高三数学一轮复习 18 基本不等式及其应用学案 文

合集下载

第04讲 基本不等式及其应用(十八大题型)(课件)-高考数学一轮复习(新教材新高考)

第04讲 基本不等式及其应用(十八大题型)(课件)-高考数学一轮复习(新教材新高考)
题型一:基本不等式及其应用
【典例1-1】下列不等式证明过程正确的是( )
A.若, ∈ R,则 + ≥ 2






⋅ =2
C.若x<0,则 + 4 ≥ −2 ⋅ 4 = −4


B.若x>0,y>0,则lg + lg ≥ 2 lg ⋅ lg
D.若x<0,则2 + 2− > 2 2 ⋅ 2− = 2
解析二: − 2 − = 0 ⇒ − 1 − 2 = 2,
则 + 2 = − 1 + 2 − 4 + 5 ≥ 2 2 − 1 − 2 + 5 = 9,
=3
− 1 = 2 − 4

等号成立时
,所以 + 2的最小值是9.
+ 2 = 9
=3
故答案为:9.
,解方程得

2
=1
= 1
=2
【方法技巧】
1、通过添项、拆项、变系数等方法凑成和为定值或积为定值的形式.
2、注意验证取得条件.
题型突破·考法探究
题型三:常规凑配法求最值
【变式3-1】若 > −2,则 = +
1
的最小值为
+2

【答案】0
1
【解析】由 > −2,得 + 2 > 0, +2 > 0,
所以() = +
1
+2
当且仅当 + 2 =
故答案为:0
=+2
1

+2
1
+
+2

高考数学《基本不等式》专题复习教学案

高考数学《基本不等式》专题复习教学案

高考数学《基本不等(Deng)式》专题复习教学案a +b 2≤ab 本不等式(Ji)一、基【知(Zhi)识梳理】 .>0b >0,a 1.基本不等式成立(Li)的条件: 时取等号.b =a 2.等号(Hao)成立的条件:当且仅当 二、几个重要的不等式).R ∈b ,a (a2+b22≤2⎝ ⎛⎭⎪⎫a +b 2);R ∈b ,a (2⎝ ⎛⎭⎪⎫a +b 2≤ab 同号).b ,a (2≥a b+b a );R ∈b ,a (ab 2≥2b +2a 三、算术平均数与几何平均数两个正数的算,基本不等式可叙述为:ab ,几何平均数为a +b2的算术平均数为b ,a >0,则b >0,a 设术平均数不小于它们的几何平均数. 四、利用基本不等式求最值问题 已知x >0,y >0,则:.(简记:积定和最小)p 有最小值是2y +x 时,y =x ,那么当且仅当p 是定值xy (1)如果积 .(简记:和定积最大)p24有最大值是xy 时,y =x ,那么当且仅当p 是定值y +x (2)如果和 【基础自测】1.函数y =x +1x(x >0)的值域为________解析: ∵x >0,∴y =x +1x ≥2,当且仅当x =1时取等号.答案:[2,+∞)2.已知m >0,n >0,且mn =81,则m +n 的最小值为_______解析: ∵m >0,n >0,∴m +n ≥2mn =18.当且仅当m =n =9时,等号成立. 3.已知0<x <1,则x (3-3x )取得最大值时x 的值为_______解析:选B 由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.4.若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:55.已知x >0,y >0,lg x +lg y =1,则z =2x +5y的最小值为________.解析:由已知条件lg x +lg y =1,可得xy =10. 则(Ze)2x +5y≥210xy =2,故(Gu)⎝ ⎛⎭⎪⎫2x +5y min =2,当(Dang)且仅当(Dang)2y =5x 时(Shi)取等号.又xy =10,即x =2,y =5时等号成立. 答案:21.在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.2.对于公式a +b ≥2ab ,ab ≤⎝⎛⎭⎪⎫a +b 22,要弄清它们的作用和使用条件及内在联系,两个公式也体现了ab 和a +b 的转化关系.3.运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a2+b22;a +b 2≥ab (a ,b >0)逆用就是ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.【考点探究】考点一利用基本不等式求最值【例1】 (1)已知x <0,则f (x )=2+4x+x 的最大值为________.(2)(2012·浙江高考)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是_______ [解] (1)∵x <0,∴-x >0,∴f (x )=2+4x +x =2-⎣⎢⎡⎦⎥⎤4-x+-x .∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x =-2时等号成立.∴f (x )=2-⎣⎢⎡⎦⎥⎤4-x +-x ≤2-4=-2,∴f (x )的最大值为-2.(2)∵x >0,y >0,由x +3y =5xy 得15⎝ ⎛⎭⎪⎫1y +3x =1.∴3x +4y =15·(3x +4y )·⎝ ⎛⎭⎪⎫1y +3x =15⎝ ⎛⎭⎪⎫3x y +4+9+12y x =135+15⎝ ⎛⎭⎪⎫3x y +12y x ≥135+15×23x y ·12yx=5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5.【一题多变】本例(2)条件不变,求xy 的最小值.解:∵x >0,y >0,则5xy =x +3y ≥2x·3y,∴xy ≥1225,当且仅当x =3y 时取等号.【由题悟法用基本不等式求函数的最值,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值.在求条件最值时,一种方法是消元,转化为函数最值;另一种方法是将要求最值的表达式变形,然后用基本不等式将要求最值的表达式放缩为一个定值,但无论哪种方法在用基本不等式解题时都必须验证等号成立的条件.【以题试(Shi)法】1.(1)当(Dang)x >0时(Shi),则(Ze)f (x )=2xx2+1的最大(Da)值为________. (2)(2011·天津高考)已知log 2a +log 2b ≥1,则3a +9b 的最小值为________.(3)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 解析:(1)∵x >0,∴f (x )=2x x2+1=2x +1x ≤22=1,当且仅当x =1x,即x =1时取等号.(2)由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a +9b =3a +32b ≥2×3a +2b2(当且仅当3a =32b ,即a =2b 时取等号).又∵a +2b ≥22ab ≥4(当且仅当a =2b 时取等号),∴3a +9b ≥2×32=18. 即当a =2b 时,3a +9b 有最小值18.(3)由x >0,y >0,xy =x +2y ≥22xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,即m ≤10.故m 的最大值为10.考点二 多元均值不等式问题【例2】设x ,y ,z 为正实数,满足x -2y +3z =0,则y2xz 的最小值是________.解析:由已知条件可得y =x +3z2,所以y2xz =x2+9z2+6xz 4xz =14⎝ ⎛⎭⎪⎫x z +9z x +6≥14⎝ ⎛⎭⎪⎫2x z ×9z x +6=3, 当且仅当x =y =3z 时,y2xz取得最小值3.【以题试法】若且,求的最小值 .考点三 基本不等式的实际应用 【例3】 (2012·江苏高考)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设(She)在第一象限有一飞行物(忽略其(Qi)大小),其(Qi)飞行高度为(Wei)3.2千(Qian)米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.[解] (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k2=20k +1k ≤202=10,当且仅当k =1时取等号.所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根 ⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0 ⇔a ≤6. 所以当a 不超过6千米时,可击中目标.【由题悟法】 利用基本不等式求解实际应用题的方法(1)问题的背景是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.【以题试法】2.(2012·福州质检)某种商品原来每件售价为25元,年销售8万件. (1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.解:(1)设每件定价为t 元,依题意,有⎝ ⎛⎭⎪⎫8-t -251×0.2t ≥25×8,整理得t 2-65t +1 000≤0,解得25≤t ≤40.因此要使销售的总收入不低于原收入,每件定价最多为40元. (2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x >25时,a ≥150x +16x +15有解.∵150x +16x ≥2 150x ·16x =10(当且(Qie)仅当x =30时,等(Deng)号成立),∴a ≥10.2. 因此当(Dang)该商品明年的销售量a 至少(Shao)应达到(Dao)10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.【巩固练习】1.函数y =x2+2x -1(x >1)的最小值是_______解析:∵x >1,∴x -1>0.∴y =x2+2x -1=x2-2x +2x +2x -1=x2-2x +1+2x -1+3x -1=x -12+2x -1+3x -1=x -1+3x -1+2≥2x -13x -1+2=23+2. 当且仅当x -1=3x -1,即x =1+3时,取等号.2.设a >0,b >0,且不等式1a +1b +ka +b≥0恒成立,则实数k 的最小值等于_______解析:由1a +1b +k a +b ≥0得k ≥-a +b 2ab ,而a +b 2ab =b a +ab +2≥4(a =b 时取等号),所以-a +b 2ab ≤-4,因此要使k ≥-a +b 2ab恒成立,应有k ≥-4,即实数k 的最小值等于-4. 3.求函数的值域. 解:令,则2254x y x +=+因,但解得不在区间,故等号不成立,考虑单调性.因为在区间单调递增,所以在其子区间[)2,+∞为单调递增函数,故.所以,所求函数的值域为.4、求函数的最小值.解析:21(1)2(1)y x x x =+>-,当且(Qie)仅当即(Ji)时(Shi),“=”号成立,故此函数最小(Xiao)值是. 5.求(Qiu)函数的最大值 解:,∴,当且仅当即时,“=”号成立,故此函数最大值是16.已知x ,y 为正实数,且x 2+y 22=1,求x 1+y 2 的最大值. 解:x ·12 +y 22≤x 2+(12 +y 22 )22 =x 2+y 22 +122 =34即x 1+y 2 = 2 ·x12 +y 22 ≤ 342 7.已知a>b>0,求a+的最小值.8.已知函数f (x )=x +px -1(p 为常数,且p >0)若f (x )在(1,+∞)上的最小值为4,则实数p 的值为________.解析:由题意得x -1>0,f (x )=x -1+px -1+1≥2p +1,当且仅当x =p +1时取等号,因为f (x )在(1,+∞)上的最小值为4,所以2p +1=4,解得p =94.9.已知x >0,a 为大于2x 的常数,(1)求函数y =x (a -2x )的最大值; (2)求y =1a -2x -x 的最小值.解:(1)∵x >0,a >2x , ∴y =x (a -2x )=12×2x (a -2x )≤12×⎣⎢⎡⎦⎥⎤2x +a -2x 22=a28,当且仅当x =a 4时取等号,故函数的最大值为a28. (2)y =1a -2x +a -2x 2-a 2≥212-a 2=2-a2. 当且仅当x =a -22时取等号.故y =1a -2x -x 的最小值为2-a2.10.正数x ,y 满足1x +9y =1. (1)求xy 的最小值; (2)求x +2y 的最小值.解:(1)由1=1x +9y ≥21x ·9y 得xy ≥36,当且仅当1x =9y,即y =9x =18时取等号,故xy 的最小值为36.(2)由(You)题意可得x +2y =(x +2y )⎝ ⎛⎭⎪⎫1x +9y =19+2y x +9x y ≥19+2 2y x ·9xy=19+62,当(Dang)且仅当2y x =9xy,即(Ji)9x 2=2y 2时取等(Deng)号,故x +2y 的(De)最小值为19+62. 11.若x ,y ∈(0,+∞),x +2y +xy =30. (1)求xy 的取值范围;(2)求x +y 的取值范围. 解:由x +2y +xy =30,(2+x )y =30-x , 则2+x ≠0,y =30-x2+x>0,0<x <30.(1)xy =-x2+30x x +2=-x2-2x +32x +64-64x +2=-x -64x +2+32=-⎣⎢⎡⎦⎥⎤x +2+64x +2+34≤18,当且仅当x =6时取等号,因此xy 的取值范围是(0,18].(2)x +y =x +30-x 2+x =x +32x +2-1=x +2+32x +2-3≥82-3,当且仅当⎩⎨⎧x =42-2,y =42-1时等号成立,又x +y =x +2+32x +2-3<30,因此x +y 的取值范围是[82-3,30).。

高三数学一轮复习-基本不等式及其应用 教案设计

高三数学一轮复习-基本不等式及其应用 教案设计

基本不等式及其应用一、教学分析设计【教材分析】人教版普通高中课程标准试验教科书分不同的章节处理不等式问题。

在必修5的第三章中,首先介绍了不等关系与不等式;然后是一元二次不等式及其解法,二元一次不等式(组)与简单的线性规划问题;最后在第四节介绍基本不等式。

在选修教材《不等式选讲》中对不等式与绝对值不等式、证明不等式的基本方法、柯西不等式与排序不等式、数学归纳法证明不等式作了更详细的介绍。

并在书中还安排章节复习了基本不等式,并将其推广到三元的形式。

基本不等式从数学上凸显了沟通基础数学知识间的内在联系的可行性。

基本不等式的课程标准内容为:探索并了解基本不等式的证明过程;会用基本不等式解决简单的最值问题。

教学要求为:了解基本不等式的代数背景、几何背景以及它的证明过程;理解算数平均数、几何平均数的概念;会用基本不等式解决简单的最值问题;通过基本不等式的实际应用,感受数学的应用价值(说明:突出用基本不等式解决问题的基本方法,不必推广到三个变量以上的情形)。

《考试说明》中内容为:会用基本不等式解决简单的最值问题。

通过对比分析,他们的共同都有“会用基本不等式解决简单的最值问题”。

基本不等式与函数(包括三角函数)、数列、解析几何等内容均有丰富的联系,在《考试说明》中属于C及内容(含义:对该知识有实质性的认识并能与已有知识建立联系,掌握内容与形式的变化;有关技能已经形成,能用它来解决简单的有关问题)。

【学生分析】从知识储备上看,高三学生已经基本掌握了不等式的简单性质和证明,并能用不等式及不等式组抽象出实际问题中的数学模型,也具备一定的几何知识。

从思维特点看,学生了解了不等关系的数学模型是解决实际问题的重要工具,具备一定的归纳、猜想、演绎证明和抽象思维的能力。

【目标分析】结果性目标:1、能在具体的问题情景中,通过抽象概括、数学建模以及逻辑推理获得基本不等式;2、掌握基本不等式应用的条件“一正二定三相等”,和基本不等式的常见变形;3、会用基本不等式解决一些简单的实际问题。

高三数学 基本不等式复习学案

高三数学 基本不等式复习学案

某某省德宏州梁河县第一中学高三数学 基本不等式复习学案【复习目标】1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.【课前学习】(一)基础知识梳理1.基本不等式ab ≤a +b 2(1)基本不等式成立的条件:____________.(2)等号成立的条件:当且仅当________时取等号.2.几个重要的不等式(1)a2+b2≥________ (a ,b ∈R).(2)b a +a b≥____(a ,b 同号). (3)ab≤⎝⎛⎭⎫a +b 2 2 (a ,b ∈R). (4)⎝⎛⎭⎫a +b 22____a2+b22. 3.算术平均数与几何平均数设a>0,b>0,则a ,b 的算术平均数为________,几何平均数为________,基本不等式可叙述为:________________________________________________.4.利用基本不等式求最值问题已知x>0,y>0,则(1)如果积xy 是定值p ,那么当且仅当________时,x +y 有最____值是________(简记:积定和最小).(2)如果和x +y 是定值p ,那么当且仅当________时,xy 有最____值是__________(简记:和定积最大).(二)练习1.“a>b>0”是“ab<a2+b22”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.(2011·某某月考)已知函数f(x)=⎝⎛⎭⎫12x ,a 、b ∈(0,+∞),A =f ⎝⎛⎭⎫a +b 2,B =f(ab),C =f ⎝⎛⎭⎫2ab a +b ,则A 、B 、C 的大小关系是( )A .A≤B≤CB .A≤C≤BC .B≤C≤AD .C≤B≤A3.下列函数中,最小值为4的函数是( )A .y =x +4xB .y =sin x +4sin x(0<x<π) C .y =ex +4e -xD .y =log3x +logx814.(2011·某某月考)设函数f(x)=2x +1x-1(x<0),则f(x)有最________值为________. 5.(2010·某某)若对任意x>0,x x2+3x +1≤a 恒成立,则a 的取值X 围为________________. 【例题与变式】例题: (1)已知x>0,y>0,且1x +9y=1,求x +y 的最小值; (2)已知x<54,求函数y =4x -2+14x -5的最大值;(3)若x ,y ∈(0,+∞)且2x +8y -xy =0,求x +y 的最小值.变式: (2011·某某)已知a>0,b>0,a +b =2,则y =1a +4b的最小值是( )A.72B .4C.92D .5例题:已知a>0,b>0,a +b =1,求证:(1+1a )(1+1b )≥9.变式:已知x>0,y>0,z>0.求证:⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8.【目标检测】:另附页【小结】【课后巩固】:见步步高229页练出高分A 组 目标检测:1.设a>0,b>0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为() A .8 B .4 C .1 D.142.已知a>0,b>0,则1a +1b +2ab 的最小值是( )A .2B .22C .4D .5。

2023年高三一轮复习专题一基本不等式及其应用-教师版

2023年高三一轮复习专题一基本不等式及其应用-教师版

高三一轮复习专题一基本不等式及其应用【考点预测】 1.基本不等式如果00>>b a ,,那么2b a ab +≤,当且仅当b a =时,等号成立.其中,2ba +叫作b a ,的算术平均数,ab 叫作b a ,的几何平均数.即正数b a ,的算术平均数不小于它们的几何平均数.基本不等式1:若a b ∈,R ,则ab b a 222≥+,当且仅当b a =时取等号; 基本不等式2:若a b ∈,+R ,则ab ba ≥+2(或ab b a 2≥+),当且仅当b a =时取等号. 注意(1)基本不等式的前提是“一正”“二定”“三相等”;其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)连续使用不等式要注意取得一致. 【方法技巧与总结】 1.几个重要的不等式(1)()()()20,00,0.a a R a a a a R ≥∈≥≥≥∈ (2)基本不等式:如果,a b R +∈,则2a bab +≥(当且仅当“a b =”时取“”). 特例:10,2;2a ba a ab a>+≥+≥(,a b 同号). (3)其他变形:①()2222a b a b ++≥(沟通两和a b +与两平方和22a b +的不等关系式)②222a b ab +≤(沟通两积ab 与两平方和22a b +的不等关系式)③22a b ab +⎛⎫≤ ⎪⎝⎭(沟通两积ab 与两和a b +的不等关系式)④重要不等式串:)222,1122a b a b ab a b R a b+++≤≤≤∈+即 调和平均值≤几何平均值≤算数平均值≤平方平均值(注意等号成立的条件). 2.均值定理 已知,x y R +∈.(1)如果x y S +=(定值),则2224x y S xy +⎛⎫≤=⎪⎝⎭(当且仅当“x y =”时取“=”).即“和为定值,积有最大值”.(2)如果xy P =(定值),则x y +≥=(当且仅当“x y =”时取“=”).即积为定值,和有最小值”. 3.常见求最值模型 模型一:)0,0(2>>≥+n m mn xnmx ,当且仅当m n x =时等号成立; 模型二:)0,0(2)(>>+≥+-+-=-+n m ma mn ma ax na x m a x n mx ,当且仅当m n a x =-时等号成立;模型三:)0,0(2112>>+≤++=++c a bac xc b ax c bx ax x ,当且仅当a cx =时等号成立; 模型四:)0,0,0(4)21)()(22mnx n m m n mx n mx m m mx n mx mx n x <<>>=-+⋅≤-=-(,当且仅当mnx 2=时等号成 立.【题型归纳目录】题型一:基本不等式及其应用 题型二:直接法求最值 题型三:常规凑配法求最值 题型四:消参法求最值 题型五:双换元求最值 题型六:“1”的代换求最值 题型七:齐次化求最值题型八:利用基本不等式解决实际问题【典例例题】题型一:基本不等式及其应用例1.(2022·江苏·高三专题练习)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =,BC b =,则该图形可以完成的无字证明为( )A .0,0)2a ba b +≥>> B .220,0)a b a b +≥>>C .20,0)aba b a b ≤>>+ D .0,0)2a b a b +>>【答案】D 【解析】 【分析】设,AC a BC b ==,得到2a br OF +==,2a b OC -=,在直角OCF △中,利用勾股定理,求得222=2a b FC +,结合FO FC ≤,即可求解.【详解】设,AC a BC b ==,可得圆O 的半径为122a br OF AB +===, 又由22a b a bOC OB BC b +-=-=-=, 在直角OCF △中,可得2222222()()222a b a b a b FC OC OF -++=+=+=,因为FO FC ≤,所以2a b +≤a b =时取等号. 故选:D.例2.(2022·黑龙江·哈尔滨三中高三阶段练习(文))下列不等式中一定成立的是( ) A .()2111x x >∈+R B .()12,sin sin xx k x k π+>≠∈Z C .21ln ln (0)4x x x ⎛⎫+>> ⎪⎝⎭D .()212x x x +≥∈R【答案】D 【解析】 【分析】 由211x +≥得211x +的范围可判断A ;利用基本不等式求最值注意满足一正二定三相等可判断B ;作差比较214x +与x 的大小可判断C ;作差比较21x +与2x 的大小可判断D.【详解】因为x ∈R ,所以211x +≥,所以21011x <≤+,故A 错误; 1sin 2sin x x+≥只有在sin 0x >时才成立,故B 错误; 因为2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭,所以214x x +≥,所以21ln ln 4x x ⎛⎫+≥ ⎪⎝⎭,故C 错误;因为()221210x x x +-=-≥,所以212x x +≥,故D 正确. 故选:D.(多选题)例3.(2022·全国·高三专题练习)下列函数中最小值为6的是( ) A .9ln ln y x x=+B .36sin 2sin y x x=+C .233xxy -=+ D .2y =【答案】BC 【解析】 【分析】根据基本不等式成立的条件“一正二定三相等”,逐一验证可得选项. 【详解】解:对于A 选项,当()0,1x ∈时,ln 0x <,此时9ln 0ln x x+<,故A 不正确.对于B 选项,36sin 62sin y x x =+≥,当且仅当36sin 2sin x x =,即1sin 2x =时取“=”,故B 正确.对于C 选项,2336x x y -=+≥=,当且仅当233x x -=,即1x =时取“=”,故C 正确.对于D 选项,26y ≥=,=27x =-无解,故D 不正确.故选:BC.(多选题)例4.(2022·江苏·扬州中学高三开学考试)设0a >,0b >,下列结论中正确的是( )A .()1229a b a b ⎛⎫++≥ ⎪⎝⎭B .()2221a b a b +≥++C .22b a a b a b+≥+D .22a b a b+≥+【答案】ACD 【解析】 【分析】利用基本不等式可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误. 【详解】对于A 选项,()12222559b a a b a b a b ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当a b =时,等号成立,A 对;对于B 选项,取1a b ==,则()2221a b a b +<++,B 错;对于C 选项,22b a b a +≥=,22a b a b +≥=, 所以,2222b a a b a b a b +++≥+,即22b a a b a b+≥+,当且仅当a b =时,等号成立,C 对;对于D 选项,因为222a b ab +≥,则()()2222222a b a b ab a b +≥++=+,所以,()()22222a b a b a ba b a b +++≥=≥++a b =时,两个等号同时成立,D 对.故选:ACD. 【方法技巧与总结】熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证.题型二:直接法求最值例5.(2022·河南河南·三模(理))已知二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,则14c a+的最小值为( ) A .4- B .4 C .8 D .8-【答案】B 【解析】 【分析】根据()f x 的值域求得1ac =,结合基本不等式求得14c a+的最小值.【详解】由于二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,所以0Δ440a ac >⎧⎨=-=⎩,所以1,0ac c =>,所以144c a +≥=,当且仅当14c a =即12,2a c ==时等号成立.故选:B例6.(2022·湖北十堰·三模)函数()1111642x x x f x -=++的最小值为( ) A .4 B .C .3D .【答案】A 【解析】 【分析】利用不等式性质以及基本不等式求解. 【详解】因为116224xx x +≥⨯,当且仅当1164x x =,即0x =时等号成立,1122222422x x x x -⨯+=⨯+≥=,当且仅当2222xx⨯=,即0x =时等号成立, 所以()f x 的最小值为4. 故选:A(多选题)例7.(2022·广东·汕头市潮阳区河溪中学高三阶段练习)已知a ,b 是两个正数,4是2a 与16b 的等比中项,则下列说法正确的是( ) A .ab 的最小值是1 B .ab 的最大值是1 C .11a b+的最小值是94D .11a b +的最大值是92【答案】BC 【解析】 【分析】根据等比中项整理得44a b +=,直接由基本不等式可得ab 的最大值,可判断AB ;由111()(4)4a b a b +⋅+⋅展开后使用基本不等式可判断CD. 【详解】因为22164a b ⋅=,所以4422a b +=,所以4424a b ab +=,可得1ab ,当且仅当4a b =时等号成立, 所以ab 的最大值为1,故A 错误,B 正确.因为1111419()(4)(14)(524444b a a b a b a b +⋅+⋅=++++=, 故11a b +的最小值为94,无最大值,故C 正确,D 错误. 故选:BC【方法技巧与总结】直接利用基本不等式求解,注意取等条件.题型三:常规凑配法求最值例8.(2022·全国·高三专题练习(理))若11x -<< ,则22222x x y x -+=-有( )A .最大值1-B .最小值1-C .最大值1D .最小值1【答案】A 【解析】将给定函数化简变形,再利用均值不等式求解即得. 【详解】因11x -<<,则012x <-<,于是得21(1)1111[(1)]121212x y x x x -+=-⋅=--+≤-⋅---,当且仅当111x x-=-,即0x =时取“=”, 所以当0x =时,22222x x y x -+=-有最大值1-.故选:A例9.(2022·全国·高三专题练习)函数131y x x =+-(1)x >的最小值是( )A .4B .3C .D .3【答案】D 【解析】 由()13131y x x =-++-,利用基本不等式求最小值即可. 【详解】因为1x >,所以()131331y x x =-++≥-3=,当且仅当()1311x x -=-,即1x =+时等号成立.所以函数131y x x =+-(1)x >的最小值是3. 故选:D. 【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题. 例10.(2022·全国·高三专题练习)若0x >,0y >且x y xy +=,则211x yx y +--的最小值为( )A .3B .52C .3D .3+【答案】D 【解析】利用给定条件确定1,1x y >>,变形211x y x y +--并借助均值不等式求解即得. 【详解】因0x >,0y >且x y xy +=,则xy x y y =+>,即有1x >,同理1y >, 由x y xy +=得:(1)(1)1x y --=,于是得11222123()33111111x y x y x y x y +=+++=++≥+=+------当且仅当2111x y =--,即11x y =+=“=”,所以211x y x y +--的最小值为3+ 故选:D例11.(2022·上海·高三专题练习)若1x >,则函数211x x y x -+=-的最小值为___________.【答案】3 【解析】 【分析】由2111111x x y x x x -+==-++--,及1x >,利用基本不等式可求出最小值.【详解】由题意,()()()()222211111111111111x x x x x x x y x x x x x -++-+-+-+-+====-++----,因为1x >,所以111131y x x =-++≥=-,当且仅当111x x -=-,即2x =时等号成立.所以函数211x x y x -+=-的最小值为3.故答案为:3.例12.(2021·江苏·常州市北郊高级中学高一阶段练习)已知1xy =,且102y <<,则22416x yx y -+最大值为______.【解析】由1xy =且102y <<,可得1(2)y x x=>,可得40x y ->,再将22416x y x y -+化为18(4)4x y x y-+-后利用基本不等式求解即可. 【详解】解:由1xy =且102y <<,可得1(2)y x x =>,代入440x y x x-=->,又222441816(4)8(4)4x y x y x y x y xy x y x y--==≤=+-+-+-当且仅当844x y x y-=-,即4x y -= 又1xy =,可得x =y =时,不等式取等, 即22416x y x y -+,. 【方法技巧与总结】1.通过添项、拆项、变系数等方法凑成和为定值或积为定值的形式. 2.注意验证取得条件.题型四:消参法求最值例13.(2022·浙江绍兴·模拟预测)若直线30(0,0)ax by a b --=>>过点(1,1)-,则___________.【答案】【解析】 【分析】将点(1,1)-代入直线方程可得3a b +=. 【详解】直线30ax by --=过点(1,1)-,则3a b += 又0,0a b >>,设t =0t >2126t a b =++++=+由()()2121292a b a b +++⎛⎫++≤= ⎪⎝⎭,当且仅当12+=+a b ,即2,1a b ==时等号成立.所以2612t =+≤,即t ≤2,1a b ==时等号成立. 故答案为:例14.(2022·全国·高三专题练习)设正实数x ,y ,z 满足22340x xy y z -+-=,则当xy z取得最大值时,212x y z+-的最大值为( )A .0B .3C .94D .1【答案】D 【解析】 【分析】利用22340x xy y z -+-=可得143xy x y z y x=+-,根据基本不等式最值成立的条件可得22,2x y z y ==,代入212x y z++可得关于y 的二次函数,利用单调性求最值即可.【详解】由正实数x ,y ,z 满足22340x xy y z -+-=, 2234z x xy y ∴=-+.∴22111434432?xy xy x y z x xy y x y y x===-++-, 当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+,当且仅当1y =时取等号, 即212xyz+-的最大值是1. 故选:D 【点睛】本题主要考查了基本不等式的性质和二次函数的单调性,考查了最值取得时等号成立的条件,属于中档题.例15.(2022·全国·高三专题练习(理))已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是( ) A .2 B.2 C.2 D .6【答案】B 【解析】 【分析】根据220ab a +-=变形得22a b =+,进而转化为a b b b +=++842, 用凑配方式得出()b b ++-+8222,再利用基本不等式即可求解. 【详解】由220ab a +-=,得22a b =+,所以()a b b b b b b +=+=++-⋅=+++888422222222, 当且仅当,a b b b ==+++28222,即a b ==2取等号. 故选:B.例16.(2022·浙江·高三专题练习)若正实数a ,b 满足32+=b a ab ,则2+a bab 的最大值为______. 【答案】12【解析】 【分析】由已知得a =23b b -,代入2+a b ab =32323bb b b b +--=222b b -+=﹣2 (112b -)2+12,然后结合二次函数的性质可求. 【详解】因为正实数a ,b 满足b +3a =2ab , 所以a =23bb -,则2+a b ab =32323bb b b b +--=222b b -+=﹣2 (112b -)2+12, 当112b =,即b =2 时取得最大值12.故答案为:12. 【点睛】思路点睛:b +3a =2ab ,可解出a ,采用二元化一元的方法减少变量,转化为1b的一元二次函数,利用一元二次函数的性质求最值.例17.(2022·全国·高三专题练习)若,x y R +∈,23()()-=x y xy ,则11x y+的最小值为___________. 【答案】2 【解析】 【分析】根据题中所给等式可化为211()xy y x-=,再通过平方关系将其与11x y +联系起来,运用基本不等式求解最小值即可. 【详解】因为23()()-=x y xy 且,x y R +∈,则两边同除以2()xy ,得211()xy y x-=,又因为224(111111()44)xy y y x xy xy x -+=+=+≥,当且仅当14xy xy =,即22x y ==211x y+.故答案为:2例18.(2022·浙江绍兴·模拟预测)若220,0,422>>+-=a b a b ab ,则12++ab a b的取值范围是_________.【答案】23⎡⎢⎣⎦【解析】 【分析】根据已知可得2(2)206a b ab +-=>,求得2a b +>2(2)26a b ab +=+结合基本不等式可求得02a b <+≤12++ab a b变形为14262a b a b ⎛⎫++ ⎪+⎝⎭,采用换元法,利用导数求得结果. 【详解】由题意220,0,422>>+-=a b a b ab 得:2(2)206a b ab +-=> ,则2a b +>,又222(2)26232+⎛⎫+=+≤+⨯ ⎪⎝⎭a b a b ab ,当且仅当2b a ==时取等号,故02a b <+≤2a b <+≤ 所以1142262ab a b a b a b +⎛⎫=++ ⎪++⎝⎭,令2,t a b t =+∈ ,则14()()6f t t t =+ ,222144()(1)66t f t t t -'=-=,2t << 时,()0f t '<,()f t 递减,当2t <≤时,()0f t '>,()f t 递增,故min 2()(2)3f t f ==,而f = ,f =,故2()[3f t ∈,即2[312ab a b ∈++,故答案为:23⎡⎢⎣⎦【方法技巧与总结】消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!题型五:双换元求最值例19.(2022·浙江省江山中学高三期中)设0a >,0b >,若221a b +=,则2ab -的最大值为( )A .3B .C .1D .2+【答案】D 【解析】【分析】法一:设c b =-,进而将问题转化为已知221a c +=,求ac 的最大值问题,再根据基本不等式求解即可;法二:由题知221()14a b +=进而根据三角换元得5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,再根据三角函数最值求解即可. 【详解】解:法一:(基本不等式)设c b =-2ab -=)a b ac -=,条件222211a b a c +=⇔+=,2212a c ac +=+≥,即2≤ac 故选:D.法二:(三角换元)由条件221()14a b +=,故可设cos sin 2a b θθ⎧=⎪⎪⎨⎪=⎪⎩,即cos ,2sin a b θθθ⎧=⎪⎨=⎪⎩, 由于0a >,0b >,故cos 02sin 0θθθ⎧>⎪⎨>⎪⎩,解得506πθ<<所以,5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,22sin 22ab θ-=≤+当且仅当4πθ=时取等号.故选:D.例20.(2022·天津南开·一模)若0a >,0b >,0c >,2a b c ++=,则4a ba b c+++的最小值为______.【答案】2+ 【解析】 【分析】令2,,(0,0)c m c n m n -==>> ,则2m n +=,由此可将4a b a b c+++变形为421m n +-,结合基本不等式,即可求得答案。

高考数学一轮复习第一章第五讲基本不等式及其应用课件

高考数学一轮复习第一章第五讲基本不等式及其应用课件

(a2+b2) 2
图 1-5-2
解析:∵△ACD∽△CBD,∴CADD=CBDD, 即 CD= AD·BD= ab. ∵OC=A2B=AD+2 BD=a+2 b, ∴ ab≤a+2 b.故选 B.
答案:B
考点二 利用基本不等式求最值 考向 1 通过配凑法求最值
[例 2]设 0<x<23,则函数 y=4x(3-2x)的最大值为________.
2-x x·2-x x+2=2,

当且仅当2-x x=2-x x,即 x=1 时取等号,所以 y 的最小值为
2.故选 B.
答案:B
2.(考向 2)(2023 年罗湖区校级期中)已知 x>0,y>0,且 2x+ y=xy,则 x+2y 的最小值为( )
A.8
B.8 2
C.9
D.9 2
解析:x>0,y>0,且 2x+y=xy,可得:1x+2y=1,则 x+2y
错误. (3)连续使用基本不等式求最值,要求每次等号成立的条件一
致. (4)若 a≥b>0,则 a≥ a2+2 b2≥a+2 b≥ ab≥a2+abb≥b.
考点一 基本不等式的证明 [ 例 1](1)(2023 年广西一模) 《几何原本》中的“几何代数 法”(以几何方法研究代数问题)是西方数学家处理问题的重要依 据,通过这一原理,很多代数的公理或定理都能够通过图形实现
【变式训练】
如图1-5-2所示,线段AB为半圆的直径,O为
圆心,点 C 为半圆弧上不与 A ,B 重合的点. 作 CD⊥AB于点D,设 AD=a,BD=b,则下列不等
式中可以直接表示 CD≤OC 的是( )
A.a2+abb≤ ab
B. ab≤a+2 b
C.a+2 b≤

高三一轮复习基本不等式及其应用的教学设计

高三一轮复习基本不等式及其应用的教学设计

高三数学一轮复习——基本不等式一、教学背景分析1.高考考纲要求:①理解基本不等式及成立条件②能应用基本不等式判断大小和求最值③应用基本不等式解决实际问题和综合问题二.教学目标1.知识与技能(1)通过本节课的学习,能掌握基本不等式并能理解等号成立的条件及几何意义(2)通过基本不等式的复习,能灵活比较大小、求有关最值等应用2.过程与方法(1)通过本节课的学习,能体会基本不等式应用的条件:一正二定三相等(2)通过本节课的学习,能体会应用基本不等式求最值问题解题策略的构建过程(3)能体会例题的变式改变过程,达到灵活应用的能力3.情感态度与价值观(1)通过变式教学,逐步培养学生的探索研究精神(2)通过解题后的反思,逐步培养学生养成解题反思的习惯(3)通过高考试题与教材例题对比教学,培养学生重视基础,勿好高骛远的习惯三.教学重难点:1.重点:正确应用基本不等式进行判断和计算。

2.难点:基本不等式的变形应用。

四、教学方法:以启发引导,探索发现为主导,讲解练习为主线,用一题多解,一题多变突出重点、突破难点,以综合应用提高分析解决问题的能力,培养创新能力。

五、教学过程(二)基本不等式的应用 (,0)a x b y a b x y 、已知=(,1),=(,-1)且⊥> 的最小值为__ 的最小值为__ 2y 的最小值为__ 的最小值为___ 12129,23,______.e e e y e 例3(月基础测试卷已知两单位向量的夹角为的取值范围是+=六、课后备注本堂课是在高三第一轮复习中关于“基本不等式”的一节复习课。

通过递进式的问题设置,让学生对基本不等式的掌握能达到灵活应用的程度。

2023年高考数学(文科)一轮复习——基本不等式及其应用

2023年高考数学(文科)一轮复习——基本不等式及其应用

第3节 基本不等式及其应用考试要求 1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数. 2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).1.b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 2.ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22.3.21a+1b≤ab≤a+b2≤a2+b22(a>0,b>0).4.应用基本不等式求最值要注意:“一定,二正,三相等”,忽略某个条件,就会出错.5.在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.1.思考辨析(在括号内打“√”或“×”)(1)两个不等式a2+b2≥2ab与a+b2≥ab成立的条件是相同的.()(2)函数y=x+1x的最小值是2.()(3)函数f(x)=sin x+4sin x的最小值为-5.()(4)x>0且y>0是xy+yx≥2的充要条件.()答案(1)×(2)×(3)√(4)×解析(1)不等式a2+b2≥2ab成立的条件是a,b∈R;不等式a+b2≥ab成立的条件是a≥0,b≥0.(2)函数y=x+1x的值域是(-∞,-2]∪[2,+∞),没有最小值.(4)x>0且y>0是xy+yx≥2的充分不必要条件.2.(易错题)已知x>2,则x+1x-2的最小值是()A.1B.2C.2 2D.4 答案 D解析∵x>2,∴x-2>0,∴x+1x-2=x-2+1x-2+2≥2(x-2)1x-2+2=4,当且仅当x-2=1x-2,即x=3时,等号成立.3.若x<0,则x+1x()A.有最小值,且最小值为2B.有最大值,且最大值为2C.有最小值,且最小值为-2D.有最大值,且最大值为-2 答案 D解析因为x<0,所以-x>0,x+1x=-⎣⎢⎡⎦⎥⎤-x+⎝⎛⎭⎪⎫-1x≤-2(-x)·⎝⎛⎭⎪⎫-1x=-2,当且仅当x=-1时,等号成立,所以x+1x≤-2.4.若x>0,y>0,且x+y=18,则xy的最大值为()A.9B.18C.36D.81 答案 A解析因为x+y=18,所以xy≤x+y2=9,当且仅当x=y=9时,等号成立.5.一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长18 m,则这个矩形的长为________m,宽为________m时菜园面积最大.答案1515 2解析设矩形的长为x m,宽为y m.则x+2y=30,所以S=xy=12x·(2y)≤12⎝⎛⎭⎪⎫x+2y22=2252,当且仅当x=2y,即x=15,y=152时取等号.6.已知a,b∈R,且a-3b+6=0,则2a+18b的最小值为________.答案 14解析 由题设知a -3b =-6,又2a>0,8b>0,所以2a+18b ≥22a·18b =2×2a -3b 2=14,当且仅当2a =18b ,即a =-3,b =1时取等号.故2a +18b 的最小值为14.考点一 利用基本不等式求最值 角度1 配凑法求最值例1 (1)已知0<x <1,则x (3-2x )的最大值为________. (2)已知x >54,则f (x )=4x -2+14x -5的最小值为________.(3)(2021·沈阳模拟)若0<x <12,则y =x 1-4x 2的最大值为________. 答案 (1)98 (2)5 (3)14解析 (1)x (3-2x )=12·2x (3-2x )≤12·⎝ ⎛⎭⎪⎫2x +3-2x 22=98, 当且仅当2x =3-2x ,即x =34时取等号. (2)∵x >54,∴4x -5>0, ∴f (x )=4x -2+14x -5=4x -5+14x -5+3≥21+3=5. 当且仅当4x -5=14x -5,即x =32时取等号. (3)∵0<x <12, ∴y =x1-4x 2=x 2(1-4x 2)=124x 2(1-4x 2)≤12·4x 2+1-4x 22=14,当且仅当4x 2=1-4x 2,即x =24时取等号,则y =x1-4x 2的最大值为14.角度2 常数代换法求最值例 2 (2022·江西九校联考)若正实数a ,b 满足a +b =1,则b 3a +3b 的最小值为________. 答案 5解析 因为a +b =1,所以b 3a +3b =b 3a +3(a +b )b =b 3a +3a b +3,因为a >0,b >0,所以b 3a +3ab +3≥2b 3a ·3a b +3=5,当且仅当b 3a =3a b ,即a =14,b =34时等号成立, 即b 3a +3b 的最小值为5. 角度3 消元法求最值例3 已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 答案 6解析 法一(换元消元法) 由已知得x +3y =9-xy , 因为x >0,y >0, 所以x +3y ≥23xy , 所以3xy ≤⎝⎛⎭⎪⎫x +3y 22, 所以13×⎝⎛⎭⎪⎫x +3y 22≥9-(x +3y ), 即(x +3y )2+12(x +3y )-108≥0,则x +3y ≤-18(舍去)或x +3y ≥6(当且仅当x =3y ,即x =3,y =1时取等号),故x+3y的最小值为6. 法二(代入消元法)由x+3y+xy=9,得x=9-3y 1+y,所以x+3y=9-3y1+y+3y=9+3y21+y=3(1+y)2-6(1+y)+121+y=3(1+y)+121+y-6≥23(1+y)·121+y-6=12-6=6,当且仅当3(1+y)=121+y,即y=1,x=3时取等号,所以x+3y的最小值为6.感悟提升利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.训练1 (1)已知函数f(x)=-x2x+1(x<-1),则()A.f(x)有最小值4B.f(x)有最小值-4C.f (x )有最大值4D.f (x )有最大值-4(2)正数a ,b 满足ab =a +b +3,则a +b 的最小值为________. 答案 (1)A (2)6解析 (1)f (x )=-x 2x +1=-x 2-1+1x +1=-⎝⎛⎭⎪⎫x -1+1x +1=-⎝ ⎛⎭⎪⎫x +1+1x +1-2 =-(x +1)+1-(x +1)+2.因为x <-1,所以x +1<0,-(x +1)>0, 所以f (x )≥21+2=4, 当且仅当-(x +1)=1-(x +1),即x =-2时,等号成立. 故f (x )有最小值4.(2)∵a >0,b >0,∴ab ≤⎝ ⎛⎭⎪⎫a +b 22, 即a +b +3≤⎝ ⎛⎭⎪⎫a +b 22, 整理得(a +b )2-4(a +b )-12≥0,解得a +b ≤-2(舍)或a +b ≥6(当且仅当a =b =3时取等号). 故a +b 的最小值为6.考点二 基本不等式的综合应用例4 (1)(2022·河南名校联考)已知直线ax +2by -1=0和x 2+y 2=1相切,则ab 的最大值是( ) A.14B.12C.22D.1(2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A.2B.4C.6D.8答案 (1)A (2)B解析 (1)圆x 2+y 2=1的圆心为(0,0),半径r =1,由直线ax +2by -1=0和x 2+y 2=1相切,得|-1|a 2+4b 2=1,则a 2+4b 2=1,又由1=a 2+4b 2≥4ab ,可得ab ≤14,当且仅当a =2b ,即a =22,b =24时等号成立,故ab 的最大值是14.(2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,只需求(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值大于或等于9, ∵(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥a +2a +1=(a +1)2, 当且仅当y =ax 时,等号成立, ∴(a +1)2≥9,∴a ≥4, 即正实数a 的最小值为4.感悟提升 1.当基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,然后利用常数代换法求最值.2.求参数的值或范围时,要观察题目的特点,利用基本不等式确定相关成立的条件,从而得到参数的值或范围.训练2 (1)若△ABC 的内角满足3sin A =sin B +sin C ,则cos A 的最小值是( ) A.23B.79C.13D.59(2)当x ∈(0,+∞)时,ax 2-3x +a ≥0恒成立,则实数a 的取值范围是________. 答案 (1)B (2)⎣⎢⎡⎭⎪⎫32,+∞解析(1)由题意结合正弦定理有3a=b+c,结合余弦定理可得:cos A=b2+c2-a22bc=b2+c2-⎝⎛⎭⎪⎫b+c322bc=89b2+89c2-29bc2bc=89b2+89c22bc-19≥2×89b×89c2bc-19=79.当且仅当b=c时等号成立.综上可得,cos A的最小值是79.(2)ax2-3x+a≥0,则a≥3xx2+1=3x+1x,x∈(0,+∞),故x+1x≥2,当且仅当x=1时等号成立,故y=3x+1x≤32,故a≥32.考点三基本不等式的实际应用例5 为了美化校园环境,园艺师在花园中规划出一个平行四边形,建成一个小花圃,如图,计划以相距6米的M,N两点为AMBN一组相对的顶点,当AMBN 的周长恒为20米时,小花圃占地面积(单位:平方米)最大为()A.6B.12C.18D.24答案 D解析设AM=x,AN=y,则由已知可得x+y=10,在△MAN中,MN=6,由余弦定理可得,cos A =x 2+y 2-622xy =(x +y )2-362xy -1=32xy -1≥32⎝ ⎛⎭⎪⎫x +y 22-1=3225-1=725, 当且仅当x =y =5时等号成立, 此时(cos A )min =725, 所以(sin A )max =1-⎝ ⎛⎭⎪⎫7252=2425,所以四边形AMBN 的最大面积为2×12×5×5×2425=24,此时四边形AMBN 是边长为5的菱形.感悟提升 1.设变量时一般要把求最大值或最小值的变量定义为函数. 2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. 3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.训练3 某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨. 答案 20解析 该公司一年购买某种货物400吨,每次都购买x 吨,则需要购买400x 次,运费为4万元/次,一年的总存储费用为4x 万元,一年的总运费与总存储费用为之和为⎝ ⎛⎭⎪⎫400x ·4+4x 万元,400x ·4+4x ≥160,当且仅当1 600x =4x ,即x =20时,一年的总运费与总存储费用之和最小.1.已知a ,b ∈R ,且ab ≠0,则下列结论恒成立的是( ) A.a +b ≥2ab B.a b +ba ≥2 C.⎪⎪⎪⎪⎪⎪a b +b a ≥2 D.a 2+b 2>2ab答案 C解析 因为a b 和b a 同号,所以⎪⎪⎪⎪⎪⎪a b +b a =⎪⎪⎪⎪⎪⎪a b +⎪⎪⎪⎪⎪⎪b a ≥2.2.若3x +2y =2,则8x +4y 的最小值为( ) A.4 B.4 2 C.2 D.2 2答案 A解析 因为3x +2y =2,所以8x +4y ≥28x ·4y =223x +2y =4,当且仅当3x +2y =2且3x =2y ,即x =13,y =12时等号成立.3.若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为( ) A.8 B.6 C.4 D.2答案 C解析 依题意ab =a +b ,∴a +b =ab ≤⎝ ⎛⎭⎪⎫a +b 22,即a +b ≤(a +b )24,∴a +b ≥4,当且仅当a =b =2时取等号, ∴a +b 的最小值为4.4.已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12 B.43C.-1D.0答案 D解析 因为x ∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x ,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为0.5.某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A.60件 B.80件 C.100件 D.120件答案 B解析 设每批生产产品x 件,则每件产品的生产准备费用是800x 元,仓储费用是x8元,总的费用是⎝ ⎛⎭⎪⎫800x +x 8元,由基本不等式得800x +x 8≥2800x ·x 8=20,当且仅当800x=x8,即x =80时取等号.6.对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为( ) A. 2 B.2 2C.4D.92答案 B解析 ∵对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0, ∴m 2+2n 2≥amn ,即a ≤m 2+2n 2mn =m n +2nm 恒成立, ∵m n +2n m ≥2m n ·2n m =22,当且仅当m n =2n m 即m =2n 时取等号,∴a ≤22,故a 的最大值为2 2.7.(2022·河南顶级名校联考)已知各项均为正数的等比数列{a n },a 6,3a 5,a 7成等差数列,若{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,则1m +4n 的最小值为( ) A.4 B.9C.23D.32答案 D解析 设各项均为正数的等比数列{a n }的公比为q ,q >0,由a 6,3a 5,a 7成等差数列,可得6a 5=a 6+a 7,即6a 1q 4=a 1q 5+a 1q 6, 解得q =2(q =-3舍去),由{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,可得16a 21=a m a n =a 21·2m +n -2, 化简可得m +n =6,m ,n ∈N *, 则1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n=16⎝ ⎛⎭⎪⎫5+n m +4m n ≥16⎝⎛⎭⎪⎫5+2n m ·4m n =32. 当且仅当n =2m =4时,上式取得等号. 8.已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( ) A.3 B.5C.7D.9答案 C解析 ∵x >0,y >0,且1x +1+1y =12,∴x +1+y =2⎝ ⎛⎭⎪⎫1x +1+1y (x +1+y ) =2⎝ ⎛⎭⎪⎪⎫1+1+y x +1+x +1y ≥2⎝⎛⎭⎪⎪⎫2+2y x +1·x +1y =8,当且仅当y x +1=x +1y ,即x =3,y =4时取等号, ∴x +y ≥7,故x +y 的最小值为7.9.(2021·宜昌期末)某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本y (单位:元)与月处理量x (单位:吨)之间的函数关系可近似表示为y =12x 2-300x +80 000,为使每吨的平均处理成本最低,该厂每月的垃圾处理量应为________吨.答案 400解析 由题意知,每吨垃圾的平均处理成本为y x =12x 2-300x +80 000x =x 2+80 000x -300,其中300≤x ≤600,又x 2+80 000x -300≥2x 2·80 000x -300=400-300=100,所以当且仅当x 2=80 000x ,即x =400吨时,每吨垃圾的平均处理成本最低. 10.(2022·兰州诊断)设a ,b ,c 均为正实数,若a +b +c =1,则1a +1b +1c ≥________. 答案 9解析 ∵a ,b ,c 均为正数,a +b +c =1, ∴1a +1b +1c =(a +b +c )⎝ ⎛⎭⎪⎫1a +1b +1c=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫a c +c a +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.11.(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝ ⎛⎭⎪⎫1y 2+4y 2≥15×21y 2×4y 2=45,当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.12.(2020·天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为__________. 答案 4解析 因为a >0,b >0,ab =1,所以原式=ab 2a +ab 2b +8a +b =a +b 2+8a +b ≥2a +b 2·8a +b=4,当且仅当a +b2=8a +b,即a +b =4时,等号成立. 故12a +12b +8a +b的最小值为4.13.(2022·宜春调研)已知x >0,y >0,x +2y =3,则x 2+3yxy 的最小值为( )A.3-2 2B.22+1C.2-1D.2+1答案 B解析 x >0,y >0,x +2y =3, 则x 2+3y xy =x 2+y (x +2y )xy=x y +2yx +1≥2x y ·2yx +1=22+1. 当且仅当x =2y 时,上式取得等号, 则x 2+3yxy 的最小值为22+1.14.(2022·西安一模)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成为后世西方数学家处理问题的重要依据,通过这一原理,很多代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示的图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b2≥ab (a >0,b >0)B.a 2+b 2≥2ab (a >0,b >0)C.2aba +b≤ab (a >0,b >0) D.a +b 2≤a 2+b 22(a >0,b >0)答案 D解析 由图形可知OF =12AB =12(a +b ),OC =⎪⎪⎪⎪⎪⎪12(a +b )-b =⎪⎪⎪⎪⎪⎪12(a -b ),在Rt △OCF 中,由勾股定理可得 CF =⎝ ⎛⎭⎪⎫a +b 22+⎝ ⎛⎭⎪⎫a -b 22=12(a 2+b 2), ∵CF ≥OF ,∴12(a 2+b 2)≥12(a +b )(a >0,b >0).故选D.15.若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.答案 4解析 ∵a ,b ∈R ,ab >0, ∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,4ab =1ab ,即⎩⎪⎨⎪⎧a 2=22,b 2=24时取得等号. 16.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a的取值范围是________. 答案 ⎣⎢⎡⎭⎪⎫-83,+∞解析 对任意x ∈N *,f (x )≥3,即x 2+ax +11x +1≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3.设g (x )=x +8x ,x ∈N *, 则g (x )=x +8x ≥42, 当且仅当x =22时等号成立, 又g (2)=6,g (3)=173, ∵g (2)>g (3),∴g (x )min =173. ∴-⎝ ⎛⎭⎪⎫x +8x +3≤-83,∴a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞.。

高三数学一轮复习教案第六章不等式汇总

高三数学一轮复习教案第六章不等式汇总

不等式【知识图解】【方法点拨】不等式是高中数学的重要内容之一,不等式的性质是解、证不等式的基础,两个正数的算术平均数不小于它们的几何平均数的定理及其变形在不等式的证明和解决有关不等式的实际问题中发挥着重要的作用.解不等式是研究方程和函数的重要工具,不等式的概念和性质涉及到求最大(小)值,比较大小,求参数的取值范围等,不等式的解法包括解不等式和求参数,不等式的综合题主要是不等式与集合、函数、数列、三角函数、解析几何、导数等知识的综合,综合性强,难度较大,是高考命题的热点,也是高考复习的难点.1.掌握用基本不等式求解最值问题,能用基本不等式证明简单的不等式,利用基本不等式求最值时一定要紧扣“一正、二定、三相等”这三个条件。

2.一元二次不等式是一类重要的不等式,要掌握一元二次不等式的解法,了解一元二次不等式与相应函数、方程的联系和相互转化。

3.线性规划问题有着丰富的实际背景,且作为最优化方法之一又与人们日常生活密切相关,对于这部分内容应能用平面区域表示二元一次不等式组,能解决简单的线性规划问题。

同时注意数形结合的思想在线性规划中的运用。

第1课 基本不等式【考点导读】1. 能用基本不等式证明其他的不等式,能用基本不等式求解简单的最值问题。

2. 能用基本不等式解决综合形较强的问题。

【基础练习】1.“a >b >0”是“ab <222a b +”的充分而不必要条件(填写充分而不必要条件、必要而不充分条件、充分必要条件、既不充分也不必要条件)2.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为12-3.已知下列四个结论①当2lg 1lg ,10≥+≠>x x x x 时且;②21,0≥+>x x x 时当;③x x x 1,2+≥时当的最小值为2;④当xx x 1,20-≤<时无最大值。

则其中正确的个数为1个4.已知,x y R +∈,且41x y +=,则x y ⋅的最大值为1615.已知lg lg 1x y +=,则52x y+的最小值是2 【范例导析】 【例1】 (1)已知54x <,求函数14245y x x =-+-的最大值. (2)求函数1422++=x x y 的最小值,并求出取得最小值时的x 值. 分析:问题(1)中由于450x -<,所以首先要调整符号;问题(2)中要注意利用基本不等式时等号成立条件. 解: (1)∵54x <∴540x -> ∴y=4x-2+145x -=154354x x ⎛⎫--++ ⎪-⎝⎭≤-2+3=1当且仅当15454x x-=-,即x=1时,上式成立,故当x=1时,max 1y =. (2)求22242y x x =--+的最大值解:2226(2)2y x x =-+++ (若由2222262(2)22y x x x ≤-+=+=+则即无解“=”不成立) 令2222,6()u x y u u=+≥=-+则,可以证明y(u)在)+∞递减∴u=2,即x=0时,y max =3点拨:在运用均值不等式求最值时,必须保证“一正,二定,三等”.凑出定值是关键!“=”成立必须保证,若两次连用均值不等式,要注意等号的取得条件的一致性,否则就会出错.例2.(1)已知a ,b 为正常数,x 、y 为正实数,且1a b+=x y,求x+y 的最小值。

2025高考数学一轮复习-1.4-基本不等式及其应用【课件】

2025高考数学一轮复习-1.4-基本不等式及其应用【课件】

4 3.(角度 3)已知 5x2y2+y4=1(x,y∈R),则 x2+y2 的最小值是__5______.
【解析】 解法一:由 5x2y2+y4=1,可得 x2=1- 5y2y4,由 x2≥0,可得 y2∈(0,1],则
x2+y2=1- 5y2y4+y2=1+5y42y4=15
4y2+y12
≥1·2 5
A.5
B.6
C.7
D.8
【解析】 因为每台机器生产的产品可获得的总利润 s(单位:万元)与机器运转时间
t(单位:年,t∈N*)的关系为 s=-t2+23t-64,所以年平均利润 y=st=-t-6t4+23=-
t+6t4+23≤-2 t·6t4+23=7,当且仅当 t=8 时等号成立,故要使年平均利润最大,则 每台机器运转的时间 t 为 8,故选 D.
2.设 x>0,y>0,且 x+y=18,则 xy 的最大值为( C )
A.80
B.77
C.81
D.82
【解析】 ∵x>0,y>0,∴x+2 y≥ xy, 即 xy≤x+2 y2=81, 当且仅当 x=y=9 时,(xy)max=81.故选 C.
3.若 x>0,则 2x+3x的最小值为__2___6___. 【解析】 ∵x>0,∴2x+3x≥2 2x·3x=2 6.当且仅当2x=3x,即x= 32时等号成立
第一章 集合与常用逻辑用语、不等式
第四节 基本不等式及其应用
课前双基巩固
——整合知识 夯实基础
『知识聚焦』 1.基本不等式 ab≤a+2 b (1)基本不等式成立的条件:a>0,b>0. (2)等号成立的条件:当且仅当 a=b 时取等号. 2.算术平均数与几何平均数 设 a>0,b>0,则 a,b 的算术平均数为a+2 b,几何平均数为 ab,基本不等式可叙述 为两个正数的几何平均数不大于它们的算术平均数,当两个正数相等时两者相等.

高考数学复习专题 基本不等式

高考数学复习专题 基本不等式

高考数学复习专题基本不等式全国名校高考数学复优质学案、专题汇编(附详解)高考数学复专题:基本不等式一、基本不等式1.基本不等式:对于任意非负实数 $a$ 和 $b$,有 $a+b \geq 2\sqrt{ab}$,等号成立当且仅当 $a=b$。

2.算术平均数与几何平均数:设 $a>0$,$b>0$,则$a$ 和 $b$ 的算术平均数不小于它们的几何平均数。

3.利用基本不等式求最值问题:1)如果积 $xy$ 是定值 $P$,那么当且仅当 $x=y$ 时,$x+y$ 有最小值 $2\sqrt{P}$。

2)如果和 $x+y$ 是定值 $P$,那么当且仅当 $x=y$ 时,$xy$ 有最大值 $\frac{P}{4}$。

4.常用结论:1)$a+b \geq 2ab$($a$,$b$ 为任意实数)。

2)$\frac{b^2}{a}+\frac{a^2}{b} \geq 2(a+b)$($a$,$b$ 为同号实数)。

3)$ab \leq \frac{a^2+b^2}{2} \leq (\frac{a+b}{2})^2$($a$,$b$ 为任意实数)。

4)$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq\frac{3}{2}$($a$,$b$,$c$ 为正实数)。

5)$2(a+b) \geq \sqrt{2}(a+b)$($a$,$b$ 为任意实数)。

6)$\frac{a^2+b^2}{a+b} \geq \frac{a+b}{2}$($a$,$b$ 为任意实数)。

7)$a^2+b^2 \geq ab$($a>0$,$b>0$)。

二、基本不等式在实际中的应用1.问题的背景是人们关心的社会热点问题,如物价、销售、税收等。

题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解。

2.经常建立的函数模型有正(反)比例函数、一次函数、二次函数、分段函数以及 $y=ax+b$($a>0$,$b>0$)等。

2019-2020学年高考数学一轮复习 基本不等式及其应用(2)导学案 文.doc

2019-2020学年高考数学一轮复习 基本不等式及其应用(2)导学案 文.doc

2019-2020学年高考数学一轮复习基本不等式及其应用(2)导学案文知识梳理:1、基本不等式(1)重要不等式:如果a,b ,那么+2ab.当且仅当a=b时,等号成立.(2)基本不等式: 如果a,b>0.那么可以表述为两正数的算术平均数不小于它们的几何平均数.2、重要结论:(1)a+ 2 (a)1(2)a+2(a)1(3)、(4)、+ab+bc+ca(5)、( a,b>0.)(6)、+3、如果a,b ,那么(不等式证明选讲内容)二、题型探究探究一:利用基本不等式求最值:例1:(1)x,y ,x+y=S(和为定值),则当x=y时,积xy取得最大值;(2)x,y , xy=P(积为定值),则当x=y时,和x+y取得最小值2即:和定,积最大;积定,和最小。

应用基本不等式的条件:(1)、一正:各项为正数;(2)、二正:“和”或“积”为定值;(3)、三等:等号一定能取到,这三个条件缺一不可。

例1:解答下列问题(1)已知x,求x+的最小值;(2)已知0,求函数f(x)=x(8-3x)的最大值;(3)求函数y=(4)已知x,且x+y=1,求+。

探究二:基本不等式的实际应用在应用基本不等式解决实际问题时,要注意以下四点:(1)、先理解意,设变量时一般把要求的最值的变量定为函数;(2)、建立相应的函数关系式,把实际问题抽象为函数的最值问题;(3)、在定义域内,求出函数的最值;(4)、正确写了答案。

例2:某单位建造一间地面面积为12平方米的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过a 米,房屋正面的造价为400元/ 平方米,房屋侧面的造价为150元/ 平方米,屋顶和地面的造价费用合计5800元,如果墙高为3米,且不房屋背面的费用。

(1)、把房屋总选价y 表示为x 的函数,并写出该函数的定义域; (2)、当侧面的长度为多少时?房屋的总造价最低,最低造价是多少?三、方法提升基本不等式(也称均值定理)具有将“和式”,“积式”相互转化的功能,应用比较广泛,为了用好该不等式,首先要正确理解该不等式中的三人条件(三要素)正(各项或各因式为正值)、定(“和”或“积”为定值)、等(各项或各因式都能取得相等的值,即具备等号成立的条件),简称“一正,二定,三相等”,这三个条件缺一不可,当然还要牢记结论:和定,积最大;积定,和最小。

高中高一数学上册《基本不等式及其应用》优秀教学案例

高中高一数学上册《基本不等式及其应用》优秀教学案例
4.培养学生的创新意识,鼓励学生敢于提出不同的解题方法和观点,培养学生的批判性思维。
在教学过程中,教师应以身作则,关心学生,关注他们的情感态度和价值观的培养,使学生在学习数学的过程中,形成正确的价值观和积极的态度。
三、教学策略
(一)情景创设
为了让学生更好地理解和掌握基本不等式及其应用,教师应精心创设教学情境,将抽象的数学概念具体化、生活化。可以通过以下方式实施:
3.小组合作学习,提高学生的团队协作能力
本案例注重小组合作学习,让学生在合作中共同解决问题。这种教学方式有助于培养学生的团队协作能力和沟通能力,使他们学会倾听、表达、交流、分享,提高解决问题的效率。
4.反思与评价相结合,提升学生的自我监控能力
在教学过程中,教师引导学生进行自我反思和同伴评价,培养他们的批判性思维和自我监控能力。通过反思与评价,学生能够更好地总结经验,发现不足,从而在今后的学习中取得更好的成绩。
2.能够运用基本不等式分析实际问题,建立不等式关系,从而解决具体问题。
3.学会运用基本不等式对数学表达式进行简化、变形,提高代数运算能力。
4.能够运用基本不等式分析函数的性质,解决函数相关的问题。
在教学过程中,教师应关注学生对基本不等式的理解和运用,通过典型例题、练习题和拓展题,帮助学生巩固知识,提高解题技能。
1.教师首先给出基本不等式的定义,如算术平均数大于等于几何平均数等。
2.接着,教师通过具体实例,讲解基本不等式的性质,如对称性、可加性等。
3.教师引导学生掌握基本不等式的证明方法,如比较法、综合法等。
4.教师通过典型例题,讲解基本不等式的应用,让学生感受基本不等式的价值。
(三)学生小组讨论
在学生小组讨论环节,教师将设计具有挑战性的问题,引导学生进行合作探究。

人教A版高考总复习一轮文科数学精品课件 第7章 不等式、推理与证明 第2节 基本不等式及其应用

人教A版高考总复习一轮文科数学精品课件 第7章 不等式、推理与证明 第2节 基本不等式及其应用
+ 2 2 + 2
2.ab≤ 2 ≤ 2 (a,b∈R),当且仅当 a=b 时取等号.
3.1
2
1
+

≤ ≤
+
2

2 + 2
(a>0,b>0),当且仅当
2
a=b 时取等号.
研考点 精准突破
考点一
利用基本不等式求最值(多考向探究)
考向1配凑法求最值
例1若
5
x> ,则
3
4
3+2
当且仅当
2+1
=
1
1
6 2+1
1
+ 3+2
1
(4x+2+3y+2)=6
=
4+2
,即
3+2
5-3 2
6 2-8
x=
,y=
时,等号成立.
2
3
3+
4+2
3+2
+
3+2
2+1
1
2
≥ +
2
,
3
考向2常数代换法求最值
例2(1)(2023河北石家庄月考)若正数x,y满足x+3y=5xy,当3x+4y取得最小值
数,“二定”指求最值时和或积为定值,“三相等”指等号成立.
2.连续使用基本不等式时,牢记等号要同时成立.
2.两个重要的不等式
(1)a2+b2≥ 2ab (a,b∈R),当且仅当a=b时取等号.
(2)ab≤
+ 2
(a,b∈R),当且仅当

人教版高考文科数学一轮复习资料选修-不等式的证明

人教版高考文科数学一轮复习资料选修-不等式的证明

第2讲 不等式的证明一、知识梳理 1.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥ na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.2.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等. 常用结论基本不等式及其推广1.a 2≥0(a ∈R ).2.(a -b )2≥0(a ,b ∈R ),其变形有a 2+b 2≥2ab ,⎝⎛⎭⎫a +b 22≥ab ,a 2+b 2≥12(a +b )2.3.若a ,b 为正实数,则a +b 2≥ab .特别地,b a +ab ≥2.4.a 2+b 2+c 2≥ab +bc +ca . 二、教材衍化 求证:3+7<2+ 6. 证明:3+7<2+6 ⇐(3+7)2<(2+6)2 ⇐10+221<10+46⇐21<26⇐21<24.故原不等式成立.一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.()(3)使用反证法时,“反设”不能作为推理的条件应用.( ) 答案:(1)× (2)√ (3)× 二、易错纠偏常见误区不等式放缩不当致错.已知三个互不相等的正数a ,b ,c 满足abc =1.试证明: a +b +c <1a +1b +1c.证明:因为a ,b ,c >0,且互不相等,abc =1,所以a +b +c =1bc+1ac+1ab<1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c ,即a +b +c <1a +1b +1c.用综合法、分析法证明不等式(师生共研)(2019·高考全国卷Ⅰ)已知a ,b ,c 为正数,且满足abc =1.证明: (1)1a +1b +1c ≤a 2+b 2+c 2; (2)(a +b )3+(b +c )3+(c +a )3≥24.证明:(1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,又abc =1,故有a 2+b 2+c 2≥ab +bc +ca =ab +bc +ca abc =1a +1b +1c.当且仅当a =b =c =1时,等号成立.所以1a +1b +1c≤a 2+b 2+c 2.(2)因为a ,b ,c 为正数且abc =1,故有(a +b )3+(b +c )3+(c +a )3≥33(a +b )3(b +c )3(a +c )3 =3(a +b )(b +c )(a +c ) ≥3×(2ab )×(2bc )×(2ac )=24.当且仅当a =b =c =1时,等号成立. 所以(a +b )3+(b +c )3+(c +a )3≥24.用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提.充分利用这一辩证关系,可以增加解题思路,开阔视野.1.若a ,b ∈R ,ab >0,a 2+b 2=1.求证:a 3b +b 3a≥1. 证明:a 3b +b 3a =a 4+b 4ab =(a 2+b 2)2-2a 2b 2ab =1ab -2ab .因为a 2+b 2=1≥2ab ,当且仅当a =b 时等号成立, 所以0<ab ≤12.令h (t )=1t -2t ,0<t ≤12,则h (t )在(0,12]上递减,所以h (t )≥h (12)=1.所以当0<ab ≤12时,1ab -2ab ≥1.所以a 3b +b 3a≥1.2.(一题多解)(2020·宿州市质量检测)已知不等式|2x +1|+|2x -1|<4的解集为M . (1)求集合M ;(2)设实数a ∈M ,b ∉M ,证明:|ab |+1≤|a |+|b |.解:(1)当x <-12时,不等式化为-2x -1+1-2x <4,即x >-1,所以-1<x <-12;当-12≤x ≤12时,不等式化为2x +1-2x +1<4,即2<4, 所以-12≤x ≤12;当x >12时,不等式化为2x +1+2x -1<4,即x <1,所以12<x <1.综上可知,M ={x |-1<x <1}.(2)法一:因为a ∈M ,b ∉M ,所以|a |<1,|b |≥1. 而|ab |+1-(|a |+|b |) =|ab |+1-|a |-|b | =(|a |-1)(|b |-1)≤0, 所以|ab |+1≤|a |+|b |. 法二:要证|ab |+1≤|a |+|b |, 只需证|a ||b |+1-|a |-|b |≤0, 只需证(|a |-1)(|b |-1)≤0,因为a ∈M ,b ∉M ,所以|a |<1,|b |≥1, 所以(|a |-1)(|b |-1)≤0成立. 所以|ab |+1≤|a |+|b |成立.放缩法证明不等式(师生共研)若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.【证明】 当|a +b |=0时,不等式显然成立. 当|a +b |≠0时, 由0<|a +b |≤|a |+|b |⇒1|a +b |≥1|a |+|b |, 所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |=|a |1+|a |+|b |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |.在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有: (1)变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1上面不等式中k ∈N +,k >1.(2)利用函数的单调性.(3)真分数性质“若0<a <b ,m >0,则a b <a +mb +m ”.[注意] 在用放缩法证明不等式时,“放”和“缩”均需把握一个度.设n 是正整数,求证:12≤1n +1+1n +2+…+12n<1.证明: 由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n,所以12=n 2n ≤1n +1+1n +2+…+12n <n n =1.所以原不等式成立.反证法证明不等式(师生共研)设0<a ,b ,c <1,求证:(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.【证明】 设(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得(1-a )b ·(1-b )c ·(1-c )a >164,①又因为0<a ,b ,c <1,所以0<(1-a )a ≤⎣⎡⎦⎤(1-a )+a 22=14. 同理:(1-b )b ≤14,(1-c )c ≤14,以上三式相乘得(1-a )a ·(1-b )b ·(1-c )c ≤164,与①矛盾.所以(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.利用反证法证明问题的一般步骤(1)否定原结论.(2)从假设出发,导出矛盾. (3)证明原命题正确.已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a ,b ,c >0.证明:①设a <0,因为abc >0, 所以bc <0.又由a +b +c >0,则b +c >-a >0,所以ab +bc +ca =a (b +c )+bc <0,与题设矛盾. ②若a =0,则与abc >0矛盾, 所以必有a >0. 同理可证:b >0,c >0. 综上可证a ,b ,c >0.[基础题组练]1.设a >0,b >0,若3是3a 与3b 的等比中项,求证:1a +1b ≥4.证明:由3是3a 与3b 的等比中项得 3a ·3b =3,即a +b =1,要证原不等式成立,只需证a +b a +a +b b ≥4成立,即证b a +a b ≥2成立,因为a >0,b >0, 所以b a +ab≥2b a ·ab=2, (当且仅当b a =a b ,即a =b =12时,“=”成立),所以1a +1b≥4.2.求证:112+122+132+…+1n 2<2.证明:因为1n 2<1n (n -1)=1n -1-1n,所以112+122+132+…+1n 2<1+11×2+12×3+13×4+…+1(n -1)×n=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =2-1n <2. 3.(2020·蚌埠一模)已知函数f (x )=|x |+|x -3|. (1)解关于x 的不等式f (x )-5≥x ;(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解:(1)f (x )=|x |+|x -3|=⎩⎪⎨⎪⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎪⎨⎪⎧x <0,3-2x ≥x +5或⎩⎪⎨⎪⎧0≤x ≤3,3≥x +5或⎩⎪⎨⎪⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8.所以不等式的解集为⎝⎛⎦⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ). 且m ≥3,n ≥3,所以m -2>0,2-n <0, 即(m -2)(2-n )<0, 所以2(m +n )<mn +4.4.(2020·开封市定位考试)已知函数f (x )=|x -1|+|x -m |(m >1),若f (x )>4的解集是{x |x <0或x >4}.(1)求m 的值;(2)若正实数a ,b ,c 满足1a +12b +13c =m3,求证:a +2b +3c ≥9.解:(1)因为m >1,所以f (x )=⎩⎪⎨⎪⎧-2x +m +1,x <1m -1,1≤x ≤m 2x -m -1,x >m ,作出函数f (x )的图象如图所示,由f (x )>4的解集及函数f (x )的图象得⎩⎪⎨⎪⎧-2×0+m +1=42×4-m -1=4,得m =3.(2)由(1)知m =3,从而1a +12b +13c=1,a +2b +3c =(1a +12b +13c )(a +2b +3c )=3+(a 2b +2b a )+(a 3c +3c a )+(2b 3c +3c2b )≥9,当且仅当a =3,b =32,c =1时“=”成立.5.(2020·原创冲刺卷)已知定义在R 上的函数f (x )=|x +1|+|x -2|+(x -1)2的最小值为s .(1)试求s 的值;(2)若a ,b ,c ∈R +,且a +b +c =s ,求证:a 2+b 2+c 2≥3.解:(1)f (x )=|x +1|+|x -2|+(x -1)2≥|x +1|+|2-x |≥|(x +1)+(2-x )|=3,即f (x )≥3. 当且仅当x =1,且(x +1)(2-x )≥0,即x =1时,等号成立,所以f (x )的最小值为3,所以s =3.(2)证明:由(1)知a +b +c =3.故a 2+b 2+c 2=(a 2+12)+(b 2+12)+(c 2+12)-3 ≥2a +2b +2c -3=2(a +b +c )-3=3(当且仅当a =b =c =1时,等号成立). 6.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <14; (2)比较|1-4ab |与2|a -b |的大小.解:(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x ≤1,-3,x >1,由-2<-2x -1<0解得-12<x <12,即M =⎝⎛⎭⎫-12,12,所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14,因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2) =(4a 2-1)(4b 2-1)>0,故|1-4ab |2>4|a -b |2,即|1-4ab |>2|a -b |.[综合题组练]1.(2020·江西八所重点中学联考)已知不等式|ax -1|≤|x +3|的解集为{x |x ≥-1}. (1)求实数a 的值;(2)求12-at +4+t 的最大值.解:(1)|ax -1|≤|x +3|的解集为{x |x ≥-1},即(1-a 2)x 2+(2a +6)x +8≥0的解集为{x |x ≥-1}.当1-a 2≠0时,不符合题意, 舍去.当1-a 2=0,即a =±1时,x =-1为方程(2a +6)x +8=0的一解,经检验a =-1不符合题意,舍去, a =1符合题意. 综上,a =1.(2)(12-t +4+t )2=16+2(12-t )(4+t )=16+2-t 2+8t +48,当t =82=4时,(12-t +4+t )2有最大值,为32.又12-t +4+t ≥0,所以12-t +4+t 的最大值为4 2. 2.(2019·高考全国卷Ⅲ)设x ,y ,z ∈R ,且x +y +z =1. (1)求(x -1)2+(y +1)2+(z +1)2的最小值;(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1.解:(1)由于[(x -1)+(y +1)+(z +1)]2=(x -1)2+(y +1)2+(z +1)2+2[(x -1)(y +1)+(y +1)(z +1)+(z +1)(x -1)] ≤3[(x -1)2+(y +1)2+(z +1)2],故由已知得(x -1)2+(y +1)2+(z +1)2≥43,当且仅当x =53,y =-13,z =-13时等号成立.所以(x -1)2+(y +1)2+(z +1)2的最小值为43.(2)证明:由于[(x -2)+(y -1)+(z -a )]2=(x -2)2+(y -1)2+(z -a )2+2[(x -2)(y -1)+(y -1)(z -a )+(z -a )(x -2)] ≤3[(x -2)2+(y -1)2+(z -a )2], 故由已知得(x -2)2+(y -1)2+(z -a )2≥(2+a )23,当且仅当x =4-a 3,y =1-a 3,z =2a -23时等号成立.因此(x -2)2+(y -1)2+(z -a )2的最小值为(2+a )23. 由题设知(2+a )23≥13,解得a ≤-3或a ≥-1.。

高中数学一轮复习 基本不等式及其应用共35页

高中数学一轮复习 基本不等式及其应用共35页

文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
高中数学一轮复习 基本不等式及其应 用
6













7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8













9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
1
0







,பைடு நூலகம்







66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭

高考数学专题《基本不等式及其应用》习题含答案解析

高考数学专题《基本不等式及其应用》习题含答案解析

专题2.2 基本不等式及其应用1.(2021·曲靖市第二中学高三二模(文))已知(),,0,a b c ∈+∞,320a b c -+=的( ) AB C D .最小值是3【答案】B 【解析】 由题意得32a cb +=,再代入所求式子利用基本不等式,即可得到答案; 【详解】因为320a b c -+=,所以32a cb +=, =≤3a c =. 故选:B.2.(2021·山东高三其他模拟)已知a b ,均为正实数,则“2aba b≤+”是“16ab ≤”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件【答案】C 【解析】取100,2a b ==可得由2ab a b ≤+推不出16ab ≤,反过来,由基本不等式可得由16ab ≤能推出2aba b≤+,然后可选出答案. 【详解】取100,2a b ==,则2002102ab a b =<+,但20016ab =>,所以由2ab a b≤+推不出16ab ≤, 练基础反过来,若16ab ≤,则2ab a b ≤=≤+,当且仅当4a b ==时取等号, 所以由16ab ≤能推出2ab a b ≤+,所以“2ab a b≤+”是“16ab ≤”的必要不充分条件, 故选:C3.(2021·吉林长春市·东北师大附中高三其他模拟(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知ABC 的面积是()2214S b c =+ ,则ABC 的三个内角大小为( ) A .60A B C === B .90,45A B C === C .120,30A B C === D .90,30,60A B C ===【答案】B 【解析】由ABC 的面积是()2214S b c =+,利用面积公式及基本不等式判断出90A =︒,由b=c 得45B C ==. 【详解】因为222b c bc +≥,所以()221142S b c bc =+≥(当且仅当b=c 时取等号). 而ABC 的面积是1sin 2S bc A =, 所以11sin 22S bc A bc =≥,即sin 1A ≥,所以sin =1A , 因为A 为三角形内角,所以90A =︒. 又因为b=c ,所以90,45A B C ===. 故选:B4.(2021·浙江高三月考)已知实数x ,y 满足2244x y +=,则xy 的最小值是( )A .2-B .C .D .1-【答案】D 【解析】运用三角代换法,结合二倍角的正弦公式、正弦型函数的最值性质进行求解即可. 【详解】由22224414x x y y +=⇒+=,令2cos sin x y θθ=⎧⎨=⎩, 因此2cos sin sin 2xy θθθ==,因为1sin 21θ-≤≤,所以11xy -≤≤, 因此xy 的最小值是1-, 故选:D5.(2021·北京高三二模)某公司购买一批机器投入生产,若每台机器生产的产品可获得的总利润s (万元)与机器运转时间t (年数,*t ∈N )的关系为22364s t t =-+-,要使年平均利润最大,则每台机器运转的年数t 为( ) A .5 B .6C .7D .8【答案】D 【解析】根据题意求出年平均利润函数。

高三数学一轮复习精品教案4:7.4 基本不等式及其应用教学设计

高三数学一轮复习精品教案4:7.4 基本不等式及其应用教学设计

7.4 基本不等式及其应用『考纲要求』1.考查应用基本不等式求最值、证明不等式的问题.2.考查应用基本不等式解决实际问题.『复习指导』1.突出对基本不等式取等号的条件及运算能力的强化训练.2.训练过程中注意对等价转化、分类讨论及逻辑推理能力的培养.『基础梳理』1.基本不等式:ab ≤a +b 2(1)基本不等式成立的条件: .(2)等号成立的条件:当且仅当 时取等号.2.几个重要的不等式(1)a 2+b 2≥ (a ,b ∈R );(2)b a +a b≥ (a ,b 同号); (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R );(4)a 2+b 22≥⎝⎛⎭⎫a +b 22(a ,b ∈R ).3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为 . 4.利用基本不等式求最值问题已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当 时,x +y 有最 值是2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当 时,xy 有最 值是p 24.(简记:和定积最大) 『助学微博』一个技巧运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a 2+b 22;a +b 2≥ab (a ,b >0)逆用就是ab ≤⎝⎛⎭⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.两个变形(1)a 2+b 22≥⎝⎛⎭⎫a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); (2) a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0,当且仅当a =b 时取等号). 这两个不等式链用处很大,注意掌握它们.三个注意(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 『考向探究』考向一 利用基本不等式求最值『例1』(1)已知x >0,y >0,且2x +y =1,则1x +1y的最小值为________; (2)当x >0时,则f (x )=2xx 2+1的最大值为________.『训练1』 (1)已知x >1,则f (x )=x +1x -1的最小值为________. (2)已知0<x <25,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________.考向二 利用基本不等式证明不等式『例2』►已知a >0,b >0,c >0,求证:bc a +ca b +ab c≥a +b +c .『训练2』 已知a >0,b >0,c >0,且a +b +c =1.考向三 利用基本不等式解决恒成立问题『例3』若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.『训练3』已知x>0,y>0,xy=x+2y,若xy≥m-2恒成立,则实数m的最大值是________.考向四利用基本不等式解实际问题『例4』某单位建造一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5 m.房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?『训练4』东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g(n)与科技成本的投入次数n的关系是g(n)=80n+1.若水晶产品的销售价格不变,第n次投入后的年利润为f(n)万元.(1)求出f(n)的表达式;(2)求从今年算起第几年利润最高?最高利润为多少万元?答案『基础梳理』1.(1) a >0,b >0 (2) a =b 2.(1)2ab (2) 23.两个正数的算术平均数大于或等于它的几何平均数.4.(1) x =y 小 (2) x =y 大『例1』『审题视点』 第(1)问把1x +1y中的“1”代换为“2x +y ”,展开后利用基本不等式; 第(2)问把函数式中分子分母同除“x ”,再利用基本不等式.『解析』 (1)∵x >0,y >0,且2x +y =1,∴1x +1y =2x +y x +2x +y y=3+y x +2x y≥3+2 2. 当且仅当y x =2x y时,取等号. (2)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1, 当且仅当x =1x,即x =1时取等号. 『答案』(1)3+22 (2)1利用基本不等式求函数最值时,注意“一正、二定、三相等,和定积最大,积定和最小”.常用的方法为:拆、凑、代换、平方.『训练1』『解析』 (1)∵x >1,∴f (x )=(x -1)+1x -1+1≥2+1=3 当且仅当x =2时取等号. (2)y =2x -5x 2=x (2-5x )=15·5x ·(2-5x ), ∵0<x <25,∴5x <2,2-5x >0, ∴5x (2-5x )≤⎝⎛⎭⎫5x +2-5x 22=1,∴y ≤15,当且仅当5x =2-5x ,即x =15时,y max =15. (3)由2x +8y -xy =0,得2x +8y =xy ,∴2y +8x=1, ∴x +y =(x +y )⎝⎛⎭⎫8x +2y =10+8y x +2x y=10+2⎝⎛⎭⎫4y x +x y ≥10+2×2× 4y x ·x y=18, 当且仅当4y x =x y,即x =2y 时取等号, 又2x +8y -xy =0,∴x =12,y =6,∴当x =12,y =6时,x +y 取最小值18.『答案』(1)3 (2)15(3)18『例2』 『审题视点』 先局部运用基本不等式,再利用不等式的性质相加得到. 证明 ∵a >0,b >0,c >0, ∴bc a +ca b ≥2 bc a ·ca b =2c ; bc a +ab c ≥2 bc a ·ab c =2b ; ca b +ab c ≥2 ca b ·ab c=2a . 以上三式相加得:2⎝⎛⎭⎫bc a +ca b +ab c ≥2(a +b +c ), 即bc a +ca b +ab c≥a +b +c . 利用基本不等式证明不等式是综合法证明不等式的一种情况,证明思路是从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理最后转化为需证问题.『训练2』证明 ∵a >0,b >0,c >0,且a +b +c =1, ∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +c a +a b +c b +a c +b c=3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.『例3』『审题视点』 先求x x 2+3x +1(x >0)的最大值,要使得x x 2+3x +1≤a (x >0)恒成立,只要x x 2+3x +1(x >0)的最大值小于等于a 即可. 『解析』 若对任意x >0,x x 2+3x +1≤a 恒成立,只需求得y =x x 2+3x +1的最大值即可,因为x >0,所以y =x x 2+3x +1=1x +1x +3≤12 x ·1x=15,当且仅当x =1时取等号,所以a 的取值范围是⎣⎡⎭⎫15,+∞『答案』⎣⎡⎭⎫15,+∞当不等式一边的函数(或代数式)的最值较易求出时,可直接求出这个最值(最值可能含有参数),然后建立关于参数的不等式求解.『训练3』『解析』 由x >0,y >0,xy =x +2y ≥2 2xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,m ≤10,故m 的最大值为10.『答案』10『例4』『审题视点』 用长度x 表示出造价,利用基本不等式求最值即可.还应注意定义域0<x ≤5;函数取最小值时的x 是否在定义域内,若不在定义域内,不能用基本不等式求最值,可以考虑单调性.解 由题意可得,造价y =3(2x ×150+12x×400)+5 800=900⎝⎛⎭⎫x +16x +5 800(0<x ≤5), 则y =900⎝⎛⎭⎫x +16x +5 800≥900×2x ×16x+5 800=13 000(元), 当且仅当x =16x,即x =4时取等号. 故当侧面的长度为4米时,总造价最低.解实际应用题要注意以下几点:(1)设变量时一般要把求最大值或最小值的变量定义为函数;(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值;(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.『训练4』解 (1)第n 次投入后,产量为(10+n )万件,销售价格为100元,固定成本为80n +1元,科技成本投入为100n 万元.所以,年利润为f (n )=(10+n )⎝ ⎛⎭⎪⎫100-80n +1-100n (n ∈N *). (2)由(1)知f (n )=(10+n )⎝ ⎛⎭⎪⎫100-80n +1-100n =1 000-80⎝⎛⎭⎪⎫n +1+9n +1≤520(万元). 当且仅当n +1=9n +1, 即n =8时,利润最高,最高利润为520万元.所以,从今年算起第8年利润最高,最高利润为520万元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学案18 基本不等式及其应用
班级________姓名________
【导学目标】 1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】 1.基本不等式
ab ≤
a +b
2
(1)基本不等式成立的条件:____________. (2)等号成立的条件:当且仅当________时取等号. 2.几个重要的不等式
(1)a 2+b 2≥__________(a ,b ∈R ). (2)b a +a
b ≥____(a ,b 同号). (3)ab ≤⎝
⎛⎭
⎪⎫
a +
b 22 (a ,b ∈R ). 3.算术平均数与几何平均数
设a >0,b >0,则a ,b 的算术平均数为________,几何平均数为________; 基本不等式可叙述为:________________________________________________. 4.利用基本不等式求最值问题 已知x >0,y >0,则
(1)如果积xy 是定值p ,那么当且仅当________时,x +y 有最____值是________(简记:积定和最小).
(2)如果和x +y 是定值p ,那么当且仅当________时,xy 有最____值是__________(简记:和定积最大).
5.一个结论:11
02; 0 2.x x x x x x
>+
≥<+≤-当时,则当时,则 【自我检测】
1.若x >0,y >0,且x +y =18,则xy 的最大值是________. 2.已知t >0,则函数y =
t 2-4t +1
t
的最小值为________.
3.已知x >0,y >0,且2x +y =1,则1x +2
y
的最小值是_________.
4.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.24
5
B.285
C .5
D .6
5.圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0 (a ,b ∈R )对称,则ab 的取值范围是
( )
A.⎝
⎛⎦
⎥⎤-∞,14
B.⎝ ⎛⎦
⎥⎤
0,14
C.⎝ ⎛⎭
⎪⎫-14,0
D.⎝
⎛⎭
⎪⎫-∞,14 6.下列函数中,最小值为4的函数是( )
A .y =x +4x
B .y =sin x +4
sin x (0<x <π)
C .y =e x +4e -x
D .y =log 3x +log x 81 【典型例题】
探究一 利用基本不等式求最值
【例1】 (1)已知x >0,y >0,且1x +9
y
=1,求x +y 的最小值;
(2)已知x >54,求函数y =4x -2+1
4x -5的最小值;
(3)已知x <54,求函数y =4x -2+1
4x -5
的最大值;
变式1 已知a >0,b >0,a +b =2,则y =1a +4
b
的最小值是( )
A.72
B .4 C.9
2
D .5
探究二 基本不等式在证明不等式中的应用
【例2】 已知a >0,b >0,a +b =1,求证:(1+1a )(1+1
b
)≥9.
探究三 基本不等式的实际应用
【例3】 某单位用2 160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2 000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为
560+48x (单位:元).
(1)写出楼房平均综合费用y 关于建造层数x 的函数关系式;
(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少? (注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用
建筑总面积)
变式3 某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x
8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备
费用与仓储费用之和最小,每批应生产产品 ( )
A .60件
B .80件
C .100件
D .120件
【课后练习与提高】
1.设a ,b 满足2a +3b =6,a >0,b >0,则2a +3
b
的最小值为( )
A.25
6
B.83
C.113
D .4
2.设0<a <b ,则下列不等式中正确的是
( )
A .a <b <
ab <a +b 2
B .a <
ab <a +b
2
<b
C .a <ab <b <
a +b
2
D.ab <a <
a +b
2
<b
3.设a >0,b >0,若3是3a 与3b 的等比中项,则
1a +1
b
的最小值为( )
A .8
B .4
C .1
D.1
4
4.已知不等式(x +y )⎝ ⎛⎭
⎪⎫
1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )
A .2
B .4
C .6
D .8
5.已知a >0,b >0,则1a +1
b
+2
ab 的最小值是( )
A .2
B .2 2
C .4
D .5
6.已知0<x <1,则x (3-3x )取得最大值时x 的值为
( )
A.13
B.12
C.34
D.23
7.已知x ,y ∈R +,且满足x 3+y
4=1,则xy 的最大值为_______________.
8.若正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________. 9.x +4
x
的值域为___________________.
10.设函数f (x )=2x +1
x
-1(x <0),则f (x )有最________值为________.
11.已知0<x <4
3
,求x (4-3x )的最大值;
12.点(x,y)在直线x+2y=3上移动,求2x+4y的最小值.
13.桑基鱼塘是某地一种独具地方特色的农业生产形式,某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块1 800平方米的矩形地块,中间挖出三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,池塘周
围的基围宽均为2米,如图,设池塘所占的总面积为S平方米.
(1)试用x表示S;
(2)当x取何值时,才能使得S最大?并求出S的最大值.。

相关文档
最新文档