人为差错与飞行安全

人为差错与飞行安全
人为差错与飞行安全

人为差错与飞行安全

一、人为因素与人为因素学

一般在英文文献中,人为因素都以复数形式(Human Factors)出现,在研究人为因素时,重要的一点就是要认识人为因素的个体以及群体形式。

1)个体人为因素

个体人为因素也可以称之为人为要素。

2)群体人为因素

用数学及物理学的说法,可以把群体人为因素看成是一种人为因素。它包含了操作、现场作业、组织管理及监督等各个方面。简而言之,人为因素学是一种综合的技术体系,它谋求把与人类有关的众多领域内的知识见解灵活地应用于实践,来提高装备的安全性和效率。

人为因素学所跨越的领域不亚于工程学。一个工程师不可能了解工程学的全部领域。同样地,一个人不可能也没必要精通人为因素的各个领域。

二、人为因素学的基本原理

人为因素学有许多重要的内容,这里列举其中与工程热力学中的第一定律和第二定律相通的论点,即:“不能要求人为差错为零,只能通过防止差错和制定容错措施来控制差错。”

这样的说法可能会引起各种议论,例如:“既然那是理所当然的事,那还研究它干什么?”“把差错视为不得已的事情并予以宽容是不

对的”等等。

可是,热力学第一、第二定律明确指出“不能制造出永动机”。与此相似,从人类大脑处理信息的结构来看,人不能100%地避免失误。认识这一点是十分重要的。

工程学打消了制造永动机的念头,转达而以不断地改进技术来实现提高热效率。同样道理,人类也要去掉要求“没有差错的人”的幻想,转而通过积累从人为因素中得来的经验,去实现更好地控制差错,最大限度地将事故发生率降低到接近于零。

经常说,航空事故中70%是人为因素引起的,详细研究一下以往的资料就会明白70%这一数字是和飞行员的错误相联系的。再看看剩下的30%,有设备故障,设计错误、制造错误、管制错误等等,这些都和人为因素息息相关,追究下去的话,在某种意义上也可以说:“事故100%地与人为因素有关。”

三、理论运用于实践的尝试

人为因素是一种涉及领域和知识都很广的方法体系,人们已经提出了许多有用的概念和方法。但是,需要尽力把重要的概念转换成方法,并且运用到实践中去检验。

例如:有“事故链”这么一个概念。这就是说:“大事故极少是因为一个原因引起的,总是由于许多事件像链条似地连结在一起而发生的,所以,要防止事故只要切断这个链条上的某一个环节就可以了。”

从把概念转换为方法的观点来看,可以考虑“分析事故链”的问题。即对作为对象的事故进行分析,具体地写出存在着怎样的事故链,

飞行——生物航空煤油

飞行——生物航空煤油 何培剑14302010042 技术原理: 脱氧化处理:用特定的海藻菌株生产的油 所含的大量中度链长的脂肪酸,在脱氧化处理 后,完全接近常规煤油存在的烃类长度。与少 量燃料添加剂相混合后,就成为JP8或JetA 喷气燃料,适合喷气航空飞行应用。中度链长 脂肪酸基煤油生产的一个竞争性优势是无需 采用昂贵的化学或热裂化过程,而动物脂肪、 植物油和典型的海藻油中常见的长链脂肪酸却需采用这些过程处理。 另外,还可采用氢化裂解过程、生物质热解过程、费——托合成、生物油裂解来制成生物航空煤油。 技术的应用: 国外,波音公司在2008年2月至2009年1月进 行过4次混合生物燃料的试飞。实验结果认为,生 物燃料冰点较低、热稳定性和能量较高。生物燃料 作为“普适性”燃料,既能与传统航空煤油混合, 也可完全代替传统的航空煤油,直接为飞机提供能 量。 另一些航空公司也进行了混合燃料的试飞,如, 新西兰航空公司采用了来源于麻风树的燃油试飞; 美国大陆航空公司采用了麻风树和藻类生物油的混 合燃油;日本航空公司采用了来源于麻风树、藻类和亚麻籽的的生物油的混合燃油。 在中国,2013年4月24日5点43分,东航一架现役空中客车客A320腾空而起,其加注了中国首次自主知识产权的生物航空燃油,在虹桥机场执行了1

个半小时的本场验证飞行,记录下各项重要数据、指标。试飞组按照验证飞行科目设置的全流程要求,对混合生物燃油加注配比、巡航阶段温度测定、飞行高度影响、航前航后发动机孔探检查,以及特殊情况处置等工作进行了测试。 加注中国石化生物航空煤油的东方航空空客320型飞机经过85分钟飞行后,平稳降落在上海虹桥国际机场,标志着中国自主研发生产的生物航空燃料在商业客机首次试飞成功。 2014年2月12日,中国民用航空局在北京正式 向中国石化颁发1号生物航煤技术标准规定项目批 准书(CTSOA),中国第一张生物航煤生产许可证落 户中国石化。这标志着备受国内外关注的国产1号 生物航煤正式获得适航批准,并可投入商业使用。 技术的优缺点: 优点:生物航油不需要对飞机及发动机进行改装。未来如能在规模上实现商业化并满足航空适航审定标准,航空生物燃料将有效解决民用航空业环境及能源问题。且与传统航空煤油相比,藻类生物燃料(即藻类生物航煤)在飞机飞行中可节省5%-10%的燃料。废气排放检测数据显示,海藻燃料排放的氮氧化物,比传统航煤少40%,排放的碳氢化合物减少87.5%,生产的硫化物浓度仅为传统燃料的1/60。 缺点: 1、我们目前使用的餐饮废油其实就是餐饮废油收集厂家从餐馆收集而来的,餐馆和收集厂家都是很分散的,他们的收集渠道、去向我们都不掌握。这不像传统的矿物航煤,一般炼油厂都能生产,原料来源也没问题。要保证原料稳定连续的供应,目前来看还确实是个问题。 2、制生物航空煤油生产成本很高。从原料采购环节到加工过程,综合来看,可能是一般的矿物航煤生产成本的2-3倍。关于怎样降低成本,目前国内外都在做相关研究和努力。 目前,航空业正寻找利用第2代生物燃料,这种新一代生物燃料源自非粮食作物给料,还可以在很大范围的地方(包括沙漠和咸水)种植。

《安全管理》之影响航空运输安全的三大人为因素

影响航空运输安全的三大人为因素 随着飞机的出现,交通运输的模式发生了巨大的变化。航空运输以方便、快捷的优势吸引着大量的旅客。世界间的距离随之“缩短”,朝发夕至已成为不争的事实,然而航空安全一直是困扰着人们选择出行的一大难题。在航空运输发展的初期,由于科学技术较为落后,因飞机本身的机械故障而引发的飞行事故居高不下,占据主要原因。近几十年来,随着科学技术的不断发展,新材料的大量使用,飞机已是高新科技的代表作,自身的安全系数不断提高,由于人为因素而造成的航空事故比例大大增加。据统计数字显示近七成事故由人为原因导致,成为制约航空安全的最大障碍。这一现象已引起业内专家的高度重视,于是逐渐探索出通过加强机组资源管理,从而有效降低人为因素的不安全隐患,达到提高航空安全水平的目的。 航空安全是一个系统工程,包括人、机、环境三大环节,随着科技的不断发展,运行环境的不断完善,人为因素已成为制约航空安全水平的首要环节。 影响航空安全的三大基本人为因素 一、技术因素: 众所周知,航空器是诸多尖端科技的综合产物,以高速安全的特点帮助人类实现了许多梦想、缩短了世界各点之间的距离、加强相互之间的联系、加速了社会文明的发展。在享受这些便捷的同时我们也应该意识到它的复杂性和挑战性,航空人员是不同于一般群体的特殊人员,航空器的特点决定了他们必须具备高度的专业素质和精湛的驾驶技术,不但要全面了解相关学科的专业知识还要对航空器的工作原理谙熟于胸,不但要熟知各个系统还要在出现异常时的分析问题和解决问题的能力,不但要能够熟练操纵飞机做各种机动而且还要能够从容应对特殊情况的发生,发扬人的聪明才智发挥飞机的最大性能从而确保航空安全。 从我国培养飞行人员模式的变化即可看出对从业人员要求的不断提高,中国民航飞行学院是培养飞行员的摇篮,其前身仅为一般的技术专科学校,随着民航的不

浅析飞行员心理素质对飞行安全的影响及对策

浅析飞行员心理素质对飞行安全的影响及对策 现代飞机从原始的一杆两舵走向了智能化,从而对现代飞行员的素质提出了更高的要求。研究表明,在人的因素中,飞行人员的心理因素所造成的飞行事故又占相当的比例。因此,探讨飞行员的心理品质对飞行安全的影响,有助于提高飞行员的心理素质,从而避免不安全飞行事故的发生。在飞行活动中,影响飞行员心理变化的因素主要包括:飞行环境(自然和人文环境)、飞行疲劳、特情情况和情绪变化。为了进一步提高飞行员的心理素质,可采用“提高飞行员的身体素质孝搞好特情处置“预防”心理教育、对飞行员实施飞行心理训练”等方法,以便更好地保证飞行安全。 关键词: 人的因素心理素质心理训练飞行安全 0 引言 自从人类于1903年有了第一架飞机后,随着时间的推移,飞机的不断改进世界民航业也得到了巨大的发展,进入20世纪50年后,大量的飞机被投入到了干线运输中,而飞机的事故率也不断的增加。在世界范围内造成飞行事故空勤机组的因素一直保持在80%左右,如果再加上空中交通管制,机务维修机场保障的差错由人为原因造成的飞机事故率可高达90%以上。 附:飞行事故中人的因素发展趋势 年份事故率人的因素机械因素 1950年33.2 40% 60% 1960年 6.7 50% 50% 1970年 3.0 60% 40% 1980年 2.3 70% 30% 1990年 1.6 80% 20% 从血的教训可以得出的结论是:无论是飞行事故,航空地面事故,还是其它事故或事故征候,除少数由于天气等不可抗拒的因素外,大多数都是人为差错埋下的祸根。现代飞机从原始的一杆两舵走向了智能化,从而对现代飞行员的素质提出了更高的要求,从研究飞行人员身体素质已转向脑力资源开发,航空医学的重点也由生理走向心理,我们研究飞行中人的因素更应该研究心理与行为的变化。研究表明,在人的因素中,飞行人员的心理因素所造成

飞行模拟机训练中心安全管理体系的建立实施简易版

In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编订:XXXXXXXX 20XX年XX月XX日 飞行模拟机训练中心安全管理体系的建立实施简易 版

飞行模拟机训练中心安全管理体系 的建立实施简易版 温馨提示:本安全管理文件应用在平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 国际民航组织(ICAO)对安全的定义及含 义 与普通大众对安全的理解不同,ICAO对安 全的定义如下: Safety is the state in which the risk of harm to persons or property damage is reduced to,and maintained at or below, an acceptable level through a continuing process of hazard identification and risk

management。 (译文)安全是一种状态,即通过持续的危险识别和风险管理的过程,将人员伤害或财产损失的风险降至并保持在可接受的水平或以下①。 这个对“安全”下的定义是科学的、客观的。不安全事件在航空运营中是不可能被杜绝的。这也符合19世纪中期在美国空军服役的一名工程师——爱德华·墨菲(Edward A. Murphy)说的一句俚语,后来演变为“墨菲定律”(Murphys Law)。墨菲定律的原话是:“If there are two or more ways to do something,and one of those ways can

航模飞行前后检查

培训汇报 今年我赴北京跃迁科技公司,进行了为期15天的培训学习。学习内容主要包括外场飞行操作和发动机清洗调试工作流程以及MP2128自驾仪的使用。通过本次学习培训,我对无人机操控原理有了更深的认识,并且对起飞前的检查准备工作以及无人机的操作技能得到了极大的提高。 (一)起飞前的检查工作 起初学习时,以UP30自驾仪为例进行飞行前的机务准备工作。外场飞机起飞前的主要检查工作流程如下: 检查传感器数据以及其零位和需要清零的传感器(空速、俯仰滚转偏置,陀螺零位)。 转动飞机,检查陀螺和加速度计工作方向和数据正确。 挡住空速管,空速是否为零,手指按住空速管加压,检查空速变化。 设置当前地面高度,安全开伞高度,是否使能自动应急开伞。 检查GPS,卫星数量和PDOP。 检查并记录初始电池电压和舵机电压(7.8v,5v)。 根据任务需要选择合适的地图或者自定义标志层。 根据任务需要选择或者编辑飞行路线(第一点设置正确),并上传下载验证。 根据任务需要选择或者编辑制式航线正确。 目标航点正确。 丢星保护设置正确。 PID增益参数、迎角限制、自控中立位置是否正确(如果已知)。 检查是否所有PID通道均打开。 通讯失败航点(X)。 遥控器切换到RC模式,地面站显示正确,遥控器控制舵面正常(方向和量)。 6通道控制选择正确(开伞)。 检查遥控器的控制距离(不拉天线)。 起飞前各舵面中立位置是否正确,否则用遥控器调整。 开伞位置与任务舵机设置正确。 任务IO口设置正确。 检查数据通讯是否正常,机载天线是否安装,地面天线。 发动机风门最大最小值、停车位置设置正确。 遥控器置RC模式,启动发动机,转速显示正常。 在整个转速范围内检查传感器数据的跳动在可接受的范围内。 检查遥控器的风门控制(甲醇机)是否能停车,停车控制(汽油机)工作正常。 最后检查:电池电压,GPS状况,RSSI。 根据风向决定起飞方向。 起飞并记录起飞时间。 以上流程为UP30自驾仪起飞前的检查流程,该流程对APM2.5和MP2128也有较大的借鉴意义。建议在外场起飞时,将该流程打印成表单,由专人逐项检查,并签字验收。

谈人为差错--王树贵

谈人为差错 航空安全是民航业永恒的主题。随着现代科学技术的进步,驾驶舱自动化程度越来越高,航空器的可靠性和安全性有了很大提高,由机械原因诱发的飞行事故已呈逐年下降,而人为因素所诱发的飞行事故却仍然是居高不下。航空安全是靠规章、标准化的程序、规范化的操作来实现的,而人是有惰性的,人的潜意识中都存在趋于简化、打折扣的倾向。 人为差错不一定就直接导致飞行事故和事故征候,只有在特殊的条件下才会成为事故的原因。我们研究人为差错的目的不是消灭人为差错,而是防止人为差错导致飞行事故。要保证航空安全,就要重视对人的培养和训练,更应该加强飞行机组的训练。加强飞行机组的培训,提高飞行机组的专业技能和综合素质,是保证飞行安全的重要基础。 大量研究事实证明,由人为差错导致的飞行事故已占其中的50%左右。 下面是1950年到2009年来全球严重飞行事故原因统计分析图(数字是百分比)。 数据来源:https://www.360docs.net/doc/1710441030.html,网站数据库 飞行员差错(天气引起的)指主因是飞行员差错,但由天气相关现象促成的事故。 飞行员差错(机械引起的)指主因是飞行员差错,但由某些机械故障促成的事故。 其它人为差错包含空管差错、不当的飞机装载、燃料污染与不当的维护程序。 全部飞行员差错指以上三种飞行员差错的总和。 破坏包含爆炸设备、击落与劫机。 当事故由多个原因引发时,使用最关键的那个原因。

所谓人为差错(Human Error),也称人为错误,是认读错误、思维过程错误和操作错误的统称。每位飞行员在某次飞行事故或事件中都不是故意犯错误,而是在特定的情景中由于受一种或多种因素的影响以及人固有的功能局限而导致出错的。 人为差错和人的行为密不可分。要研究人的行为特征,就要了解以下定律和模型。 莫非定律(Murphy’s Law):事情如果有变坏的可能,不管这种可能性有多小,它总会发生。为什么?就因为害怕发生,所以会非常在意,注意力越集中,就越容易犯错误。莫非定律在提出几个月后就被广泛应用在与航天机械相关的领域。 莫非定律告诉我们,容易犯错误是人类与生俱来的弱点,不论科技多发达,事故都会发生。而且我们解决问题的手段越高明,面临的麻烦就越严重。所以,我们在事前应该是尽可能想得周到、全面一些。 霍金斯的SHEL模型 A.人机关系(L与H) B.人与环境的关系(L与E) C.人与人的关系(L与L) D.人与软件的关系(L与S) 整体关系 在SHEL的概念图上,系统各界面是凹凸不平的,以为这个界面之间必须谨慎匹配,否则,系统内的应力就会过高,最终引起系统的断裂和解体,事故也就在所难免。在种种变化的情况中,L(人)处于中心地位,根据L(人)与其它SHEL的关系如何,其结果也会出现种种变化。 案例分析 Case 1 1987年8月16日,美国西北航空公司一架DC-9-82型飞机在美国密执安州某机场起飞时,因飞行员未放襟翼而坠毁。美国国家运输安全委员会组织调查后,认为如果有任何种类的飞行检查单或推荐的使用方法,都会对从业人员的能力的改善有利。之后发布了修订的《运输 航空运行检查员手册》,把飞行检查单与人为因素有机地联系了起来。

浅析直升机在城市中的飞行安全

分类号编号中国人民解放军陆军航空兵学院 毕业设计(论文)技术报告课题名称:浅析直升机在城市中的飞行安全 学员姓名施杰 专业飞行与指挥 班级直—11 指导教员韩旭鹏 2009年02 月

论文题目:浅析直升机在城市中的飞行安全 作者:施杰 指导教员:韩旭鹏 内容摘要:本文介绍了直升机在城市中飞行的特点,重点分析了城市地形、飞行高度、城市气候等因素对飞行安全的影响,并根据城市特点对空中出现特情的处置方法做了进一步的分析。 关键词:直升机城市安全

TITLE:Analysis Of Helicopter Safety Flight In The Cities AUTHOR:Shi Jie TUTOR:Han Xupeng ABSTRACT:This article describes the helicopter flight characteristics in the cities.Analysis focused on the urban terrain,flight altitude,urban climate and other factors impact on flight safety.And in accordance with the characteristics of urban cities,making the further analysis of the disposal methods to the special air circumstances. KEYWORDS:elicopter city safey 目录 0引言 (1) 1直升机在城市中的飞行特点 (2) 1.1直升机飞行的特点 (2) 1.2城市气候对飞行的影响 (3) 1.3能见度对城市飞行的影响 (4) 2 预防直升机在城市中飞行发生危险应注意的问题 (5) 2.1如何在城市复杂地形中保证飞行安全 (5) 2.2 保持高度是安全的重要保证 (6) 2.3机动飞行的注意事项 (8) 3空中特情的处置方法研究 (9) 3.1 空中出现特情的原因分析 (9)

飞行模拟机训练中心安全管理体系的建立实施实用版

YF-ED-J8947 可按资料类型定义编号 飞行模拟机训练中心安全管理体系的建立实施实用 版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

飞行模拟机训练中心安全管理体系的建立实施实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 国际民航组织(ICAO)对安全的定义及含 义 与普通大众对安全的理解不同,ICAO对安 全的定义如下: Safety is the state in which the risk of harm to persons or property damage is reduced to,and maintained at or below, an acceptable level through a continuing

process of hazard identification and risk management。 (译文)安全是一种状态,即通过持续的危险识别和风险管理的过程,将人员伤害或财产损失的风险降至并保持在可接受的水平或以下①。 这个对“安全”下的定义是科学的、客观的。不安全事件在航空运营中是不可能被杜绝的。这也符合19世纪中期在美国空军服役的一名工程师——爱德华·墨菲(Edward A. Murphy)说的一句俚语,后来演变为“墨菲定律”(Murphys Law)。墨菲定律的原话是:“If there are two or more ways to do

飞行MEL题库附答案

选择题 1. 关于MEL手册的描述,正确的是:() A 目的是在确保飞行安全的前提下,争取航班飞行正常 B 允许航空器带有不工作的设备项目在一段时间内运行,直到完成纠正措施 C 纠正措施将在最早出现的机会予以完成 D 以上都是 2. MEL手册中标注的“(M)”代表什么?() A 机组操作程序 B 维修程序 C 不工作的设备 3. MEL手册中标注的“(O)”代表什么?() A 机组操作程序 B 所列项目不工作时飞行必须完成特定的维修程序 C 不工作的设备 4. 最低设备放行清单的规定适用于什么时候?() A 整个飞行阶段 B 航空器开始飞行(飞机依靠自身动力运动)之前 C 在航空器离地之前 5. 任何对于在开始飞行以后出现的故障或者不工作情况是否继续飞行的决定,错误的说法是:() A 必须基于飞机机组的判断和飞行技术 B在适用的情况,机长可以参考和使用MEL来继续飞行 C MEL在开始飞行后一样适用 6. 对于航空器机体或者发动机部件缺失的情况,签派或放行参考什么文件?() A AFM B CDL C MEL第3部分 7. MEL中维修期限类型为“A”的要求是什么?() A 没有明确的标准期限,该项目应当在“备注或例外”中注明在具体的维修期限内进行修理。对于一个明确的时间段,将从被发现的第二个日历日00:01开始。 B 应该在3个连续日历日(不包括被发现的当天)内被修正。 C 在10个连续日历日(不包括被发现的当天)内被修正。 D 将在120个连续日历日(不包括被发现的当天)内被修正。 8. MEL中维修期限类型为“B”的要求是什么?() A 没有明确的标准期限,该项目应当在“备注或例外”中注明在具体的维修期限内进行修理。对于一个明确的时间段,将从被发现的第二个日历日00:01开始。 B 应该在3个连续日历日(不包括被发现的当天)内被修正。 C 在10个连续日历日(不包括被发现的当天)内被修正。 D 将在120个连续日历日(不包括被发现的当天)内被修正。 9. MEL中维修期限类型为“C”的要求是什么?() A 没有明确的标准期限,该项目应当在“备注或例外”中注明在具体的维修期限内进行修理。对于一个明确的时间段,将从被发现的第二个日历日00:01开始。 B 应该在3个连续日历日(不包括被发现的当天)内被修正。 C 在10个连续日历日(不包括被发现的当天)内被修正。 D 将在120个连续日历日(不包括被发现的当天)内被修正。 10. MEL中维修期限类型为“D”的要求是什么?() A 没有明确的标准期限,该项目应当在“备注或例外”中注明在具体的维修期限内进行修理。对于一个明

人为差错与飞行安全

人为差错与飞行安全 一、人为因素与人为因素学 一般在英文文献中,人为因素都以复数形式(Human Factors)出现,在研究人为因素时,重要的一点就是要认识人为因素的个体以及群体形式。 1)个体人为因素 个体人为因素也可以称之为人为要素。 2)群体人为因素 用数学及物理学的说法,可以把群体人为因素看成是一种人为因素。它包含了操作、现场作业、组织管理及监督等各个方面。简而言之,人为因素学是一种综合的技术体系,它谋求把与人类有关的众多领域内的知识见解灵活地应用于实践,来提高装备的安全性和效率。 人为因素学所跨越的领域不亚于工程学。一个工程师不可能了解工程学的全部领域。同样地,一个人不可能也没必要精通人为因素的各个领域。 二、人为因素学的基本原理 人为因素学有许多重要的内容,这里列举其中与工程热力学中的第一定律和第二定律相通的论点,即:“不能要求人为差错为零,只能通过防止差错和制定容错措施来控制差错。” 这样的说法可能会引起各种议论,例如:“既然那是理所当然的事,那还研究它干什么?”“把差错视为不得已的事情并予以宽容是不

对的”等等。 可是,热力学第一、第二定律明确指出“不能制造出永动机”。与此相似,从人类大脑处理信息的结构来看,人不能100%地避免失误。认识这一点是十分重要的。 工程学打消了制造永动机的念头,转达而以不断地改进技术来实现提高热效率。同样道理,人类也要去掉要求“没有差错的人”的幻想,转而通过积累从人为因素中得来的经验,去实现更好地控制差错,最大限度地将事故发生率降低到接近于零。 经常说,航空事故中70%是人为因素引起的,详细研究一下以往的资料就会明白70%这一数字是和飞行员的错误相联系的。再看看剩下的30%,有设备故障,设计错误、制造错误、管制错误等等,这些都和人为因素息息相关,追究下去的话,在某种意义上也可以说:“事故100%地与人为因素有关。” 三、理论运用于实践的尝试 人为因素是一种涉及领域和知识都很广的方法体系,人们已经提出了许多有用的概念和方法。但是,需要尽力把重要的概念转换成方法,并且运用到实践中去检验。 例如:有“事故链”这么一个概念。这就是说:“大事故极少是因为一个原因引起的,总是由于许多事件像链条似地连结在一起而发生的,所以,要防止事故只要切断这个链条上的某一个环节就可以了。” 从把概念转换为方法的观点来看,可以考虑“分析事故链”的问题。即对作为对象的事故进行分析,具体地写出存在着怎样的事故链,

人为因素与航空安全

人为因素与航空安全 __浅谈影响航空安全的三大人为因素 随着飞机的出现,交通运输的模式发生了巨大的变化。航空运输以方便、快捷的优势吸引着大量的旅客。世界间的距离随之“缩短”,朝发夕至已成为不争的事实,然而航空安全一直是困扰着人们选择出行的一大难题。在航空运输发展的初期,由于科学技术较为落后,因飞机本身的机械故障而引发的飞行事故居高不下,占据主要原因。近几十年来,随着科学技术的不断发展,新材料的大量使用,飞机已是高新科技的代表作,自身的安全系数不断提高,由于人为因素而造成的航空事故比例大大增加。据统计数字显示近七成事故由人为原因导致,成为制约航空安全的最大障碍。这一现象已引起业内专家的高度重视,于是逐渐探索出通过加强机组资源管理,从而有效降低人为因素的不安全隐患,达到提高航空安全水平的目的。 航空安全是一个系统工程,包括人、机、环境三大环节,随着科技的不断发展,运行环境的不断完善,人为因素已成为制约航空安全水平的首要环节。 影响航空安全的三大基本人为因素 一、技术因素: 众所周知,航空器是诸多尖端科技的综合产物,以高速安全的特点帮助人类实现了许多梦想、缩短了世界各点之间的距离、加强相互之间的联系、加速了社会文明的发展。在享受这些便捷的同时我们也应该意识到它的复杂性和挑战性,航空人员是不同于一般群体的特殊人员,航空器的特点决定了他们必须具备高度的专业素质和精湛的驾驶技术,不但要全面了解相关学科的专业知识还要对航空器的工作原理谙熟于胸,不但要熟知各个系统还要在出现异常时的分析问题和解决问题的能力,不但要能够熟练操纵飞机做各种机动而且还要能够从容应对特殊情况的发生,发扬人的聪明才智发挥飞机的最大性能从而确保航空安全。 从我国培养飞行人员模式的变化即可看出对从业人员要求的不断提高,中国民航飞行学院是培养飞行员的摇篮,其前身仅为一般的技术专科学校,随着民航的不断发展逐渐升格成一所综合性本科学院,所培养的人才从单一的航空器”司机”到今天的高素质综合型人才除传授综合性的专业知识以外更加注重再学习能力的培养以适应航空技术的不断更新与发展,并以积极的态度去面对高新技术的不断涌现,从而有效合理的利用和再创造,为营造良好的人机环境、够建相互影响相互促进的良性循环、航空安全与可持续发展奠定基础。 从飞行员的后期培训来看,近年来增加了新雇员培训、公司运行政策培训、应急训练和定期复训等,培训体系已向系统化、职业化发展。教学模式也从师傅带徒弟的经验型转变到理论与实践紧密结合的综合型,侧重于传授技术而不是简单的技巧,所有这些改变都为今后的航空安全储备人才,有利于从根本上改善人为因素这一重大环节。 二、法规因素 航空法规是从事航空运输的行为规范,没有规矩不成方圆。从初始飞行学员到成熟的机长要经历许多法规制度的培训,其中包括《飞行基本规则》《民航法》

影响飞行安全的因素

关于影响飞机飞行安全因素的研究 摘要 关键词:车灯设计;线光源;光强度;优化模型;追迹法 注:摘要内容不超过一页。主要包括用什么方法,解决了什么问题,主要结果是什么,有什么特色。在完成基本问题的基础上,还做了哪些有意义的工作等。 摘要中不要出现公式和表格。篇幅A4纸大半页,不超过1页。 关键词是能够反映全文问题、内容、方法和特色的最关键的词语,个数3-8个。

1.飞行安全的背景 飞机在飞行中除了受到所在领域的大气物理性质的影响,而且无时无刻不受气象条件的影响。例如:飞机所在领域的密度、压强、声速等大气物理性质决定了飞机的升力大小;又如气候条件中云量的多少、云底的高低、厚薄、直接影响飞行视程和飞机的起降;飞机在空中飞行时,飞机积冰、颠簸或遭受雷击可能危及飞行安全,气温超过一定限度,将影响飞机的载量,恶劣的能见度直接影响飞机的起飞和着陆。风会改变飞机的上升、下滑率和滑跑距离,冰雹会打坏飞机和其他地面设施等。 2.基本假设 1、本文中涉及的数据均以波音747-400为准; 2、假设波音747-400机翼的平均宽度为8.75m; 3、假设飞机飞行的平均速度为典型巡航与最高巡航的算术平均值; 4、假设忽略机身产生的升力; 3.飞行安全因素的探究 3.1参数的求解及数据的预处理 飞机在空中平稳飞行时,飞机的重力和飞机机翼产生的升力相等。在假设2中机翼翼宽平均为8.75m,机翼翼展为64.4m。升力系数对同一机型来说,升力系数是一定值。因此在计算该机型升力系数时,选取飞机在1000m内的相关参数,升力按最大起飞重量计算。波音747-400部分参数【1】如下表1,国际标准大气【2】如下表2: 大气温度/K

飞行模拟机训练中心安全管理体系的建立实施标准范本

安全管理编号:LX-FS-A39018 飞行模拟机训练中心安全管理体系的建立实施标准范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

飞行模拟机训练中心安全管理体系的建立实施标准范本 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 国际民航组织(ICAO)对安全的定义及含义 与普通大众对安全的理解不同,ICAO对安全的定义如下: Safety is the state in which the risk of harm to persons or property damage is reduced to,and maintained at or below,an acceptable level through a continuing process of hazard identification and risk management。

空军飞行员的工资待遇

空军飞行员的工资待遇 要看军衔级别以及飞行时间,就军衔而言,飞行员最起码是中尉军衔,那么工资在4000+这是对的,此外还有飞行补贴,这个不是什么时候都有的,你飞了才有,不飞没有。现在军队的待遇并不高,对于普通飞行员来说,一个月一万是天方夜谭,七八千也基本不可能,不然不会那么多人转业都去民航,那才是真正的高工资。空军飞行员的待遇主要体现在伙食、住房以及其他政治待遇上,比如空军飞行员的伙食是全军最好的,住房问题一般也优先解决,家属没有工作部队也可以解决,当然,最重要的是荣誉感,空军飞行员是万里挑一的,那种自豪感很强。 飞行员和其他的军队同级干部的工资是一样的,所不同的就是飞行员另有两项补助,一是飞行等级补助,根据你的飞行年限和技术等级而不同。二是飞行时间补助,根据你当月飞行的空中时间和指挥时间补助不同。 个人认为空军的技术兵的钱多而且安全。这个是真的,但是要看军种,如果是维修飞机的就没有那么高,如果是战斗序列的就高,而且还要看是飞什么飞机的,如果是飞歼十的就是高军种也就是军官一级的,工资+住房+乱七八糟的补贴等等差不多,作为飞行员的老婆待遇也差不多,因为战争序列的飞行员属于特高危军种,随时都有生命危险,当然工资补贴也就高了,国家培养一个飞行员大概的费用是在1个亿左右,所以很多人都想当飞行员,但是很多人也当不了飞行员,因为飞行员的各项考核时非常严格的,这个行业是全行业中唯一一个不准走后门的行业,虽然你入选飞行员,但是试飞的时候,你不合格一样被刷。这就是中国空军,所以为什么飞行员牛B,就是这个原因,而且他们退下来还可以从事民航的飞行,最低从副机长做起。不过很多女孩都不喜欢飞行员,因为万一出了意外,那就是守寡,还有,军人的婚姻是由军队的制度限制的,如果你想和你老公离婚或者老婆是军人的,只要一方不同意,就离不掉,和我们普通老百姓是不一样。 由于飞行工作的特殊需要,飞行人员除享受现役军宫的待遇外,还按照有关规定享受飞行人员特有的待遇。飞行学员取得学籍后,从开学之日起计算军龄,家庭享受军属待遇,学习期间一切费用由国家提供,同地方院校和部分军队院校相比,家庭可节省经费6-7万;飞行学员在校学习期间的第二学年安排探亲假;飞行学员毕业后任飞行军官,授予空军中尉军衔,享受优厚的工资待遇,不需要

人为差错与飞行安全参考文本

人为差错与飞行安全参考 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

人为差错与飞行安全参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 一、人为因素与人为因素学 一般在英文文献中,人为因素都以复数形式(Human Factors)出现,在研究人为因素时,重要的一点就是要认 识人为因素的个体以及群体形式。 1)个体人为因素 个体人为因素也可以称之为人为要素。 2)群体人为因素 用数学及物理学的说法,可以把群体人为因素看成是 一种人为因素。它包含了操作、现场作业、组织管理及监 督等各个方面。简而言之,人为因素学是一种综合的技术 体系,它谋求把与人类有关的众多领域内的知识见解灵活 地应用于实践,来提高装备的安全性和效率。

人为因素学所跨越的领域不亚于工程学。一个工程师不可能了解工程学的全部领域。同样地,一个人不可能也没必要精通人为因素的各个领域。 二、人为因素学的基本原理 人为因素学有许多重要的内容,这里列举其中与工程热力学中的第一定律和第二定律相通的论点,即:“不能要求人为差错为零,只能通过防止差错和制定容错措施来控制差错。” 这样的说法可能会引起各种议论,例如:“既然那是理所当然的事,那还研究它干什么?”“把差错视为不得已的事情并予以宽容是不对的”等等。 可是,热力学第一、第二定律明确指出“不能制造出永动机”。与此相似,从人类大脑处理信息的结构来看,人不能100%地避免失误。认识这一点是十分重要的。 工程学打消了制造永动机的念头,转达而以不断地改

(完整word版)谈人为因素与安全运行

谈人为因素与安全运行 安全和效率是航空界关注的目标,二者缺一不可,优化航空人员的工作表现,是实现安全和效率的可靠保障,在百年航空发展史中,随着航空设计和制造业的发展,飞机的可靠性得到了很大提高。人为因素的研究成果在飞行中的应用取得了不可估量的效果,机组资源管理是机组原因造成的事故明显减少,但是从最近十年发生的事故统计来看机组原因依然超过70%。 安全对航空公司来说相当重要,如果没有安全就没有公司的生存,更谈不上发展了。 上个世纪后期由于航空器的安全水平的提高。飞机的机械原因导致的事故比例从80%降低到20%,但是人为差错在先进的设备下仍然出现,并且,这种情况越来越明显,占到事故比例的80%,这样我们逐渐认识到,航空器的可靠性已远远大于人的操作可靠性,人的失误会对飞机构成更大的威胁,这就使得提高航空器安全的关注点逐步转移到人的身上。 应用人为因素不仅限于飞行安全的需要,缺乏人为因素只是还对效率有着重要影响,所以研究和应用人为因素的主要目的是保障安全和提高效率。 一、SHEL模型让我们理解人为因素 它是一种人为因素的概念模型,是用简单方式来认识复杂系统,它主要介绍人为因素的研究的范围,要素,关系,人是这个模型的中心,是最重要的部分,其他部分要与他配合,并适应它,它和其他部分不匹配就是人为差错的根源主要有以下几个方面; 1、S软件飞行程序,操作手册,检查单等等。

容易出现差错的是,误解程序,编制了不实用的手册,制定了不合理的检查单。特别是在新的程序和新的检查单开始执行的时候容易出现人为原因的差错。 2、H硬件飞机结构,驾驶舱设计,操纵系统和仪表的配置和使用特性等 容易出现差错的是,操纵性设计不符合我们的习惯,仪表位置不合理等,尤其是对新飞机操纵时容易出现人为原因的差错。 3、E环境运行环境,气象条件,工作流程安排等 容易出现差错的是,运行环境给机组带来很的大负担,天气条件牵涉机组很大精力,飞行任务安排不合理,造成人员疲劳,分心等。 4、L人一起工作的机组成员,签派人员,管理人员。等等 容易出错的是,人员短缺飞行量加大,缺少机组成员之间的监督,缺少来治管理人员的支持。 从上面的模型可以看出我们容易出现错误的方面,随着现代设计和制造业的进步飞机已经变得越来越可靠,然而重新设计人类是不可能的,人是会犯错误的。但是,我们却能通过提供有效的培训,优化工作程序,完善规章制度,采取预防措施来避免差错和管理差错。 与许多事故和事故征候一样,所有的案例都包含一系列人为因素问题,形成一个事故链,事故的发生不是单一的,往往涉及很多人,如果其中任何一个人对异常提出疑问和质疑,就会有不同的结果,打破事故链,从而避免差错,防止事故的发生。在事故链中飞行机组已经是后一环了,所以就更为重要和关键了。 二、墨菲定律

危及飞行安全因素分析.

目录 一、引言 (2) 二、危及飞行安全的几种因素........................... 2 (一人的因素 (2) 1. 飞行人员的因素 (3) 2. 指挥人员的因素 (3) 3. 机械人员的因素 (4) 4. 其他人为因素 (4) (二气象与地理环境因素 (5) (三领航因素 (6) (四昼夜间因素 (7) (五管制因素 (7) (六其他因素……………………………………… 9 三、主要分析飞行管制对飞行安全的重要性及未来飞行管制的展望与设想…………………… 9 四、结束语…………………………………………… 12 参考资料 危及飞行安全因素分析 一、引言 自从 1903年 12月 17日莱特兄弟实现动力飞行之后 , 到了第二次世界大战后期 , 航空工业有很大的发展。此时 , 世界上很多国家和地区修建了机场并拥有了一定数量训练有素的飞行员和其他空勤人员。 1910年在维也纳发生了世界航空史上第一次飞机相撞事故 , 其后对飞行活动进行合理、有效的管理才逐渐被人们认识。

随着我国航空事业的发展 , 飞行矛盾日益突出 , 特别是进入九十年代以后 , 由于民用航空事业的发展 , 许多以前划定的战斗空域、训练炮射空域及航线航路严重制 约着我国航空事业的发展 , 危及飞行安全。那么飞行管制人员如何立足现有条件和设备在机场分布密集 , 航空兵部队飞行空域拥挤 , 空中走廊、航路、航线纵横交错 , 过往航班、专机、包机不断增加 , 战斗机训练、转场、过航频繁的情况下 , 掌握空中飞行动态 , 确保飞行安全 , 避免发生重大飞行事故 , 就必须正确认识和分析危及飞行安全的相关因素 , 制定好预防方案 , 将事故隐患消灭在萌芽状态 , 为此笔者通过分析近年来出现的几起带有典型性质的飞行事故 , 论述危及飞行安全的几种因素。 二、危及飞行安全的几种因素 (一人的因素。 人的因素是飞行安全中最重要的因素 , 纵观国际国内的飞行事故 , 大部分都是与人这一因素紧密联系。根据国际民航组织统计 :1996年全世界各航空公司共发生重大飞行事故 57起 , 除少数事故与气象因素和机械故障有关外 , 绝大多数事故都 是人为因素造成的。 1、飞行人员的因素。如操纵错误、疾病、身体素质 , 飞行中产生错觉、黑视、晕厥、思想不集中 , 违章违纪等等都可能产生极其严重的后果。下面举一组数字就可以看出 :空军飞行学院在 1950年 -1990年 41年期间 , 起落航线科目和其他 科目在起落动作上发生的事故 , 占飞行学院飞行事故总次数的 77.4%,严重事故占 飞行院校严重事故总数的 42.1%,三等事故占飞行学院三等事故总次数的 85.7%。 从事故直接原因看 , 操纵错误造成的占 69.3%(着陆发生的占 44%,纵观这一组数据 , 起落航线飞行中 , 因操纵造成的飞行事故最多。例如 1956年 4月 6日 , 某航校校 长在乌米格 15飞机上检查教员后舱起落航线飞行驾驶技术。飞机飞至三转弯时 , 该校长决定并通知教员着陆后不再继续起飞 , 但飞机接地后 , 思想一犹豫 , 又通知该教员再飞一次。因当时此教员精力不集中 , 连续起飞收襟翼时误收起落架手柄 ,

飞行模拟机训练中心安全管理体系的建立实施

飞行模拟机训练中心安全管理体系的建立实施 图:1.1 在这个系统简图中,管理作为平台,其他部分都是在管理下运行的。系统运行时,风险来自于: ·设备和环境对人员(训练人员和维护人员)的伤害; ·人员和环境对设备的损坏; ·环境(内、外环境)对人员和设备的伤害和损坏;

·管理本身对于设备和人员的伤害和损坏。这一条最容易忽略,因为“只缘身在此山中”。 在实施风险管理过程中,要从系统的角度分析真正的危险源,并以此制定正确的措施。 (2)树立“持续安全”理念,在安全管理体系中始终把风险管理形成闭环管理,遵循: ·事前/事后查明安全危害。 ·保证实施和维持可接受的水平所必需的补救措施。

·对达到的安全水平进行持续监督和定期评估。 “识别-评价-控制-监控-评估”的顺序能够清晰地辨别出风险源以及措施的有效性,做到“有头有尾”,而不是“虎头蛇尾”。 (3)管理规章和工作流程的可执行性和效率。 在安全管理体系中制定的管理规章和工作流程不仅要正确(正确与否有待实践的检验),而且要有可执行性和效率。制定清晰明了、“简约而不简单”,人性化的规章和流程。

(4)构建良好的安全文化。 “从上而下”推动实施的安全管理体系必须需要“自下而上”的配合。通过人本管理充分发挥基层人员的积极性和创造力。 对于飞行模拟机训练中心来说,它的运行环境相对稳定,所以完善规章、工作流程和建设良好安全文化,调动员工积极性是安全管理体系的建立和实施过程中的重点。通过安全管理体系的实施一定会持续地将风险控制在可以接受的安全水平,保障飞行训练中心安全地运营。 引注说明: ①、④:李家祥局长在2009年初在民航工作会议上的讲话。

2020新版人为差错与飞行安全

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020新版人为差错与飞行安全 Safety management is an important part of production management. Safety and production are in the implementation process

2020新版人为差错与飞行安全 一、人为因素与人为因素学 一般在英文文献中,人为因素都以复数形式(HumanFactors)出现,在研究人为因素时,重要的一点就是要认识人为因素的个体以及群体形式。 1)个体人为因素 个体人为因素也可以称之为人为要素。 2)群体人为因素 用数学及物理学的说法,可以把群体人为因素看成是一种人为因素。它包含了操作、现场作业、组织管理及监督等各个方面。简而言之,人为因素学是一种综合的技术体系,它谋求把与人类有关的众多领域内的知识见解灵活地应用于实践,来提高装备的安全性和效率。 人为因素学所跨越的领域不亚于工程学。一个工程师不可能了

解工程学的全部领域。同样地,一个人不可能也没必要精通人为因素的各个领域。 二、人为因素学的基本原理 人为因素学有许多重要的内容,这里列举其中与工程热力学中的第一定律和第二定律相通的论点,即:“不能要求人为差错为零,只能通过防止差错和制定容错措施来控制差错。” 这样的说法可能会引起各种议论,例如:“既然那是理所当然的事,那还研究它干什么?”“把差错视为不得已的事情并予以宽容是不对的”等等。 可是,热力学第一、第二定律明确指出“不能制造出永动机”。与此相似,从人类大脑处理信息的结构来看,人不能100%地避免失误。认识这一点是十分重要的。 工程学打消了制造永动机的念头,转达而以不断地改进技术来实现提高热效率。同样道理,人类也要去掉要求“没有差错的人”的幻想,转而通过积累从人为因素中得来的经验,去实现更好地控制差错,最大限度地将事故发生率降低到接近于零。

相关文档
最新文档