最新乙醇水溶液连续板式精馏塔设计
乙醇-水连续精馏筛板塔的设计
乙醇-水连续精馏筛板塔的设计班级 :姓名:学号:指导教师:时间:2011-8-29——2011-9-9前言精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
有板式塔与填料塔两种主要类型。
根据操作方式又可分为连续精馏塔与间歇精馏塔。
蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。
由塔顶上升的蒸气进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。
塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出。
精馏塔的工作原理是根据各混合气体的汽化点(或沸点)的不同,控制塔各节的不同温度,达到分离提纯的目的。
化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏操作在化工、石油化工、轻工等工业生产中中占有重要的地位。
为此,掌握气液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是非常重要的。
要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。
精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。
化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。
为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。
可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。
本次设计的筛板塔是化工生产中主要的气液传质设备。
此设计针对二元物系的精馏问题进行分析、选取、计算、核算、绘图等,是较完整的精馏设计过程。
本设计包括设计方案的选取,主要设备的工艺设计计算——物料衡算、热量衡算、工艺参数的选定、设备的结构设计和工艺尺寸的设计计算,辅助设备的选型,工艺流程图,主要设备的工艺条件图等内容。
乙醇水分离板式精馏塔设计方案
乙醇水分离板式精馏塔设计方案一、课题名称乙醇——水分离板式精馏塔设计二、课题条件(原始数据)原料:乙醇、水溶液处理量:1550Kg/h原料组成:28%(乙醇的质量分率)料液初温:20℃操作压力、回流比、单板压降:自选进料状态:冷液体进料塔顶产品浓度:93%(质量分率)塔底釜液含乙醇含量不高于0.1%(质量分率)塔顶:全凝器塔釜:饱和蒸汽间接加热塔板形式:筛板生产时间:300天/年,每天24h运行冷却水温度:20℃设备形式:筛板塔厂址:滨州市三、设计容(包括设计、计算、论述、实验、应绘图纸等根据目录列出大标题即可)1 、设计方案的选定2、精馏塔的物料衡算3、塔板数的确定4、精馏塔的工艺条件及有关物性数据的计算(加热物料进出口温度、密度、粘度、比热、导热系数)5、精馏塔塔体工艺尺寸的计算6、塔板主要工艺尺寸的计算7、塔板的流体力学验算8、塔板负荷性能图(精馏段)9、换热器设计10、馏塔接管尺寸计算11、制生产工艺流程图(带控制点、机绘,A2图纸)12、绘制板式精馏塔的总装置图(包括部分构件)(手绘,A1图纸)13、撰写课程设计说明书一份设计说明书的基本容⑴课程设计任务书⑵课程设计成绩评定表⑶中英文摘要⑷目录⑸设计计算与说明⑹设计结果汇总⑺小结⑻参考文献14、有关物性数据可查相关手册15、注意事项●写出详细计算步骤,并注明选用数据的来源●每项设计结束后列出计算结果明细表●设计最终需装订成册上交四、进度计划(列出完成项目设计容、绘图等具体起始日期)1.设计动员,下达设计任务书0.5天2.收集资料,阅读教材,拟定设计进度1-2天3.初步确定设计方案及设计计算容5-6天4.绘制总装置图2-3天5.整理设计资料,撰写设计说明书2天6.设计小结及答辩1天目录摘要 (1)第一章概述 (1)1.1精馏操作对塔设备的要求 (1)1.2板式塔类型 (2)第二章设计方案的确定 (3)2.1操作条件的确定 (3)2.2确定设计方案的原则 (4)第三章塔的工艺尺寸得计算 (6)3.1精馏塔的物料衡算 (6)3.1.1摩尔分率 (6)3.1.2平均摩尔质量 (6)3.1.3 物料衡算 (6)3.1.4 回收率 (7)3.2塔板数的确定 (7)3.2.1理论板层数N的求取 (7)3.3 精馏塔有关物性数据的计算 (11)3.3.1 操作压力计算 (11)3.3.2 操作温度计算 (11)3.3.3 平均摩尔质量计算 (11)3.3.4 平均密度计算 (12)3.3.5 液体平均表面力计算 (13)3.3.6 液体平均黏度计算 (14)3.4 精馏塔的塔体工艺尺寸设计 (14)3.4.1 塔径的计算 (14)3.4.2 精馏塔有效高度的计算 (14)3.5 塔板主要工艺尺寸的计算 (18)3.5.1 溢流装置计算 (18)3.5.2 塔板布置 (21)3.6 筛板的流体力学验算 (24)3.6.1 塔板压降 (24)3.6.2液面落差 (26)3.6.3 液沫夹带 (26)3.6.4 漏液 (26)3.6.5 液泛 (27)3.7 塔板负荷性能图 (27)3.7.1 漏液线 (28)3.7.2 液沫夹带线 (28)3.7.3 液相负荷下限线 (29)3.7.4 液相负荷上限线 (30)3.7.5 液泛线 (31)第四章塔附属设计 (35)4.1 塔附件设计 (35)4.2 筒体与封头 (38)4.3 塔总体高度设计 (38)4.3.1 塔的顶部空间高度 (38)4.3.2 塔的底部空间高度 (39)4.3.3 塔体高度 (39)4.4 附属设备设计 (39)4.4.1 冷凝器的选择 (39)4.4.2 泵的选择 (40)设计小结 (41)附录 (42)参考文献 (39)摘要化工生产过程中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其部分都是均相物质。
乙醇-水连续板式精馏塔课程设计
课程设计说明书课程名称:化工原理课程设计题目:乙醇-水分离过程板式连续精馏塔设计学生姓名:*** 学号: ************ 系别:环境与建筑工程系专业班级:指导老师:2012年5月目录1.设计方案确定 (1)2 操作条件和基础数据 (2)3 精馏塔的物料衡算 (2)3.1 原料液及塔顶、塔底产品的摩尔分率 (2)3.2 原料液及塔顶、塔底产品的平均摩尔质量 (2)3.3 料液及塔顶、塔底产品的摩尔流率 (2)3.4热量衡算 (3)4 塔板数的确定 (7)4.1 理论板层数NT的求取 (7)4.1.1求最小回流比及操作回流比 (7)5 精馏塔的工艺条件及相关物性数据的计算: (10)5.1填料的选择 (15)6 塔径设计计算 (16)7填料层高度的计算 (18)8附属设备及主要附件的选项计算 (19)8.1 冷凝器 (19)8.2 加热器 (20)8.3 塔管径的计算及选择 (20)8.4 液体分布器 (21)8.5 填料及支撑板的选择 (23)8.6 塔釜设计 (23)8.7塔的顶部空间高度 (24)8.8人孔的设计 (24)8.9裙座的设计 (24)9 对设计过程的评述和有关问题的讨论 (25)9.1 进料热状况的选取 (25)9.2 回流比的选取 (26)9.3 理论塔板数的确定 (26)10设计结果的自我总结与评价 (26)参考文献 (28)1 设计方案确定泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。
塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。
该物系属易分离物系,回流比较大,故操作回流比取最小回流比的1.1倍。
塔釜采用直接蒸汽加热,塔底产品经冷却后送至储罐。
规整填料塔与筛板塔相比,有以下优点1)压降非常小。
气相在填料中的液相膜表面进行对流传热、传质不存在塔板上清液层及筛孔的阻力。
在正常情况下规整填料的阻力只有相应筛板塔阻力的1/5~1/62)热、质交换充分分离效率高使产品的提取率提高3)操作弹性大不产生液泛或漏液所以负荷调节范围大适应性强。
化工原理课程设计---乙醇—水溶液连续板式精馏塔设计
前言转眼之间,我们已经结束了大三的学习。
在这三年的学习当中,我们系统的学习了化工原理,物理化学,无机化学,有机化学,分析化学,化工设备与机械基础,机械制图,化工热力学等方面的知识,初步掌握了化学生产与化学设备之间的相互关系。
在李志礼老师的指导下,我们开始了化工原理课程设计。
实践是检验真理的唯一标准,学习了那么多的理论知识以后,终于有机会在现实过程中运用自己学习到的知识。
在这次设计过程中,我们得到了老师学长学姐们很多的帮助,在此对他们表示衷心的感谢,由于我们所知识的有限和能力的不足,在设计过程中难免会遇到设计不合理,考虑不周全的地方,希望老师给予理解与指导,我们会更加努力,争取做得更好。
设计者: 2011.7.6目录第一章设计题目与要求1.1 设计题目…………………………………………………………………………1.2 任务要求与数据……………………………………………………………第二章筛板式精馏塔的工艺设计与计算2.1 塔板数的确定2.2 塔径的确定第一章设计题目与要求1.1设计题目:乙醇—水溶液连续板式精馏塔设计1.2任务要求与数据:1、设计一连续精馏塔分离乙醇和水,具体工艺参数如下:(1)原料乙醇含量:质量分率40%(2)年产量:30000t(3)摩尔分率:x D=0.82;x W=0.022、工艺操作条件:常压精馏,塔顶全凝,泡点进料,泡点回流,R=(1.2~2)R min。
3、设备形式筛板塔。
4、设计工作日每年330天,每天24小时连续运行。
第二章 筛板式精馏塔的工艺设计与计算2.1 塔板数的确定2.1.1全塔物料衡算原料液中:设 乙醇(A ); 水(B ) 查附表得: M A =46.07 M B =18.02由已知条件可知:x F =0.4 x D =0.82 x W =0.02 年产量:30000t 每年330天,每天24小时连续运行h /34kmol .92)02.18*18.007.46*82.0(*24*33030000000=+=D由 F = D + Wx F *F=xD*D+x W *W得 F=194.4(kmol/h ),W=102.6(kmol/h ),由t-x(y)图用内插法可知: 塔顶温度t D = 78.3℃,塔底温度t w = 95.3℃平均温度℃8.8623.953.78=+=t进料温度:=f t 80.7℃相对挥发度的确定当t=95.5℃时:1(1)0.17(10.019)(1)(10.17)0.019BAABy xy xy xy xα-⨯-===--⨯=10.58当t=89.0℃时:2(1)0.3891(10.0721)8.20(1)(10.3891)0.0721A BB Ay x y xy x y xα-⨯-====--⨯当t=86.7℃时:3(1)0.4375(10.0966)7.27(1)(10.4375)0.0966A BB Ay x y xy x y xα-⨯-====--⨯当t=85.3℃时:4(1)0.4704(10.1238) 6.29(1)(10.4704)0.1238A BB Ay x y xy x y xα-⨯-====--⨯当t=84.1℃时:5(1)0.5058(10.1661)(1)(10.5058)0.1661BAABy xy xy xy xα-⨯-===--⨯=5.20当t=82.7℃时:6(1)0.5445(10.2337) 3.92(1)(10.5445)0.2337A BB Ay x y xy x y xα-⨯-====--⨯当t=82.3℃时:7(1)0.558(10.2608) 3.58(1)(10.558)0.2608A BB Ay x y xy x y xα-⨯-====--⨯当t=81.5℃时:8(1)0.5826(10.3273) 2.87(1)(10.5826)0.3273A BB Ay x y xy x y xα-⨯-====--⨯当t=80.7℃时:9(1)0.6122(10.3965)(1)(10.6122)0.3965BAABy xy xy xy xα-⨯-===--⨯=2.40当t=79.8℃时:10(1)0.6564(10.5079) 1.85(1)(10.6564)0.5079A BB Ay x y xy x y xα-⨯-====--⨯当t=79.7℃时:11(1)0.6599(10.5198) 1.79(1)(10.6599)0.5198A BB Ay x y xy x y xα-⨯-====--⨯当t=79.3℃时:12(1)0.6841(10.5732) 1.61(1)(10.6841)0.5732A BB Ay x y x y x y x α-⨯-====--⨯当t=78.74℃时:13(1)0.7385(10.6763) 1.35(1)(10.7385)0.6763A BB Ay x y x y x y x α-⨯-====--⨯当t=78.41℃时:14(1)0.7815(10.7472)(1)(10.7815)0.7472BAABy x y xy xy xα-⨯-===--⨯=1.21平均相对挥发度n n αααα...21==29.321.135.1...20.858.1014=⨯⨯⨯⨯泡点进料,泡点回流4.0x x 1q q ==∴=FxD=0.82α=3.29∴0.69x 11x *y qq q =+=)—(αα 46.0min =--=qq q D x y y x R回流比系数我们取折中值1.6R=1.6Rmin=0.73根据理论板数的捷算法有m i n ()(1)R R R -+=0.156由吉利兰关联图54.4lg )]x x -1)(x -1x[(lg ww D D min==αN→得5.01min=+-NNN →N=10块操作方程的确定精馏段:V =(R+1)D =(0.73+1)⨯92.34=159.25(kmol/h ),L =RD =0.73×92.34 =67.41(kmol/h ),提馏段:V =V –(1-q)F =159.75kmol/h ),-L =L +qF = 67.41+ 1×194.4=261.8(kmol/h ), 则精馏段操作线方程: 111+++=+R x x R Ry D n n =0.422x n +0.474 提馏段操作线方程:y n+1 = 0128.0-639x .1x x n n =-+VF D X V L FD全塔效率塔顶温度t D = 78.3℃, 塔底温度t w = 95.3℃ , 进料温度:=f t 80.7℃平均温度℃8.8623.953.78=+=t[8]由表用内差法求86.8℃ 下的粘度:μA= 0.449mpas ,μB =0.332mpas①则平均粘度μL = x F μA +(1-x F )μB=0.4*0.449+(1-0.4)*0.332=0.379mpasαμL =3.29*0.379=1.246②求全塔效率E T由αμL =1.246,由《化学化工物性数据手册》164页图10-20查得464.0)246.1(*49.0)*(49.0245.0245.0===--L T E μα ③求实际板数由TTE N N =得N=21.5≈22块 2.2精馏段物料衡算物料组成:塔顶温度t D = 78.3℃, 塔底温度t w = 95.3℃ , 进料温度:=f t 80.7℃平均温度℃8.8623.953.78=+=t查表2-1 得(1)塔顶 y 1= X D = 0.82 α= 3.29 nnn y y )1(x --=αα x 1=0.58(2)进料 x f =0.3965 y f =0.6122平均分子量 m M(1)塔顶:MVDm=0.82⨯46.07+(1-0.82)⨯18.02=41.54(mol g /)MLDm=0.58⨯46.07+(1-058)⨯18.02=34.29(mol g /)(3)(2)进料: MVFm=0.6122⨯46.07+(1-0.6122)⨯18.02=35.19(mol g /)MLFm=0.3965⨯46.07+(1-0.3965)⨯18.02=29.14(mol g /)平均分子量MVm =2VFmVDm M M +=38.37(mol g /)MLm =2LFMLDM M M +=31.72(mol g /)平均密度m ρ 由书]3[:1/LM ρ=a A /LA ρ+a B /LB ρ 塔顶:在78.3℃下:LA ρ=744.5(3/m kg ) LB ρ=972.96(3/m kg )LMDρ1=0.82/744.5+0.18/972.96 则LMD ρ=777.36(3/m kg )进料:在进料温度80.7℃下:LA ρ=741.5 (3/m kg ) LB ρ=971.4(3/m kg )a A =627.002.18)3965.01(07.46*3965.007.46*3965.0=-+LMFρ1=4.971)627.01(5.741627.0-+ 则LMF ρ=813.01(3/m kg ) 即精馏段的平均液相密LM ρ=(777.36+813.01)/2=795.18(3/m kg ) 平均气相密度VM ρ=RT PM VM =30.1)8.8615.273(*314.837.38*325.101=+(3/m kg ) 液体表面张力m σ(1) 塔顶: 查图表求得在78.3℃下:(物化手册)9.17=A σm mN / 89.62=B σm mN /(mN/m)00.2689.62*18.09.17*82.0=+=MD σ(m mN /)(2) 进料: 在80.7℃下:m mN / m mN A /86.17=σ m mN B /47.62=σm mN MF /78.4447.62*)3965.01(86.17*3965.0=-+=σ (m mN /)则 m σ=(MD σ+MF σ)/2=(26.00+44.78)/2=35.39(m mN /)气液负荷的计算由已知条件V =159.75h kmol / L =67.41h kmol / 得S V =VMVMvm ρ3600=31.130.1*360037.38*75.159= (s m /3) S L =LM LM LM ρ3600=00075.018.795*360072.31*41.67= (s m /3)塔径D 的计算两相流动参数计算如下LV F =VsLs∴LV F =0142.030.118.79531.100075.0=参考化工原理下表10-1(p129),我们取板间距 H T =0.45m m 6.00=L h H T -m 39.0=L h参考化工原理下图10-42筛板的泛点关联得:C 20f =0.081f C =2.02020⎪⎭⎫⎝⎛σf C =091.0)2035.39(081.02.0= u =f 5.02.02020⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛VVL f C ρρρσ=s m /25.2)30.130.118.795(*091.05.0=- 本物系不易起泡,取泛点百分率为85%,可求出设计气速n u '=0.85⨯2.25=1.91s m /)m u V D S 934.091.1*14.331.1*44===π 根据塔设备系列化规格,将D '圆整到D=1m 作为初选塔径,因此重新校核流速us m D V u s n /668.11*31.1*4422===ππ 实际泛点百分率为%3.74250.2668.1==f n u u222785.01785.04m D A T =⨯==π塔板详细设计由于S L =0.000753m /s ,D=1m ,所以2.7(m3/h )<45(m3/h).根据《化工原理(下)》表10-2选择单溢流,弓形降液管,不设进口堰。
乙醇水连续精馏塔的设计
乙醇—水连续精馏塔的设计目的:通过课程设计进一步巩固课本所学的容,培养学生运用所学理论知识进行化工单元过程设计的初步能力,使所学的知识系统化,通过本次设计,应了解设计的容,方法及步骤,使学生具有调节技术资料,自行确定设计方案,进行设计计算,并绘制设备条件图、编写设计说明书。
在常压连续精馏塔中精馏分离含乙醇20%的乙醇—水混合液,分离后塔顶馏出液中含乙醇量不小于94%,塔底釜液中含乙醇不高于4%(均为质量分数)。
已知参数:(1)设计任务●进料乙醇 X = 20 %(质量分数,下同)●生产能力 Q = 80 t/d●塔顶产品组成 > 94 %●塔底产品组成 < 0.1 %(2)操作条件●操作压强:常压●精馏塔塔顶压强:Z = 4 KPa●进料热状态:泡点进料●回流比:自定待测●冷却水: 20 ℃●加热蒸汽:低压蒸汽,0.2 MPa●单板压强:≤ 0.7●全塔效率:E T = 52 %●建厂地址:天津地区●塔顶为全凝器,中间泡点进料,筛板式连续精馏设计容:(1)设计方案的确定及流程说明(2)塔的工艺计算(3)塔和塔板主要工艺尺寸的计算(a、塔高、塔径及塔板结构尺寸的确定;b、塔板的流体力学验算;c、塔板的负荷性能图)(4)设计结果概要或设计一览表(5)精馏塔工艺条件图(6)对本设计的评论或有关问题的分析讨论目录一、精馏流程的确定 (3)二、课程设计报告容 (3)1.塔的物料计算 (3)1.1 料液及塔顶、塔底产品含乙醇摩尔分数 (3)1.2 平均摩尔质量 (3)1.3 物料衡算 (3)2.塔板数的确定 (4)2.1 理论塔板数的求取 (4)2.2 全塔效率 (6)2.3 实际塔板数 (6)3.塔点工艺条件及物性数据计算 (6)3.1 操作压强 (6)3.2 温度 (6)3.3 平均摩尔质量 (7)3.4 平均密度 (7)3.5 液体表面力 (9)3.6 液体黏度 (9)4.精馏段气液负荷计算 (10)5.塔和塔板主要工艺尺寸计算 (11)5.1 塔径 (11)5.2 溢流装置 (12)5.3 塔板布置 (15)5.4 筛孔数与开孔率 (15)5.5 塔的有效高度(精馏段) (16)5.6 塔高计算 (16)6.筛板的流体力学验算 (16)6.1 气体通过筛板压强降相当的液柱高度 (16)6.2 雾沫夹带量的验算 (18)6.3 漏液的验算 (18)6.4 液泛验算 (18)7.塔板负荷性能图 (19)7.1 雾沫夹带线(1) (19)7.2 液泛线(2) (20)7.3 液相负荷上限线(3) (21)7.4 漏液线(气相负荷下限线)(4) (21)7.5 液相负荷下限线(5) (22)8.筛板塔的工艺设计计算结果总表 (23)9.精馏塔的附属设备及接管尺寸 (24)三、设计小结 (25)四、主要参考文献 (25)一、精馏流程的确定乙醇—水混合液经原料预热器加热至泡点后,送入精馏塔。
乙醇—水溶液精馏塔设计
第一章绪论 (2)一、目的: (2)二、已知参数: (3)三、设计内容: (3)第二章课程设计报告内容 (3)一、精馏流程的确定 (3)二、塔的物料衡算 (4)三、塔板数的确定 (4)四、塔的工艺条件及物性数据计算 (6)五、精馏段气液负荷计算 (10)六、塔和塔板主要工艺尺寸计算 (10)七、筛板的流体力学验算 (16)八、塔板负荷性能图 (18)九、筛板塔的工艺设计计算结果总表 (22)十、精馏塔的附属设备及接管尺寸 (23)第三章总结 (23).乙醇——水连续精馏塔的设计第一章绪论一、目的:通过课程设计进一步巩固课本所学的内容,培养学生运用所学理论知识进行化工单元过程设计的初步能力,使所学的知识系统化,通过本次设计,应了解设计的内容,方法及步骤,使学生具有调节技术资料,自行确定设计方案,进行设计计算,并绘制设备条件图、编写设计说明书。
在常压连续精馏塔中精馏分离含乙醇25%的乙醇—水混合液,分离后塔顶馏出液中含乙醇量不小于94%,塔底釜液中含乙醇不高于0.1%(均为质量分数)。
二、已知参数:(1)设计任务●进料乙醇 X = 25 %(质量分数,下同)●生产能力 Q = 80t/d●塔顶产品组成 > 94 %●塔底产品组成 < 0.1 %(2)操作条件●操作压强:常压●精馏塔塔顶压强:Z = 4 KPa●进料热状态:泡点进料●回流比:自定待测●冷却水: 20 ℃●加热蒸汽:低压蒸汽,0.2 MPa●单板压强:≤ 0.7●全塔效率:E T = 52 %●建厂地址:南京地区●塔顶为全凝器,中间泡点进料,筛板式连续精馏三、设计内容:(1)设计方案的确定及流程说明(2)塔的工艺计算(3) 塔和塔板主要工艺尺寸的计算(a 、塔高、塔径及塔板结构尺寸的确定;b 、塔板的流体力学验算;c 、塔板的负荷性能图) (4) 设计结果概要或设计一览表 (5) 精馏塔工艺条件图(6) 对本设计的评论或有关问题的分析讨论第二章 课程设计报告内容一、精馏流程的确定乙醇、水混合料液经原料预热器加热至泡点后,送入精馏塔。
最新乙醇-正丙醇连续筛板式精馏塔的设计方案
乙醇-正丙醇连续筛板式精馏塔的设计方案乙醇-正丙醇连续筛板式精馏塔的设计方案流程的设计及说明1 设计思路蒸馏方式的确定蒸馏装置包括精馏塔,原料预热器,精馏釜(再沸器),冷凝器,釜液冷却器和产品冷却等设备,蒸馏过程按操作方式不同可分为连续蒸馏和间歇蒸馏两种流程,连续蒸馏具有生产能力大,产品质量稳定等优点,工业生产中以连续精馏为主,间歇蒸馏具有操作灵活,适应性强等优点,适合小规模,多品种或多组分物系的初步分离。
本次设计采用连续筛板精馏塔,常压精馏。
2 装置流程的确定(1)物料的储存和输送在流程中设置原料罐,产品罐及离心泵。
原料可泵直接送入塔内,使程序连续稳定的进行。
(2)参数的检测和调控流量,压力和温度是生产中的重要参数,必须在流程中的适当位置装设仪表,以测量这些参数。
同时,在生产过程中,物料的状态。
加热剂和冷却剂的状态都不可能避免的会有一些波动,因此必须在流程中设置一定的阀门。
(3)冷凝装置的确定本设计采用塔顶全凝器,以便于准确地对控制回流比。
(4)热能的利用精馏过程是组分多次部分汽化和多次部分冷凝的过程,耗能较多,因此选择适宜的回流比使过程处于最佳条件下进行,可使能耗至最低。
3 操作条件的确定 (1) 操作压力的选取本次设计采用常压操作。
除热敏性物料外,凡通过常压精馏不难实现分离要求,并能利用江河水或循环水将镏出物冷凝下来的系统。
(2)加料状态的选择本设计选择q=1时进料,原因是使塔的操作稳定,精,提镏段利用相同塔径,便于制造。
(3) 加料方式蒸馏大多采用间接蒸汽加热,设置再沸器。
(4)回流比的选择一般经验值为min )0.21.1(R R -=。
本设计采用min 5.1R R =,初步设定后经过流体力学验算,负荷条件,故选择合理。
塔顶冷凝器的冷凝方式与冷却介质的选择塔顶冷凝温度不要求低于30℃,工业上多用水冷 (5)板式塔类型的选择本次设计采用连续筛板式精馏塔 4 设计方案的确定(1)满足工艺和操作要求(2)满足经济上的要求,安全生产,保护环境。
化工原理课程设计-乙醇-水溶液连续精馏塔优化设计
化工原理课程设计-乙醇-水溶液连续精馏塔优化设计化工原理课程设计题目乙醇-水溶液连续精馏塔优化设计目录1.设计任务书………………………………………………………………2.英文摘要前言……………………………………………………………3.前言 (1)4.精馏塔优化设计 (5)5.精馏塔优化设计计算 (5)6.设计计算结果总表 (22)7.参考文献 (23)8.附录 (23)9.致谢…………………………………………………………………10.课程设计心得……………………………………………………………精馏塔优化设计任务书一、设计题目乙醇—水溶液连续精馏塔优化设计二、设计条件1.处理量: 40000 (吨/年)2.料液浓度: 35 (wt%)3.产品浓度: 90 (wt%)4.易挥发组分回收率: 99.5%5.每年实际生产时间:7200小时/年6. 操作条件:①间接蒸汽加热;②塔顶压强:1.03 atm(绝对压强)③进料热状况:泡点进料三、设计任务a) 流程的确定与说明;b) 塔板和塔径计算;c) 塔盘结构设计i. 浮阀塔盘工艺尺寸及布置简图;ii. 流体力学验算;iii. 塔板负荷性能图。
d) 其它i. 加热蒸汽消耗量;ii. 冷凝器的传热面积及冷却水的消耗量e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书。
乙醇——水溶液连续精馏塔优化设计摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主要尺寸的计算,工艺设计和附属设备结果选型设计,完成对乙醇-水精馏工艺流程和主题设备设计。
关键词:精馏塔,浮阀塔,精馏塔的附属设备。
(Department of Chemistry,University of South China,Hengyang 421001)Abstract: The design of a continuous distillation valve column, in the material, product requirements and the main physical parameters and to determine the size, process design and selection of equipment and design results, completion of the ethanol-water distillation process and equipment design theme.Keywords: rectification column, valve tower, accessory equipment of the rectification column.前言乙醇在工业、医药、民用等方面,都有很广泛的应用,是很重要的一种原料。
乙醇-水溶液连续精馏塔设计
吉林化工学院化工原理课程设计题目乙醇-水溶液连续精馏塔设计教学院化学与制药工程学院专业班级制药0803学生姓名学生学号指导教师化工原理课程设计任务书1.设计题目:乙醇-水溶液连续精馏塔设计2.设计条件:生产能力:年处理乙醇-水混合液1.3万吨年工作日:300天,每天24小时连续运行原料:乙醇含量为45%(质量百分比,下同)的液体分离要求:塔顶乙醇含量为91%塔底:乙醇含量0.05%操作压力:塔顶压力为常压进料状况:泡点进料,q=13.填料类型:填料类型和规格自选4.设计内容:1、精馏塔的工艺设计计算,包括物料衡算、热量衡算、塔板数的确定、精馏塔的工艺条件及有关物性数据的计算、精馏塔的塔体工艺尺寸计算、填料层压降的计算、液体分布器简要设计、全凝器工艺设计计算和选型、泵的工艺设计计算和选型、精馏塔接管尺寸计算;2、绘制带控制点的精馏工艺流程图、精馏塔设备条件图;3、撰写设计说明书目录摘要 (1)第一章绪论 (1)1.1精馏原理及其在工业生产中的应用 (1)1.2精馏分离液体的应用 (1)1.3液体分布装置 (2)第二章设计方案 (3)2.1 设计方案的确定 (3)2.2设计方案 (3)2.3选塔依据 (3)2.4填料塔与板式塔的比较 (4)第三章精馏塔的工艺设计 (5)3.1 精馏塔全塔物料衡算 (5)3.1.2 物料衡算的结果 (5)3.1.3 塔顶气相、液相、进料和塔底的温度 (5)3.1.4 物料衡算 (6)3.1.5 塔顶及塔底产品的平均相对分子质量及质量流量 (7)3.1.6 平均相对挥发度 (7)3.1.7 操作线方程的确定 (7)3.2 热量衡算 (8)3.2.1 加热介质的选择 (8)3.2.2 冷却剂的选择 (8)3.3.3 热量衡算 (8)3.3 理论塔板数的计算 (10)第四章精馏塔主要尺寸的设计的计算 (11)4.1 精馏塔设计的主要依据和条件 (11)4.1.1 塔顶条件下的流量及物性参数 (11)4.2 流量计算 (13)4.3 塔径设计的计算 (14)4.3.1 填料选择 (14)4.3.2 塔径设计计算 (14)4.4 填料层高度的设计计算 (15)4.4.1实际塔板数的计算 (15)4.4.2填料层高度的计算 (15)4.4.3填料塔压降计算 (16)4.4.4操作压强计算 (16)第五章附属设备及主要附件的选型计算 (18)5.1冷凝器 (18)5.1.1冷凝器的选择 (18)5.1.2冷凝器的计算 (18)5.2接管管径的计算和选择 (18)5.2.1进料管 (18)5.2.2回流管 (19)5.2.3塔顶蒸气管 (19)5.2.4塔釜出料管 (20)5.3除沫器 (20)5.4液体分布器 (20)5.4.1回流液分布器 (20)5.4.2进料液分布器 (21)5.5填料支撑板的选择 (22)5.6塔釜设计 (22)5.7泵的选择及计算 (22)5.8塔的顶部空间高度 (23)5.9精馏塔高度计算 (23)填料塔的工艺设计计算结果汇总 (24)主要符号说明 (25)结束语 (27)参考文献 (28)附录一程序设计 (29)附录二精馏塔设备条件图 (30)摘要本设计对乙醇和水的分离设备——精馏塔做了较详细的叙述,主要包括:物料衡算,工艺计算,热量衡算,其它附属设备得选择,塔设备的附图等。
乙醇-水溶液板式精馏塔设计。
摘要 (2)《化工原理》课程设计任务书 (3)第一章设计概述 (6)1.1塔设备在化工生产中的作用与地位 (6)1.2塔设备的分类 (6)1.3板式塔 (6)1.3.1泡罩塔 (6)1.3.2筛板塔 (7)1.3.3浮阀塔 (7)第二章设计方案的确定及流程说明 (8)2.1 塔型选择 (8)2.2 操作流程 (8)第三章塔的工艺计算 (9)3.1查阅文献,整理有关物性数据 (9)3.1.1进料液及塔顶、塔底产品的摩尔分数 (9)3.1.2平均摩尔质量 (10)3.2全塔物料衡算 (10)3.3塔板数的确定 (10)3.3.1理论塔板数的求取 (10)3.3.2全塔效率的估算 (11)3.3.3实际塔板数 (12)第四章精馏塔主题尺寸的计算 (13)4.1 精馏段与提馏段的汽液体积流量 (13)4.2 塔径的计算 (15)4.3 塔高的计算 (17)4.4. 塔板结构尺寸的确定 (18)4.5 弓形降液管 (19)第五章塔板的流体力学验算 (21)5.1 气体通过塔板的压力降m液柱 (21)5.2 液面落差 (22)5.3 液沫夹带(雾沫夹带) (23)5.4 漏液 (23)5.5 液泛 (24)第六章塔板负荷性能图 (24)6.1精馏段塔板负荷性能图 (24)6.1.1漏液线 (24)6.1.2液沫夹带线 (25)6.1.3液相负荷下限线 (25)6.1.4液相负荷上限线 (25)6.1.5液泛线 (26)6.2提馏段塔板负荷性能图 (27)6.2.1漏液线 (27)6.2.2液沫夹带线 (27)6.2.3液相负荷下限线 (28)6.2.4液相负荷上限线 (28)6.2.5液泛线 (28)第七章各接管尺寸的确定及选型 (30)7.1进料管尺寸的计算及选型 (30)7.2釜液出口管尺寸的计算及选型 (30)7.3回流管尺寸的计算及选型 (31)7.4塔顶蒸汽出口径及选型 (31)7.5水蒸汽进口管口径及选型 (31)第八章精馏塔的主要附属设备 (33)8.1冷凝器 (33)8.2预热器 (34)设计结果一览表 (34)设计小结 (36)致谢 (37)参考文献 (37)一、前言乙醇(C2H5OH),俗名酒精,是基本的工业原料之一,与酸碱并重,它作为再生能源犹为受人们的重视。
乙醇水-板式精馏塔-课程设计
1.引言1.1.精馏原理及其在化工生产上的应用实际生产中,在精馏柱及精馏塔中精馏时,上述部分气化和部分冷凝是同时进行的。
对理想液态混合物精馏时,最后得到的馏液(气相冷却而成)是沸点低的B物质,而残液是沸点高的A物质,精馏是多次简单蒸馏的组合。
精馏塔底部是加热区,温度最高;塔顶温度最低。
精馏结果,塔顶冷凝收集的是纯低沸点组分,纯高沸点组分则留在塔底。
1.2.精馏塔对塔设备的要求精馏设备所用的设备及其相互联系,总称为精馏装置,其核心为精馏塔。
常用的精馏塔有板式塔和填料塔两类,通称塔设备,和其他传质过程一样,精馏塔对塔设备的要求大致如下:①生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流动。
②效率高:气液两相在塔内保持充分的密切接触,具有较高的塔板效率或传质效率。
③流体阻力小:流体通过塔设备时阻力降小,可以节省动力费用,在减压操作是时,易于达到所要求的真空度。
④有一定的操作弹性:当气液相流率有一定波动时,两相均能维持正常的流动,而且不会使效率发生较大的变化。
⑤结构简单,造价低,安装检修方便。
⑥能满足某些工艺的特性:腐蚀性,热敏性,起泡性等。
1.3常用板式塔类型及本设计的选型常用板式塔类型有很多,如:筛板塔、泡罩塔、舌型塔、浮阀塔等。
由于浮阀塔有如下优点:①生产能力大,由于塔板上浮阀安排比较紧凑,其开孔面积大于泡罩塔板,生产能力比泡罩塔板大20%~40%,与筛板塔接近。
②操作弹性大,由于阀片可以自由升降以适应气量的变化,因此维持正常操作而允许的负荷波动范围比筛板塔,泡罩塔都大。
③塔板效率高,由于上升气体从水平方向吹入液层,故气液接触时间较长,而雾沫夹带量小,塔板效率高。
④气体压降及液面落差小,因气液流过浮阀塔板时阻力较小,使气体压降及液面落差比泡罩塔小。
⑤塔的造价较低,浮阀塔的造价是同等生产能力的泡罩塔的 50%~80%,但是比筛板塔高 20%~30。
而且近几十年来,人们对浮阀塔的研究越来越深入,生产经验越来越丰富,积累的设计数据比较完整,因此设计浮阀塔比较合适。
乙醇—水连续精馏塔的设计
乙醇——水连续精馏塔设计任务书一、设计题目试设计一座乙醇-水连续精馏塔,要求日产纯度为99%的乙醇24吨,塔顶馏出液中含乙醇不得高于1%原料中含乙醇25%(以上均为质量%)。
二、操作条件1.塔顶压强:常压2.进料热状态:过冷液进料3.回流比:R=10.628*1.2=12.7544.塔底加热蒸汽压强:169 kPa(表压)5.单板压降≯0.7kPa三、设备型式设备型式为筛板塔四、设备工作日每年330天,每天24小时五、厂址杨凌地区六、设计内容1.设计方案的确定及流程的说明2.塔的工艺计算3.塔和塔板主要尺寸的设计(1)设计方案的确定及说明(2)塔的工艺计算(3)塔高、塔径及塔板结构尺寸的确定(4)实际结果概要或设计一览表(5)精馏塔的工作图(6)对本设计的评述或有关问题的分析讨论4.设计一览表5.辅助设备选型及计算6.生产工艺流程图及精馏塔的工艺条件图7.对本设计的评论及有关问题的分析讨论七、设计基础数据附表1 常压下乙醇-水的气液平衡数据温度(℃)80 90 100 110 120 130 131.8 液相中乙醇的摩尔分数x 1 0.69 0.45 0.27 0.13 0.02 0 气相中乙醇的摩尔分数y 1 0.92 0.79 0.62 0.38 0.07 0目录1.精馏流程的确定 (4)2.塔的物料恒算 (4)2.1料液及塔顶、塔底产品的摩尔分数 (4)2.2 平均摩尔质量 (4)2.3 物料恒算 (4)3.塔板数的确定 (5)3.1理论塔板数的求取 (5)3.1.1逐板计算法 (5)3.1.2 求最小回流比、操作回流比 (5)3.1.3 求理论塔板数NT (5)3.2全塔效率....................................... 错误!未定义书签。
3.3实际塔板数 (6)4.塔的工艺条件及物性数据计算 (6)4.1操作压力 (6).2温度 (7)4.3平均摩尔质量 (7)4.4平均密度 (8)4.5液体表面张力 (9)4.6液体黏度....................................... 错误!未定义书签。
乙醇-水溶液连续板式精馏塔设计
1设计内容及任务(一)设计内容乙醇-水溶液连续板式精馏塔设计(二)设计任务处理能力:3.6万吨/年,每年按300天计算,每天24小时连续运转。
原料乙醇-水溶液:7.4%组成(乙醇的质量分数)产品要求:塔顶产品组成(质量分数):≥38.2%塔底的产品组成(质量分数):≤0.1%1)塔型选择根据生产任务,若按年工作日300天,每天开动设备24小时计算,产品流量为265.3kmol/h,由于产品黏度较小,流量增大,为减少造价,降低生产过程中压降和塔板液面落差的影响,提高生产效率,选择浮阀塔。
2)操作条件(1)操作压力:塔顶压强为常压101.3kPa(2)单板压降:0.7KPa(3)进料状况:30°C冷夜进料(4)回流比:自选(5)加热方式:间接蒸汽加热(6) 冷却水进口温度:30°C一、 塔的工艺计算1工艺过程物料衡算工艺过程 1.1物料衡算F W =7.4%D W =38.2% 46/M g mol =乙醇 18/M g m o l =水F=265.3kmol/hF X ==-+水乙醇乙醇)(M W M M W F F /1/W /F 0.03039481.0)/M W 1/M W M W D D D=-+=水乙醇乙醇(D Xh kmol X X X X F D WD w F /66.36)(=--=塔底产品流量:h kmol D F W /64.22866.363.265=-=-=1.1表1 物料衡算数据记录F 265.3kmol/h F X 0.0303 D 36.66kmol/h D X 0.1948 W228..64kmol/hW X0.00039由图(在《化工原理》(第三版,王志魁)265P 页)查出组成0303.0=F X 的乙醇-水溶液泡点为95.7°C ,在平均温度为(95.7+30)/2=61.35下,由《化工原理》(第三版,王志魁)附录查得乙醇与水的有关物性为:(数值为在范围内的一个估值)乙醇的摩尔热容: 3.0246138.92/()mA C kJ kmol K =⨯=∙ 乙醇的摩尔汽化潜热:914.24642053.2/()A r kJ koml K =⨯=∙ 水的摩尔热容:)./(3.75k kmol kJ C mB =水的摩尔汽化潜热:2392.861843071.48/B r kJ kmol =⨯=比较水与乙醇的摩尔汽化潜热可知,系统满足衡摩尔流的假定。
乙醇水溶液连续板式精馏塔设计
乙醇在工业,医药,民用等方面,都有很广泛的应用,是一种很重要的原料。
在很多方面,要求乙醇有不同的纯度,有时要求纯度很高,甚至是无水乙醇,这是很有困难的,因为乙醇极具挥发性,所以,想得到高纯度的乙醇很困难。
要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。
精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。
化工厂中精馏操作是在直立圆形的精馏塔内进行,塔内装有若干层塔板和充填一定高度的填料。
为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。
可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器,回流液泵等附属设备,才能实现整个操作。
浮阀塔与20世纪50年代初期在工业上开始推广使用,由于它兼有泡罩塔和筛板塔的优点,已成为国内应用最广泛的塔形,特别是在石油,化学工业中使用最普遍。
浮阀有很多种形式,但最常用的是F1型和V-4型。
F1型浮阀的结构简单,制造方便,节省材料,性能良好,广泛应用在化工及炼油生产中,现已列入部颁标准(JB168-68)内,F1型浮阀又分轻阀和重阀两种,但一般情况下都采用重阀,只有处理量大且要求压强降很低的系统中,采用轻阀。
浮阀塔具有下列优点:1,生产能力大。
2,操作弹性大。
3,塔板效率高。
4,气体压强降及液面落差较小。
5,塔的造价低。
浮阀塔不宜处理宜结焦或黏度大的系统,但对于黏度稍大及有一般聚合现象的系统,浮阀塔也能正常操作。
§2.1 设计方案本设计任务为分离乙醇-水混合物。
对于二元混合物的分离,应采用连续精馏流程。
设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。
塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷凝器冷却后送至储罐。
该物系属易分离物系,故操作回流比取最小回流比的1.4倍。
塔釜采用直接蒸汽加热,塔底产品经冷却后送至储罐。
乙醇及水的精馏塔设计
乙醇及水的精馏塔设计(总33页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除题目:乙醇-水精馏塔工艺设计与塔顶冷凝器选型设计专业:煤炭深加工与利用学生姓名:武婷学号: 090010小组成员:郭泽红指导教师:完成日期:新疆工业高等专科学校教务处印制(乌鲁木齐市 830091)化工原理课程设计任务书设计题目:乙醇——水连续精馏塔的设计设计人员所在班级成绩指导教师日期一、设计题目:乙醇-水连续精馏塔的设计二、设计任务及操作条件(1)进精馏塔的料液含乙醇35%(质量分数,下同),其余为水;(2)产品的乙醇含量不得低于94;(3)塔顶易挥发组分回收率为%;(4)生产能力为25000吨/年94%的乙醇产品;(5)每年按330天计,每天24h连续运行。
(6)操作条件a) 塔顶压强 4kPa(表压)b) 进料热状态自选c) 回流比自选d)加热蒸汽压力低压蒸汽(或自选)e) 单板压降小于等于三、设备形式:筛板塔或浮阀塔四、设计内容:1、设计说明书的内容1) 精馏塔的物料衡算;2) 塔板数的确定;3) 精馏塔的工艺条件及有关物性数据的计算;4)精馏塔的塔体工艺尺寸计算;5) 塔板主要工艺尺寸的计算;6) 塔板的流体力学验算;7) 塔板负荷性能图;8) 精馏塔接管尺寸计算;9)对设计过程的评述和有关问题的讨论。
2、设计图纸要求:1) 绘制生产工艺流程图(A2号图纸);2) 绘制精馏塔设计条件图(A2号图纸)。
五、设计基础数据:1. 常压下乙醇——水体系的t-x-y数据;2. 乙醇的密度、粘度、表面张力等物性参数。
第一章前言化工生产中所处理的原料中间产品几乎都是由若干组分组成的混合物。
其中大部分是均相混合物。
生产中为满足要求需将混合物分离成较纯的物质。
精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作。
在化工、炼油、石油化工等工业中得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乙醇水溶液连续板式精馏塔设计第一章前言乙醇在工业,医药,民用等方面,都有很广泛的应用,是一种很重要的原料。
在很多方面,要求乙醇有不同的纯度,有时要求纯度很高,甚至是无水乙醇,这是很有困难的,因为乙醇极具挥发性,所以,想得到高纯度的乙醇很困难。
要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。
精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。
化工厂中精馏操作是在直立圆形的精馏塔内进行,塔内装有若干层塔板和充填一定高度的填料。
为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。
可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器,回流液泵等附属设备,才能实现整个操作。
浮阀塔与20世纪50年代初期在工业上开始推广使用,由于它兼有泡罩塔和筛板塔的优点,已成为国内应用最广泛的塔形,特别是在石油,化学工业中使用最普遍。
浮阀有很多种形式,但最常用的是F1型和V-4型。
F1型浮阀的结构简单,制造方便,节省材料,性能良好,广泛应用在化工及炼油生产中,现已列入部颁标准(JB168-68)内,F1型浮阀又分轻阀和重阀两种,但一般情况下都采用重阀,只有处理量大且要求压强降很低的系统中,采用轻阀。
浮阀塔具有下列优点:1,生产能力大。
2,操作弹性大。
3,塔板效率高。
4,气体压强降及液面落差较小。
5,塔的造价低。
浮阀塔不宜处理宜结焦或黏度大的系统,但对于黏度稍大及有一般聚合现象的系统,浮阀塔也能正常操作。
第二章绪论§2.1 设计方案本设计任务为分离乙醇-水混合物。
对于二元混合物的分离,应采用连续精馏流程。
设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。
塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷凝器冷却后送至储罐。
该物系属易分离物系,故操作回流比取最小回流比的1.4倍。
塔釜采用直接蒸汽加热,塔底产品经冷却后送至储罐。
§2.2 设计方案的确定及流程说明§2.2.1选塔依据浮阀塔是在泡罩塔的基础上发展起来的,它主要的改进是取消了升气管和泡罩,在塔板开孔上设有浮动的浮阀,浮阀可根据气体流量上下浮动,自行调节,使气缝速度稳定在某一数值。
这一改进使浮阀塔在操作弹性、塔板效率、压降、生产能力以及设备造价等方面比泡罩塔优越。
但在处理粘稠度大的物料方面,又不及泡罩塔可靠。
浮阀塔广泛用于精馏、吸收以及脱吸等传质过程中。
塔径从200mm到6400mm,使用效果均较好。
浮阀塔之所以这样广泛地被采用,是因为它具有下列特点:(1) 处理能力大,比同塔径的泡罩塔可增加20~40%,而接近于筛板塔。
(2) 操作弹性大,一般约为5~9,比筛板、泡罩、舌形塔板的操作弹性要大得多。
(3) 塔板效率高,比泡罩塔高15%左右。
(4) 压强小,在常压塔中每块板的压强降一般为400~660N/m2。
(5) 液面梯度小。
(6) 使用周期长。
粘度稍大以及有一般聚合现象的系统也能正常操作。
(7) 结构简单,安装容易,制造费为泡罩塔板的60~80%,为筛板塔的120~130%。
§2.2.2加热方式:直接蒸汽加热蒸馏釜的加热方式通常采用间接蒸汽加热,设置再沸器。
直接蒸汽加热由于塔底产物基本是水,又由于在化工厂蒸汽较多所以直接蒸汽加热。
§2.2.3选择适宜回流比适宜的回流比应该通过经济核算来确定,即操作费用和设备折旧费用之和为最低时的回流比为最适宜的回流比。
确定回流比的方法为:先求出最小回流比R min,根据经验取操作回流比为最小回流比的 1.2-2.0倍,考虑到原始数据和设计任务,本方案;采用釜液产品去预热原料,可以充分利用釜液产品的余取1.4,即:R= 1.4Rm in热,节约能源。
§2.2.4回流方式:泡点回流泡点回流易于控制,设计和控制时比较方便,而且可以节约能源。
§2.2.5操作流程说明乙醇-水溶液经预热至泡点后,用泵送入精馏塔。
塔顶上升蒸气采用全冷凝后,进入回流罐部分回流,其余作为塔顶产品经冷却器冷却后送至贮槽。
塔釜采用直接蒸汽供热,塔底产品用于预热原料冷却后送入贮槽。
精馏装置有精馏塔、原料预热器、冷凝器、釜液冷却器和产品冷却器等设备。
热量自塔低蒸汽输入,由冷凝器中的冷却介质将余热带走。
乙醇—水混合液原料经预热器加热到泡点温度后送入精馏塔进料板,在进料板上与自塔上部下降的的回流液体汇合后,逐板溢流,最后流入塔底。
在每层板上,回流液体与上升蒸汽互相接触,进行热和质的传递过程第三章 塔板的工艺设计§3.1 精馏塔全塔物料衡算F :进料量(kmol/s ) F x :原料组成(摩尔分数,下同) D :塔顶产品流量(kmol/s ) D x :塔顶组成 W :塔底残液流量(kmol/s ) W x :塔底组成()3F 26.5/4612.426.5/4673.5/188329.7100.265/4610.265/18F=9.7t/h=0.1357koml/s 3600F+S=D+W FX D=0.015kmol/s, W=0.1F D W D Wx x x DX WX ==%+=%=%⨯+-⎡⎤⎣⎦==+原料乙醇组成:塔顶组成: 塔底组成: 进料量: 物料衡算式为: 联立代入求解:562kmol/s,S=0.0355kmol/s§3.2 主要数据参数的计算§3.2.1乙醇—水系统t-x-y 数据表3-1乙醇—水系统的气液平衡数据§3.2.2 温度的计算利用表中数据用插值法求得tF:41.764.129.872.85--=41.74.129.87--t F t F =85.32℃t D :82.7987.834.7827.78--=82.79834.78--t D t D =78.30℃t W :61.116.48.953.91--=61.128.95--t W t W =95.11℃精馏段平均温度 t 1=2F D t t +=23.7832.85+=81.81℃提馏段平均温度 t 2=2F w t t +=211.9532.85+=90.22℃§3.2.3 密度的计算已知:混合液密度 依式 Lρ1=ρρBB AA aa+(a 为质量分数,M 为平均相对分子质量)混合汽密度 依式 0022.4v PMRTM ρρ=塔顶温度:D t =78.3℃ 气相组成:78.478.2778.3078.2781.8384.9110084.91D y --=-- D y =84.20%进料温度:F t =85.32℃ 气相组成:87.985.285.3285239.1647.4910047.49F y --=-- F y =47.12%塔釜温度:w t =95.11℃ 气相组成:95.891.395.1191.316.3429.9210029.92w y --=-- w y =18.42%①精馏段:液相组成1x :()1/2D F x x x =+ 147.7x =%气相组成1y :()1/2D F y y y =+ 165.66y =%所以()()11460.4771810.47731.36/460.65661810.656636.38/L V M kg kmol M kg kmol=⨯+⨯-==⨯+⨯-=②提馏段 液相组成2x :()2/2w F x x x =+ 27.2x =%气相组成2y :()2/2w F y y y =+ 232.77y =%所以()()22460.0.0721810.07220.02/460.32771810.327727.18/L V M kg kmol M kg kmol=⨯+⨯-==⨯+⨯-=表3-2 不同温度下乙醇和水的密度求得在与下的乙醇和水的密度(单位:3/kg m )385808578.3078.30736.7/730735730D CD CDt C kg m ρρ︒--===--385808578.3972.89/968.6971.8968.6WD WDkg m ρρ--==--310.925810.9258750.21/736.7972.89D Dkg m ρρ-=+=390859085.3285.32729.62/724730724F CF CFt C kg m ρρ︒--===--390859085.32968.39/965.3968.6965.3WF WF kg m ρρ--==--310.26510.265891.11/729.62968.39F Fkg m ρρ-=+=3W 1009595.119595.11719.91/716720720W C CW t C kg m ρρ︒--===--31009595.1195961.77/958.4961.85961.85WW WW kg m ρρ--==--310.049710.0497945.97/719.91961.71W W kg m ρρ-=+= 所以 3132891.11750.21820.66/22893.58924.64918.54/22F DL F W L kg m kg mρρρρρρ++===++=== ()4611841.24/LD D D M x x kg kmol =⨯+-⨯= ()4611821.47/LF F F M x x kg kmol =⨯+-⨯= ()4611818.56/LW W W M x x kg kmol =⨯+-⨯=141.2421.4731.36/22LD LF L M M M kg kmol ++===218.5621.4720.02/22LW LF L M M M kg kmol ++===()4611841.58/VD D D M y y kg kmol =⨯+-⨯=()4611831.19/VF F F M y y kg kmol =⨯+-⨯= ()4611823.16/VW W W M y y kg kmol =⨯+-⨯=141.5831.1936.39/22VD VF V M M M kg kmol ++===223.1631.1927.18/22VW VF V M M M kg kmol ++===()1.293105.32522.431.191.108.3145273.1585.3229VF ρ⨯⨯⨯==⨯+⨯()1.293105.32522.441.58 1.508.3145273.1578.3029VDρ⨯⨯⨯==⨯+⨯ ()1.293105.32522.423.160.7968.3145273.1595.1129VW ρ⨯⨯⨯==⨯+⨯31 1.10 1.50 1.30/2V kg m ρ+==321.100.7960.948/2V kg m ρ+==§3.2.4混合液体表面张力二元有机物-水溶液表面张力可用下列各式计算1/41/41/4msw w so o σϕσϕσ=+注:0000000w w w w w w w x V x V x V x V x V x V σσ==++000//sw sw s w s s s x V V x V V ϕϕ==2/3/2/3lg 0.441q w o o w w w V q B Q V T q σϕσϕ⎛⎫⎡⎤⎛⎫==⨯- ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭, 2lg 1sw sw so so A B Q A ϕϕϕϕ⎛⎫=+=+= ⎪⎝⎭, ,式中下角标,w,o,s 分别代表水、有机物及表面部分;x w 、x o 指主体部分的分子数,V w 、V o 主体部分的分子体积,δw 、δo 为纯水、有机物的表面张力,对乙醇q = 2。