第4章 频率变换电路基础答案

合集下载

模电第4章频率响应答案资料

模电第4章频率响应答案资料

4.1 已知某放大器的幅频特性如题图4.1所示。

(1) 试说明该放大器的中频增益、上限频率f H 和下限频率f L 、通频带BW 。

(2) 当()()()()mV t sin mV t sin u i 461022010410⨯+⋅=ππ和()()()()mV t sin mV t sin u i 4102205210⨯+⋅=ππ时,输出信号有无失真?是何种性质的失真?分别说明之。

解:(1)由题图4.1可得:中频增益为40dB ,即100倍,f H =106Hz, f L =10Hz (在f H 和f L 处,增益比中频增益下降30dB ),Hz BW 66101010≈-=。

(2)当()()()()mV t sin mV t sin u i 461022010410⨯+⋅=ππ时,其中f =104Hz 的频率在中频段,而Hz f 6102⨯=的频率在高频段,可见输出信号要产生失真,即高频失真。

当()()()()mV t sin mV t sin u i 4102205210⨯+⋅=ππ时,f =5Hz 的频率在低频段,f =104Hz 的频率在中频段,所以输出要产生失真,即低频失真。

4.2 某放大电路电压增益的渐近波特图如题图4.2所示。

设中频相移为零。

(1)写出A u (jf)频率特性的表达式。

(2)求f=107Hz 处的相移值。

(3)求下限频率f L 的值。

(4)求f=100Hz 处实际的dB 值。

(5)求f=10Hz 和f=105Hz 的相移值。

题图4.1解: (1)中频放大倍数为103,高频有一个极点频率为105Hz ,一个零点频率为106Hz ,低频有两个极点频率均为102Hz ,两个零点频率均为10Hz 。

所以)101()101()101()101(10)(522623f j f j f j f jjf A v +-+-=(2)f=107Hz 处的相移为零o Hz f o Hz f Hzf vL dBA Hz f 45|,90|)5(54lg 20)4(15512/10)3(51010100212-====-≈===ϕϕ4.3 已知某晶体管电流放大倍数的频率特性波特图如题图4.3所示,试写出β的频率特性表达式,分别指出该管的ωβ、ωT 各为多少?并画出其相频特性的近似波特图。

信号与系统课后答案第四章作业答案_第一次

信号与系统课后答案第四章作业答案_第一次

2 Tnω1
j3nω1
e2
sin
⎛ ⎜⎝
nω1 2
⎞ ⎟⎠

2 Tnω1
− j3nω1
e2
sin
⎛ ⎜⎝
nω1 2
⎞ ⎟⎠
=
1 T
j3nω1
e2
Sa
⎛ ⎜⎝
nω1 2
⎞ ⎟⎠

1 T
− j3nω1
e2
Sa
⎛ ⎜⎝
nω1 2
⎞ ⎟⎠
4-5 设 x (t ) 是基本周期为 T0 的周期信号,其傅里叶系数为 ak 。求下列各信号的傅里叶级数
d dt
e jkω1t

=
ak ⋅ jkω1 e jkω1t
k =−∞

bk = ak ⋅ jkω1
=

bk e jkω1t
k =−∞
=
x(t )*
=
⎡ ⎢⎣
k
∞ =−∞
ak
e
jkω1t
⎤ ⎥⎦

=

a e∗ − jkω1t k k =−∞



( ) ∑ ∑ ∑ 由于 k 从 −∞ 到 ∞ ,故 y t =
b e jkω1t k
=
a e∗ − jkω1t k
=
a e ∗ jkω1t −k
,所以
k =−∞
2
( ) ( ) = 1 ⋅
1
e− jnω1t − 1 ⋅
1
e− jnω1t
T − jnω1
−2 T − jnω1
1
( ) ( ) = 1
e − e j2nω1
jnω1

高频电路课后答案

高频电路课后答案

C2 510PF
Cj
Rb2
Rb1 C1
51PF
Re
L
5µF
C
C
6800 PF
RP1 R2
47K
-VEE

R1
Z
C
6800 PF
C2
题图图P44.-1155
(a)
-VZ

R2
C1
RP1
RP2
Cj
Cj
(b)
(c)
解:(1)高频等效电路如右(a)图所示。晶体作为电感用,属于晶体的并联谐振。
(2)变容管的直流偏置电路如右(b)所示,电位器 RP1 的作用为调节二极管的直流偏置电压。 (3)变容管的低频控制通路如右(c)所示,电位器 RP2 是调节低频信号的大小。
+Vcc
5. 6K
20K
T1
200 P
3/10P
C
300 P 20 PF
C
L
4 .7µH
2.7K
C
0.1µF
T2
V0
1. 5K
题图图P44-.1414
3~10PF
20PF T1
200PF
CL
解:(1)其交流等效电路如右图所示。晶体在电路中谐振时作电感用,属于晶体的并联谐振。
(2)LC 回路的作用是等效为电容,并且选择晶体的泛音频率,晶体管 T2 的作用是跟随输出,
种类型?
(2) 若石英晶振器频率为 f0 ,L1C1、L2C2 回路的谐振频率分别为 f01、f02 ,试分析三个
频率之间具备什么关系时,电路才能产生振荡?
C1 R1
+Vcc L1
R2 Ce
L2 C2 Re

高频电路原理第四章-部分习题解答

高频电路原理第四章-部分习题解答

1 振荡电路
探索电感元件在振荡电路中的关键作用,以 及常见的应用场景。
2 滤波电路
介绍电感元件在滤波电路中的应用,包括低 通、高通和带通滤波器。
3 变压器
详细讲解电感元件在变压器中的工作原理和 应用。
4 磁性存储器
了解电感元件在磁性存储器中的用途和特点。
习题5-电感元件的热效应和温度特性
热效应 温度补偿 热散射
探讨电感元件在高功率应用中的热效应、功率损 耗和温度特性。
介绍如何在设计中考虑电感元件的温度特性,并 进行温度补偿。
讨论电感元件的热散射问题,以及如何提高热管 理效果。
习题6-电感元件的选择和设计方法
电感元件的选择准则
指导如何根据应用需求选择合适的电感元件,包括 电流容量、电感值和尺寸等因素。
自制电感元件的设计
提供制作自制电感元件的基本原理和设计方法,以 及常见的DIY电
1 故障诊断
讲解电感元件的常见故障现象和诊断技巧,帮助您快速找出故障原因。
2 维修技巧
提供电感元件维修的实用技巧和步骤,确保有效和安全地进行维护和更换。
高频电路原理第四章-部 分习题解答
欢迎来到高频电路原理第四章的部分习题解答。在这个演示文稿中,我们将 探讨电感元件的基本概念、特性以及应用场景,并为您提供解决相关问题的 方法和技巧。
习题1-电感元件的基本概念和特性
电感元件是什么?
探讨电感元件的定义、原理和基本特性,了解其在电路中的作用和影响。
电感分类
比较自谐振和互谐振对电感元 件的影响,以及它们在不同电 路中的应用。
习题3-电感元件的等效电路模型
1
理想电感模型
介绍理想电感模型,讨论其使用场景和特性。
2

高频第四章答案-陈

高频第四章答案-陈

4-3 为了满足电路起振的相位条件,给图题4.3中互感耦合线圈标注正确的同名端。

(a)(b)(d)图题4.3解:(a)(b)(d)图题4.3中互感的同名端标注4-5 图题4.5为有L1与C1、L2与C2、L3与C3三回路的振荡器的等效电路,设有以下六种情况:(1)112233L C L C L C>>;(2)112233L C L C L C<<;(3)113322L C L C L C>>;(4)113322L C L C L C<<;(5)221133L C L C L C>>;(6)221133L C L C L C<<。

试分析上述六种情况是否可能振荡,振荡频率f0与三个回路谐振频率有何关系?1图题4.5解:设123ωωω==(1)123ωωω<<,有可能,回路1和回路2呈容性,回路3 呈感性,1203f f f f<<<。

(2)123ωωω>>,有可能,回路1和回路2呈感性,回路3 呈容性,1203f f f f>>>。

(3)132ωωω<<,不可能。

(4)132ωωω>>,不可能。

(5)213ωωω<<,有可能,回路1和回路2呈容性,回路3 呈感性,2103f f f f<<<。

(6)213ωωω>>,有可能,回路1和回路2呈感性,回路3 呈容性,2103f f f f>>>。

4-8 如图题4.8所示的LC振荡器中,若电感L = 2μH,要使振荡频率为48 MHz,试求C4的值。

图题4.8EE解:等效电路如下图所示。

L图题4.8等效电路444123112.53 (pF)1111116.2305C C C C C C C ∑=+=+≈+++++,12222126c 115.5010(F)4 3.144810210C L ω-∑-==≈⨯⨯⨯⨯⨯⨯,4 2.53 2.97 (pF)C C ∑≈-≈。

电工电子基础教材习题参考答案4

电工电子基础教材习题参考答案4

·第4章习题参考答案4.1 已知正弦交流电压220 V U =,f=50 Hz ,u =30ψ︒。

写出它的瞬时值式,并画出波形。

解: 0()2202sin(31430)V u t t =+4.2 已知正弦交流电流m =10 V I ,f=50 Hz ,i =45ψ︒。

写出它的瞬时值式,并画出波形。

解: ()︒+=45314sin 10t i4.3 比较以下正弦量的相位 (1)1u =310sin t+90ω︒()V ,2u =537sin t+45ω︒()V(2)u=1002sint+30ω︒()V ,i=10cos t ωA (3)u=310sin100t+90︒()V ,i=10sin1000t A (4)1i =100sin 314t+90︒()A,2i =50sin 100t+135 π︒A ()解:(1)︒=︒-︒=454590ϕ,电压1u 超前电压2u ︒45(2)()10sin 90i t ω=+︒,︒=︒-︒=60-9030ϕ,电压u 滞后电流︒60(3)无法比较(4)︒=︒-︒=45-13590ϕ,电流1i 滞后电流2i ︒454.4 将以下正弦量转换为幅值相量和有效值相量,并用代数式、三角式、指数式和极坐标式表示,并分别画出相量图。

(1)u=310sint+90 V ω︒() (2)i=10cos t A ω (3)u=1002sin t+30 V ω︒()解:(1)().90m 31031090310310cos90sin90j U ej ︒==∠︒==︒+︒().9022022090220220cos90sin90j U ej ︒==∠︒==︒+︒相量图略(2)()10sin 90i t ω=+︒().901010901010cos90sin90j m I e j j ︒==∠︒==︒+︒ ().905252905252cos90sin90j I e j j ︒==∠︒==︒+︒相量图略(3)().3010021002301002cos 30sin 30506502j e j j m U ︒==∠︒=︒+︒=+()5025030sin 30cos 1003010010030.j j e U j +=︒+︒=︒∠==︒相量图略4.5 将以下相量转换为正弦量(1)50+j50U = ()V (2)m-30+j40I = ()A (3)j30m1002U e ︒= V (4)()1-30I=∠︒A 解:(1)()502sin 45u t ω=+︒V(2)4502sin 180-3i t arctg ω⎛⎫=+︒ ⎪⎝⎭A (3)()1002sin 30u t ω=+︒V (4)()2sin 30i t ω=-︒A4.6 已知:012202sin(314120)u t V =-,022202cos(31430)u t V =+ (1)画出它们的波形及确定其有效值,频率f 和周期T ; (2)写出它们的相量和画出相量图,并决定它们的相位差;解:(1) 01()2202sin(314-120)V u t t = 波形图略有效值220V 频率50Hz 、周期0.02s002()2202cos(31430)V=2202sin(31460)V u t t t =++ 波形图略有效值220V 频率50Hz 、周期0.02s(2)01220-120U =∠0222060U =∠相量图略 相位差01804.7 电路如题4.7图所示,电压,用相量法求电阻的电流和吸收的有功功率。

课后习题及答案第4章快速傅里叶变换习题答案.pdf

课后习题及答案第4章快速傅里叶变换习题答案.pdf

和共轭反对称分量, 即
F(k)=X(k)+jY(k)=Fep(k)+Fop(k) 计算一次 N 点 IFFT 得到
f(n)=IFFT[F(k)]=Re[f(n)]+j Im[f(n)] 由 DFT 的共轭对称性可知
Re[f(n)]=IDFT[Fep(k)]=IDFT[X(k)]=x(n) j Im[f(n)]=IDFT[Fop(k)]=IDFT[jY(k)]=jy(n)
X (k + N ) = X1(k) −W2kN X 2 (k)
k = 0,1,L, N −1
由上式可解出
X1(k)
=
1 2
[
X
(k)
+
X
(k
+
N )]
X
2
(k)
=
1 2
[X
(k)
+
X
(k
+
N
)]W2−Nk
k = 0,1, 2,L, N −1
由以上分析可得出运算过程如下:
(1)由 X(k)计算出 X1(k)和 X2(k):
Xk=conj(Xk);
%对 Xk 取复共轭
xn=conj(fft(Xk, N))/N; %按照所给算法公式计算 IFFT
分别对单位脉冲序列、 长度为 8 的矩形序列和三角序列进行 FFT, 并调
用函数 ifft46 计算 IFFT 变换, 验证函数 ifft46 的程序 ex406.m 如下:
%程序 ex406.m
Tc = 2TF +1024 次复数乘计算时间 = 2 × 0.1536×10−3 +10×10−9 ×1024
= 0.317 44 ms 可实时处理的信号最高频率 fmax 为

数字电子技术基础第四章习题及参考答案

数字电子技术基础第四章习题及参考答案

数字电子技术基础第四章习题及参考答案第四章习题1.分析图4-1中所示的同步时序逻辑电路,要求:(1)写出驱动方程、输出方程、状态方程;(2)画出状态转换图,并说出电路功能。

CPY图4-12.由D触发器组成的时序逻辑电路如图4-2所示,在图中所示的CP脉冲及D作用下,画出Q0、Q1的波形。

设触发器的初始状态为Q0=0,Q1=0。

D图4-23.试分析图4-3所示同步时序逻辑电路,要求:写出驱动方程、状态方程,列出状态真值表,画出状态图。

CP图4-34.一同步时序逻辑电路如图4-4所示,设各触发器的起始状态均为0态。

(1)作出电路的状态转换表;(2)画出电路的状态图;(3)画出CP作用下Q0、Q1、Q2的波形图;(4)说明电路的逻辑功能。

图4-45.试画出如图4-5所示电路在CP波形作用下的输出波形Q1及Q0,并说明它的功能(假设初态Q0Q1=00)。

CPQ1Q0CP图4-56.分析如图4-6所示同步时序逻辑电路的功能,写出分析过程。

Y图4-67.分析图4-7所示电路的逻辑功能。

(1)写出驱动方程、状态方程;(2)作出状态转移表、状态转移图;(3)指出电路的逻辑功能,并说明能否自启动;(4)画出在时钟作用下的各触发器输出波形。

CP图4-78.时序逻辑电路分析。

电路如图4-8所示:(1)列出方程式、状态表;(2)画出状态图、时序图。

并说明电路的功能。

1C图4-89.试分析图4-9下面时序逻辑电路:(1)写出该电路的驱动方程,状态方程和输出方程;(2)画出Q1Q0的状态转换图;(3)根据状态图分析其功能;1B图4-910.分析如图4-10所示同步时序逻辑电路,具体要求:写出它的激励方程组、状态方程组和输出方程,画出状态图并描述功能。

1Z图4-1011.已知某同步时序逻辑电路如图4-11所示,试:(1)分析电路的状态转移图,并要求给出详细分析过程。

(2)电路逻辑功能是什么,能否自启动?(3)若计数脉冲f CP频率等于700Hz,从Q2端输出时的脉冲频率是多少?CP图4-1112.分析图4-12所示同步时序逻辑电路,写出它的激励方程组、状态方程组,并画出状态转换图。

数字电子技术基础(第四版)课后习题答案-第四章

数字电子技术基础(第四版)课后习题答案-第四章

第4章触发器[题4.1]画出图P4.1所示由与非门组成的基本RS触发器输出端Q、Q的电压波形,输入端S、R的电压波形如图中所示。

图P4.1[解]见图A4.1图A4.1[题4.2]画出图P4.2由或非门组成的基本R-S触发器输出端Q、Q的电压波形,输出入端S D,R D的电压波形如图中所示。

图P4.2[解]见图A4.2[题4.3]试分析图P4.3所示电路的逻辑功能,列出真值表写出逻辑函数式。

图P4.3 [解]:图P4.3所示电路的真值表S R Q n Q n+1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 0* 1 110*由真值表得逻辑函数式 01=+=+SR Q R S Q nn[题4.4] 图P4.4所示为一个防抖动输出的开关电路。

当拨动开关S 时,由于开关触点接触瞬间发生振颤,D S 和D R 的电压波形如图中所示,试画出Q 、Q 端对应的电压波形。

图P4.4[解] 见图A4.4图A4.4[题4.5] 在图P4.5电路中,若CP 、S 、R 的电压波形如图中所示,试画出Q 和Q 端与之对应的电压波形。

假定触发器的初始状态为Q =0。

图P4.5[解]见图A4.5图A4.5[题4.6]若将同步RS触发器的Q与R、Q与S相连如图P4.6所示,试画出在CP信号作用下Q和Q端的电压波形。

己知CP信号的宽度tw= 4 t Pd 。

t Pd为门电路的平均传输延迟时间,假定t Pd≈t PHL≈t PLH,设触发器的初始状态为Q=0。

图P4.6图A4.6[解]见图A4.6[题4.7]若主从结构RS触发器各输入端的电压波形如图P4.7中所给出,试画Q、Q端对应的电压波形。

设触发器的初始状态为Q=0。

图P4.7[解] 见图A4.7图A4.7R各输入端的电压波形如图P4.8所示,[题4.8]若主从结构RS触发器的CP、S、R、D1S。

试画出Q、Q端对应的电压波形。

电路理论基础第四章答案

电路理论基础第四章答案

U 0.5032V
电流
9 I U 9 104 (e20U e20U ) U I1 3 3 7.212A
U 0.5032
(2)取初值 U 0 0.6V ,迭代结果列于下表:
k
U /V
f (U ) / V
f (U )
2
0 1
-0.6 -0.5575
1.3815×10 45
(4)由图(d)可得 I1 GU 1 1 I S1
5 U1 V(超出OA1 ) 3 1 U2 V 3
U1 2V(超出OA1 ) U2 0
11 V 7 3 U2 V 7 9 U1 V 5 1 U 2 V(超出A 2 B2 ) 5 U1
(3)
将 A1B1 段非线性电阻 R1 的等效参数 G1、I S1 代入(3)式,得
(1)
答案 4.3 解:由非线性电阻的电压电流关系特性
I1 0.1 U1 , I 2 0.05 U 2

2 U1 100I12 , U 2 400I 2 对回路列 KVL 方程 U1 U 2 5V 将式(1)代入式(2)
(1) (2)
2 100I12 400I 2 5
由非线性电阻串联可知 I1 I 2 即
(4)
将式(3)代入式(1),将 U n1 US 代入式(2),再与式(4)联立得该电路方程: I1 G2U n 2 f 2 (U n 2 ) G2U n3 0 G2U n 2 (G1 G2 )U n3 IS G1U S U n1 U n 2 f1 ( I1 ) 答案 4.7 解:对节点列 KCL 方程 节点①: 3A I3 I1 0 节点②: I1 I 2 I 4 0 由图示电路可知 U U U2 I 3 n1 1 1 1 U 2V U 2 2V I4 n2 1 1 (1) (2)

(完整)《电力电子技术》第四章习题解答

(完整)《电力电子技术》第四章习题解答

4—1.根据图4.3(a)所示电路,U s = 120V ,频率60Hz,L = 10mH ,R= 5Ω.计算并绘出随u s 变化电流i 。

解:由图可列微分方程:(1)cos()m u diLRi U wt dtφ+=+……………。

式中u φ为初相角,m U =2s U 其通解为:'''i i i =+ 其中:''ti Aeτ-= LRτ='i 为方程''cos()m u di LRi U wt dtφ+=+的特解。

故设 'm cos()i I wt θ=+, 其中m 2s I I = 代入(1)式有:m m cos()sin()cos()m u I R wt wLI wt U wt θθφ+-+=+…………。

(2)引入tan wLRϕ=,有: 22sin ()wL R wL ϕ=+ 22cos ()R R wL ϕ=+再令22()Z R wL =+,则(2)式可改写为:[]m m cos()sin()cos()sin()R wL I R wt wL wt I Z wt wt Z Z θθθθ⎡⎤+-+=+-+⎢⎥⎣⎦m cos()I Z wt θϕ=++于是得:m cos()I Z wt θϕ++=cos()m u U wt φ+ 因此有:m 22()m mU U I Z R wL ==+ u θφϕ=- 所以,特解'i 为:'cos()mu U i wt Zφϕ=+- 方程的通解为:cos()t mu U i wt Ae Zτφϕ-=+-+代入初始条件,由于(0)(0)0i i +-== 有:0cos()mu U A Zφϕ=-+ 于是:cos()mu U A Zφϕ=-- 故有:cos()cos()t m mu u U U i wt e Z Zτφϕφϕ-=+---波形图如下:4—2。

根据图4。

4(a )所示电路,U s = 120V,频率60Hz ,L = 10mH ,U d = 150V 。

高频电子线路第四章课后习题答案

高频电子线路第四章课后习题答案

高频电子线路习题参考答案
当LC串联支路的电容取68pF时,在回路电抗为0时振荡,即:
1 50106
1 1 681012
1 109
1 1
1 47106
1 1 109
0
整理后得到:
1598103114 53.732101512 1.068 0
12 53.7321015
53.7322 1030 41.06815981031 31961031
3
高频电子线路习题参考答案
答4-2
(a) 可能振荡,电感三点式反馈振荡器,
(b) 不能,
(c) 不能,
(d) 不能,
(e) 可能振荡,振荡的条件是L1C1回路呈容性,L2C2回路呈感 性,即要求f01<f<f02,这时是一个电感反馈振荡器,
(f) 可能振荡,振荡的条件是LC3支路呈感性,即要求f03<f,这 时是一个电容反馈振荡器
题4-5图
解4-5, 画出的实际电路如下
• •


••
高频电子线路第四章课后习题答案
9
高频电子线路习题参考答案
4-6 振荡器交流等效电路如图所示,工作频室为10 MHZ, (1)计算C1、C2取值范围。(2)画出实际电路。
解4-6
(1)因 为
Beb
2f
1011
2f
1 105
题4-6图
(2f )2 1016 2f 105
f0 2 m a x= 2 5 0 1 0 - 1 6 6 8 1 0 1 2 2 .7 3 1 M H z
因 此 , 要 电 路 振 荡 , 振 高荡 频电频 子率 线路应 第四该 章满 课后足 习题f 1 答m 案a x f 0 2 m a x , f 1 m i n f 0 2 m 21i n

通信原理(陈启兴版)第4章课后习题答案

通信原理(陈启兴版)第4章课后习题答案

第四章 模拟调制4.1 学习指导要点模拟调制的要点主要包括幅度调制、频率调制和相位调制的工作原理。

1. 幅度调制幅度调制是用调制信号去控制载波信号的幅度,使之随调制信号作线性变化的过程。

在时域上,已调信号的振幅随基带信号的规律成正比变化;在频谱结构上,它的频谱是基带信号频谱在频域内的简单平移。

由于这种平移是线性的,因此,振幅调制通常又被称为线性调制。

但是,这里的“线性”并不是已调信号与调制信号之间符合线性变换关系。

事实上,任何调制过程都是一种非线性的变换过程。

幅度调制包括标准调幅(简称调幅)、双边带调幅、单边带调幅和残留边带调幅。

如果调制信号m (t )的直流分量为0,则将其与一个直流量A 0相叠加后,再与载波信号相乘,就得到了调幅信号,其时域表达式为[]()()()AM 0c 0c c ()()cos cos ()cos (4 - 1)s t A m t t A t m t t ωωω=+=+ 如果调制信号m (t )的频谱为M (ω),则调幅信号的频谱为[][]AM 0c c c c 1()π()()()() (4 - 2)2S A M M ωδωωδωωωωωω=++-+++- 调幅信号的频谱包括载波份量和上下两个边带。

上边带的频谱结构与原调制信号的频谱结构相同,下边带是上边带的镜像。

由波形可以看出,当满足条件|m (t )| ≤ A 0 (4-3)时,其包络与调制信号波形相同,因此可以用包络检波法很容易恢复出原始调制信号。

否则,出现“过调幅”现象。

这时用包络检波将发生失真,可以采用其他的解调方法,如同步检波。

调幅信号的一个重要参数是调幅度m ,其定义为[][][][]00max min 00max min()() (4 - 4)()()A m t A m t m A m t A m t +-+=+++ AM 信号带宽B AM 是基带信号最高频率分量f H 的两倍。

AM 信号可以采用相干解调方法实现解调。

大学_《高频电子电路》(王卫东版)课后答案下载

大学_《高频电子电路》(王卫东版)课后答案下载

《高频电子电路》(王卫东版)课后答案下载《高频电子电路》(王卫东版)内容简介绪论0.1通信系统的组成0.2发射机和接收机的组成0.3本书的研究对象和任务第1章高频小信号谐振放大器1.1LC选频网络1.1.1选频网络的基本特性1.1.2LC选频回路1.1.3LC阻抗变换网络__1.1.4双耦合谐振回路及其选频特性1.2高频小信号调谐放大器1.2.1晶体管的高频小信号等效模型1.2.2高频小信号调谐放大器1.2.3多级单调谐放大器__1.2.4双调谐回路谐振放大器__1.2.5参差调谐放大器1.2.6谐振放大器的稳定性1.3集中选频放大器1.3.1集中选频滤波器1.3.2集成宽带放大器1.3.3集成选频放大器的应用1.4电噪声1.4.1电阻热噪声1.4.2晶体三极管噪声1.4.3场效应管噪声1.4.4噪声系数__小结习题1第2章高频功率放大器2.1概述2.2高频功率放大器的工作原理 2.2.1工作原理分析2.2.2功率和效率分析2.2.3D类和E类功率放大器简介 2.2.4丙类倍频器2.3高频功率放大器的动态分析----------DL2.FBD2.3.1高频功率放大器的动态特性 2.3.2高频功率放大器的负载特性2.3.3高频功率放大器的调制特性2.3.4高频功率放大器的放大特性2.3.5高频功率放大器的调谐特性2.3.6高频功放的高频效应2.4高频功率放大器的实用电路2.4.1直流馈电电路2.4.2滤波匹配网络2.4.3高频谐振功率放大器设计举例2.5集成高频功率放大电路简介2.6宽带高频功率放大器与功率合成电路2.6.1宽带高频功率放大器2.6.2功率合成电路__小结习题2第3章正弦波振荡器3.1概述3.2反馈型自激振荡器的工作原理 3.2.1产生振荡的基本原理3.2.2反馈振荡器的振荡条件3.2.3反馈振荡电路的判断3.3LC正弦波振荡电路3.3.1互感耦合LC振荡电路3.3.2三点式LC振荡电路3.4振荡器的频率稳定度3.4.1频率稳定度的定义3.4.2振荡器的稳频原理3.4.3振荡器的稳频措施3.5晶体振荡器3.5.1石英晶体谐振器概述3.5.2晶体振荡器电路3.6集成电路振荡器3.6.1差分对管振荡电路3.6.2单片集成振荡电路E16483.6.3运放振荡器3.6.4集成宽带高频正弦波振荡电路3.7压控振荡器3.7.1变容二极管3.7.2变容二极管压控振荡器3.7.3晶体压控振荡器__3.8RC振荡器3.8.1RC移相振荡器3.8.2文氏电桥振荡器__3.9负阻振荡器3.9.1负阻器件的基本特性----------DL3.FBD3.9.2负阻振荡电路 3.10振荡器中的几种现象3.10.1间歇振荡3.10.2频率拖曳现象3.10.3振荡器的频率占据现象3.10.4寄生振荡__小结习题3第4章频率变换电路基础4.1概述4.2非线性元器件的特性描述4.2.1非线性元器件的基本特性4.2.2非线性电路的工程分析方法4.3模拟相乘器及基本单元电路4.3.1模拟相乘器的基本概念4.3.2模拟相乘器的基本单元电路4.4单片集成模拟乘法器及其典型应用 4.4.1MC1496/MC1596及其应用4.4.2BG314(MC1495/MC1595)及其应用 4.4.3第二代、第三代集成模拟乘法器 __小结习题4第5章振幅调制、解调及混频5.1概述5.2振幅调制原理及特性5.2.1标准振幅调制信号分析5.2.2双边带调幅信号5.2.3单边带信号5.2.4AM残留边带调幅5.3振幅调制电路5.3.1低电平调幅电路5.3.2高电平调幅电路5.4调幅信号的解调5.4.1调幅波解调的方法5.4.2二极管大信号包络检波器5.4.3同步检波----------DL4.FBD5.5混频器原理及电路 5.5.1混频器原理5.5.2混频器主要性能指标5.5.3实用混频电路5.5.4混频器的干扰5.6AM发射机与接收机5.6.1AM发射机5.6.2AM接收机5.6.3TA7641BP单片AM收音机集成电路 __小结习题5第6章角度调制与解调6.1概述6.2调角信号的分析6.2.1瞬时频率和瞬时相位6.2.2调角信号的分析与特点6.2.3调角信号的频谱与带宽6.3调频电路6.3.1实现调频、调相的方法6.3.2压控振荡器直接调频电路6.3.3变容二极管直接调频电路6.3.4晶体振荡器直接调频电路6.3.5间接调频电路6.4调频波的解调原理及电路6.4.1鉴频方法及其实现模型6.4.2振幅鉴频器6.4.3相位鉴频器6.4.4比例鉴频器6.4.5移相乘积鉴频器6.4.6脉冲计数式鉴频器6.5调频制的`抗干扰性及特殊电路6.5.1调频制中的干扰及噪声6.5.2调频信号解调的门限效应6.5.3预加重电路与去加重电路6.5.4静噪声电路6.6FM发射机与接收机6.6.1调频发射机的组成6.6.2集成调频发射机6.6.3调频接收机的组成6.6.4集成调频接收机__小结习题6----------DL5.FBD第7章反馈控制电路 7.1概述7.2反馈控制电路的基本原理与分析方法 7.2.1基本工作原理7.2.2数学模型7.2.3基本特性分析7.3自动增益控制电路7.3.1AGC电路的工作原理7.3.2可控增益放大器7.3.3实用AGC电路7.4自动频率控制电路7.4.1AFC电路的组成和基本特性7.4.2AFC电路的应用举例7.5锁相环路7.5.1锁相环路的基本工作原理7.5.2锁相环路的基本应用7.6单片集成锁相环电路简介与应用 7.6.1NE5627.6.2NE562的应用实例__小结习题7第8章数字调制与解调8.1概述8.2二进制振幅键控8.2.12ASK调制原理8.2.22ASK信号的解调原理8.3二进制频率键控8.3.12FSK调制原理8.3.22FSK解调原理8.4二进制相移键控8.4.12PSK调制原理8.4.22PSK解调原理8.5二进制差分相移键控8.5.12DPSK调制原理8.5.22DPSK解调原理__小结习题8第9章软件无线电基础9.1概述9.2软件无线电的关键技术 9.3软件无线电的体系结构 9.4软件无线电的应用__小结习题9附录A余弦脉冲分解系数表部分习题答案参考文献《高频电子电路》(王卫东版)图书目录本书为普通高等教育“十二五”、“十一五”国家级规划教材。

电工电子第4章习题答案_完整)

电工电子第4章习题答案_完整)

电工电子第4章习题答案_完整)思考题与习题参考答案 4-1 欲将发电机的三相绕组连成星形时,如果误将U2,V1,W2连成一点(中性点),是否也可以产生对称三线电压?答:不是。

4-2 当发电机的三相绕组连成星形时,设线电压,试写出相电压ul 的三角函数。

答: 4-3 什么是三相负载、单相负载和单相负载的三相连接?相交流电动机有三根电源线接到电源的Ll,L2,L3三端.称为三相负载,电灯有两根电源线,为什么不称为两相负载?而称单相负载?答:三相负载是指由三相电源所带的负载,单相负载时指由单相电源带的负载,负载的三相连接是指将单向负载按照特定的连接方式连接成适合三相电路的负载连接形式。

电灯被称为单相负载是因为带动电灯工作的电源只需要一个就可以了。

4-6 为什么电灯开关—定要接在相线(火线)上?答:开关接在火线上才能在开关打开的时候保证每相电源所在回路断开。

4-8 有一次某楼电灯发生故障,第二层和第三层楼的所有电灯突然都暗淡下来,而第一层楼的电灯亮度未变,试问这是什么原因,这楼的电灯是如何连接的?同时又发现第三层楼的电灯比第二层楼的还要暗些.这又是什么原因?画出电路图。

(1)本系统供电线路图A P ´ B C N 三层二层一层–+ (2) 当P处断开时,二、三层楼的灯串联接380V 电压,所以亮度变暗,但一层楼的灯仍承受220V电压亮度不变。

(3) 因为三楼灯多于二楼灯即 R34-9有一台三相发电机,其绕组接成星形,每相额定电压为220V。

在一次试验时,用电压表量得相电压V,而线电压则为V,V试问这种现象是如何造成的?答:12相间有短路。

4-10 在图4-29所示的电路中,三相四线制电源电压为380/220V,接有对称星形联结的白炽灯负载,其总功率为180W。

此外,在L3相上接有额定电压为220V,功率为40W,功率因数的日光灯一支。

试求电流,,及。

设V。

答:图4-29 图4-30 =++ 4-11 图4-30是两相异步电动机的电源分相电路,O是铁心线圈的中心抽头。

(完整版)高频电子线路第4章习题答案

(完整版)高频电子线路第4章习题答案

第4章正弦波振荡器开环小信号等效电路,计算振荡频率,并验证振荡器是否满足振幅起振条件 [解]作出振荡器起振时开环 Y 参数等效电路如图P4.2(s)所示。

[解](a)同名端标于二次侧线圈的下端f 。

1— (1), ° 2n 、LC 2 n 330 10 12 100 10 5 60.877 106 Hz 0.877 MHz(b) 同名端标于二次侧线的圈下端. 1f° 2n. 140 10 6300 10 120.777 106Hz0.777 MHz(c) 4.2 同名端标于二次侧线圈的下端仏一1122n 560 10200 10变压器耦合 LC 振荡电路如图P4.2所示, 0.476 106Hz 0.476 MHz已知C 360 pF , L 280 田、Q 50、4.1分析图P4.1所示电路,标明次级数圈的同名端,使之满足相位平衡条件,并求出振荡频率。

略去晶体管的寄生电容,振荡频率等于. 1 1__ ___ . 6Hz = 0.5 MHz2 n LC 2 n 280 10 6 360 10 12略去放大电路输入导纳的影响,谐振回路的等效电导为1G e G oe G G oe ―Q 10 5S50 6S 42.7 必0.5 106 280 10 6由于三极管的静态工作点电流IEQ12 10I EQ 12 3333!k0.70.6 mA所以,三极管的正向传输导纳等于Y fe g m I EQ /U T 0.6 mA/26 mV 0.023 S 因此,放大器的谐振电压增益为g A uogU ogU ig mGT而反馈系数为gU fgU o 这样可求得振荡电路环路增益值为g AF0.023G e L亏g竺3842.7 10 280由于T>1,故该振荡电路满足振幅起振条件。

4.3试检查图P4.3所示振荡电路,指出图中错误,并加以改正。

T® P4.3[解](a)图中有如下错误:发射极直流被L f短路,变压器同各端标的不正确,构成负反馈。

第4章 频率变换电路基础答案

第4章 频率变换电路基础答案

第4章 频率变换电路基础4.1非线性器件的伏安特性为212i a u a u =+,其中的信号电压为1cos cos cos 22cm c m m u U t U t U tωΩΩ=+Ω+Ω式中,c ωΩ 。

求电流i 中的组合频率分量。

解:212i a u a u =+212222222212211cos cos cos 2cos cos cos 22211cos cos cos 2cos cos cos 2242cos cos cos co cm c m m cm c m m cm c m m cm c m m cm m c cm m c a U t U t U t a U t U t U t a U t U t U t a U t U t U t a U U t t U U t ωωωωωωΩΩΩΩΩΩΩΩΩΩ⎛⎫⎛⎫=+Ω+Ω++Ω+Ω ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫=+Ω+Ω++Ω+Ω ⎪ ⎪⎝⎭⎝⎭+Ω+()2s 2cos cos 2m t U t t ΩΩ+ΩΩ∴电流i 中的频率分量为c ω、Ω、2Ω、2c ω、4Ω、c ω±Ω、2c ω±Ω、3Ω。

其中组合频率分量为:c ω±Ω、2c ω±Ω。

4.2非线性器件的伏安特性为(0)0(0)d g uu i u >⎧=⎨<⎩式中,1122cos cos Q m m u U U t U t ωω=++。

设2m U 很小,满足线性时变条件,且112Q mU U =,求时变电导()g t 的表达式,并讨论电流i 中的组合频率分量。

解:本题可用开关函数分析法来分析。

(0)()0(0)d d g u u i g s t u u >⎧==⎨<⎩,其中1(0)()0(0)u s t u >⎧=⎨<⎩∴时变电导11122()()cos cos 323d d g t g s t g t t ωωππ⎛⎫==+-+ ⎪⎝⎭∴()111122122()cos cos 3cos cos 23d d Q m m i g s t u g t t U U t U t ωωωωππ⎛⎫==+-+++⎪⎝⎭∴电流i 中的组合频率分量为12(21)n ωω-±(n N ∈)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章 频率变换电路基础
4.1非线性器件的伏安特性为212i a u a u =+,其中的信号电压为
1cos cos cos 22
cm c m m u U t U t U t
ωΩΩ=+Ω+
Ω
式中,c ωΩ 。

求电流i 中的组合频率分量。

解:212i a u a u =+
2
122
222222
12211cos cos cos 2cos cos cos 22211cos cos cos 2cos cos cos 2242cos cos cos co cm c m m cm c m m cm c m m cm c m m cm m c cm m c a U t U t U t a U t U t U t a U t U t U t a U t U t U t a U U t t U U t ωωωωωωΩΩΩΩΩΩΩΩΩΩ⎛⎫⎛⎫
=+Ω+Ω++Ω+Ω ⎪ ⎪
⎝⎭⎝⎭
⎛⎫⎛⎫=+Ω+Ω++Ω+Ω ⎪ ⎪⎝⎭⎝⎭+Ω+()
2
s 2cos cos 2m t U t t ΩΩ+ΩΩ
∴电流i 中的频率分量为c ω、Ω、2Ω、2c ω、4Ω、c ω±Ω、2c ω±Ω、3Ω。

其中组合频率分量为:
c ω±Ω、2c ω±Ω。

4.2非线性器件的伏安特性为
(0)0
(0)
d g u
u i u >⎧=⎨
<⎩
式中,1122cos cos Q m m u U U t U t ωω=++。

设2m U 很小,满足线性时变条件,且112
Q m
U U =,求时变电
导()g t 的表达式,并讨论电流i 中的组合频率分量。

解:本题可用开关函数分析法来分析。

(0)
()0
(0)d d g u u i g s t u u >⎧==⎨
<⎩,其中1
(0)()0
(0)
u s t u >⎧=⎨
<⎩
∴时变电导1112
2
()()cos cos 32
3d d g t g s t g t t ωωπ
π⎛⎫
==+-
+ ⎪⎝⎭
∴()11112212
2
()cos cos 3cos cos 2
3d d Q m m i g s t u g t t U U t U t ωωωωπ
π⎛⎫
==+-
+++
⎪⎝⎭
∴电流i 中的组合频率分量为12(21)n ωω-±(n N ∈)。

4.3两个信号的数学表达式分别为:1cos 2V u Ft π=,2cos 20V u Ft π=。

写出两者相乘后的数学表达
式,并画出其波形图和频谱图。

解:121cos 2cos 20(cos 22cos18)2
u u Ft Ft Ft Ft ππππ=⨯=+ (DSB
信号)
频谱表达式为
[](11)(11)(9)(9)2
f F f F f F f F πδδδδ++-+++-
其波形与频谱图分别为
图4.3
(b)频谱
f
4.4一非线性器件的伏安特性为230123i a a u a u a u =+++,式中
112233cos cos cos Q m m m u U U t U t U t
ωωω=+++
试写出电流i 中组合频率分量的频率通式,说明它们试由i 中的哪些乘积项产生的,并求出其中1ω、
122ωω+、123ωωω+-的频率分量的振幅。

解:∵230123i a a u a u a u =+++且112233cos cos cos Q m m m u U U t U t U t ωωω=+++
∴电流i 所含的频率分量有:直流、基波分量(1ω、2ω、3ω)、二次谐波分量(12ω、22ω、32ω)、组合频率分量(12ωω±、13ωω±、23ωω±)、三次谐波分量(13ω、23ω、33ω)
、组合频率分量(122ωω±、132ωω±、23
2ωω±、212ωω±、312ωω±、322ωω±、123ωωω+±、123ωωω-±)。

4.5若二极管VD 的伏安特性曲线可用图题4.5(b )中的折线来近似,输入电压为cos m o u U t ω=。

试求图题4.5(a )中电流i 各频谱分量的大小(设g 、L R 、m U 均已知)。

图题4.5
L
(a)
(b)
解:此电路可以实现半波整流功能。

根据图(a )可得到:
u >时,VD 导通,且1D
L
L
u i
u u g i R R --=
=
,∴11L
L u gu i gR R g
=
=
++

u <时,VD 截止,0i =。

引入单向开关函数()s t ,且1(0)()0
(0)
u s t u >⎧=⎨<⎩,有
()
1L
gu i s t gR =
+
2
122cos cos cos 3123122cos cos cos 3cos 2311111cos cos 2cos 4cos 22
331122cos cos 2cos 42315m
o o o L m o o o o m o o o o m o o o gU t t t gR I t t t t I t t t t I t t t ωωωππωωωωππωωωωπ
π
π
π
ωωωπππ⎛⎫
=
+-+ ⎪
+⎝⎭
⎛⎫=+-+ ⎪
⎝⎭
⎛⎫=++--+ ⎪
⎝⎭
⎛⎫
=++-+ ⎪
⎝⎭
1m m L gU I gR ⎛⎫
= ⎪+⎝⎭
故电流i 中各频谱分量及其大小分别为:直流分量(1
m
I π
)、基波分量(1
2
m I )、偶次谐波分量
(2
2(1)m
I n π
-,n 为偶数)。

4.6同4.5题,试计算图题4.6电路中电流i 各频谱分量的大小。

设变压器B 的变压比为1:2,VD1与VD2特性相同(如图题4.5(b )所示)。

图题4.6
+ -+ -1D u 2D u
解:此电路可以实现全波整流功能。

根据图题4.6可得到:
u >时,VD1导通、VD2截止,且1
1
111D L
L L u i u u gu i g i R R gR ---=
=
=,∴11L
gu i gR =
+;
u <时,VD1截止、VD2导通,且2
2
221D L
L
L
u i u u gu i g i R R gR +++=-
=-
=-
,∴21L
gu i gR =-
+。

引入双向开关函数()s t ,且1(0)()1
(0)
u s t u >⎧=⎨
-<⎩,有
()1L
gu i s t gR =+
2
44cos cos cos 31344cos cos 3cos 32222cos 2cos 4cos 233244cos 2cos 4315m
o o o L m o o o m o o o m o o gU t t t gR I t t t I t t t I t t ωωωππωωωππωωωππππωωπππ⎛⎫
=
-+ ⎪
+⎝⎭
⎛⎫=-+ ⎪
⎝⎭
⎛⎫
=+--+ ⎪
⎝⎭⎛⎫
=+-+ ⎪
⎝⎭
1m
m L gU I gR ⎛⎫
=

+⎝

故电流i 中各频谱分量及其大小分别为:直流分量(2
m I π

、偶次谐波分量(2
4(1)m
I n π
-,n 为偶数)。

相关文档
最新文档