC =S 梯形CMNA =1()2AN CM MN +⨯, =1(28)32⨯+⨯, =15.(3)根据图象,直线y =12x 与双曲线y =k x的函数值大于0时,图象在第一象限,即x>0, 在交点A 的左侧,直线y =12x 比双曲线y =k x的函数值小,即x<4, 故当0<x <4时,102k x x >>. 【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数比例系数k 的几何意义,平面直角坐标系中三角形面积的求法,利用图象比较函数大小,解题关键是树立数形结合思想,把面积进行转化,利用两个函数的交点比较函数大小.。

【小学】2021六年级数学下册《比和比例》单元测试题北京课改版word版 有答案

【小学】2021六年级数学下册《比和比例》单元测试题北京课改版word版 有答案

2021-2021学年小学六年级数学下册第二章《比和比例》单元测试题北京课改版一.选择题(共8小题)1.(A、B都不为0的自然数),那么A()B.A.>B.<C.=2.正方形的边长和它的周长()A.成正比例B.成反比例C.不成比例3.把5克盐放入50克水中,盐和盐水的比是()A.1:9B.1:11C.1:10D.1:84.把750g:1吨化简成最简单的整数比.下面答案错误的是()A.3:4B.C.5.根据ab=cd,下面不能组成比例的是()A.a:c和d:b B.b:d和a:c C.d:a和b:c6.在比例尺是1:4000000的地图上,量得A、B两港距离为9厘米,一般货轮于上午6时以每小时24千米的速度从A开向B港,到达B港的时间是()A.17点B.19点C.21点D.23点7.下面选项中,a、b两种量成反比例关系的是()A.a:3=4:b B.100a﹣b=25C.ab=100D.=b8.在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米,南京到北京的实际距离大约是()千米.A.800千米B.90千米C.900千米二.填空题(共10小题)9.在一幅世界地图上,14厘米长的线段表示4900千米的实际距离,这幅世界地图的比例尺是.量得甲、乙两地的图上距离是厘米,甲、乙两地的实际距离是千米.10.三个分数的和是3,它们的分母相同,分子的比是2:3:4,则最大的分数是.11.小林骑自行车从家到学校,他骑车的速度和所需时间成比例.12.解比例=,则=13.把2:9的后项加上27,要使比值不变,前项要加上。

14.幼儿园老师给小朋友分饼干情况如下表.人数1234567…饼干数/块51015202153035…(1)和是相关联的量,随着的变化而变化.(2)从左往右观察,增加,也随着增加;从右往左观察,人数,饼干数也随着.(3)已知是一定的,也就是和的比值是一定的,所以和成.15.在一张比例尺为1:25000000的地图上量的A、B两城市之间的距离为4厘米,那么在1:8000000的地图上,两城市之间的距离为cm.16.5:8的前项是,后项是,比值是.17.一块机械表中的一个小齿轮的直径是7mm,把它画在图纸上是7cm,这张图纸的比例尺是.18.画一画.学校的操场长150米,宽90米,请你选择合适的比例尺在下面的空白处画出操场的平面图.(请你先选择合适的比例尺,求出图上的长宽厘米数再画图)A、1:1000B、1:3000C、1:9000选择第种比例尺.三.判断题(共5小题)19.甲数的与乙数的相等,且甲、乙均不为零,则甲数大于乙数.(判断对错)2021果8a=9b(a,b均不为0)那么a:b=8:9.(判断对错)21.比的前项和后项同时乘一个相同的数,比值不变..(判断对错)22.小牛和大牛的头数比是4:5,表示大牛比小牛多.(判断对错)23.如果与y成反比例,那么3与y也成反比例..四.计算题(共1小题)24.求未知数.×()=:=4:五.操作题(共1小题)25.把下面中的部分□涂成■,使□个数与■个数的比是3:1.□□□□□□□□□□□□六.应用题(共8小题)26.在比例尺是1:3000000的地图上,量得甲地到乙地的路程是6厘米.照这样计算,一列火车以每小时100千米的速度从甲地开往乙地,多少小时可以到达?27.冬天防治感冒,我国民间常常用生姜、红糖和水按照1:3:24的质量比熬制“姜汤”.要熬制千克姜汤,需要生姜、红糖和水各多少千克?28.植物园种了三种树,共有1230棵,其中杉树与樟树的棵数比是4:5,樟树与柳树的棵数比是15:14,三种树各种了多少棵?29.某校参加数学竞赛的男生与女生的人数比是6:5,后来又增加了5名女生,这时女生人数正好是全班的一半.原来参加数学竞赛的女生有多少人?30.学校将2021太空种子按5:3:2分配给六、五、四年级同学种植,六年级比四年级多分到太空种子多少粒?31.学校图书馆购进一批科技书和文艺书共810本,两种书的数量比是5:4,这两种书各有多少本?32.图书室原有科技书和故事书共540本,其中故事书的本数与科技书的本数比是2:7.又购买一批科技书后,科技书的本数占现在这两种书总数的80%.图书室现在有科技书和故事书各多少本?33.有两根长短粗细不同的蜡烛,短的一根可燃8小时,长蜡烛可燃时间是短蜡的,同时点燃两根蜡烛,经过3小时后,它们剩下的长度相等.求未点燃之前,短蜡烛与长蜡烛的长度之比是多少?参考答案与试题解析一.选择题(共8小题)1.解:a÷b=(A、B都不为0的自然数),说明b是a的2倍,a是b的,故a<b.故选:B.2.解:正方形的周长÷边长=4(一定),是比值一定,所以正方形的周长和它的边长成正比例;故选:A.3.解:5:(550)=5:55=1:11答:盐和盐水的比是1:11。

人教版六年级数学下册《比例》测试题

人教版六年级数学下册《比例》测试题

人教版六年级数学下《比例》单元测试题(一)姓名:一、填一填。

1. 18的因数有(),写出1个用18的因数组成的比例()。

2. 在一个比例中,两个外项互为倒数,其中一个内项是3/7,另一个内项是()。

3. 3.6×1.5=l.8×3,写成比例式()。

若5a=4b,则a:b=( ):()。

4. 写出比值 1.2的两个比()和(),组成比例是().5. 用4、5、12和15组成的比例是().6. 圆的周长与半径成( )比例.7. 圆锥体的高一定,体积和底面积成( )比例.8. 车轮的直径一定,所行使的路程和车轮的转数成( ) 比例.9. xy=1,x与y成( )比例二.火眼金睛辨对错。

1. 在比例里,两外项之积与两内项之积的差为0. ( )2.由两个比组成的式子叫比例。

()3. 长方形周长一定,成和宽成反比例. ( )4. 15:16和6 :5能组成比例()5. 订阅<<小学生数学报>>的份数和钱数不成比例. ( )6. 正方形的面积和边长成正比例关系. ( )7. 如果x. y成正比例,那么当x扩大时,y 也随着扩大.( )三.选一选。

1.下面的两个比不能组成比例的是()。

A.8:7和14:16 B.0.6:0.2和3:1 C.19: 110 和10:92. 一架客机从北京飞往上海,飞行速度和所用时间().A. 成正比例B. 成反比例C.不成比例3. 已知x和y是相关联的量,当x=3时,y=6;当x=5时,y=10。

则x和y之间()A.成正比例B. 成反比例C. 不成比例4. X =5/4是比例()的解。

5A. 2.6∶X=1∶8B. 3∶6=X∶8C. 2∶X= 1∶85. 每箱苹果重量一定,箱数和苹果总重量()A. 成正比例B. 成反比例C.不成比例6. 已知被减数与减数的比是5∶3,减数是15,差是()A.10B.15C.20四.计算18∶30=24∶X 3∶5=(X+6)∶20 8:21=0.4:x 6.5:x=3.25:4五.解决问题(用比例,要记得解:设,写答咯)1. 修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完?2.一间房子要用方砖铺地,用面积是9平方分米的方砖,需用96块,如果改用边长是4分米的方砖,需用多少块?3. 一块晒盐场用100克海水可以晒出3克盐。

反比例函数单元测试题及答案

反比例函数单元测试题及答案

反比例函数测试题一、选择题(每题3分,共30分)n + 51反比例函数y = —— 图象经过点(2, 3),则n 的值是().xA 、一 2B 、一 1C 、0D 、1k2、 若反比例函数y =上(k M 0)的图象经过点(一1, 2),则这个函数的图象x一定经过点( ).11A 、(2,— 1)B 、( -- , 2)C 、(一 2, — 4)D 、( — , 2)223、 已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是()k 4、一次函数y = kx — k ,y 随x 的增大而减小,那么反比例函数y = 满足( ).xB 、在每个象限内,y 随x 的增大而减小 D 、图象分布在第二、四象限5、如图,点P 是x 轴正半轴上一个动点,过点 P 作x 轴的垂1线PQ 交双曲线y =丄于点Q ,连结0Q ,点P 沿x 轴正方向运动x时,Rt △ QOP 的面积( ).A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定A 、当 x >0 时,y >0 C 、图象分布在第一、三象限16、在一个可以改变容积的密闭容器内,装有一定质量m的某种气体,当改变容积V时,气体的密度p也随之改变. p与V在一定范围内满足p = m,它的图象如图所示,则该V1二、填空题(每题3分,共27分)11、 对于双曲线本身来说,它的两个分支关于直角坐标系原点 ______________ ; 12、某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时 数x 之间的函数关系式为 __________ . _________气体的质量m 为( ).A 、1.4kgB 、5kgC 、6.4kgD 、7kg7、若 A (-3, y i ), B (-2, y 2), C (- 1, y s )三点都在函数 y =—-的图 x象上,则y i , y 2, y 3的大小关系是( ).A 、y i >y 2>y 3B 、y i <y 2<y 3C 、y i = y 2=y 3D 、y i < y 3<y 28、已知反比例函数 y = 1—2m 的图象上有A (x i , y i )、 xB (X 2, y 2)两点,当 x i <x 2<0时,y i <y 2,贝U m 的取值范围是( ).A 、m <0B 、 m >01m <2 m > 19、如图,一次函数与反比例函数的图象相交于 A 、B 两点, 数的值小于一次函数的值的 x 的取值范围是( ).A 、x <— iB 、x > 2C 、— i < x < 0 或 x > 2D 、x < — i 或 0< x < 2k,10、如图,函数y = —与y = -kx+1 (0)在同一坐标系内的图像大致为() x1 13、已知反比例函数y = k的图象分布在第二、四象限,则在一次函数y二kx • bx中,y随x的增大而______________ o (填“增大”或“减小”或“不变”).个交点的纵坐标为6,则b=_a15、如图,点M 是反比例函数y =—x过M 点作x 轴、y 轴的平行线,若 式为 ____________ .116、点P (2mi-3, 1)在反比例函数y =-的图象上,贝U _______________X 17、 已知反比例函数的图象经过点(m 2)和(一2, 3)则m 的值为 ______________ 18、 在同一直角坐标平面内,如果直线与双曲线y =电没有交点,那么xk 1和k 2的关系是 __________ 佃下列函数:①y = -x :②y =2x :③八_丄:④y=x 2 •当x :::0时,y 随x 的x增大而减小的函数有 ______________________ (填写序号) 三、解答题(20题一23题每题8分,24题11分,共43分)20、使函数y =( 2m 2- 7m - 9) x^ -9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,求反比例函数解析式 。

2020-2021学年人教版小学六年级数学下册《第4章比例》单元测试题

2020-2021学年人教版小学六年级数学下册《第4章比例》单元测试题

2020-2021学年人教版小学六年级数学下册《第4章比例》单元测试题一.选择题(共8小题)1.根据4a=b,可以推得a与b的比是()A.5:8B.10:1C.1:102.下面各组比中,()组的两个比可以组成比例.A.3:5和5:3B.8:7和2:1.75C.1:5和0.2:103.x:y=,若y=20,则x=()A.10B.12C.154.下列图象表示正比例关系的是()A.B.C.D.5.在比例尺是1:5000000的地图上,量得甲、乙两地相距2cm,实际上甲、乙两地相距()km.A.10B.50C.100D.10006.下面的第二、三个图形都是把第一个图形按一定比例缩小的,那么x的值是()A.20B.18C.16D.157.把如图的长方形变成一个宽和长的比为5:8(更接近黄金比)的新长方形.下面方法中()正确.①在它的右侧去掉一个长30cm、宽2cm的长方形.②在它的下边添一个长50cm、宽5cm的长方形.③在它的右侧添一个长30cm、宽6cm的长方形,再在上边添一个长56cm、宽5cm的长方形.A.只有①②B.只有①③C.只有②③D.①②③8.小明从家里去学校,所需时间与所行速度()A.成正比例B.成反比例C.不成比例D.以上都不对二.填空题(共10小题)9.优优拿一些钱去买饮料,饮料的单价与购买的瓶数如表.单价/元12456瓶数6030151210因为一定,瓶数随着的变化而变化.单价提高,瓶数;单价降低,瓶数,而且单价和瓶数的一定,所以单价和瓶数成比例关系.10.=Y,XY成比例;=Y,XY成比例.11.把改写成数值比例尺是.12.:=x:,x=.13.在一个比例中,两个外项的积是1,一个内项是6,另一个内项是。

14.一个长和宽分别是5cm和3cm的长方形,按4:1放大后,长变成cm,宽变成cm.15.求比例中的未知项,叫做.16.下面哪组中的两个比可以组成比例?把能组成比例的在横线里打“√”.(1)2:6和3:1.(2)1:2和0.5:1.(3)0.8:0.2和16:4.(4)7:3和3:7.17.如图,在平衡架的左侧已挂上了3个砝码,每个30克。

2021年苏教版六年级数学下册《第6章 正比例和反比例》单元测试题有答案

2021年苏教版六年级数学下册《第6章 正比例和反比例》单元测试题有答案

小学六年级数学下册《第6章正比例和反比例》单元测试题一.选择题(共10小题)1.表示x和y成正比例关系的式子是()A.x+y=10B.x﹣y=10C.y=10x2.正方形的边长和它的周长()A.成正比例B.成反比例C.不成比例3.下列几种量中,不是成反比例的量是()A.路程一定,速度和时间B.减数一定,被减数和差C.面积一定,平行四边形的底和高4.如果A×=B×,(A、B均不为0),那么A()B.A.大于B.小于C.等于5.下面x和y成正比例关系的是()A.=y B.3x=4y C.y=x﹣3D.=5+6.下面表格中,如果x和y成正比例关系,那么空格里的数是()x840y20A.16B.100C.52D.47.下面选项中,两种量成反比例关系的是()A.三角形的面积一定,它的高和底B.汽车的速度一定,行驶的时间和路程C.一个商场营业时间一定,每天接待顾客的数量和营业额D.修建一条路的总长度一定,已修的长度和未修的长度8.用70m长的栅栏靠墙围成一块长方形果园(如图),长与宽的比是4:3,这块长方形果园的面积是()m2.A.1200B.300C.588D.2949.总价一定,单价和数量()A.成正比例B.成反比例C.不成比例D.以上都不对10.=y,且x和y都不为0,当k一定时,x和y()A.成正比例B.成反比例C.不成比例D.无法确定二.填空题(共10小题)11.王飞以每小时40千米的速度行了240千米,按原路返回时每小时行60千米,王飞往返的平均速度是每小时行千米.12.A、B、C三量的关系时A×B=C中,当C一定时,A和B成关系.13.三角形的面积一定,底与高成比例关系.14.=c,且b≠0,若a一定,b和c成比例;若b一定,a和c成比例.15.当一定时,和成正比例:当一定时,和成反比例.16.x和y都不为0.如果y=x,那么x和y成比例:如果=,那么x和y成比例.17.在ab=c(a、b、c均不为0)中,当b一定时,a和c成比例;当c 一定时,a和b成比例.18.如图是一个水龙头打开后出水量的情况统计.(1)看图填写下表:时间(秒)20出水量(升)8(2)这个水龙头打开的时间和出水量成比例,算一算秒时出水量是9.6升.(3)20秒的出水量比50秒的出水量少%.19.甲、乙、丙三个数的平均数是70.甲:乙=2:3,乙是丙的,乙数是.20.表格中,如果A和B成正比例,x=,如果A和B成反比例,x=.A28B0.5x三.判断题(共5小题)21.分数值一定,它的分子和分母成正比例.()22.式子=k(一定)表示的是正比例关系.()23.比例尺l:100说明图上的1厘米表示实际的距离100米.()24.如果x与y成反比例,那么3x与y也成反比例.()25.如果3X=4Y(X,Y均不为0),那么X:Y=4:3,X和Y成正比例.()四.应用题(共7小题)26.淘淘家在装修房屋时,买了同样大小的地板砖,铺地面积与所需块数的关系如图.他家的客厅面积是36m2,需要铺多少块这样的地板砖?(用比例解决问题)27.汽车数量与运货质量的数据如下表,根据表中的数据回答下面各题.汽车数量/辆1234567运货质量/吨481216202428(1)表中和是两种相关联的量,随着的变化而变化.(2)写出几组这两种量中相对应的两个数的比,求出比值,并比较比值的大小.(3)上面求出的比值表示的意义是什么?(4)表中相关联的两种量成正比例吗?为什么?28.图表示了矿泉水的数量与总价的关系,看图回答问题.①5瓶的总价是元.②12瓶的总价是元.③瓶的总价是36元.29.组装一批电动车,每天组装的辆数和需要的天数如表.每天组装辆数201510需要的天数1215(1)请把上表补充完整.(2)每天组装的辆数和需要的天数成什么比例?为什么?(3)如果每天组装30辆,需要组装多少天?如果打算4天完成组装任务,每天需要组装多少辆?30.一艘轮船从甲港开到乙港,3时行驶了75km.从乙港开到丙港,5时行驶了125km.(1)分别求轮船从甲港开到乙港,从乙港开到丙港的速度.(2)轮船行驶的路程和所用时间成什么比例?(3)用等式把题目里的数量关系表示出来.31.农业基地里的樱桃树比苹果树少350棵,樱桃树与苹果树的棵数比是3:5,基地里的樱桃树和苹果树各有多少棵?32.六年级三个班的学生共植树420棵。

人教版六年级数学下册单元检测(解析) 第四单元《比例》(3)

人教版六年级数学下册单元检测(解析) 第四单元《比例》(3)

第四单元比例考试时间:90分钟试卷满分:100分(共5题;每题2分,共10分)1.(2021·蒙城)在比例尺是1:10的图纸上,甲、乙两个圆的半径的比3:4,甲、乙两个圆实际半径的比是()。

A.3:4 B.1:10 C.6:8 D.9:16【答案】A【完整解答】设图纸上甲、乙两圆半径分别为3r、4r,比例尺为1∶10,则实际半径分别为30r、40r,所以实际半径比为30r∶40r即3∶4。

故答案为:A。

【思路引导】实际距离=图上距离÷比例尺,通过比的基本性质比的前项和后项同时乘或除以相同的数(0除外),比值不变,化简得半径比,据此解答。

2.(2021·福田)下面两种量成反比例关系的是()。

A.总路程一定,已行驶的路程和剩下的路程B.圆锥的底面积一定,圆锥的体积与高C.全班人数一定,出勤人数与出勤率D.完成总时间一定,每个零件所需要时间与所做零件个数【答案】D【完整解答】解:A:已行的路程+剩下的路程=总路程,二者不成比例;B:圆锥的体积÷高=底面积×13(一定),二者成正比例;C:出勤人数÷出勤率=全班人数(一定),二者成正比里;D:每个零件所需要时间×所做零件个数=完成总时间(一定),二者成反比例。

故答案为:D。

【思路引导】根据数量关系判断出两个相关联的量的乘积一定还是商一定,如果乘积一定就成反比例,如果商一定就成正比例,否则不成比例。

3.(2021六下·新丰期中)乐乐家客厅长5m,宽3.8m,画在练习本上,选()作为比例尺比较合适。

A.1100B.11000C.110000D.任意定就行【答案】A【完整解答】解:5米=500厘米3.8米=380厘米500×1100=5(厘米)380×1100=3.8(厘米),选择1100作为比例尺比较合适。

故答案为:A。

【思路引导】先单位换算,图上距离=实际距离×比例尺,可知选择1100作为比例尺比较合适。

2020-2021学年苏科版八年级下数学反比例函数的图像与性质练习含解析

2020-2021学年苏科版八年级下数学反比例函数的图像与性质练习含解析

反比例函数的图像与性质同步练习一.选择题1.若双曲线y=图象的一个分支位于第四象限,则k的取值范围是()A.k<﹣1B.k<1C.k<0D.k≤02.如图,矩形ABCD的中心位于直角坐标系的坐标原点O,其面积为8,反比例函数y=的图象经过点D,则m的值为()A.2B.4C.6D.83.点(x1,y1)、(x2,y2)、(x3,y3)在反比例y=﹣上,且x1<0<x2<x3,则有()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y2<y14.反比例函数y=的图象经过点(2,1),则下列说法错误的是()A.k=2B.函数图象分布在第一、三象限C.y随x的增大而减小D.当x>0时,y随x的增大而减小5.函数y=和y=﹣kx+k(k≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.6.已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=(k≠0)的图象上,且x1<x2<x3()A.若y3<y1<y2,则x1•x2•x3<0B.若y1<y3<y2,则x1•x2•x3<0C.若y2<y3<y1,则x1•x2•x3>0D.若y2<y1<y3,则x1•x2•x3<07.如图,AB⊥OA于点A,AB交反比例函数y=(x<0)的图象于点C,且AC:BC=1:3,若S△AOB=4,则k=()A.4B.﹣4C.2D.﹣28.如图,在△AOB中,S△AOB=2,AB∥x轴,点A在反比例函数y=的图象上,若点B 在反比例函数y=的图象上,则k的值为()A.﹣B.C.3D.﹣39.如图,直线y=﹣x与双曲线y=(k<0,x<0)交于点A,将直线y=﹣x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=2BC,则k的值为()A.B.﹣7C.D.10.如图,在等腰△AOB中,AO=AB,顶点A为反比例函数(其中x>0)图象上的一点,点B在x轴正半轴上,过点B作BC⊥OB,交反比例函数的图象于点C,连接OC交AB于点D,若,则△BCD的面积为()A.B.6C.D.5二.填空题11.如果反比例函数y=(k为正整数),在每个象限内,当自变量x的值逐渐增大时,y的值随着逐渐减小,那么正整数k的值为.12.如图,正方形ABCD的顶点C,D在反比例函数y=(x>0)的图象上,顶点A,B 分别在x轴,y轴的正半轴上,则点C的坐标为.13.如图,点A,B在反比例函数y=(k>0)的图象上,线段AB分别交x轴、y轴于点C,D,AE⊥x轴于点E,BF⊥x轴于点F,若BF=2AE,△ACE的面积是1,则k的值是.14.如图,在Rt△OAB中,∠OAB=90°,∠B=45°,点A,B恰巧都落在反比例函数y =的图象上,若点A的横坐标为1,则k的值为.15.如图,已知反比例函数y1=,y2=在第一象限的图象,过y2上任意一点P作x轴的垂线交y1于点A,交x轴于点B,过点P作y轴的垂线交y1于点C,交y轴于点D,连接AC,BD,则=.三.解答题16.如图,一次函数的图象与反比例函数的图象相交于点A(2,1),B(﹣1,n)两点.(1)求n的值;(2)连接OA和OB,则△OAB的面积为.17.如图,在平面直角坐标系xOy中,已知矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2),反比例函数y=(x>0)的图象与AB,BC交于点M,N,直线MN与坐标轴交于D(0,3)和E(6,0)两点.(1)求直线MN的函数表达式和k的值;(2)求△BMN的面积.18.如图,一次函数y1=k1x+b的图象与反比例函数y2=的图象相交于A,B两点,其中点A的坐标为(1,2),点B的纵坐标为﹣1.(1)求这两个函数的表达式;(2)点C为反比例函数图象上的一点,且点C在点A的上方,当S△CAB=S△AOB时,求点C的坐标.参考答案一.选择题1.解:∵双曲线y=的图象的一支位于第四象限,∴k+1<0,解得k<﹣1.故选:A.2.解:∵矩形的中心为直角坐标系的原点O,∴矩形OCAD的面积是8,设D(x,y),则4xy=8,xy=2,反比例函数的解析式为y=,∴m=2.故选:A.3.解:∵k<0,∴函数图象在二,四象限,由x1<0<x2<x3可知,横坐标为x1的点在第二象限,横坐标为x2,x3的点在第四象限.∵第四象限内点的纵坐标总小于第二象限内点的纵坐标,∴y1最大,在第二象限内,y随x的增大而增大,∴y2<y3<y1.故选:B.4.解:∵反比例函数y=的图象经过点(2,1),∴k=2×1=2,故说法A正确;∴该函数的图象在第一、三象限,故选项B正确;当x>0时,y随x的增大而减小,故选项C错误、选项D正确;故选:C.5.解:当k>0时,反比例函数的图象位于第一、三象限,一次函数的图象交y轴于正半轴,y随着x的增大而减小,B选项符合,A、C选项错误;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y轴于负半轴,y 随着x的增大而增大,D错误;故选:B.6.解:A、∵y3<y1<y2,如果k>0,y3最小,则有y1>y2,不符合题意,如果k<0,则有x1<0,x2<0,x3>0,则x1•x2•x3>0,本选项不正确,B、由题意当y1<y3<y2,函数图象如图所示,∴x1<0,x2>0.x3>0,∴x1•x2•x3<0,本选项正确.C、∵y2<y3<y1,如果k>0,则x1<0,x2<0,x3<0,则x1•x2•x3<0,如果k<0,则x1<0,x2>0,x3>0,则x1•x2•x3<0,本选项不正确.D、∵y2<y1<y3,如果k>0,则x1<0,x2<0,x3>0,则x1•x2•x3>0,如果k<0,不可能y2最小,故本选项错误,不符合题意;故选:B.7.解:连接OC,如图,∵AB⊥OA,AC:BC=1:3,∴AC:AB=1:4,∴S△AOC=S△AOB=1,而S△AOC=|k|=1,又∵k<0,∴k=﹣2.故选:D.8.解:设AB与y轴交于C,∵A在反比例函数y=的图象上,AB∥x轴,∴OC•AC=1,∴S△AOC=OC•AC=,∵S△AOB=2,∴S△BOC=,∴BC•OC=,∴BC•OC=3,∵点B在反比例函数y=的图象上且B在第二象限,∴k=﹣3,故选:D.9.解:分别过点A、B作AD⊥x轴于D,BE⊥x轴于E,CF⊥BE于F,设A(﹣4a,a)(a >0),∵OA=2BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=OD=2a,∵点B在直线y=﹣x+2上,∴B(﹣2a,a+2),∵点A、B在双曲线y=上,∴﹣4a•a=﹣2a•(a+2),解得a=,∴A点的坐标为(﹣,),∴k=﹣×=﹣.故选:A.10.解:过点A作AH⊥x轴于点H,AH交OC于点E,∵OA=AB,AH⊥OB,∴2OH=2BH=OB=8,OH=BH=4,∵OA=4=,∴AH=12,∵A(4,12),∴k=4×12=48,∴,∵OB=6,∴C(8,6),∵AH⊥x轴,BC⊥x轴,∴AH∥BC,由平行线分线段成比例得:,OE=CE,,∴EH=3,AE=AH﹣EH=9,,设CD=2x,则DE=3x,CE=OE=5x,OC=10x.∴,所以三角形BCD的面积.故选:C.二.填空题11.解:∵反比例函数y=(k为正整数),在每个象限内,当自变量x的值逐渐增大时,y的值随着逐渐减小,∴2﹣k>0,解得k<2,而k为正整数,∴k=1,故答案为:1.12.解:如图,过点C作CE⊥y轴于E,过点D做DF⊥x轴于F,设C(a,),则CE=a,OE=,∵四边形ABCD为正方形,∴BC=AB=AD,∵∠BEC=∠AOB=∠AFD=90°,∴∠EBC+∠OBA=90°,∠ECB+∠EBC=90°,∴∠ECB=∠OBA,同理可得:∠DAF=∠OBA,∴Rt△BEC≌Rt△AOB≌Rt△DF A(AAS),∴OB=EC=AF=a,∴OA=BE=FD=﹣a,∴OF=a+﹣a=,∴点D的坐标为(,﹣a),把点D的坐标代入y=(x>0),得到(﹣a)=2,解得a=﹣1(舍),或a=1,∴点C的坐标为(1,2),故答案为:(1,2).13.解:连接OA、OB,∵AE⊥x轴于点E,BF⊥x轴于点F,∠ACE=∠BCF,∴△ACE∽△BCF,∴,∴S△BCF=4.设△AOC的面积是a,则△BOC的面积是2a,根据反比例函数中k的几何意义可得:S△AOE=S△BOF,∴4﹣2a=1+a,解得a=1,∴△AOE的面积是1+1=2,所以k=4.故答案为:4.14.解:过点B作BM⊥y轴于点M,过点A作AN⊥x轴于点N,并延长MB,NA交于一点P,∴四边形MONP是矩形,由点A的横坐标为1,则A点坐标为:(1,k),在Rt△OAB中,∠OAB=90°,∠B=45°,∴△OAB是等腰直角三角形,∴AB=AO,∵∠OAB=90°,∴∠BAP+∠OAN=90°,∵∠AON+∠OAN=90°,∴∠BAP=∠AON,在△AON和△BAP中,,∴△AON≌△BAP(AAS),∴AP=NO=1,PB=AN=k,∴MB=1﹣k,∴B(1﹣k,1+k),∵B在反比例函数y=的图象上,∴k=(1﹣k)(1+k),即k2﹣k﹣1=0,解得:k1=,k2=(不合题意舍去).故答案为.15.解:设点P的坐标为(m,),则C(,),D(0,),A(m,),B(m,0),∴PC=m﹣=m,PD=m,P A=﹣=,PB=,∴=,=,∴==,又∵∠P=∠P,∴△P AC∽△PBD,∴=()2=()2=,故答案为:.三.解答题16.解:(1)设反比例函数的解析式为.把A(2,1)代入中,得.∴k=2.∴,把B(﹣1,n)代入中,得.(2)设一次函数的解析式是y=ax+b,把A(2,1),B(﹣1,﹣2)代入得:,解得:,∴y=x﹣1,设AB交x轴于C,当y=0时,0=x﹣1,∴x=1,∴C(1,0),∴OC=1,∴S△AOB=S△AOC+S△BOC=×1×1+×1×2=1.5,故答案为:1.5.17.解:(1)设直线MN的解析式是y=kx+b,把D、E的坐标代入得:,解得:,∴直线MN的解析式是:y=﹣x+3,∵矩形AOCB,B(4,2),∴把y=2代入y=﹣x+3得:x=2,∴M的坐标是(2,2).∵反比例函数y=(x>0)经过点M,∴k=2×2=4,即反比例函数的解析式是y=;(2)∵B(4,2),∴把x=4代入y=﹣x+3得:y=1,∴N的坐标是(4,1),∴BN=2﹣1=1,∵M(2,2),∴BM=4﹣2=2,∴S△BMN==1.18.解:(1)把点A(1,2)代入反比例函数y2=得,k2=1×2=2,∴反比例函数的解析式为y2=,将y=﹣1代入y2=得,﹣1=,交点x=﹣2,∴B(﹣2,﹣1),将A、B的坐标代入y1=k1x+b得,解得,∴一次函数的解析式为y1=x+1;(2)∵y1=x+1,∴直线与y轴的交点为(0,1),∵点C为反比例函数图象上的一点,且点C在点A的上方,S△CAB=S△AOB,∴点C就是直线y=x+1向上平移1个单位后与反比例函数的交点,将直线y=x+1向上平移1个单位后得到y=x+2,解得或,∴C点的坐标为(﹣1+,1+).。

2022学年北师大版九年级数学上册第六章《反比例函数》单元试题卷

2022学年北师大版九年级数学上册第六章《反比例函数》单元试题卷

2022学年九年级数学上册第六章《反比例函数》单元试题(满分:120分)一、选择题(本大题共6小题,每小题3分,共18分)1.(2021·四川成都·九年级期中)下列函数中,y 是x 的反比例函数的是( )A .x (y ﹣1)=1B .y =15x -C .y =﹣13x ﹣1D .y =21x 2.若反比例函数x k y =的图象经过点P (﹣4,5),则该函数的图象不经过的点是( ) A .(﹣5,4) B .(﹣2,10) C .(10,﹣2) D .(﹣10,﹣2)3. (天津)若点()()()123,2,,1,,4A x B x C x -都在反比例函数8y x =的图像上,则123,,x x x 的大小关系是( ) A .123x x x << B .231x x x << C .132x x x << D .213x x x <<4.已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数xa y 12+=(a 是常数)的图象上,且y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系为( )A .x 2>x 1>x 3B .x 1>x 2>x 3C .x 3>x 2>x 1D .x 3>x 1>x 2 5.(已知反比例函数y =3x ,下列结论中不正确的是( )A .其图象经过点(﹣1,﹣3)B .其图象分别位于第一、第三象限C .当x >1时,0<y <3D .当x <0时,y 随x 的增大而增大6.(2022•德阳)一次函数y =ax +1与反比例函数y =−a x 在同一坐标系中的大致图象是( ) A .B . C .D .7. (2020·四川)如图,点A 是反比例函数k y x=图象上的一点,过点A 作AC x ⊥轴,垂足为点C ,D 为AC 的中点,若AOD ∆的面积为1,则k 的值为( )A .43B .83C .3D .4 8. 如图,直线y =kx +b (k ≠0)和双曲线y =a x (a ≠0)相交于点A ,B ,则关于x 的不等式kx +b >a x 的解集是( )A .x >0.5B .﹣1<x <0.5C .x >0.5或﹣1<x <0D .x <﹣1或0<x <0.59. 如图,设直线y =kx (k <0)与双曲线y =−5x 相交于A (x 1,y 1)B (x 2,y 2)两点,则x 1y 2﹣3x 2y 1的值为( )A .﹣10B .﹣5C .5D .1010. 如图,四边形OABC 是平行四边形,点A 的坐标为A (3,0),∠COA = 60°,D 为边AB 的中点,反比例函数y =k x(x > 0)的图象经过C ,D 两点,直线CD 与y 轴相交于点E ,则点E 的坐标为( ) A .(0,23) B .(0,33) C .(0,5) D .(0,6)二、填空题(本大题共5小题,每小题3分,共18分)11.已知y 与x 成反比例,且当x =﹣3时,y =4,则当x =6时,y 的值为 .12. 已知反比例函数xk y =的图象与一次函数42-=x y 的图象都过点A (m ,6),则k 的值为 13. 如图,A 是反比例函数x k y =图象上一点,过点A 作x 轴的平行线交x 反比例函数xy 3-=的图象于点B ,点C 在x 轴上,且3=∆ABC S ,则k 的值为14. 如图,在平面直角坐标系中,一次函数1y k x b =+的图象与反比例函数2k y x =的图象交于A (3,﹣2)、B (﹣2,n )两点,与x 轴交于点C .则不等式21k k x b x+>的解集为______. 15. 如图,把一个等腰直角三角形ACB 放在平面直角坐标系中,∠ACB =90°,点C (﹣2,0),点B 在反比例函数k y x=的图象上,且y 轴平分∠BAC ,则k 的值是________.三、(本大题共5小题,每小题6分,共30分)17.如图,已知反比例函数xky=的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为4.(1)求k和m的值;(2)若点C(x,y)也在反比例函数xky=的图象上,当y≤2(y≠0)时,求自变量x的取值范围.18.如图,已知一次函数1y kx b=+与反比例函数2myx=的图象在第一、三象限分别交于(6,1)A,(,3)B a-两点,连接OA,OB.(1)求一次函数和反比例函数的解析式;(2)AOB的面积为______;(3)直接写出12y y>时x的取值范围.16. 解下列方程:(1)()24249x-=(2)()()2123x x+-=19.教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降.水温y(℃)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20℃,接通电源后,水温y(℃)和通电时间x(min)之间的关系如图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40℃的开水,则他需要在什么时间段内接水?(m≠20.如图,一次函数y1=kx+b(k≠0)的图象分别与x轴、y轴交于点C,D,与反比例函数y2=mx0)的图象交于A(﹣1,n),B(2,﹣2)两点.(1)求一次函数和反比例函数的表达式.(2)若x轴上存在一点P,使△ABP的面积为6,求点P的坐标.21.22.如图,直线AB 与反比例函数)0>=x x k y ( 的图象交于A ,B 两点,已知点A 的坐标为(6,1),△AOB 的面积为8.(1)填空:反比例函数的关系式为 ;(2)求直线AB 的函数关系式;(3)动点P 在y 轴上运动,当线段P A 与PB 之差最大时,求点P 的坐标;(4)在反比例函数xk y =第三象限的图象上找一点Q ,使得点Q 到直线AB 距离最短,请直接写出点Q 的坐标.21. (9分) 解:(1)3b = …………………1分18k = …………………2分(2)∵BD ∥x 轴,∴点D 的纵坐标为3,…………………3分∴点D 的横坐标为=6,即BD =6,…………………4分 ∴△ABD 的面积=×6×3=9;…………………5分 (3)EF =BD =×6=2, 设E (m ,3m +3),当0<m <2时,点F 的坐标为(m +2,3m +3),∵点F 在反比例函数y =上,∴(m +2)(3m +3)=18,解得,m 1=﹣4(舍去),m 2=1,…………………7分当m >2时,点F 的坐标为(m ﹣2,3m +3),∵点F在反比例函数y=上,∴(m﹣2)(3m+3)=18,解得,m3=(舍去),m4=,综上所述,m的值为1或.…………………9分。

正比例和反比例单元测试题

正比例和反比例单元测试题

正比例和反比例单元测试题班别::学号:成绩:一、填空题。

(16分)1、比例尺= :,比例尺实际是一个。

2、在一幅图的比例尺是。

A、B两地相距320km,画在这幅图上应该是厘米。

3、一个零件长8毫米,画在设计图上是16厘米,这幅设计图的比例尺是。

4、六年级同学排队做广播操,每行人数和排成的行数成比例;出油率一定,花生油的质量和花生的质量,成比例;3X=Y,X和Y成比例;实际距离一定,图上距离和比例尺成比例。

5、在一幅平面图上,5厘米的线段表示实际距离50米,这幅图的比例尺是。

6、小林骑自行车从家到学校,他骑车的速度和所需时间成比例。

7、在A×B=C中,当B一定时,A和C 比例,当C一定时,A和B 比例。

8、在比例尺是1:4000000的地图上,图上距离1厘米表示实际距离千米。

也就是图上距离是实际距离的,实际距离是图上距离的倍。

9、一种微型零件长5毫米,画在图纸上长20厘米,这幅图的比例尺是。

二、判断题。

(10分)1、平行四边形的面积一定,它的底与高成反比例。

()2、一根电线,用去的米数与剩下的米数成反比例。

()3、订阅《少年文艺》的份数与总钱数成反比例。

()4、长方体的底面积一定,高和体积成反比例。

()5、圆的半径和面积成正比例。

()三、选择题。

(16分)1、一个机器零件的长度是8毫米,画在比例尺是10:1的图纸上的长度是()。

A、8分米B、8毫米C、8厘米2、圆的周长和直径()。

A、成正比例B、成反比例C、不成比例3、长方形的长一定,它的周长与宽()。

A、成正比例B、成反比例C、不成比例4、()中的两种量不成比例。

A、从到,列车行驶的平均速度和所需时间B、一箱苹果,吃去的个数和剩下的个数5、小明的身高和体重()。

A、成正比例B、成反比例C、不成比例6、某校学生总数一定,男生人数和女生人数()。

A、成正比例B、成反比例C、不成比例7、把线段比例尺改写成数值比例尺是()。

A、1:50B、1:200C、1:20000000D、1:50000008、一种长5毫米的零件,画在图纸上长10厘米,这幅图的比例尺是()。

九年级数学上册 第5章 反比例函数单元综合测试题 试题

九年级数学上册 第5章 反比例函数单元综合测试题  试题

反比例函数一选择题1.〔2021·〕反比例函数y =kx的图象经过点〔1,-2〕,那么k 的值是〔 〕 A .2 B .-12C .1D .-22.〔2021·〕如图,正方形ABOC 的边长为2,反比例函数y =kx的图象经过点A ,那么k 的值是〔 〕A .2B .-2C .4D .-43.〔2021·〕在反比例函数()=0ky k x≠的图象上有两点〔-1,y 1〕,〔14-,y 2〕,那么y 1-y 2的值是〔 〕A. 负数B.非正数C.正数D.不能确定4.〔2021·〕假设一个圆锥的侧面积是10,那么以下图象中表示这个圆锥母线l 与底面半径r 之间的函数关系的是〔 〕A. B. C. D.5.〔2021•〕近视眼镜的度数y(度)与镜片焦距x(m)成反比例,400度近视眼镜镜片的焦距为,那么y 与x 的函数关系式为( ) A.400y x =B.14y x =C.100y x =D. 1400y x= 6. (2021·) 矩形的长为x ,宽为y ,面积为9,那么y 与x 之间的函数关系用图象表示大致为〔 〕7.〔2021·〕点A 〔x 1,y 1〕,B(x 2,y 2),C(x 3,y 3)都在反比例函数y=-3x 的图象上,假设x 1<x 2<0<x 3,那么y 1,y 2,y 3的大小关系是〔 〕 A . y 3<y 1<y 2 B .y 1<y 2<y 3C .y 3<y 2<y 1D .y 2<y 1<y 38.〔2021·〕一次函数y=x+m(m ≠)与反比例函数my x=的图象在同一平面直角坐标系中是〔 〕9.(2021·黔西南)一次函数y 1=x -1和反比例函数y 2=2x 的图象在平面直角坐标系中交于A 、B 两点,当y 1>y 2时,x 的取值范围是( )A.x >2B.-1<x <0C.x >2或者-1<x <0D.x <2,x >010.〔2021·〕如图,过点C 〔1,2〕分别作x 轴、y 轴的平行线,交直线y=-x+6于A 、B 两点,假设反比例函数k y x=〔x >0〕的图象与△ABC 有公一共点,那么k 的取值范围是〔 〕 A .2≤k ≤9 B. 2≤k ≤8 C. 2≤k ≤5 D. 5≤k ≤8 二填空题1.(2021·黔西南)反比例函数的图象经过点(m ,2)和(-2,3),那么m 的值是__________.2.〔2021·〕如图,双曲线()=0ky k x≠上有一点A ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为2,那么该双曲线的表达式为 . 3.〔2021•〕反比例函数ky x=的图象与一次函数y=2x+1的图象的一个交点是〔1,k 〕,那么反比例函数的解析式是 .4.〔2021·〕如图,函数y =2x 和函数y =kx的图象交于A 、B 两点,过点A 作AE ⊥x 轴于点E ,假设△AOE 的面积为4,P 是坐标平面上的点,且以点B 、O 、E 、P 为顶点的四边形是平行四边形,那么满足条件的P 点坐标是 . 5.(2021·〕如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x 轴平行. 点P(3a,a)是反比例函数(k>0)ky x=的图象与正方形的一个交点.假设图中阴影局部的面积为9,那么这个反比例函数的解析式为 .6.〔2021•〕如图,是反比例函数y=-2k x的图象的一个分支,对于给出的以下说法:①常数k 的取值范围是k >2;②另一个分支在第三象限;③在函数图象上取点A 〔a 1,b 1〕和点B 〔a 2,b 2〕,当a 1>a 2时,那么b 1<b 2;④在函数图象的某一个分支上取点A 〔a 1,b 1〕和点B 〔a 2,b 2〕,当a 1>a 2时,那么b 1<b 2;其中正确的选项是 〔在横线上填出正确的序号〕.7.〔2021·〕双曲线()=>0ky k x与⊙O 在第一象限内交于P 、Q 两点,分别过P 、Q 两点向x 轴和y 轴作垂线.点P 的坐标为〔1,3〕那么图中阴影局部的面积为 . 三计算题1.〔2021•〕用洗衣粉洗衣物时,漂洗的次数与衣物中洗衣粉的残留量近似地满足反比例函数关系.寄宿生小红、小敏晚饭后用同一种洗衣粉各自洗一件同样的衣服,漂洗时,小红每次用一盆水〔约10升〕,小敏每次用半盆水〔约5升〕,假如她们都用了5克洗衣粉,第一次漂洗后,小红的衣服中残留的洗衣粉还有,小敏的衣服中残留的洗衣粉还有2克.〔1〕请帮助小红、小敏求出各自衣服中洗衣粉的残留量y与漂洗次数x的函数关系式;〔2〕当洗衣粉的残留量降至时,便视为衣服漂洗干净,从节约用水的角度来看,你认为谁的漂洗方法值得提倡,为什么?2.〔2021·〕据媒体报道,近期“手足口病〞可能进入发病顶峰期,某校根据?卫生工作条例?,为预防“手足口病〞,对教室进展“薰药消毒〞.药物在燃烧机释放过程中,室内空气中每立方米含药量y〔毫克〕与燃烧时间是x〔分钟〕之间的关系如图8所示〔即图中线段OA 和双曲线在A点及其右侧的局部〕,根据图象所示信息,解答以下问题:〔1〕写出从药物释放开场,y与x之间的函数关系式级自变量的取值范围;〔2〕据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开场,至少在多长时间是内,师生不能进入教室?反比例函数试题答案一选择题1.-2【解析】反比例函数y=kx的图象经过点〔1,-2〕,说明在解析式y=kx中,当x=1时,y =-2,所以k =xy =1×(-2)=-2.2. D 【解析】∵正方形ABOC 的边长为2,∴A 的坐标〔-2,2〕,∴把A 点坐标代入y=kx得:2=2-k,∴k=-4.应选D. 3.A 【解析】∵反比例函数ky x=中的k <0,∴函数图象位于第二、四象限,且在每一象限内,y 随x 的增大而增大;又∵点〔-1,y 1〕和(14-,y 2)均位于第二象限,-1<14-,∴y 1<y 2,∴y 1-y 2<0,即y 1-y 2的值是负数,应选A .4. D 【解析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求得圆锥母线长l 与底面半径r 之间函数关系,看属于哪类函数,找到相应的函数图象即可. 由圆锥侧面积公式可得l=10rπ,属于反比例函数.应选D . 5. C 【解析】设y =kx,400度近视眼镜镜片的焦距为, ∴k=0.25×400=100,∴y=100x.应选C . 6.C 【解析】由矩形的面积知xy =9,可知它的长x 与宽y 之间的函数关系式为y=9 x 〔x >0〕,是反比例函数图象,且其图象在第一象限.应选C .7.A 【解析】由反比例函数的增减性可知,当x <0时,y 随x 的增大而增大,当x 1<x 2<0时,那么0<y 1<y 2.又C 〔x 3,y 3〕在第四象限,那么y 3<0,所以y 3<y 1<y 2.应选A.8.C 【解析】根据一次函数的图象性质,y=x+m 的图象必过第一、三象限,可对B 、D 进展判断;根据反比例函数的性质当m <0,y=x+m 与y 轴的交点在x 轴下方,可对A 、D 进展判断. A. 对于反比例函数图象得到m <0,那么对于y=x+m 与y 轴的交点在x 轴下方,所以A 选项不正确;B 、对于y=x+m ,其图象必过第一、三象限,所以B 选项不正确;C 、对于反比例函数图象得到m <0,那么对于y=x+m 与y 轴的交点在x 轴下方,并且y=x+m 的图象必过第一、三象限,所以C 选项正确;D 、对于y=x+m ,其图象必过第一、三象限,所以D 选项不正确.应选C .9.C 【解析】解⎩⎪⎨⎪⎧y=x -1y=2x,得⎩⎨⎧x 1=2y 1=1,⎩⎨⎧x 2=-1y 2=-2.所以,两个函数的交点为(2,1),(―1,―2).在同一平面直角坐标系中作出两个函数的图象(图略),观察图象,y 1>y 2,那么对应一次函数的图象高于反比例函数的图象,对应x 的取值范围是:x >2或者-1<x <2.应选C. 10. A 【解析】当点C 〔1,2〕在反比例函数k y x =上时,那么k=2,由=-+6kx x那么260x x k -+=,当2(6)40k --=时,直线与双曲线有且一个交点,即k=9,因此反比例函数ky x=〔x >0〕的图象与△ABC 有公一共点,那么k 的取值范围是2≤k ≤9. 二填空题1. -3【解析】设反比例函数的解析式为y=k x ,把点(―2,3)代入,得k=―6.所以,y=―6x ,点(m ,2)代入,得2=―6m,解得m=―3.2. 【解析】先根据反比例函数图象所在的象限判断出k 的符号,再根据S △AOB =2求出k 的值即可.3.3y x=【解析】将〔1,k 〕代入一次函数y=2x+1得,k=2+1=3; 那么反比例函数解析式为3y x =.故答案为3y x =. 1(0,-4),P 2(-4,-4),P 3(4,4)【解析】根据反比例函数中比例系数k 的几何意义,得出等量关系12|k|=4,求出k 的值是8,然后结合函数y =2x 和函数y =8x可求出点A(2,4),再根据平行四边形的性质可求得P 点坐标. 5.3y x=【解析】如图,根据正方形是以点O 为中心对称图形,将第三象限局部绕点O 顺时针旋转180º,恰好与第×4=36,所以正方形边长为 6. 正方形又是轴对称图形,P(3a,a)是反比例函数)0(>=K xky 的图象的点,所以正方形边长为3a ×2=6a ,于是a=1.所以k=3×3y x =.6.【解析】解:①根据函数图象在第一象限可得k ﹣2>0,故k >2,故①正确;②根据反比例函数的性质可得,另一个分支在第三象限,故②正确;③根据反比例函数的性质,图象在第一、三象限时,在图象的每一支上y 随x 的增大而减小,A 、B 不一定在图象的同一支上,故③错误;④根据反比例函数的性质,图象在第一、三象限时,在图象的每一支上y 随x 的增大而减小,故在函数图象的某一个分支上取点A 〔a 1, b 1〕和点B 〔a 2,b 2〕,当a 1>a 2时,那么b 1<b 2正确;故答案为:①②④.7. 4【解析】此题考察反比例函数k 值的几何意义,阴影局部的面积等于2k 〔1,3〕,故k=3,由对称性易知Q(3,1)于是重叠局部是边长为1的正方形,那么S=2×3-6=4. 三计算题1. 【解析】〔1〕设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数关系式分别为:y 1=1k x,y 2=2k x,后根据题意代入求出k 1和k 2即可; 〔2〕当y=0.5时,求出此时小红和小敏所用的水量,后进展比拟即可.【答案】〔1〕设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数关系式分别为:y 1=1k x,y 2=2k x ,将11=1=1.5x y ⎧⎨⎩和11=1=2x y ⎧⎨⎩分别代入两个关系式得: 1.5=11k ,2=21k,解得:k 1=1.5,k 2=2. ∴小红的函数关系式是=,小敏的函数关系式是. 〔2〕把y=0.5分别代入两个函数得:132x =0.5,22x =0.5,解得:x 1=3,x 2=4, 10×3=30〔升〕,5×4=20〔升〕.答:小红一共用30升水,小敏一共用20升水,小敏的方法更值得提倡. 2.【解析】〔1〕设反比例函数解析式为y=kx,将〔25,6〕代入解析式得,k=25×6=150, 那么函数解析式为y=150x〔x ≥15〕, 将y=10代入解析式得,10=150xx=15,故A 〔15,10〕,设正比例函数解析式为y=nx ,将A 〔15,10〕代入上式即可求出n 的值,n=23. 那么正比例函数解析式为y=23x 〔0≤x ≤15〕. 〔2〕150x =2,解之得x=75〔分钟〕,答:从药物释放开场,师生至少在75分钟内不能进入教室.励志赠言经典语录精选句;挥动**,放飞梦想。

六年级数学下册 《第四章 正比例与反比例》单元测试题(有答案)北师大版

六年级数学下册   《第四章 正比例与反比例》单元测试题(有答案)北师大版

2020-2021学年北师大版小学六年级数学下册《第四章正比例与反比例》单元测试题一.选择题(共10小题)1.a与b成反比例关系的条件是()A.=c(一定)B.a×c=b(一定)C.a×b=c(一定)2.表示x和y成正比例关系的式子是()A.x+y=10B.x﹣y=10C.y=10x3.关于莫比乌斯带,以下叙述错误的是()A.普通纸能做成莫比乌斯带B.莫比乌斯带在生活中有很多应用C.莫比乌斯带只有一个面D.莫比乌斯带是用物理学家的姓名命名的4.如果科技书和文艺书本数的比是3:4,那么下面的说法正确的是()A.文艺书比科技书多B.科技书比文艺书少C.科技书占全部书的D.文艺书比科技书多全部书的5.PM2.5颗粒是导致雾霾天气的“罪魁祸首之一”,PM2.5颗粒的最大直径是2.5微米,人的头发直径一般为50微米。

PM2.5颗粒的最大直径与人的头发一般直径的最简整数比是()A.2.5:50B.25:500C.1:200D.1:206.下面图中表示淘气爸爸在高速路上某段路程匀速行驶的是()A.B.C.D.7.在①x+y=12,②y=2x,③=y,④25%:y=x:40中,表示x和y成反比例的式子有()个.A.1B.2C.3D.48.一袋纯牛奶1.50元,购买纯牛奶的袋数和总钱数()A.成正比例B.成反比例C.不成比例9.两个相关联的量x、y,如果=,那么x和y()A.成正比例B.成反比例C.不成比例10.长方形的面积一定,长和宽()A.成正比例B.成反比例C.不成比例二.填空题(共8小题)11.速度一定,路程和时间成比例;圆的周长和直径成比例.12.在ab=c(a、b、c均不为0)中,当b一定时,a和c成比例;当c一定时,a 和b成比例.13.把100g糖放入4kg水中,糖与水的质量比是,糖和糖水的质量比是。

14.莫比乌斯带是数学家莫比乌斯在年发现的,它在生活中和生产中都有应用.15.如图是一张按一定比例尺绘制的平面图,图中的A点(小明家)到B点(学校)的实际距离是500米,C点是公园.先测量再填空,这幅图的比例尺是,学校到公园的实际距离是米.(测量时取整厘米数)16.A、B、C三种量的关系是:A=,如果C一定,那么A和B成比例.17.下面各题的两种量中,成正比例的是,成反比例的是.A.圆的周长和它的直径B.花200元钱买练习册,买的册数和单价C.圆柱的底面积和它的高D.看200页的一本故事书,已看的页数与和剩下的页数18.周六下午,雯雯去看电影。

2021北师大版数学六年级下册第四单元正比例与反比例测试题及答案

2021北师大版数学六年级下册第四单元正比例与反比例测试题及答案

北师大版六年级数学下册第四单元测试卷一、判断题(共5题;共10分)1.在100米赛跑中,所用的时间与速度成反比例。

()2.x 3= 4y(x和y均不为0),x和y成正比例关系。

()3.全班学生的总人数一定,出勤率和出勤人数成反比例.()4.三角形的面积一定,底和高成反比例。

()5.如果ab+5=17,则a与b成反比例。

()二、填空题(共10题;共25分)6.右图表示一辆汽车在公路上行驶-的时间与路程的关系,这辆汽车行驶的时间与路程成________ 比例。

照这样计算,5.5小时行驶________千米。

7.三角形的面积一定,它的底和高成________比例;圆的周长和半径成________比例。

8.如果y=5x,那么x和y成________比例;如果x:5=6:y,那么x与y成________比例。

9.汽车行驶总路程一定,所用时间与速度成________比例。

如果汽车行驶的速度一定,所用时间与总路程成________比例。

10.如图是某造纸厂今年5月上旬的生产情况统计图:这个造纸厂4天的生产量是________吨;生产640吨纸需要________天;这家造纸厂的生产量与时间成________比例.11.在下表中,如果x和y成正比例,那么空格处应填________;如果x和y成反比例,那么空格处应填________x 6y 12 2412.若5:x=3:y,那么x和y成________比例。

13.总价÷数量=单价(一定)________和________是两种相关联的量,________变化,________也随着变化。

而总价和数量相对应的比值一定,也就是________一定,我们说总价和数量成________比例。

14.如果号23a= 12b,那么a:b=________:________,a和b成________比例关系。

15.同一时间、同一地点测得3棵树的树高及其影长如下表,表中的x=________,y=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021《比例和反比例》单元测试题
一、比例和反比例
1.小兰看一本故事书,每天看10页,12天看完,若每天看15页,几天可以看完?
【答案】解:设x天可以看完。

10×12=15x
解得x=8
答:8天可以看完。

【解析】【分析】已知每天看的页数×对应看完的天数=预计每天看的页数×对应预计看完的天数。

等式的性质2:等式两边同时乘(或除以)一个相同的数或式子,两边依然相等。

2.某工程队要用长8m的新水管替换长5m的旧水管,原来已铺的旧水管有124根,现在有75根新水管,够用吗?(用比例知识解答)
【答案】解:设新水管需要x根。

8x=124×5
x=77.5
77.5>75
答:75根新水管不够用。

【解析】【分析】可以设新水管需要x根,题目中存在的等量关系是旧水管的根数×旧水管的长度=新水管的长度×新水管的根数,即可解得新水管需要的根数,然后于75作比较,如果比75大,说明不够,如果比75小,说明够了。

3.x、y、z是三个相关联的量且都不等于0,有x=yz。

当z一定时,x与y成________比例关系;当x一定时,z与y成________比例关系。

【答案】正;反
【解析】【解答】解:当z一定时,x与y成正比例关系;当x一定时,z与y成反比例关系。

故答案为:正;反。

【分析】如果x与y成正比例关系,那么y=kx(k为常数);如果x与y成反比例关系,y=(k为常数,且x≠0)。

4.如果ab=c,(a、b、c均不为0)那么当a一定时,b和c成________,当b一定时,a 和c成________,当c一定时,a和b成________。

【答案】正比例;正比例;反比例
【解析】【解答】如果ab=c,(a、b、c均不为0)那么当a一定时,b和c成正比例,当b一定时,a和c成正比例,当c一定时,a和b成反比例.
故答案为:正比例;正比例;反比例.
【分析】两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系;
两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定,这两种量叫做成反比例的量,它们的关系叫做反比例关系,据此判断.
5.如果y= ,那么x和y成________比例;如果y= ,那么x和y成________比例。

【答案】正;反
【解析】【解答】解:y=,那么=4,x和y的商一定,x和y成正比例;y=,那么xy=4,x和y成反比例。

故答案为:正;反。

【分析】通过变换等式,判断x和y的商一定还是乘积一定,如果商一定就成正比例,如果乘积一定就成反比例。

6.学校原来平均每天用水60吨,现在改用节水龙头,平均每天用水24吨,原来6天的用水量,现在可以用________天.
【答案】 15
【解析】【解答】解:设现在可以用x天。

24x=60×6
x=360÷24
x=15
故答案为:15。

【分析】总水量不变,每天的用水量与用的天数成反比例,设出未知数,根据总水量不变列出比例,解比例求出现在可以用的天数即可。

7.右图是木材加工厂的叔叔绘制的杨木和苹果木的体积与质量变化规律图。

(1)从图中可看出它们的体积与质量成________关系。

(2)6立方米杨木重________吨,比相同体积的苹果木________ ________吨。

(3)8.5吨苹果木是________立方米,200立方米杨木重________吨。

【答案】(1)正比例
(2)3;轻;2
(3)10.2;100
【解析】【解答】解:(1)从图中可看出它们的体积与质量成正比例关系;
(2)6立方米杨木重3吨,比相同体积的苹果木轻5-3=2(吨);
(3)8.5吨苹果木是8.5÷5×6=10.2(立方米);200立方米杨木重200×0.5=100(吨)。

故答案为:(1)正比例;(2)3;轻;2;(3)10.2;100。

【分析】(1)图中表示体积与质量的是一条直线,所以体积与质量成正比例关系;(2)6立方米杨木对应的质量是3吨,6立方米苹果木对应的是5吨,用减法计算轻的重量;
(3)可以用8.5吨苹果木的重量除以5,再乘6求出体积;1立方米杨木重0.5吨,用杨木的总重量直接乘0.5即可求出杨木的重量。

8.已知x,y(均不为o),能满足,那么x,y成________比例,x:Y的最简整数比是________:________。

【答案】正;3;4
【解析】【解答】由可得,x:y=:=, x和y成正比例;
x:y=:=(×12):(×12)=3:4.
故答案为:正;3;4.
【分析】根据比例的基本性质:在比例中,两外项之积等于两内项之积,据此将等式转化成比例式,并求出比值,两种相关联的量,比值一定,两种量成正比例关系;
化简分数比的方法是:比的前项和后项同时乘分母的最小公倍数,如果还不是最简比,再同时除以相同的数变为最简整数比,据此解答.
9.某种型号的铁丝,它的长度与质量()
A. 成正比例
B. 成反比例
C. 不成比例
【答案】 A
【解析】【解答】解:某种型号的铁丝,它的长度与质量成正比例关系。

故答案为:A。

【分析】因为铁丝的型号被确定了,那么它的横截面积也就确定了,横截面积一定时,它的体积和长度成正比,而质量=体积×重度,重度是一定的,所以质量和体积成正比,综上长度与质量成正比例关系。

10.分母一定,分子和分数值()比例。

A. 成反比例
B. 成正比例
C. 不成比例
D. 不能确定【答案】 B
【解析】【解答】解:分子÷分数值=分母(一定),分母一定,分子和分数值成正比例。

故答案为:B。

【分析】分子÷分母=分数值,那么分子÷分数值=分母,两个量的商一定,这两个量就成正
比例。

11.下面各题中的两种量成正比例的是()。

A. 书的总页数一定,已读的页数和未读的页数。

B. 圆柱的体积一定,它的底面积和高。

C. D.
【答案】 D
【解析】【解答】选项A,已读的页数+未读的页数=书的总页数,当书的总页数一定,已读的页数和未读的页数不成比例,因为这里是和一定;
选项B,底面积×高=圆柱的体积,当圆柱的体积一定,它的底面积和高成反比例;
选项C,这是反比例图形;
选项D,这是正比例图形。

故答案为:D.
【分析】如果用字母x和y表示两种相关联的量,用k表示它们的比值,正比例关系可以用以下关系式表示:y:x=k(一定);
如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以用下面关系式表示:xy=k(一定),据此解答;
正比例图像是一条经过原点的直线;反比例图形是一条曲线,据此判断。

12.一个圆锥的底面直径为6cm,高是直径的,圆锥的体积为()cm2。

A. 141.3
B. 47.1
C. 31.4
【答案】 B
【解析】【解答】解:3.14×(6÷2)²×(6×)×
=3.14×9×5×
=3.14×15
=47.1(cm³)
故答案为:B。

【分析】圆锥的体积=底面积×高×,先根据分数乘法的意义求出圆锥的高,再根据公式计算体积即可。

13.一个圆柱和一个圆锥等底等高,体积相差100dm3,圆锥的体积是()dm3
A. 50
B. 100
C. 150
D.
【答案】 A
【解析】【解答】100÷2=50(dm3)
故答案为:A.
【分析】等底等高的圆柱的体积是圆锥的体积的3倍,所以等底等高的圆柱比圆锥的体积大2倍,用体积差÷2=圆锥的体积,据此列式解答.
14.把一个圆柱的侧面展开,刚好可以得到一个正方形,这个圆柱的底面直径和高的比是()。

A. 1:1
B. 1:π
C. 1:d
D. 3:4
【答案】 B
【解析】【解答】解:设底面直径是d,则底面直径与高的比是:d:πd=1:π。

故答案为:B。

【分析】侧面展开后是一个正方形,说明圆柱的底面周长和高相等,设出底面直径,表示出高,写出底面直径和高的最简比即可。

15.把一个圆柱削成一个和它等底等高的圆锥,削去部分体积与圆锥体积的比是()。

A. 1:3
B. 2:3
C. 3:1
D. 2:1
【答案】 D
【解析】【解答】把一个圆柱削成一个和它等底等高的圆锥,削去部分体积与圆锥体积的比是2:1.
故答案为:D.
【分析】等底等高的圆柱体积是圆锥体积的3倍,把一个圆柱削成一个和它等底等高的圆锥,削去部分体积与圆锥体积的比是2:1,据此解答.。

相关文档
最新文档