最新机械原理课程设计连杆机构B4

合集下载

机械原理课程设计-连杆机构B4完美版.

机械原理课程设计-连杆机构B4完美版.

机械原理课程设计任务书题目:连杆机构设计B4姓名:戴新吉班级:机械设计制造及其自动化2011级3班设计参数设计要求:1.用解析法按计算间隔进行设计计算;2.绘制3号图纸1张,包括:(1)机构运动简图;(2)期望函数与机构实现函数在计算点处的对比表;(3)根据对比表绘制期望函数与机构实现函数的位移对比图;3.设计说明书一份;4.要求设计步骤清楚,计算准确。

说明书规范。

作图要符合国家标。

按时独立完成任务。

目录第1节 平面四杆机构设计 ................................. 3 1.1连杆机构设计的基本问题 ............................... 3 1.2作图法设计四杆机构 ................................... 3 1.3作图法设计四杆机构的特点 ............................. 3 1.4解析法设计四杆机构 ................................... 3 1.5解析法设计四杆机构的特点 ............................. 3 第2节 设计介绍 ......................................... 5 2.1按预定的两连架杆对应位置设计原理 ...................... 5 2.2 按期望函数设计 ....................................... 6 第3节 连杆机构设计 ..................................... 7 3.1连杆机构设计 ......................................... 7 3.2变量和函数与转角之间的比例尺 .......................... 8 3.3确定结点值 ........................................... 8 3.4 确定初始角0α、0ϕ .................................... 9 3.5 杆长比m,n,l 的确定 .................................. 13 3.6 检查偏差值ϕ∆ ....................................... 13 3.7 杆长的确定 .......................................... 13 3.8 连架杆在各位置的再现函数和期望函数最小差值ϕ∆的确定 . 15 总结 .................................................... 17 参考文献 ................................................ 18 附录 ..................................... 错误!未定义书签。

《机械原理》第四章 平面连杆机构及其设计

《机械原理》第四章 平面连杆机构及其设计

2. 急回特性和行程速比系数
判断下列机构是否具有急回特性:
双曲柄机构和对心曲柄滑块机构适 当组合后,也可能产生急回特性。
机械原理
小结:
第四章 平面连杆机构及其设计
2. 急回特性和行程速比系数
1)急回特性的作用:节省空回行程的时间,提高劳动生产 率。 2)急回特性具有方向性,当原动件的回转方向改变时,急 回的行程也跟着改变。 3)对于有急回运动要求的机械,先确定K,再求θ。
∆DB1C1 中 : a + d ≤ b + c ∆DB2C 2 中 : b ≤ (d-a ) + c
(a ) 即 a+b≤c+d 即 a+c ≤ b+d
c ≤ (d-a ) + b (a ) + (b ),得 a ≤ c (a ) + (c ),得 a ≤ b
(b ) + (c ),得 a ≤ d
手摇唧筒
固定滑块3成为唧筒外壳,导杆4的下端固结着汲水活塞,在 唧筒3的内部上下移动,实现汲水的目的。
机械原理
2 . 平面四杆机构的演化形式 ( ) 运动副元素的逆换 4
第四章 平面连杆机构及其设计
将移动副两元素的包容关系进行逆换,并不影响两构件 之间的相对运动,但却能演化成不同的机构。
构件2 包容 构件3 导杆机构
4-2
平面四杆机构的类型和应用
1. 平面四杆机构的基本形式 2. 平面四杆机构的演化形式
机械原理
第四章 平面连杆机构及其设计
铰链四杆机构 1. 平面四杆机构的基本形式:
机架:固定不动的构件,如AD 杆 连杆:不直接与机架相连的构件,如BC杆 连架杆:直接与机架相连的构件,如AB、CD 杆 曲柄:能作整周转动的连架杆,如AB 杆 摇杆:不能作整周转动的连架杆,如CD 杆

机械原理四连杆机构

机械原理四连杆机构
图4-11所示为起重机机构,当摇杆CD 摇动时,连杆BC上悬挂重物的M点作近似 的水平直线移动,从而避免了重物平移时 因不必要的升降而发生的事故(shìgù)和能量的 损耗。
第三十四页,共八十八页。
图4-11 起重 机起重 机构 (qǐ zhònɡ)
(qǐ zhònɡ)
第三十五页,共八十八页。
两摇杆长度相等的双摇杆机构,称为(chēnɡ wéi)等腰梯形机构。
C2D,摆角为;而当曲柄顺时针再转过 角度2=180-时,摇杆由C2D摆回C1D,其
摆角仍然是 。虽然摇杆来回摆动的摆角
相同,但对应的曲柄转角不等(12);当
曲柄匀速转动时,对应的时间也不等(t1>t2), 从而反映了摇杆往复摆动的快慢不同。
第十五页,共八十八页。
令摇杆自C1D摆至C2D为工作行程, 这时铰链C的平均速度是v1=C1C2/t1;摆 杆自C2D摆回至C1D为空回行程,这时C 点的平均速度是v2=C1C2/t2,v1<v2,表明
第四十二页,共八十八页。
上述关系说明:曲柄存在(cúnzài)的必要条件: (1) 在曲柄(qūbǐng)摇杆机构中,曲柄(qūbǐng)是最 短杆; (2) 最短杆与最长杆长度之和小于或等
于(děngyú)其余两杆长度之和。
第四十三页,共八十八页。
如何得到不同(bù tónɡ)类型的铰链四杆机构? 根据(gēnjù)以上分析可知:
即机构处于压力角=90(传力角=0)的
位置时,驱动力的有效力为0。此力对A点 不产生力矩,因此不能使曲柄转动。机构 的这种位置称为死点。
第二十五页,共八十八页。
死点(sǐ diǎn)会使机构的从动件出现卡死或运 动不确定的现象。可以利用回转机构的惯性 或添加辅助机构来克服。如家用缝纫机中的 脚踏机构,图4-3a。

机械原理教案 平面连杆机构及其设计

机械原理教案 平面连杆机构及其设计

第八章平面连杆机构及其设计§8-1、连杆机构及其传动特点1、连杆机构及其组成。

本章主要介绍平面连杆机构(所有构件均在同一平面或在相互平行的平面内运动的机构)组成:由若干个‘杆’件通过低副连接而组成的机构。

又称为低副机构。

2、平面连杆机构的特点(首先让学生思考在实际生活中见到过哪些连杆机构:钳子、缝纫机、挖掘机、公共汽车门)1)运动副为面接触,压强小,承载能力大,耐冲击,易润滑,磨损小,寿命长;。

2)运动副元素简单(多为平面或圆柱面),制造比较容易;3)运动副元素靠本身的几何封闭来保证构件运动,具有运动可逆性,结构简单,工作可靠;4)可以实现多种运动规律和特定轨迹要求;(连架杆之间)匀速、不匀速主动件(匀速转动)→→→→→从动件连续、不连续(转动、移动)某种函数关系引导点实现某种轨迹曲线导引从动件(连杆导引功能)→→→→→引导刚体实现平面或空间系列位置5)还可以实现增力、扩大行程、锁紧。

连杆机构的缺点:1)由于连杆机构运动副之间有间隙,且运动必须经过中间构件进行传递,因而当使用长运动链(构件数较多)时,易产生较大的误差积累,同时也使机械效率降低。

2)连杆机构所产生的惯性力难于平衡,因而会增加机构的动载荷,所以连杆机构不宜用于高速运动。

3)难以精确地满足很复杂地运动规律(受杆数限制)4)综合方法较难,过程繁复;平面四杆机构的应用广泛,而且常是多杆机构的基础,本章重点讨论平面四杆机构的有关基本知识和设计问题。

§8-2、平面四杆机构的基本类型和应用(利用多媒体中的图形演示说明)1.铰链四杆机构的基本类型1)、曲柄摇杆机构曲柄:与机架相联并且作整周转动的构件;摇杆:与机架相联并且作往复摆动的构件;(还可以举例:破碎机、自行车(人骑上之后)等)2)、双曲柄机构铰链四杆机构的两连架杆均能作整周转动的机构。

还可以补充:平行四边形机构的丁子尺、工作台灯机构;火车驱动机构、摄影平台、播种料斗机构、关门机构等。

机械原理第五章 连杆机构设计

机械原理第五章 连杆机构设计

4. 曲柄滑块机构存在曲柄的条件
根据曲柄摇杆机构的演化过程及曲柄摇杆机构曲柄存在的 条件,机架为无穷大+偏距e,则有: 偏置曲柄滑块机构有曲柄的条件:
a
b
① a+e≤b; ② a为最短杆。
若偏距=0,则得对心曲柄滑块机构有曲柄的条件:
① a≤b; ② a为最短杆。
例5-1 图示铰链四杆机构,lBC=50mm,lCD=35mm, lAD=30mm,AD为机架,若为曲柄摇杆机构, 试讨论lAB的取值范围。
机械原理 第五章 平面连杆机构及其设计
§5-1 平面连杆机构的应用及传动特点
§5-2 平面四杆机构的类型和应用
§5-3 平面四杆机构的一些共性问题 §5-4 平面四杆机构的设计
§5-1 平面连杆机构的应用及传动特点
应用举例 如:四足机器人(图片、动画)、内燃机中的曲柄滑块机构、 汽车刮水器、缝纫机踏板机构、仪表指示机构等。
锻压机肘杆机构
可变行程滑块机构
汽车空气泵
单侧曲线槽导杆机构
3)可用于远距离操纵、重载机构,如:自行车手闸机构,挖掘 机等。 4)连杆曲线丰富,可实现特定的轨迹要求,如:搅拌机构, 鹤式起重机等。
挖掘机
搅拌机构
鹤式起重机
二、平面连杆机构的缺点 1)运动副中的间隙会造成较大累积误差,运动精度较低。 2)多杆机构设计复杂,效率低。 3)多数构件作变速运动,其惯性力难以平衡,不适用于高速。 多杆机构大都是四杆机构组合或扩展的结果。 六杆机构及六杆机构的实际应用 本章介绍四杆机构的分析和设计。
1)最短杆长度+最长杆长度≤其余两杆长度之和;(杆长条件) 2)组成该周转副的两杆中必有一杆为最短杆。 2. 铰链四杆机构存在曲柄的条件
1)各杆长度应满足杆长条件; 2)最短杆为连架杆或机架。

机械课程设计连杆机构设计

机械课程设计连杆机构设计

机械课程设计连杆机构设计一、课程目标知识目标:1. 学生能够理解并掌握连杆机构的基本概念、分类及工作原理。

2. 学生能够运用几何关系和解析法分析连杆机构的运动特性。

3. 学生能够掌握连杆机构设计的基本步骤和方法,并能运用相关软件进行简单的设计。

技能目标:1. 学生能够运用所学知识,对连杆机构进行结构分析和运动分析。

2. 学生能够独立完成连杆机构的简单设计,并能运用软件进行模拟和优化。

3. 学生能够通过课程学习,提高解决实际工程问题的能力和团队协作能力。

情感态度价值观目标:1. 学生能够培养对机械设计的兴趣,增强学习动力,树立正确的专业观念。

2. 学生能够认识到连杆机构在工程领域的重要作用,培养工程意识和创新精神。

3. 学生能够在课程学习过程中,形成严谨、勤奋、求实的学术态度,提高社会责任感和使命感。

课程性质:本课程为机械设计领域的专业课程,旨在培养学生对连杆机构的理论知识和实践能力。

学生特点:学生已具备一定的力学基础和机械设计知识,具备一定的自主学习能力和团队合作精神。

教学要求:教师需结合课本内容,采用理论教学与实践操作相结合的方式,注重培养学生的实际操作能力和创新能力。

在教学过程中,关注学生的个体差异,引导他们积极参与课堂讨论和实践活动,确保课程目标的实现。

通过对课程目标的分解和实施,为后续的教学设计和评估提供明确的方向。

二、教学内容1. 连杆机构基本概念:连杆机构的定义、分类及特点,重点掌握平面连杆机构和空间连杆机构的区别与联系。

2. 连杆机构工作原理:分析连杆机构的运动规律,理解从动件的运动和动力特性。

3. 连杆机构的设计方法:学习连杆机构的设计步骤,包括初始设计、参数优化和结构设计等。

- 初始设计:掌握杆长、夹角等基本参数的计算方法。

- 参数优化:学习利用解析法和数值方法对连杆机构进行运动和动力分析,优化设计参数。

- 结构设计:了解连杆机构的结构设计原则,掌握常见连杆机构结构特点。

4. 软件应用:学习运用相关软件(如CAD、ADAMS等)进行连杆机构的建模、仿真和优化。

连杆全套课程设计

连杆全套课程设计

连杆全套课程设计一、课程目标知识目标:1. 让学生掌握连杆的定义、分类及在机械系统中的作用;2. 引导学生理解连杆的运动原理,掌握连杆机构的设计方法;3. 帮助学生了解连杆在实际工程中的应用,提高对工程实践的认识。

技能目标:1. 培养学生运用几何作图和计算方法分析连杆机构的能力;2. 提高学生运用CAD软件进行连杆机构设计和绘制的能力;3. 培养学生动手制作连杆模型,并对其进行实验分析的能力。

情感态度价值观目标:1. 培养学生对机械设计的兴趣,激发创新意识;2. 增强学生的团队合作意识,培养协同解决问题的能力;3. 引导学生关注连杆机构在生活中的应用,提高对机械工程学科的认识和热爱。

课程性质:本课程为机械设计基础课程,旨在帮助学生掌握连杆机构的基本知识,培养实际操作能力。

学生特点:学生为初中生,具备一定的几何知识和动手能力,对机械设计有一定的好奇心。

教学要求:结合学生特点,注重理论与实践相结合,提高学生的动手操作能力和解决问题的能力。

通过课程学习,使学生能够达到以上设定的知识、技能和情感态度价值观目标。

在教学过程中,将目标分解为具体的学习成果,以便进行教学设计和评估。

二、教学内容1. 连杆的基本概念:连杆的定义、分类及作用;教材章节:第一章第一节。

2. 连杆的运动原理:连杆机构的运动分析,速度和加速度的计算;教材章节:第一章第二节。

3. 连杆机构的设计方法:几何作图法、解析法及计算机辅助设计;教材章节:第一章第三节。

4. 连杆在实际工程中的应用:案例分析,展示连杆机构在生活中的应用;教材章节:第一章第四节。

5. 连杆模型的制作与实验分析:动手制作连杆模型,进行实验操作和分析;教材章节:第一章实践环节。

教学内容安排和进度:第一课时:连杆的基本概念;第二课时:连杆的运动原理;第三课时:连杆机构的设计方法;第四课时:连杆在实际工程中的应用;第五课时:连杆模型的制作与实验分析。

教学内容确保科学性和系统性,结合教材章节和课程目标,注重理论与实践相结合,提高学生的知识水平和实际操作能力。

机械原理课程设计b4

机械原理课程设计b4

机械原理课程设计b4一、教学目标本节课的教学目标是让学生掌握机械原理的基本概念和基本定律,培养学生分析和解决机械问题的能力。

具体分为以下三个部分:1.知识目标:(1)了解机械原理的基本概念和基本定律;(2)掌握机械系统的运动分析方法;(3)熟悉机械能守恒定律和动力学方程。

2.技能目标:(1)能够运用机械原理解决实际问题;(2)具备分析机械系统运动的能力;(3)学会运用数学工具进行力学计算。

3.情感态度价值观目标:(1)培养学生对机械原理的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神;(3)培养学生团队合作、沟通交流的能力。

二、教学内容本节课的教学内容主要包括以下几个部分:1.机械原理的基本概念和基本定律;2.机械系统的运动分析方法;3.机械能守恒定律和动力学方程的应用。

具体安排如下:1.导言:介绍机械原理的概念和重要性;2.机械系统的运动分析:讲解位移、速度、加速度等基本概念,介绍运动分析的方法;3.机械能守恒定律:讲解机械能守恒定律的表述和应用;4.动力学方程:讲解动力学方程的建立和应用;5.课堂练习:针对所学内容进行练习和讨论。

三、教学方法本节课采用以下几种教学方法:1.讲授法:讲解机械原理的基本概念、基本定律和运动分析方法;2.案例分析法:分析实际案例,让学生更好地理解机械原理的应用;3.实验法:安排课后实验,让学生亲身体验机械原理的实践操作;4.讨论法:鼓励学生积极参与课堂讨论,培养团队合作和沟通交流的能力。

四、教学资源本节课所需的教学资源包括:1.教材:机械原理教材,用于引导学生学习基本概念和基本定律;2.参考书:机械原理及相关书籍,为学生提供更多的学习资料;3.多媒体资料:PPT课件,生动展示机械原理的图形和实例;4.实验设备:机械原理实验装置,让学生亲身体验机械原理的实践操作。

通过以上教学资源的支持,相信能够有效地实现本节课的教学目标。

五、教学评估本节课的评估方式主要包括以下几个方面:1.平时表现:评估学生在课堂上的参与程度、提问回答等情况,以了解学生的学习态度和理解程度;2.作业:布置相关的作业,评估学生的完成情况和理解能力;3.考试:安排一次课堂小测或期中期末考试,评估学生对课程内容的掌握程度。

机械原理大作业VB四杆机构的设计

机械原理大作业VB四杆机构的设计

!沈阳航空航天大学铰链四杆机构设计报告学院:机电工程学院<班级:姓名:学号:~(Dim a, b, c, d, e, f, l1, l2, l3, l4, w1, w2, w3, a2, a3#, p, m, dc, bjj, n%Private Sub Command1_Click() 杆长赋值l1 = Val(Text1(0).Text)l2 = Val(Text1(1).Text)l3 = Val(Text1(2).Text)l4 = Val(Text1(3).Text)a = Val * / 180 初始角度转弧度/Call bj(bjj)If bjj = 1 Then Exit Subw1 = 0Call jsgw1 = Val 公式计算角速度,角加速度w2 = -w1 * l1 * Sin(a - c) / (l3 * Sin(b - c))w3 = w1 * l1 * Sin(a - b) / (l2 * Sin(c - b))= w2¥= w3a2 = (l3 * w3 * w3 - l1 * w1 * w1 * Cos(a - c) - l2 * w2 * w2 * Cos(b - c)) / (l2 * Sin(b - c))a3 = (l2 * w2 * w2 + l1 * w1 * w1 * Cos(a - b) - l3 * w3 * w3 * Cos(c - b)) / (l3 * Sin(c - b))= a2= a3End SubFunction jsg()If p = 0 Then p = -1、On Error GoTo ela = a + * w1 角度随时间增加d = l4 - l1 * Cos(a)e = -l1 * Sin(a)f = (d ^ 2 + e ^ 2 + l3 ^ 2 - l2 ^ 2) / (2 * l3)c = 2 * Atn((e + Sqr(d ^ 2 +e ^ 2 -f ^ 2) * p) / (d - f))b = Atn((e + l3 * Sin(c)) / (d + l3 * Cos(c)))w1 = -w1…el:w1 = -w1Line1(0).Y1 = / 2 定义各个线段端点的坐标Line1(0).X1 = / 2Line1(0).X2 = l1 * Cos(a) + Line1(0).X1Line1(0).Y2 = Line1(0).Y1 - l1 * Sin(a)Line1(3).X2 = Line1(0).X1 + l4Line1(3).Y2 = Line1(0).Y1;Line1(3).X1 = Line1(0).X1Line1(3).Y1 = Line1(0).Y1Line1(2).X1 = Line1(3).X2 + l3 * Cos(c)Line1(2).Y1 = Line1(3).Y2 - l3 * Sin(c)Line1(2).X2 = Line1(3).X2Line1(2).Y2 = Line1(3).Y2Line1(1).X1 = Line1(0).X2Line1(1).Y1 = Line1(0).Y2|Line1(1).X2 = Line1(2).X1Line1(1).Y2 = Line1(2).Y1Shape1(i).Left = Line1(i).X1 - 50 连接两杆转动副的中心坐标Shape1(i).Top = Line1(i).Y1 - 50Next i(Line1(1).X1, Line1(1).Y1), vbRed 画出主动件和连架杆的轨迹(Line1(2).X1, Line1(2).Y1), vbGreenEnd Function}Function bj(x) 杆长条件的判断x = 0xld = Val(Text1(0).Text)xlx = Val(Text1(0).Text)For i = 1 To 3 If xld < Val(Text1(i).Text) Then xld = Val(Text1(i).Text)^If xlx > Val(Text1(i).Text) Then xlx = Val(Text1(i).Text)Next iFor i = 0 To 3zh = Val(Text1(i).Text) + zhNext iIf (xlx + xld) > (zh - (xlx + xld)) ThenMsgBox ("不满足杆长要求")x = 1`End IfEnd Function。

机械原理四连杆机构..

机械原理四连杆机构..

在实际应用中,为度量方便起见, 常用压力角的余角来衡量机构传力性 能的好坏,称为传力角。显然值越大 越好,理想情况是=90。 一般机械中,=40~50。
大功率机构,min=50。 非传动机构,<40,但不能过小。
确 定 最 小 传 动 角 min 。 由 图 4-5 中 ∆ABD和∆BCD可分别写出 BD2=l12+l42-2l1l4cos
令摇杆自C1D摆至C2D为工作行 程,这时铰链C的平均速度是 v1=C1C2/t1;摆杆自C2D摆回至C1D为 空回行程,这时C点的平均速度是 v2=C1C2/t2,v1<v2,表明摇杆具有急回 运动的特性。牛头刨床、往复式运输 机等机械就利用这种急回特性来缩短 非生产时间,提高生产率。
急回特性可用行程速比系数K表示,即
死点会使机构的从动件出现卡死或 运动不确定的现象。可以利用回转机构 的惯性或添加辅助机构来克服。如家用 缝纫机中的脚踏机构,图4-3a。 有时死点来实现工作,如图4-6所示 工件夹紧装置,就是利用连杆BC与摇杆 CD形成的死点,这时工件经杆1、杆2传 给杆3的力,通过杆3的传动中心D。此力 不能驱使杆3转动。故当撤去主动外力F 后,工件依然被可靠地夹紧。
图4-6 利用死点夹紧工件的夹具
二、双曲柄机构
两连架杆均为曲柄的铰链四杆机构称 为双曲柄机构。
图4-7 插床双曲柄机构
曲柄摇杆机构 双曲柄机构
双摇杆机构
一、 曲柄摇杆机构
在铰链四杆机构中,若两个连架杆, 一个为曲柄,另一个为摇杆,则此铰链 四杆机构称为曲柄摇杆机构。
图4-2所示为调整雷达天线俯仰角的 曲柄摇杆机构。曲柄1缓慢地匀速转动, 通过连杆2使摇杆3在一定的角度范围内 摇动,从而调整天线俯仰角的大小。

《机械原理》第三章平面连杆机构及其设计

《机械原理》第三章平面连杆机构及其设计
等于其他两构件长度之和。(杆长条件) •四杆机构有曲柄的条件是: •(1)各杆的长度应满足杆长条件; •(2)最短杆为连架杆或机架。

铰链四杆机构可以分为两大类:
1、不满足杆长条件时,不管取那个构件为机架,所组成 的机构都是双摇杆机构。
2、满足杆长条件时,最短构件相对于与它组成转动副的 构件可以作相对整周转动。
•站在连杆上观察:从位置1到位置2,
•E2 •F1 •B2 •C1
•F2 •C2
•A •D
•∠ABC增大, ∠BCD减小,即A点饶B点顺时针转动,D点饶C点顺时针转动 。
•(avi)
•连杆运动1
•(avi)
• •连杆运动2
•E1 •B1
•A
•F1 •E2 •C1
•B2
•(avi) •F2•C2
•D •A•′1

2.含一个移动副四杆运动链中转动副为整转副的 充分必要条件(曲柄滑块有曲柄的条件)
•a •b
•e
b-a>e b>a+e
•当 e=0时 b>a

•二、行程速度变化系数
1. 机构极位(极限位置) :曲柄回转一周,与连杆两 次共线,此时摇杆分别处于 两个位置,称为机构极位。
2. 极位夹角:机构在两个 极位时,原动件所处两个位 置之间所夹的角θ称为极位 夹角。
•取最短杆 相邻的构件
为机架得曲 柄摇杆机构
•最短杆为 机架得双 曲柄机构
•取最短杆 对边为机架 得双摇杆机 构

特殊情况: 如果铰链四杆机构中两个构件长度相等且均为最短杆 1、若另两个构件长度不相等,则不存在整转副。 2、若另两个构件长度也相等, (1)当两最短构件相邻时,有三个整转副。 (2)当两最短构件相对时,有四个整转副。 例1' 课后3-3

机械原理四连杆机构

机械原理四连杆机构

播种机排种器
四连杆机构用于播种机排种器,通过调节连杆长度和角 度,实现排种量的精确控制。
工业机械中的应用
数控机床
四连杆机构用于数控机床的进给系统,实现高精度、 高效率的加工。
工业机器人
四连杆机构用于工业机器人的关节部位,实现机器人 的灵活运动和精确控制。
航空航天中的应用
飞机起落架
四连杆机构用于飞机起落架的收放系统,通过调节连 杆长度和角度,实现起落架的快速、稳定收放。
实验方法与步骤
1
3. 设定输入杆的长度和角度,启动实验,观察输 出杆的运动情况,记录相关数据。
2
4. 重复实验,改变输入杆的长度和角度,获取多 组数据。
3
5. 对实验数据进行整理和分析,得出结论。
实验结果与分析
实验结果
通过实验获取了四连杆机构在不同输入条件 下的运动数据,包括角度和速度的变化规律 。
机械原理四连杆机构
汇报人: 2023-12-27
目录
• 四连杆机构的概述 • 四连杆机构的工作原理 • 四连杆机构的类型与特点 • 四连杆机构的优化设计 • 四连杆机构的实验研究 • 四连杆机构的应用实例
01
四连杆机构的概述
定义与特点
定义
四连杆机构是一种由四个杆件相互连接组成的平面连杆机构,通过不同杆件的 相对运动实现特定的运动轨迹。
四连杆机构模型、测角仪、测速仪、数据采 集系统等。
实验方法与步骤
• 实验方法:采用控制变量法,通过改变输入杆的 长度和角度,观察输出杆的运动规律,并记录相 关数据。
实验方Байду номын сангаас与步骤
实验步骤 1. 搭建四连杆机构模型,确保各杆件安装正确,无卡滞现象。

机械原理四连杆机构PPT教案

机械原理四连杆机构PPT教案
第6页/共87页
图4-2 雷达天线俯仰角调整机构
第7页/共87页
图4-3a所示为缝纫机的踏板机构 ,图b为其机构运动简图。摇杆3(原 动件)往复摆动,通过连杆2驱动曲 柄1(从动件)做整周转动,再经过 带传动使机头主轴转动。
第8页/共87页
图4-3 缝纫机的踏板机构
第9页/共87页
第10页/共87页
第53页/共87页
又如图4-18为牛头刨床回转导杆机 构,当BC杆绕B点作等速转动时,AD 杆绕A点作变速转动DE杆驱动刨刀作变 速往返运动。
第54页/共87页
图4-18回转导杆机构
第55页/共87页
3.摇块机构
构。
图4-16a)所示的为曲柄滑块机
若取杆2为固定件,即可得图 4-16c)所示的摆动滑块机构,或称摇 块机构。
满足这个条件的机构究竟有一个曲柄、两个曲柄或没有曲柄,还需根据取何杆为 机架来判断。
第47页/共87页
二、铰链四杆机构的演化
1.曲柄滑块机构 如图4-15a所示 的曲柄摇杆机构中,摇杆3上C点的轨迹是以D为圆心,杆
3的长度L3为半径的圆弧mm。如将转动副D扩大,使其半径等于L3,并在机架上按 C点的近似轨迹mm作成一弧形槽,摇杆3作成与弧形槽相配的弧形块,如图4-14b 所示。
第18页/共87页
它可使从动件产生有效的回转力矩 ,显然Pt越大越好。而P在垂直于vc方向
的分力Pn=Psin则为无效分力,它不仅
无助于从动件的转动,反而增加了从动 件转动时的摩擦阻力矩。因此,希望Pn
越小越好。由此可知,压力角越小, 机构的传力性能越好,理想情况是=0
,所以压力角是反映机构传力效果好坏 的一个重要参数。一般设计机构时都必 须注意控制最大压力角不超过许用值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新机械原理课程设计连杆机构B4任务书题目:连杆机构设计B4-b姓名:GHGH班级:机械设计制造及其自动化2006级7班设计参数设计要求:1.用解析法按计算间隔进行设计计算;2.绘制3号图纸1张,包括:(1)机构运动简图;(2)期望函数与机构实现函数在计算点处的对比表;(3)根据对比表绘制期望函数与机构实现函数的位移对比图;3.设计说明书一份;4.要求设计步骤清楚,计算准确。

说明书规范。

作图要符合国家标。

按时独立完成任务。

目录第1节平面四杆机构设计 (3)1.1连杆机构设计的基本问题 ................................................................. 3 1.2作图法设计四杆机构 ......................................................................... 3 1.3 解析法设计四杆机构 ........................................................................ 3 第2节 设计介绍 .................................................................................... 5 2.1按预定的两连架杆对应位置设计原理 ............................................. 5 2.2 按期望函数设计 ................................................................................ 6 第3节 连杆机构设计 ............................................................................ 8 3.1连杆机构设计 ..................................................................................... 8 3.2变量和函数与转角之间的比例尺 ..................................................... 8 3.3确定结点值 ......................................................................................... 8 3.4 确定初始角0α、0ϕ ........................................................................... 9 3.5 杆长比m,n,l 的确定 ...................................................................... 13 3.6 检查偏差值ϕ∆ ................................................................................. 13 3.7 杆长的确定 ...................................................................................... 13 3.8 连架杆在各位置的再现函数和期望函数最小差值ϕ∆的确定 .... 15 总结 ........................................................................................................... 18 参考文献 .................................................................................................. 19 附录 .. (20)第1节 平面四杆机构设计1.1连杆机构设计的基本问题连杆机构设计的基本问题是根据给定的要求选定机构的型式,确定各构件的尺寸,同时还要满足结构条件(如要求存在曲柄、杆长比恰当等)、动力条件(如适当的传动角等)和运动连续条件等。

根据机械的用途和性能要求的不同,对连杆机构设计的要求是多种多样的,但这些设计要求可归纳为以下三类问题:(1)预定的连杆位置要求;(2)满足预定的运动规律要求;(3)满足预定的轨迹要求;连杆设计的方法有:解析法、作图法和实验法。

1.2作图法设计四杆机构对于四杆机构来说,当其铰链中心位置确定后,各杆的长度也就确定了。

用作图法进行设计,就是利用各铰链之间相对运动的几何关系,通过作图确定各铰链的位置,从而定出各杆的长度。

根据设计要求的不同分为四种情况:(1) 按连杆预定的位置设计四杆机构(2) 按两连架杆预定的对应角位移设计四杆机构(3) 按预定的轨迹设计四杆机构(4) 按给定的急回要求设计四杆机构1.3 解析法设计四杆机构在用解析法设计四杆机构时,首先需建立包含机构各尺度参数和运动变量在内的解析式,然后根据已知的运动变量求机构的尺度参数。

现有三种不同的设计要求,分别是:(1) 按连杆预定的连杆位置设计四杆机构(2) 按预定的运动轨迹设计四杆机构 (3) 按预定的运动规律设计四杆机构 1) 按预定的两连架杆对应位置设计 2) 按期望函数设计本次连杆机构设计采用解析法设计四杆机构中的按期望函数设计。

下面在第2节将对期望函数设计四杆机构的原理进行详细的阐述。

第2节 设计介绍2.1按预定的两连架杆对应位置设计原理如下图所示:设要求从动件3与主动件1的转角之间满足一系列的对应位置关系,即θi 3=)(1θi f i=1, 2,… ,n 其函数的运动变量为θi 由设计要求知θ1、θ3为已知条件。

有θ2为未知。

又因为机构按比例放大或缩小,不会改变各机构的相对角度关系,故设计变量应该为各构件的相对长度,如取a/a=1 , b/a=l c/a=m , d/a=n 。

故设计变量l 、m 、n 以及θ1、θ3的计量起始角0α、0ϕ共五个。

如图所示建立坐标系Oxy ,并把各杆矢量向坐标轴投影,可得)cos()cos(cos αθϕθθ+-++=m n l为消去未知角θi 2,将上式)2/()1()cos()()cos()cos(22201030301n n m m l n m i i i i -+++-+--+=+-αθϕθϕθαθ令p 0=m, p 1=-m/n, p 2=)2/()1(222n l n m -++,则上式可简化为:p p p iiii 210313001)cos()cos()cos(+-+-+=+-αθϕθϕθαθ 2-2yx式 2-2 中包含5个待定参数p 0、p 1、p 2、α0、及ϕ0,故四杆机构最多可以按两连架杆的5个对应位置精度求解。

2.2 按期望函数设计如上图所示,设要求设计四杆机构两连架杆转角之间实现的函数关系)(x f y = (成为期望函数),由于连架杆机构的待定参数较少,故一般不能准确实现该期望函数。

设实际实现的函数为月)(x F y =(成为再现函数),再现函数与期望函数一般是不一致的。

设计时应该使机构的再现函数尽可能逼近所要求的期望函数。

具体作法是:在给定的自变量x 的变化区间x 0到x m 内的某点上,使再现函数与期望函数的值相等。

从几何意义上)(x F y =与)(x f y =两函数曲线在某些点相交。

这些点称为插值结点。

显然在结点处:故在插值结点上,再现函数的函数值为已知。

这样,就可以按上述方法来设计四杆机构。

这种设计方法成为插值逼近法。

在结点以外的其他位置,)(x F y =与)(x f y =是不相等的,其偏差为偏差的大小与结点的数目及其分布情况有关,增加插值结点的数目,有利于逼近精度的提高。

但结点的数目最多可为5个。

至于结点位置分布,根据函数逼近理论有m i x x x x x m m i 2)12(cos )(21)(2100π---+=2-3试中i=1,2, … ,3,n 为插值结点数。

本节介绍了采用期望函数设计四杆机构的原理。

那么在第3节将 具体阐述连杆机构的设计。

第3节 连杆机构设计3.1连杆机构设计设计参数表注:本次采用编程计算,计算间隔0.5° 3.2变量和函数与转角之间的比例尺根据已知条件y=㏑x(1≦x ≦2)为铰链四杆机构近似的实现期望函数, 设计步骤如下:(1)根据已知条件10=x ,2=x m ,可求得00=y ,693.0=y m 。

(2)由主、从动件的转角范围m α=60°、m ϕ=85°确定自变量和函数与转角之间的比例尺分别为:︒=-=60/1/)(0ααmmx x u3.3确定结点值设取结点总数m=3,由式2-3可得各结点处的有关各值如表(3-1)所示。

表(3-1) 各结点处的有关各值3.4 确定初始角0α、0ϕ通常我们用试算的方法来确定初始角0α、0ϕ,而在本次连杆设计中将通过编程试算的方法来确定。

具体思路如下: 任取0α、0ϕ,把0α、0ϕ取值与上面所得到的三个结点处的αi、ϕi 的值代入P134式8-17从而得到三个关于P 0、P 1、P 2的方程组,求解方程组后得出P 0、P 1、P 2,再令P 0=m, P 1=-m/n, P 2=)2/()1(222n l n m -++。

然求得后m,n,l 的值。

由此我们可以在机构确定的初始值条件下找 到任意一位置的期望函数值与再现函数值的偏差值ϕ∆。

当 ︒<∆1ϕ时,则视为选取的初始、角度0α0ϕ满足机构的运动要求。

具体程序如下:#include<stdio.h> #include<math.h> #define PI 3.1415926#define t PI/180void main(){int i;float p0,p1,p2,a0,b0,m,n,l,a5;float A,B,C,r,s,f1,f2,k1,k2,j;float u1=1.0/60,u2=0. 93/685,x0=1.0,y0=0.0; float a[3],b[3],a1[6],b1[3];FILE *p;if((p=fopen("d:\\zdp.txt","w"))==NULL) {printf("can't open the file!");exit(0);}a[0]=4.02;a[1]=30;a[2]=55.98;b[0]=7.97;b[1]=49.68;b[2]=80.83;printf("please input a0: \n");scanf("%f",&a0);printf("please input b0: \n");scanf("%f",&b0);for(i=0;i<3;i++){a1[i]=cos((b[i]+b0)*t);a1[i+3]=cos((b[i]+b0-a[i]-a0)*t);b1[i]=cos((a[i]+a0)*t);}p0=((b1[0]-b1[1])*(a1[4]-a1[5])-(b1[1]-b1[2])*(a1[3]-a1[4]))/((a1[0]-a1[1])*(a1[4]-a1[5])-(a1[1]-a1[2])*(a1[3]-a1[4]));p1=(b1[0]-b1[1]-(a1[0]-a1[1])*p0)/(a1[3]-a1[4]);p2=b1[0]-a1[0]*p0-a1[3]*p1;m=p0;n=-m/p1;l=sqrt(m*m+n*n+1-2*n*p2);printf("p0=%f,p1=%f,p2=%f,m=%f,n=%f,l=%f\n",p0,p1,p2,m,n,l); fprintf(p,"p0=%f,p1=%f,p2=%f,m=%f,n=%f,l=%f\n",p0,p1,p2,m,n,l); printf("\n");fprintf(p,"\n");for(i=0;i<5;i++){printf("please input one angle of fives(0--60): ");scanf("%f",&a5);printf("when the angle is %f\n",a5);fprintf(p,"when the angle is %f\n",a5);A=sin((a5+a0)*t);B=cos((a5+a0)*t)-n;C=(1+m*m+n*n-l*l)/(2*m)-n*cos((a5+a0)*t)/m;j=x0+u1*a5;printf("A=%f,B=%f,C=%f,j=%f\n",A,B,C,j);s=sqrt(A*A+B*B-C*C);f1=2*(atan((A+s)/(B+C)))/(t)-b0;f2=2*(atan((A-s)/(B+C)))/(t)-b0;r=(log(j)-y0)/u2;k1=f1-r;k2=f2-r;printf("r=%f,s=%f,f1=%f,f2=%f,k1=%f,k2=%f\n",r,s,f1,f2,k1,k2); fprintf(p,"r=%f,s=%f,f1=%f,f2=%f,k1=%f,k2=%f\n",r,s,f1,f2,k1,k2);printf("\n\n"); fprintf(p,"\n\n"); } }结合课本P135,试取0α=86°,0ϕ=24°时: 程序运行及其结果为:p0=0.601242,p1=-0.461061,p2=-0.266414,m=0.601242,n=1.304040,l=1.938257 when the angle is 0.000000r=0.000000,s=1.409598,f1=-125.595070,f2=-0.296147,k1=-125.595070,k2=-0.296147when the angle is 4.020000r=7.954308,s=1.538967,f1=-130.920624,f2=7.970002,k1=-138.874939,k2=0.015694 when the angle is 30.000000r=49.732372,s=1.924767,f1=-152.252411,f2=49.680004,k1=-201.984787,k2=-0.052368when the angle is 55.980000r=80.838707,s=1.864505,f1=-161.643921,f2=80.830002,k1=-242.482635,k2=-0.008705when the angle is 60.000000r=85.018051,s=1.836746,f1=-162.288574,f2=84.909149,k1=-247.306625,k2=-0.108902由程序运行结果可知:当取初始角0α=86°、0ϕ=24°时︒<∆1ϕ(ϕ∆=k1(k2))所以所选初始角符合机构的运动要求。

相关文档
最新文档