九年级数学同步练习题-初中三年级数学试题练习、期中期末试卷-初中数学试卷

合集下载

九年级(上)数学期中阶段性测试-初中三年级数学试题练习、期中期末试卷-初中数学试卷

九年级(上)数学期中阶段性测试-初中三年级数学试题练习、期中期末试卷-初中数学试卷

九年级(上)数学期中阶段性测试-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载九年级(上)数学期中阶段性测试命题人:毛夏美审核人:邵小瑶一选择题(每题3分,共12题)1、下列函数中,图象经过点的反比例函数解析式是()A.B.C.D.2如图,已知是⊙O的圆周角,,则圆心角是()A. B. C. D.3如图,在⊙ABC中,DE⊙BC,DE分别与AB、AC相交于点D、E,若AD=4,DB=2,则DE⊙BC 的值为()A.B.C.D.4二次函数与x轴的交点个数是()A.0B.1C.2D.35如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中为,长为8cm,长为12cm,则阴影部分的面积为()A.B C.D.6如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出四个结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b.其中正确结论是().(A)②④(B)①④(C)②③(D)①③7反比例函数与二次函数在同一平面直角坐标系中的大致图象如图所示,它们的解析式可能分别是().(A)y=,y=kx2-x(B)y=,y=kx2+x(C)y=-,y=kx2+x(D)y=-,y=-kx2-x8抛物线y=3(x-2)2+1先向上平移2个单位,再向左平移2个单位所得的解析式为()A.y=3x2+3B. y=3x2-1C. y=3(x-4)2+3D. y=3(x-4)2-19在相同时刻阳光下的物高与影长成比例,如果高为1.5m的测杆的影长为2.5m,那么影长为30m的旗杆的高是()(A)、20m(B)、16m(C)、18m(D)、15m10一个圆锥的高为3,侧面展开图是半圆,则圆锥的侧面积是()(A)9(B)18(C)27(D)3911如图,⊙APD=90°,AP=PB=BC=CD,则下列结论成立的是()A .ΔPAB⊙ΔPCAB.ΔPAB⊙ΔPDAC .ΔABC⊙ΔDBA D.ΔABC⊙ΔDCA12如图,AB是半圆O的直径,⊙BAC=200 , D是弧AC上的点,则⊙D是()A.1200B.1100C.1000D.900二填空题13、如果点P是线段AB的黄金分割点,且AP>PB,则下列说法正确的是______(仅填序号)。

初三第一学期数学期中测试-初中三年级数学试题练习、期中期末试卷-初中数学试卷

初三第一学期数学期中测试-初中三年级数学试题练习、期中期末试卷-初中数学试卷

初三第一学期数学期中测试-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载初三第一学期数学期中测试(满分120分,时间120分钟)一. 选择题:(每题3分,共24分)1. 下列说法错误的是:()A. 任何命题都有逆命题B.定理都有逆定理C. 命题的逆命题不一定是正确的D.定理的逆定理一定是正确的2. 在等边△ABC中,D为AC的中点,E为BC延长线上一点,且DB=DE,若△ABC的周长为12, 则△DCE的周长为()A. 4B. 4+2C. 4+D. 4+23. 下列结论错误的是()A. 到已知角两边距离相等的点在同一直线上B. 一射线上有一点到已知角两边的距离相等这条射线平分已知角C. 到角两边距离相等的一个点与这个角的顶点的连线不平分这个角D. 角内有两点各自到角的两边的距离相等,经过这两点的直线平分这个角4. 若一元二次方程(m-1)x2+3m2x+(m2+3m-4)=0有一根为零,则m=()A. 1B. -4C. 1或-4D. -1或45. 当x为何值时,代数式x2-4x+12的值与代数式-x2+18的值相等()A. B.C. D.6. 如果平行四边形内一点P到平行四边形各边的距离相等,那么该四边形一定是()A. 矩形B. 菱形C. 正方形D. 无法确定7. 从菱形的一个钝角顶点向它的两条对边作垂线,这两条垂线分别垂直平分对边,则该菱形的钝角等于()A. 135°B. 150°C.110° D. 120°8. 下面哪个图能近似反映上午九点北京天安门广场上的旗杆与影子的位置关系()二. 填空题:(每题3分,共24分)1. 命题“等腰三角形两底角平分线相等”的逆命题是;它是命题(真、假)2. 当m=______时,关于x的方程(m+1)+5+mx=0是一元二次方程。

3. 如图,在△ABC中,△C=90°,△A的平分线交BC于E,DE△AB于D,BC=8,AC=6,AB=10,则△BDE的周长为_________。

2024年最新人教版初三数学(下册)期中考卷及答案(各版本)

2024年最新人教版初三数学(下册)期中考卷及答案(各版本)

2024年最新人教版初三数学(下册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是3,则这个数是()A. 9B. 27C. 9D. 272. 下列各式中,正确的是()A. $ \sqrt{9} = 3 $B. $ \sqrt[3]{8} = 2 $C. $ \sqrt{16} = 4 $D. $ \sqrt[3]{27} = 3 $3. 下列各式中,错误的是()A. $ 3^2 = 9 $B. $ (3)^2 = 9 $C. $ 3^3 = 27 $D.$ (3)^3 = 27 $4. 下列各式中,正确的是()A. $ 2^4 = 16 $B. $ 2^5 = 32 $C. $ 2^6 = 64 $D. $ 2^7 = 128 $5. 下列各式中,错误的是()A. $ 5^2 = 25 $B. $ 5^3 = 125 $C. $ 5^4 = 625 $D.$ 5^5 = 3125 $6. 下列各式中,正确的是()A. $ 10^2 = 100 $B. $ 10^3 = 1000 $C. $ 10^4 = 10000 $D. $ 10^5 = 100000 $7. 下列各式中,错误的是()A. $ 2^0 = 1 $B. $ 3^0 = 1 $C. $ 4^0 = 1 $D. $ 5^0 = 1 $8. 下列各式中,正确的是()A. $ 0^2 = 0 $B. $ 0^3 = 0 $C. $ 0^4 = 0 $D. $ 0^5 = 0 $9. 下列各式中,正确的是()A. $ (1)^2 = 1 $B. $ (1)^3 = 1 $C. $ (1)^4 = 1 $D. $ (1)^5 = 1 $10. 下列各式中,错误的是()A. $ (2)^2 = 4 $B. $ (2)^3 = 8 $C. $ (2)^4 = 16 $D. $ (2)^5 = 32 $二、填空题(每题3分,共30分)11. 若一个数的平方根是5,则这个数是__________。

中考数学复习同步检测(24)-初中三年级数学试题练习、期中期末试卷-初中数学试卷

中考数学复习同步检测(24)-初中三年级数学试题练习、期中期末试卷-初中数学试卷

中考数学复习同步检测(24)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载中考数学复习同步检测(24)姓名(相似三角形)一.填空题:1.若∶3 =∶4 =∶5 , 且, 则;2.已知∶∶= 3∶4∶5 , 且,那么;3.若,则;4.已知∶4 =∶5 = z∶6 , 则①∶∶z = , ② ∶;5.若, 则;6.两个相似三角形的相似比是5:7,第一个三角形的最大边长50 cm,第二个三角形的最大边长;如果第二个三角形的周长为35 cm,那么第一个三角形的周长是;7.在Rt∶ABC中∶ACB = R t∶,CDAB于D,那么ADAB = ;ADDB = ;ABCD = ;8.在ABC中,D为AB 的中点,AB = 4 ,AC = 7 ,若AC 上有一点E,且ΔADE 与原三角形相似,则AE =;9.如图,DE∶BC,AD∶DB= 2 ∶3 ,则ΔADE 与ΔABC 的周长之比为;面积之比为;10.两个相似三角形对应高的比为1∶,则它们的相似比为;对应中线的比为;对应角平分线的比为;周长比为;面积比为;二.选择题:11.两个相似三角形的周长比为,则面积比为()(A)(B)(C)(D)12.如图,MN∶PQ,,,那么满足的图形是()13.在∶ABC和∶DEF中,若∶A =,∶B =,∶A =∶D =,AB = DE,则这两个三角形()(A)是相似形,但不是全等形(B)是全等形,但不是相似形(C)是相似形,也是全等形(D)既不是相似形,也不是全等形14.下列判断正确的是()(A)任意两个等腰直角三角形相似(B)任意两个直角三角形相似(C)任意两个等腰三角形相似(D)菱形都相似15.已知线段,那么下列结论正确的是()(A)是、的比例中项(B)是、的比例中项(C)是、的比例中项(D)以上结论都不对16.∶ABC中,DE∶BC,且DE把∶ABC分成面积相等的两个部分,那么ADAB =()(A)(B)(C)(D)以上答案都不对17.如图,具备下列哪个条件可以使∶ACD∶∶BCA()A BC D16.如图,DE是∶ABC的中位线,表示∶ADE的面积,表示四边形DBCE的面积,则=()(A)(B)(C)(D)三、解答题:17.已知线段DE分别交∶ABC的边AB、AC于D、E,且,∶ABC的周长是,面积是,求∶ADE 的周长和面积;18.如图,在平行四边形ABCD中,E是DC上的一点,AE的延长线交BC于F,求证:19.如图,AC∶BC,CD∶AB,BC∶DE,若AC =,DE= ,求CD之长;20.E 为正方形ABCD 的边上的中点,AB = 1 ,MN∶DE 交AB 于M,交DC 的延长线于N,求证:∶ EC= DC·CN;∶ CN = ;∶ NE = ;21.如图,已知∶ABC 中,D 为AC 上的一点,E为CB 延长线上的一点,BE = AD,ED和AB 相交于点F,求证:EF∶FD = AC∶BC22.已知,E 为ΔABC 的AC 边的中点,过E 作FD 交AB 于D,交BC 的延长线于F , 求证:AD·BF = BD·CF23.如图,∶BAC =,在CB的延长线上分别取点D、E,使∶DAB =∶BAE =∶C,求证:24.已知,如图,梯形ABCD 中,AB∶DC,梯形外一点P,连结PA、PB 分别交DC 于F、G,且DF = FG,对角线BD 交AF 于E,求证:AP∶PF = AE∶EF欢迎下载使用,分享让人快乐。

2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)

20232024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)一、选择题(每题2分,共40分)1. 下列选项中,哪个是方程的正确表示形式?A. 2x + 3 = 7B. x + y = 5C. 3x 4yD. 2(x + 1) = 62. 下列哪个选项是二元一次方程组?A. 3x + 4y = 7B. 2x y = 5C. 4x + 3y = 8D. 3x + 2y = 6, 2x y = 43. 下列哪个选项是二次方程?A. x^2 5x + 6 = 0B. 2x + 3 = 7C. x^2 + 3x + 2D. 3x^2 4x4. 下列哪个选项是一次函数的图像?A. y = x^2B. y = 2x + 3C. y = x^3D. y = 1/x5. 下列哪个选项是反比例函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^36. 下列哪个选项是二次函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^37. 下列哪个选项是等差数列的通项公式?A. a_n = a_1 + (n 1)dB. a_n = a_1 + ndC. a_n = a_1 + (n + 1)dD. a_n = a_1 + (n 2)d8. 下列哪个选项是等比数列的通项公式?A. a_n = a_1 r^(n 1)B. a_n = a_1 r^nC. a_n = a_1 r^(n + 1)D. a_n = a_1 r^(n 2)9. 下列哪个选项是概率的基本性质?A. 0 <= P(A) <= 1B. P(A) > 1C. P(A) < 0D. P(A) = 210. 下列哪个选项是勾股定理的表述?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^2二、填空题(每题2分,共20分)1. 一元一次方程的解是________。

中考数学复习同步检测(37)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-

中考数学复习同步检测(37)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-

中考数学复习同步检测(37)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------中考数学复习同步检测(37)(模拟题1)姓名初中升学数学样卷(一)一.填空题:(每小题3分,共30分)1.;2.2003年6月1日,世界最大的水利枢纽——三峡工程正式下闸蓄水.三峡水库的库容可达393 000 000 000立方米,用科学计数法表示该水库库容为立方米;3.分解因式:;4.函数中,自变量的取值范围是;5.在某次数学测验中,随机抽取了10份试卷,其成绩如下85,81,89,81,72,82,77,81,79,83。

则这组数据的众数、平均数与中位数分别为,,;6.二次函数,当时,;且随的增大而减小;7.正方形的面积是144,则阴影部分面积的小正方形边长是8.随机抽取某城市30天的空气质量状况如下表:污染指数()407090110120140天数()3510741其中≤50时,空气质量为优;50<≤100时,空气质量为良;100<≤150时,空气质量为轻为污染。

估计该城市一年(以365天计)中空气质量达到良以上的有天。

9.如图:AB是⊙O的直径,弦CD⊙AB,垂足为E,如果AB=12,CD=8,那么AE的长为;10.党的十六大提出全面建设小康社会,加快推进社会主义现代化,力争国民生产总值到2020年比2000年翻两番。

在本世纪的头二十年(2001年~2020年),要实现这一目标,以十年为单位计算,设每个十年的国民生产总值的增长率都是,那么满足的方程为;二.选择题(每小题4分,共24分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案前的字母填写在下表中。

11121314151611.下列各式中正确的是A.B. C. D.12.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是(A)(B)(C)(D)13.10名学生的平均成绩是,如果另外5名学生每人得84分,那么整个组的平均成绩是(A)(B)(C)(D)14.为了判断甲、乙两个小组学生英语口语测验成绩哪一组比较整齐,通常需要知道两组成绩的(A)平均数(B)方差(C)众数(D)频率分布15.某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。

初三下学期期末数学综合复习资料(一)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数

初三下学期期末数学综合复习资料(一)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数

初三下学期期末数学综合复习资料(一)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------初二下学期期末数学综合复习资料(一)_____班姓名__________学号___________成绩_________一、选择题(每题2分,共36分)1、如果是二次根式,那么应满足的条件是()A、≠2的实数B、<2的实数C、>2的实数D、>0且≠2的实数2、一个多边形的内角和与外角和相等,则这个多边形是()A、三角形B、四边形C、五边形D、六边形3、在、、中、、中,最简二次根式的个数有()A、4B、3C、2D、14、即是轴对称图形,又是中心对称图形的是()A、菱形B、等腰梯形C、平行四边形D、等腰三角形5、下面结论正确的是()A、无限小数是无理数B、无理数是开方开不尽的数C、带根号的数是无理数D、无限不循环小数是无理数6、一个多边形的内角和与外角的和为540°,则它是()边形。

A、5B、4C、3D、不确定7、计算的值为()A、-2B、2C、±2D、8、矩形各内角的平分线能围成一个()A、矩形B、菱形C、等腰梯形D、正方形9、二次根式中的取值范围是()A、>-1B、<-1C、≠-1D、一切实数10、平行四边形、矩形、菱形、正方形共有的性质是()A、对角线相等B、对角线互相平分C、对角线互相垂直D、对角形互相垂直平分11、计算的值是()A、B、-0.14C、D、12、矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=5cm,则矩形的对角线长是()A、5cmB、10cmC、D、2.5cm13、的算术平方根是()A、B、C、D、±14、直角梯形的一个内角为120°,较长的腰为6cm,一底为5cm,则这个梯形的面积为()A、B、C、D、或15、将中的根号外的因式移入根号内后为()A、B、C、D、16、下面四组二次根式中,同类二次根式是()A、B、C、D、17、不能判定四边形ABCD为平行四边形的题设是()A、AB=CD AB ∠CDB、∠A=∠C∠B=∠DC、AB=AD BC=CDD、AB=CD AD=BC18、若等于()A、B、C、2D、二、填空题(每题3分,共15分)1、一个菱形的两条对角线分别为12cm、16cm,这个菱形的边长为______;面积S=_________。

2024--2025学年人教版九年级数学上册期中数学模考训练卷

2024--2025学年人教版九年级数学上册期中数学模考训练卷

安全管理质量标准化管理制度第一章总则第一条为加强企业安全管理,规范安全管理程序和标准,确保员工生命安全,财产安全和环境安全,制定本管理制度。

第二条本制度适用于本企业员工及相关服务供应商。

第三条本制度所称安全管理,指的是对企业内外环境、使用设施以及人员行为进行规范和控制,以实现安全目标和减少安全风险。

第四条本制度的主要任务是建立和完善企业安全管理体系,确保安全管理程序的合理性、有效性和可操作性。

第二章安全目标第五条企业的安全目标是:保障员工的生命安全和健康、保护企业财产安全、保护周围环境的安全。

第六条为实现上述目标,企业将从以下几个方面着手:(一)建立健全安全管理体系,明确各级管理责任。

(二)开展安全教育培训,提高员工的安全意识和技能。

(三)进行安全风险评估和预防措施的规划和实施,减少安全风险。

(四)加强安全设施和装备的管理和维护,确保其正常和安全运行。

(五)建立应急管理体系,做好安全事故应急处理工作。

(六)加强对供应商的安全管理,确保其符合相关安全要求。

第三章安全管理责任第七条企业的安全管理责任由企业管理层负责,具体责任人为安全管理部门和相关部门的负责人。

第八条具体的安全管理责任如下:(一)企业管理层负责对整个企业的安全管理工作进行监督和检查,确保安全管理措施的有效实施。

(二)安全管理部门负责制定和完善企业的安全管理制度和规程,组织开展安全培训和宣传工作,开展安全风险评估,进行事故调查和处理。

(三)相关部门负责制定和实施本部门的安全管理措施,确保本部门的安全工作符合企业的要求。

(四)员工应参与并遵守企业的安全管理制度和规程,积极参与安全培训活动,提高安全意识和技能。

第四章安全管理措施第九条企业应制定并实施一系列的安全管理措施,包括以下方面:(一)安全设施和装备的管理和维护:对企业内的安全设施和装备进行定期维护和检查,确保其正常和安全运行。

(二)安全培训和宣传:对新员工进行入职培训,定期组织安全培训和宣传活动,提高员工的安全意识和技能。

2024-2025学年人教版九年级上学期数学期中模拟训练试题

2024-2025学年人教版九年级上学期数学期中模拟训练试题

2024-2025学年人教版九年级上学期数学期中模拟训练试题一、单选题1.下列四个图形中,是中心对称图形的是()A .B .C .D .2.方程()()222410x x x -+-=化为一般形式为()A .2460x x --=B .22140x x ++=C .22140x x +-=D .22140x x -+=3.抛物线()212y x =-+的顶点坐标是()A .()1,2B .()1,2-C .()1,2-D .()1,2--4.下列一元二次方程中,有两个不相等实数根的是()A .21x x 04-+=B .x 2+2x+4=0C .x 2-x+2=0D .x 2-2x=05.将二次函数y =-2x 2的图象平移后,可得到二次函数y =-2(x +1)2的图象,平移的方法是()A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位6.二次函数2y ax =与一次函数y ax a +=在同一坐标系中的大致图象可能是()A .B .C .D .7.某商场元旦促销,将某种书包每个x 元,第一次降价打“八折”,第二次降价每个又减18元,经两次降价后售价为102元,则所列方程是()A .x ﹣0.8x ﹣18=102B .0.08x ﹣18=102C .102﹣0.8x =18D .0.8x ﹣18=1028.已知关于x 的一元二次方程220x x m -+=有两个不相等的实数根,若m 为非负整数,则m 的值为()A .2m <B .0C .1D .0或19.如图,将等边三角形OAB 放在平面直角坐标系中,A 点坐标(1,0),将△OAB 绕点O 逆时针旋转60°,则旋转后点B 的对应点B '的坐标为()A .(12-B .(-1,12)C .(-32D .12)10.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x 1-013y1-353下列结论:(1)0ac <;(2)当1x >时,y 的值随x 值的增大而减小;(3)3是方程()210ax b x c -+=+的一个根;(4)当13x -<<时,()210ax b x c -+>+.其中正确的个数为()A .4个B .3个C .2个D .1个二、填空题11.把y =(3x-2)(x +3)化成一般形式后,一次项系数与常数项的和为.12.把方程x 2+4x +1=0用配方法化为(x +m )2=n 的形式,则n 的值是.13.若方程2980kx x -+=的一个根为1,则k =,另一个根为.14.已知点A (–3,y 1),B (–1,y 2),C (2,y 3)在抛物线y=23x 2上,则y 1,y 2,y 3的大小关系是(用“<”连接).15.小华酷爱足球运动.一次训练时,他将足球从地面向上踢出,足球距地面的高度h (m )与足球被踢出后经过的时间t (s )之间的关系为h =﹣5t 2+12t ,则足球距地面的最大高度是m .16.如图,将ABC ∆绕点C 按逆时针方向旋转75°后得到11A B C ∆,若25ACB ∠=︒,则1BCA ∠的度数为三、解答题17.用适当的方法解下列方程(1)()2130x --=;(2)23620x x --=.18.如图有一座抛物线形拱桥,桥下在正常水位时AB 宽20米,水位上升3米就达到警戒线CD ,此时水面宽度为10米.(1)在如图的坐标系中求抛物线的解析式.(2)若洪水到来时,水位以每小时0.25米的速度上升,从警戒线开始,再持续多少小时水能漫到拱桥顶?19.综合与探究在ABC V 中,AB AC =,CAB ∠的角度记为α.(1)操作与证明;如图①,点D 为边BC 上一动点,连接AD ,将线段AD 绕点A 逆时针旋转角度α至AE 位置,连接DE ,CE .求证:BD CE =;(2)探究与发现:如图②,若90α=︒,点D 变为BC 延长线上一动点,连接AD 将线段AD 绕点A 逆时针旋转角度α至AE 位置,连接DE ,CE .可以发现:线段BD 和CE 的数量关系是___________;(3)判断与思考;判断(2)中线段BD 和CE 的位置关系,并说明理由.20.已知关于x 的方程230x kx k ++-=,求证:不论k 取何实数,该方程都有两个不相等的实数根.21.如图所示,已知正方形ABCD 的边长为3,E ,F 分别是,AB BC 边上的点,且45EDF ∠=︒,将DAE 绕点D 按逆时针方向旋转90︒得到DCM △.(1)证明:DEF DMF △≌△.(2)若1AE =,求FM 的长.22.如图,在边长为1个单位长度的小正方形组成的两格中,点A 、B 、C 都是格点.(1)将ABC V 向左平移6个单位长度得到111A B C △;(2)将ABC V 绕点O 按逆时针方向旋转180︒得到222A B C △,请画出222A B C △;(3)若点O 的坐标为()0,0,点B 的坐标为()2,3;写出111A B C △与222A B C △的对称中心的坐标.23.如图,在△ABC 中,∠ACB =90°,AC =BC ,P 是△ABC 内的一点,且PB =1,PC =2,PA =3,求∠BPC 的度数.24.抛物线213()y ax bx x m =+-≤的对称轴为直线1x =,与x 轴交于(1,0)A -和(,0)B m ,与y轴交于点C ,将1y 沿直线x m =作对称,得到抛物线2y .(1)求抛物线2y 的解析式(写出自变量的取值范围);(2)直线BC 与2y 的另一个交点D ,E ,F 分别为线段BC ,BD 上任意一点(不与B ,C ,D 重合),作EM y P 轴,FN y ∥轴,分别交1y ,2y 于点M ,N ,设EM 的最大值为1d ,FN的最大值为2d ,求证:2122d BC d BD =.。

九年级数学全册过关检测-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下

九年级数学全册过关检测-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下

九年级数学全册过关检测-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------九年级数学(下)全册过关检测(考试时间:120分钟;满分120分)班级姓名得分一.选择题(每小题3分,共30分,将正确答案的选项填在以下表格中)题号12345678910答案1. 在△ABC中,A,B为锐角,且有,则这个三角形是()A. 等腰三角形;B.直角三角形;C.钝角三角形;D. 锐角三角形2.sin70°、cos70°、tan70°的大小关系是()A.sin70°>cos70°>tan70°;B. tan70°>cos70°>sin70°;C. cos70°> sin70&ordm;> tan70°;D.tan70&ordm; > sin70&ordm; >cos70&ordm;3.已知△ABC中,AD是高,AD=2,DB=2,CD=2,则△BAC= ()A. 1050B. 150C.1050或150D. 6004. 已知圆柱的侧面积是100πcm2,若圆柱底面半径为r(cm),高线长为h(cm),则h关于r的函数的图象大致是()5.直角坐标平面上将二次函数y=-2(x-1)2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为()A.(0,0)B.(1,-2)C.(0,-1)D.(-2,1)6.函数的图象与轴有交点,则的取值范围是()A.B.C.D.7. 已知△O1与△O2内切,它们的半径分别为2和3,则这两圆的圆心距d满足()A、d=5B、d=1C、1<d<5D、d>58.某工厂在抽查的100件产品中,有95件正品,5件是次品,从中任抽一件是次品的概率为()A.0.05B.0.5C. 0.95D.959.盒中装有5个大小相同的球,其中3个白球,2个红球,从中任意取两个球,恰好取到一个红球和一个白球的概率是()A. B.C. D.10.直线不经过第三象限,那么+3的图象大致为()yyyyO xOxO xO xA BCD二.填空题(每小题3分,共30分,将正确答案填写在横线上)1.在Rt△ABC中,△C=90°,BC=10,AC=4,则cosB=,tanA=;2.等腰三角形的腰长为3,底边长为2,则底角的余弦值为;3. 若△A为锐角,且,则△A=;4抛物线,若其顶点在轴上,则.5.已知二次函数,则当时,其最大值为0.6.若一个圆锥的母线长为5cm,高为4cm,则圆锥的侧面展开图的面积为.7.如图,P是△O外一点,OP垂直于弦AB于点C,交于点D,连结OA、OB、AP、BP。

九年级数学第二学期阶段性测试(一)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学

九年级数学第二学期阶段性测试(一)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学

九年级数学第二学期阶段性测试(一)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------九年级数学第二学期阶段性测试(一)数学试卷亲爱的同学:好的开端是成功的一半,希望你们稳扎稳打,在考试中获得好成绩!请注意:全卷共三大题25小题,满分150分。

一、选择题。

(本题有12小题,每小题4分,共48分)1、下列运算正确的是()A、a+a=a2B、a2·a=2a3C、(2a)2÷a=4aD、(―ab)2=―ab22、我县经济发展步伐不断加快,综合实力显著增强,其中外向型经济发展迅速,近四年来实际利用外资1640万美元。

1640万美元用科学记数法表示为()A、1.64×103美元B、1.64×107美元C、0.164×108美元D、164×105美元3、计算的结果为()A、4B、C、D、164、若等腰三角形底角为72°,则顶角为()A、108°B、72°C、54°D、36°5、不等式2―x<1的解是()A、x>1B、x>―1C、x<1D、x<―16、夏天,一杯开水放在桌子上,杯中水的温度T(℃)随时间t变化的关系大致图象()T(℃)T(℃)T(℃)T(℃)OtOtOtOtABCD7、在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A、小明的影子比小强的影子长B、小明的影子比小强的影子短yC、小明的影子和小强的影子一样长D、无法判断谁的影子长8、已知抛物线y=―x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A、―2.5<x<B、―1.5<x<-10xC、x>或x<—2.5D、x<或x>—2.5y9、如图,AP切圆O于点P,OA交圆O于B,且AB=1,PAP=,则阴影部分的面积S等于()OBAA、B、C、D、无法确定10、如图,把一个正方形纸片三次对折后沿虚线剪下(1)、(2)两部分,则展开(2)得()ABC D11、有若干张如图所示的正方形和长方形卡片,表中所列四种方案能拼成邻边长分别是a+b 和2a+b的矩形是()a(1)b(2)b(3)aba12、已知P是线段AB的黄金分割点,点P将AB分成m、n两部分(m>n),以m为边长的正方形面积是S1,以(m+n)和n为边长的矩形的面积为S2,则S1与S2的大小关系是()A、S1>S2B、S1=S2C、S1<S2D、无法确定二、填空题。

初三数学练习26.1(一)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试

初三数学练习26.1(一)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试

初三数学练习26.1(一)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------初三数学练习26.1(一)1.一个圆柱的高等于底面半径,写出它的表面积S与半径r之间的关系式。

2.n支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m与球队数n之间的关系式.(二)在同一直角坐标系中,画出下列二次函数的图象:y=,,y=.观察三条抛物线的相互关系,并分别指出它们的开口方向、对称轴及顶点。

你能说出抛物线的开口方向、对称轴及顶点吗?它与抛物线有什么关系?(三)在同一直角坐标系中,画出下列二次函数的图象: 观察三条抛物线的相互关系,并分别指出它们的开口方向、对称轴及顶点。

(四)说出下列抛物线的开口方向、对称轴及顶点:(1)y=2(x+3)2+5;(2)y=-3(x-1)2-2;(3) y=4(x -3)2+7;(4)y=-5(x+2)2-6(五)1.写出下列抛物线的开口方向、对称轴及顶点坐标.当x为何值时y的值最小(大)?(1)y=3x2+2x;(2)y=-x2-2x;(3)y=-2x2+8x-8;(4)2. 已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?习题26.1复习巩固1.一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式.2.某种商品的价格是2元,准备进行两次降价.如果每次降价的百分率都是x,经过两次降价后的价格y(单位:元)随每次降价的百分率x的变化而变化,y与x之间的关系可以用怎样的函数来表示?3.在同一直角坐标系中画出下列函数的图象:y=3x2,y=-3x2,y=x2.4.分别写出抛物线y=4x2与的开口方向、对称轴及顶点.5.分别在同一直角坐标系内,描出下列二次函数的图象,并写出对称轴及顶点:(1)y=x2+3, y=x2-2;(2),(3)y=(x+2)2-2, y=(x-1)2+2.6.先确定下列抛物线的开口方向、对称轴及顶点(用公式),再描点画图:(1)y=-3x2+12x-3; (2)y=4x2-24x+26;(3)y=2x2+8x-6;(4)y=综合运用7.如图,在三角形ABC中,∠B=90°,AB=1.2㎝,BC=2.4㎝,动点P从点A开始沿边AB向B以2㎜/s 的速度移动,动点Q从点B开始沿边BC向C以4㎜/s的速度移动,如果P,Q分别从A,B同时出发,那么∠PBQ的面积S随出发时间t如何变化?写出函数关系式及t的取值范围.8.一辆汽车的行驶距离s(单位:m)与行驶时间t(单位:s)的函数关系式是s=9t+,经过12s汽车行驶了多远?行使380m需要多少时间?9.从地面竖直向上抛出一小球.小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系式是h=30t-5t2.小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?10.如图,四边形的两条对角线AC,BD互相垂直,AC+BD=10,当AC,BD的长是多少时,四边形ABCD 的面积最大?拓广探索11.钢球从斜面顶端由静止开始沿斜面滚下,速度每秒增加1.5m/s.(1)写出滚动的距离s(单位:m)与滚动的时间t(单位:s)之间的关系式.(提示:本题中,距离=平均速度×时间t, =,其中,是开始时的速度,是t秒时的速度)(2)如果斜面的长是1.5m,从斜面顶端滚到底端用多长时间?12.填空:(1)已知函数y=2(x+1)2+1,当x<______时y随x的增大而减小, 当x>_____时y随x的增大而增大, 当x=_____时y最_____.(2)已知函数y=—2x2+x—4,当x<______时y随x的增大而增大, 当x>_____时y随x的增大而减小, 当x=_____时y最_____.习题26.2复习巩固1.已知函数y=3x2—4x+1.(1)画出函数的图象;(2)观察图象,当x取哪些值时,函数值为0?2.用函数的图象求下列方程的解:(1)x2—3x+2=0(2)—x2+6x—9=0(3)x2+x+2=0(4)4—x—x2=0综合运用3.如图,一名男生推铅球,铅球行进高度y与水平距离x之间的关系是(1)画出函数的图象;(2)观察图象,指出铅球推出的距离.4.抛物线与x轴的公共点是(-1,0),(3,0),求这条抛物线的对称轴.拓广探索5.画出函数y=x2-2x-3的图象,利用图象回答:(1)方程x2-2x-3=0的解是什么;(2)x取什么值时,函数值大于0;(3)x取什么值时,函数值小于0;6.下列情形时,如果a>0,抛物线y=ax2+bx+c的顶点在什么位置?(1)方程ax2+bx+c=0有两个不等的实数根;(2)方程ax2+bx+c=0有两个相等的实数根;(3)方程ax2+bx+c=0无实数根;如果a<0呢?习题26.3复习巩固1.下列抛物线有最高点或最低点吗?如果有,写出这些点的坐标(用公式):(1)y=-4x2+3x;(2)y=3x2+x+62.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(200-x)件,应如何定价才能使利润最大?3.飞机着陆后滑行的距离s(单位:m)与滑行的时间t(单位:s)的函数关系式是s=60t-1.5t2.飞机着陆后滑行多远才能停下来?综合运用4.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12,用这快废料剪出一个长方形CDEF,其中,点D,E,F分别在AC,AB,BC上,要使剪出的长方形CDEF面积最大,点E应选在何处?5.如图,点E、F、G、H分别位于正方形ABCD的四条边上,四边形EFGH也是正方形.当点E位于何处时,正方形EFGH的面积最小?6.某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?拓广探索7.如图, 厂门的上方是一段抛物线,抛物线的顶点离地面的高度是 3.8m,一辆装满货物的卡车,宽为1.6m,高为2.6m,要求卡车的上端与门的距离不小于0.2m,这辆卡车能否通过厂门?8.分别用定长为L的线段围成矩形和圆,哪种图形的面积大?为什么?复习题26复习巩固1.如图,正方形ABCD的边长是4,E是AB上一点,F是AD的延长线上一点,BE=DF.四边形AEGF 是矩形,则矩形AEGF的面积y随BE的长x的变化而变化,y与x之间的函数关系式可以用怎样的函数来表示?2.某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率x,写出第3年的销售量y与每年增加的百分率x之间的函数关系式.3.选择题在抛物线y=x2-4x-4上的一个点是()(A)(4,4)(B)(3,-1)(C)(-2,-8)(D)()4.先确定下列抛物线的开口方向、对称轴及顶点坐标(用公式),再描点画图:(1)y=x2-2x-3(2)y=1+6x-x2(3)y=(4)y=5.汽车刹车后行使的距离s(单位:m)与行使的时间t(单位:s)的函数关系式是s=15t-6t2,汽车刹车后到停下来前进了多远?综合运用6.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长为18m,这个矩形的长,宽各为多少时,菜园的面积最大,最大限面积是多少?7.一个滑雪者从85m长的山坡滑下,滑行的距离s(单位:m)与滑行时间t(单位:s)的函数关系式是s=1.8t+0.064t2.他通过这段山坡需要多长时间?8.已知矩形的周长为36cm ,矩形绕它的一条边旋转形成一个圆柱,矩形的长,宽各为多少时,旋转形成的圆柱的侧面积最大?9.在周长为定植p的扇形中,半径是多少时扇形的面积最大?10.对某条线路的长度进行n次测量,得到n个结果x1x2,…,xn.如果用x作为这条线路长度的近似值,当x取什么值时,(x-x1)2+(x-x2)2+,,…+(x-xn)2最小?感谢阅读,欢迎大家下载使用!。

2023~2024学年第一学期期中九年级数学期中练习卷【含答案】

2023~2024学年第一学期期中九年级数学期中练习卷【含答案】

2023-2024学年度第一学期期中练习卷九年级数学(本试卷共6页.全卷满分120分.时间为120分钟)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在括号内) 1.下列方程中,是一元二次方程的是( ) A . 2x -y =5B .x +1x=0C .5x 2=1D .y 2-x +3=02.一元二次方程x 2-4x =-4的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定3.已知1是关于x 的一元二次方程x 2+x +k 2-3k -6=0的一个实数根,则实数k 的值是( ) A .4或-1 B .-4或1C .-1D .4 4.甲、乙两名运动员在6次射击测试中的成绩如下表(单位:环):甲的成绩 6 7 8 8 9 9 乙的成绩596 ?910如果两人测试成绩的中位数相同,那么乙第四次射击的成绩(表中标记为?)可以是( ) A .6环 B .7环 C .8环 D .9环5.如图,四边形ABCD 是⊙O 的内接四边形,若∠BCD =110°,则∠BOD 的度数是( ) A .70° B .120° C .140°D .160°6.如图,△ABC 内接于⊙O ,∠BAC =45°,AD ⊥BC ,垂足为D ,BD =6,DC =4. 则AB 的长( )A .6 2B .10C .12D .6 5 二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置.......上) 7.数据2、4、3、-4、1的极差是 .8.已知x 1,x 2是方程x 2-3x +2=0的实数根,则x 1+x 2- x 1x 2= .(第6题)(第5题)C9.已知⊙O 的半径为6cm ,点P 在⊙O 内,则线段OP 的长 6cm (填“<”、“=”或“>”).10.某公司决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如下表:测试项目 创新能力综合知识语言表达测试成绩/分708090将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是 分.11.如图,AB 是半圆的直径,P 是AB 延长线上一点,PC 切半圆于点C ,若∠CAB=31°,则∠P = °.12.在⊙O 中,弦AB 的长为4,OC ⊥AB ,交AB 于点D ,交⊙O 于点C ,OD ∶CD =3∶2,则⊙O 半径长 .13.一个圆锥的底面半径为3,母线长为4,其侧面积是 .14.某企业2020年盈利3000万元,2022年盈利3662万元,该企业盈利的年平均增长率不变.设年平均增长率为x ,根据题意,可列出方程 .15.如图,AE 是正八边形ABCDEFGH 的一条对角线,则∠BAE = °.16.如图,在等腰直角三角形ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长 .P(第11题)D EABC(第15题) FG H(第16题)(第12题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(8分)解方程:(1)x 2+2x -3=0; (2)(x -2)2=3x -6. 18.(8分)关于x 的一元二次方程x 2-4x -k -6=0有两个不相等的实数根x 1,x 2. (1)求k 的取值范围;(2)若x 1 =3x 2,求k 的值.19.(6分)如图,在⊙O 中,AB 是非直径的弦,CD 是直径,且CD 平分AB ,并交AB 于点M ,求证:CD ⊥AB ,AC ⌒=BC ⌒,AD ⌒=BD ⌒.(第20题)20.(9分)甲、乙两名同学本学期五次某项测试的成绩(单位:分)如图所示.(1)甲、乙两名同学五次测试成绩的平均数分别是 分、 分; (2)利用方差判断这两名同学该项测试成绩的稳定性; (3)结合数据,请再写出一条与(1)(2)不同角度的结论.21.(6分)要建一个面积为150 m 2的长方形养鸡场,为了节省材料,养鸡场的一边利用原有的一道墙,另三边用铁丝网围成,如果铁丝网的长为35 m .若墙足够长,则养鸡场的长与宽各为多少?(第19题)甲 乙(第21题)墙22.(8分)用直尺和圆规完成下列作图:(不写作法,保留作图的痕迹)(1)如图①,经过A 、B 、C 三点作⊙P ;(2)如图②,已知M 是直线l 外一点.作⊙O ,使⊙O 过M 点,且与直线l 相切.23.(8分)如图,在△ABC 中,AB =AC ,过点A ,C 的⊙O 与BC ,AB 分别交于点D ,E ,连接DE . (1)求证DB =DE ;(2)延长ED ,AC 相交于点P ,若∠P =33°,则∠A 的度数为▲________°.B(第23题)AED CO(第22题) BAClM①②24.(7分)某商店将进价为30元的商品按售价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得12000元的利润,且尽量减少库存,应涨价为多少元?25.(8分)如图,D为⊙O上一点,点C是直径BA延长线上的一点,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线BE交CD的延长线于点E.若BC=12,AC=4,求BE的长.C(第25题)26.(10分)如果关于x的一元二次方程ax2+bx+c=0满足a+b+c=0,那么称这样的方程为“美好方程”.例如,方程x2-4x+3=0,1-4+3=0,则这个方程就是“美好方程”.(1)下列方程是“美好方程”的是▲ ;①x2+2x-3=0 ②x2-3x=0 ③x2+1=0 ④x(x-1)=2(x-1)(2)求证:“美好方程”ax2+bx+c=0总有两个实数根;(3)若美好方程(b-c)x2+(c-a)x+(a-b)=0有两个相等的实数根,求证:a+c=2 b.27.(10分)(1)证明定理:圆内接四边形的对角互补.已知:如图①,四边形ABCD 内接于⊙O . 求证:∠A +∠C =∠B +∠D =180°.(2)逆命题证明:若四边形的一组对角∠A +∠C =180°,则这个四边形的4个顶点共圆(图②) 可以用反证法证明如下:在图②中,经过点A ,B ,D 画⊙O .假设点C 落在⊙O 外,BC 交⊙O 于点E ,连接DE , ∵四边形ABED 内接于⊙O∴可得 =180°, ∵∠A +∠C =180°,∴∠BED = ,与∠BED >∠C 得出矛盾; 同理点C 也不会落在⊙O 内, ∴A ,B ,C ,D 共圆.(3)结论运用:如图∠BAC =120°,线段AB =83,点D ,E 分别在射线AC 和线段AB 上运动,以DE 为边在∠BAC 内部作等边△DEF ,则BF 的最小值为 .②DCBAO①FCAEBD③2023~2024学年度第一学期期中练习卷 九年级数学数学试卷参考答案及评分标准一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(每小题2分,共20分) 7.8 8. 1 9. <10.77 11.28° 12.5213.12π14.3000(1+x )2=366215.67.5°16.π三、解答题(本大题共11小题,共88分)17.(8分)(1)解:x 2+2x -3=0x 2+2x +1=3+1 ···················································································· 1分 (x +1)2=4 ····························································································· 2分 x +1=±2 ····························································································· 3分 ∴x 1=1, x 2=-3 ················································································ 4分 (2)解:(x -2)2-3(x -2)=0 ············································································ 5分(x -2) (x -2-3)=0 ··············································································· 6分 ∴x 1=2, x 2=5. ·················································································· 8分18.(8分)(1)∵x 2-4x -k -6=0有两个不相等的实数根 ∴(-4)2-4(-k -6) >0…………… …………… 2分 ∴k >-10………………………………………………4分(2)∵x 1,x 2是方程两个实数根∴x 1+x 2=4,x 1x 2=-k -6…………………………………………5分 ∵x 1 =3x 2∴4x 2=4∴x 2=1…………………………………………6分 ∴x 1 =3…………………………………7分 ∴x 1x 2=3=-k -6∴k =-9………………………………………8分题号 1 2 3 4 5 6 答案CAABCD19.(6分)证明:连接OA ,OB , ∵OA =OB,CD 平分AB∴∠AMO =∠BMO =90°,…………………2分 ∴CD ⊥AB ,…………………………3分 ∵CD 是直径,∴AC ⌒=BC ⌒,AD ⌒=BD ⌒. (6)20.(9分)(1)80,80 ··················································································· 2分 (2)方差分别是:s 2甲=(80-80)2+(90-80) 2+(80-80)2+(70-80)2+(80-80)25=40分2 ···································· 4分 s 2乙=(60-80)2+(70-80) 2+ (90-80)2+(80-80)2+(100-80)25=200分2 ································ 6分 由s 2甲<s 2乙可知,甲同学的成绩更加稳定. ·························································· 7分 (3)甲同学的成绩在70,80,90间上下波动,而乙的成绩从60分到100分,呈现上升趋势,越来越好,进步明显. ·················································································· 9分21.(6分)解 :设养鸡场的宽为x m ,则长为(35-2x )m ,由题意得: x (35-2x )=150…………………………………2分整理得:2x 2-35x +150=0…………………………………3分 解得:x 1=10,x 2=152.…………………………………4分当x 1=10时,35-2 x 1=15;当x 2=152时,35-2 x 2=20.……………………5分答: 养鸡场长为15 m ,宽为10 m 或长为20 m ,宽为152………………………6分 22.(本题8(1)(4分)(2)(lD(第20题)23.(本题8分)(1)∵AB=AC,∴∠B=∠C,又∵四边形AEDC为⊙O的内接四边形,∴∠AED+∠C=180°,∵∠BED+∠AED=180°,∴∠BED=∠C∴∠BED=∠B∴DB=DE.··························································································6分(2)38° ·······························································································8分24.(7分)解:设涨价x元,根据题意得:(50-30+x)(500-10x)=12000.…………………………3分解得:x1=10,x2=20. …………………………5分∵要尽量减少库存,∴x2=20(舍). …………………………6分答:涨价10元.…………………………7分25.(8分)证明:(1)连接OD.∴∠ADO=∠OAD,∵AB是⊙O的直径,∴∠BDA=90°,∴∠ABD+∠BAD=90°,∵∠CDA=∠CBD,∴∠CDO=∠CDA+∠ADO=90°,即CD⊥OD. ················································································ 3分分(43.∵BE2+BC2=EC∴x 2+122=(x+42.∴x=43.即BE的长为43.·········································································· 8分26.(10分)(1)①④…………………………………2分(2)证明:∵ax2+bx+c=0是“美好方程”∴a+b+c=0………………3分∴b=-a-c………………4分判别式b 2-4 ac=(-a-c)2-4 ac=c2-2 a c+a2=(c-a)2≥0………………5分∴“美好方程”ax2+bx+c=0总有两个实数根.………………6分(3)证明:方法一:∵美好方程(b-c)x2+(c-a)x+(a-b)=0有两个相等的实数根∴(c-a)2-4(b-c) (a-b) =0…………………………………7分∴c2-2 a c+a2-4 ab+4 b2+4 a c-4 b c=0∴c2+2 a c+a2-4 ab-4 b c+4 b2=0…………………………………8分∴(c+a)2-4(a+c) b+4 b2=0∴(c+a-2 b)2=0…………………………………9分∴c+a-2 b=0,即a+c=2 b.…………………………………10分方法二:将x=1代入美好方程(b-c)x2+(c-a)x+(a-b)=0左右两边,左边=右边从而得出x=1是方程的解。

2024—2025学年人教版九年级上册数学期中考试模拟试卷【含答案】

2024—2025学年人教版九年级上册数学期中考试模拟试卷【含答案】

2024—2025学年人教版九年级上册数学 期中考试模拟试卷一、单选题1.在平面直角坐标系中,点(﹣6,5)关于原点的对称点的坐标是( )A .(6,5)B .(﹣6,5)C .(6,﹣5)D .(﹣6,﹣5)2.在Rt ABC △中,90C Ð=°,D 为AC 上一点,CD =动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A ®®匀速运动,到达点A 时停止,以DP 为边作正方形DPEF .设点P 的运动时间为()s t ,正方形DPEF 的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段AB 的长是( )A .6B .8C .D .3.对于一元二次方程230x x c -+=,当94c =时,方程有两个相等的实数根.若将c 的值在94的基础上减小,则此时方程根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定4.如图,△ABC 是等腰直角三角形,∠A =90°,BC =4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD =x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .5.如图,在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC =10,BD =9,则△ADE 的周长为( )A .19B .20C .27D .306.下列函数是二次函数的是( )A .21y x x =+B .1(1)2y x x =-C .21y x =--D .()21y x x =+7.已知二次函数y=2x 2﹣12x +19,下列结果中正确的是( )A .其图象的开口向下B .其图象的对称轴为直线x=﹣3C .其最小值为1D .当x <3时,y 随x 的增大而增大8.如图,二次函数2y ax bx c =++的图象与x 轴相交于A ,()1,0B 两点,对称轴是直线1x =-,下列说法正确的是( )A .0a <B .当1x >-时,y 的值随着x 的值增大而减小C .点A 的坐标为()2,0-D .420a b c -+<9.二次函数()20y ax bx c a =++¹的部分图像如图所示,图像过点()1,0-,对称轴为直线2x =,下列结论:(1)40a b +=;(2)93a c b +>;(3)8720a b c ++>;(4)若点()13,A y -,点21,2B y æö-ç÷èø、点37,2C y æöç÷èø在该函数图像上,则132y y y <<;(5)若方程()()153a x x +-=-的两根为1x 和2x ,且12x x <,则1215x x <-<<.其中正确的结论有( )A .2个B .3个C .4个D .5个10.对于下列结论:①二次函数y=6x 2,当x >0时,y 随x 的增大而增大;②关于x 的方程a (x+m )2+b=0的解是x 1=﹣2,x 2=1(a 、m 、b 均为常数,a≠0),则方程a (x+m+2)2+b=0的解是x 1=﹣4,x 2=﹣1;③设二次函数y=x 2+bx+c ,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c 的取值范围是c≥3.其中,正确结论的个数是( )A .0个B .1个C .2个D .3个二、填空题11.二次函数21(3)22y x =+-的图象是由函数212y x =的图象先向 (左、右)平移 个单位长度,再向 (上、下)平移 个单位长度得到的.12.如图,已知二次函数()20y ax bx c a =++¹的图象与x 轴交于点()1,0A -,与y 轴的交点B 在()0,2-和()0,1-之间(不包括这两点),对称轴为直线1x =.下列结论:①0abc >;②420a b c ++>;③244ac b a -<-;④113a <<;⑤bc >.其中正确结论有 (填写所有正确结论的序号).13.关于x 的一元二次方程2410kx x +-=有两个不相等的实数根,则k 的取值范围是 .14.某种商品原价每件售价为400元,经过连续两次降价后,每件售价为288元,设平均每次降价的百分率为x ,则可列方程为 .15.已知抛物线248y x x =+-与直线l 交于点(5,)A m -,(),3B n -(0n >).若点()P x y , 在抛物线上且在直线l 下方(不与点A ,B 重合),则点P 的纵坐标的取值范围为 .三、计算题16.解方程:(1)()()2121x x -=-(2)22520x x --=四、作图题17.如图,正方形网格中,每个小方格都是边长为1的正方形△ABC 的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC 向上平移5个单位长度,画出平移后的△A 1B 1C 1;(2)将△A 1B 1C 1绕坐标原点O 顺时针方向旋转90°,出旋转后的△A 2B 2C 2.五、解答题18.台风“杜苏芮”牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动,第一天收到捐款3000元,第三天收到捐款4320元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到的捐款的增长速度,第四天该单位能收到多少捐款?19.一块长方形铁皮长为4dm ,宽为3dm ,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原来铁皮的面积一半,若设盒子的高为xdm ,根据题意列出方程,并化成一般形式.20.已知关于x 的一元二次方程2320kx x --=有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为小于2的整数,且方程的根都是整数,求k 的值.21.如图,长方形ABCG 与长方形CDEF 全等点B ,C ,D 和点C ,G ,F 分别在同一条直线上,其中4AB CD ==,8BC DE ==.连接对角线AC ,CE .(1)在图①中,连接AE ,直接判断ACE △形状是______;直接写出AE 的值______;(2)如图②,将图①中的长方形CDEF 绕点C 逆时针旋转,当CF 平分ACE Ð时,求此时点E 到直线AC 的距离.(3)如图③,将图①中的长方形CDEF 绕点C 逆时针旋转到某一个位置,连接AE ,连接DG 并延长交AE 于点M ,取AG 的中点N ,连接MN ,直接写出MN 长的最小值______;22.如图,已知点()()1,04,0A B -,,点C 在y 轴的正半轴上,且90ACB Ð=°,抛物线2y ax bx c =++经过A 、B 、C 三点,其顶点为M(1)求抛物线2y ax bx c =++的解析式;(2)试判断直线CM 与以AB 为直径的圆的位置关系,并加以证明;(3)在抛物线上是否存在点N ,使得4BCN S =V ?如果存在,那么这样的点有几个?如果不存在,请说明理由.23.已知抛物线()220y ax x c a =++¹经过点()0,1,对称轴是直线1x =.(1)求抛物线的解析式;(2)若点(),s t 在该抛物线上,且12s -<<;求t 的取值范围;(3)若设m 是抛物线与x 轴的一个交点的横坐标,记629140m M -=,比较M 的大小.1.C【分析】根据关于原点对称的点,横、纵坐标都互为相反数即可得出答案.【详解】点P (﹣6,5)关于原点对称点的坐标是(6,﹣5),故选:C .【点睛】本题考查了在平面直角坐标系中,关于原点对称的点的特征,关于原点对称的点,横、纵坐标都互为相反数;关于x 轴对称的点,y 互为相反数,x 不变;关于y 轴对称的点,x 互为相反数,y 不变,关于谁对称谁不变,另一个互为相反数.2.A【分析】本题考查了二次函数图象,求二次函数解析式,在Rt ABC △中,CD =,PC t =则22222S PD t t ==+=+,求得BC 的长,设函数的顶点解析式,用待定系数法,求出函数表达式,即可求解.【详解】解:在Rt ABC △中,CD =,PC t =则22222S PD t t ==+=+,当6S =时,262t =+,解得:2t =(负值已舍去),∴2BC =,∴抛物线经过点()2,6,∵抛物线顶点为:()4,2,设抛物线解析式为:()242S a t =-+,将()2,6代入,得:()26242a =-+,解得:1a =,∴()242S t =-+,当18y =时,()218420t t =-+=,(舍)或8t =,∴826AB =-=,故选:A .3.C【分析】根据一元二次方程根的判别式求解即可得.【详解】解:由题意可知:1a =,3b =-,当94c =时,24940b ac c D =-=-=,当94c<时,∴24940b ac cD=-=->,∴该方程有两个不相等的实数根,故C正确.故选:C.【点睛】本题考查一元二次方程利用根的判别式判断根的情况,解题的关键是熟练运用根的判别式进行求解.4.B【分析】过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45°,BH=CH=AH=1 2BC=2,分类讨论:当0≤x≤2时,如图1,易得PD=BD=x,根据三角形面积公式得到y=12x2;当2<x≤4时,如图2,易得PD=CD=4-x,根据三角形面积公式得到y=-12x2+2x,于是可判断当0≤x≤2时,y与x的函数关系的图象为开口向上的抛物线的一部分,当2<x≤4时,y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【详解】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=12BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=12•x•x=212x;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12•(4﹣x)•x=2122x x-+,故选B.5.A【分析】先由△ABC 是等边三角形得出AC=AB=BC 根据图形旋转的性质得出AE=CD ,BD=BE ,由∠EBD=60°,BE=BD 即可判断出△BDE 是等边三角形,故DE=BD ,即可求出结果【详解】解:∵△ABC 是等边三角形,∴AC=AB=BC=10,∵△BAE 是△BCD 逆时针旋转60°得出,∴AE=CD ,BD=BE ,∠EBD=60°,∴AE+AD=AD+CD=AC=10,∵∠EBD=60°,BE=BD ,∴△BDE 是等边三角形,∴DE=BD=9,∴△AED 的周长=AE+AD+DE=AC+BD=19.故答案为19【点睛】此题重点考查学生对于图形旋转的理解,抓住旋转前后图形边角的关系是解题的关键6.B【分析】根据二次函数的定义:一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数进行分析.【详解】解:A 、含有分式,不是二次函数,故此选项不符合题意;B 、2111(1)=222y x x x x =--,是二次函数,故此选项正确;C 、是一次函数,故此选项不符合题意;D 、3y x x =+是三次函数,故此选项不符合题意;故选:B .【点睛】本题主要考查了二次函数定义,判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,解题关键是注意二次项系数不为0.7.C【分析】根据二次函数的性质对各选项分析判断即可解答.【详解】∵二次函数y=2x 2﹣12x+19=2(x ﹣3)2+1,∴开口向上,顶点为(3,1),对称轴为直线x=3,有最小值1,当x >3时,y 随x 的增大而增大,当x <3时,y 随x 的增大而减小;所以C 选项正确.故选C .【点睛】本题考查了二次函数的性质,熟记性质是解题的关键.8.D【分析】本题主要考查了二次函数的图象与系数的关系,抛物线与x 轴的交点.抛物线开口向上则0a >,即可判断A ;又0a >,对称轴是直线1x =-,从而当1x >-时,y 的值随着x 的值增大而增大,故可判断B ;又(1,0)A ,对称轴是直线1x =-,则(3,0)B -,故可判断C ;结合(3,0)A -,(1,0)B ,抛物线开口向上,从而当2x =-时,420y a b c =-+<,进而可以判断D .【详解】解:Q 抛物线开口向上,0a \>,故A 错误;Q 开口向上,对称轴是直线1x =-,\当1x >-时,y 的值随着x 的值增大而增大,故B 错误.(1,0)B Q ,对称轴是直线1x =-,(3,0)A \-,故C 错误.结合(3,0)A -,(1,0)B ,抛物线开口向上,\当2x =-时,420y a b c =-+<.故D 正确.故选:D .9.B【分析】①正确,根据对称轴公式计算即可.②错误,利用x =-3时,y <0,即可判断,③正确.由图像可知抛物线经过(-1, 0)和(5, 0)列出方程组求出a 、b 即可判断.④错误,利用函数图像即可判断.⑤正确,利用二次函数与二次不等式关系即可解决问题.【详解】①正确:∵-22b a= ,所以4a +b =0.故①正确.②错误:∵x =-3时, y <0,∴9a - 3b +c <0,∴9a +c <3b ,故②错误.③正确,由图像可知抛物线经过(- 1,0)和(5,0) ,∴ a -b +c = 025a + 5b +c = 0解得b = -4a ,c = -5a ,∴8a +7b +2c =8a -28a -10a =-30a ,∵a <0,∴8a + 7b +2c >0 ,故③正确.④错误,∵点A (-3,y 1)、点B (-12,y 2)、点C (72,y 3)∵3.5-2= 1.5,2-(-0.5)=2.5 ,∴1.5< 2.5点C 离对称轴的距离近,∴y 3>y 2,∵a <0 , -3< -0.5<2,∴y 1<y 2∴y 1<y 2<y 3,故④错误.⑤正确.∵a <0 ,∴(x +1)(x -5)=-3a >0 ,即(x +1)(x -5)>0 ,故x <-1或x >5 ,故⑤正确.∴正确的有三个,故选B .【点睛】本题考查抛物线和x 轴交点的问题以及二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图像信息解决问题,属于中考常考题型.10.D【分析】①根据二次函数的性质即可得出抛物线y=6x 2的对称轴为y 轴,结合a=6>0即可得出当x >0时,y 随x 的增大而增大,结论①正确;②将x=﹣2和1代入一元二次方程可得出x+m 的值,再令x+m+2=该数值可求出x 值,从而得出结论②正确;③由“当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0”可得出当x=1时y=0且抛物线的对称轴≥2,解不等式即可得出b≤﹣4、c≥3,结论③正确.综上即可得出结论.【详解】∵在二次函数y=6x 2中,a=6>0,b=0,∴抛物线的对称轴为y 轴,当x>0时,y 随x 的增大而增大,∴①结论正确;∵关于x 的方程a (x+m )2+b=0的解是x 1=-2,x 2=1,∴x+m=-2+m 或1+m ,∴方程a (x+m+2)2+b=0中,x+m+2=-2+m 或x+m+2=1+m ,解得:x 1=-4,x 2=-1,∴②结论正确;∵二次函数y=x 2+bx+c ,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,∴1022b c b ++=ìïí-ïî?解得:b≤-4,c≥3,∴结论③正确.故选D【点睛】此题重点考查学生随函数图象和性质理解,熟练掌握图象性质是解题的关键.11. 左 3 下2【分析】本题主要考查二次函数与几何变换,图象平移时函数表达式变化的特征是:图象向左平移()0n n >个单位,函数表达式中x 加上n ;图象向右平移()0n n >个单位,函数表达式中x 减去n ;图象向下平移()0m m >个单位,函数表达式中y 加上m ;图象向上平移()0m m >个单位,函数表达式中y 减去m ;根据以上平移规律,对题中的二次函数表达式进行分析,即可得出答案.【详解】解:由“左加右减”的原则将函数212y x =的图象向左平移3个单位,所得二次函数的解析式为:()2132y x =+;由“上加下减”的原则将函数()2132y x =+的图象向下平移2个单位,所得二次函数的解析式为:()21322y x =+-.故答案为:左,3,下,2.12.①③⑤【分析】此题主要考查图象与二次函数系数之间的关系,涉及了数形结合思想的应用.根据对称轴为直线1x =及图象开口向下,与y 轴的交点,可判断出a 、b 、c 的符号,从而判断①;求出图象与轴的另一个交点为()3,0,则可判断②;利用函数的最小值:2414ac b a-<-,可判断③;根据方程20ax bx c ++=的两根为121,3x x =-=,可得,32c b a a =-=-,可判断④⑤的正误.【详解】解:①∵函数开口方向向上,∴0a >;∵对称轴为直线1x =,∴12b a-=,∴20b a =-<,∵抛物线与y 轴交点在轴负半轴,∴0c <,∴0abc >,故①正确;②∵图象与x 轴交于点()1,0A -,对称轴为直线1x =,∴图象与轴的另一个交点为()3,0,当2x =时,420y a b c =++<,故②错误;③∵二次函数的图象与y 轴的交点在()0,1-的下方,对称轴在x 轴右侧,且0a >,∴函数的最小值:2414ac b a-<-,∴244ac b a -<-,故③正确;④∵图象与x 轴交于点()1,0A -,()3,0,∴方程20ax bx c ++=的两根为121,3x x =-=,∴132,133b c a a-=-+==-´=-,∴3c a =-,2b a =-,∴,32c b a a =-=-,∵图象与y 轴的交点B 在()0,2-和()0,1-之间,∴21c -<<-,∴1233a <<;故④错误;∵,32c b a a =-=-,∴32c b -=-,∵0c <,∴23b c c =>,故⑤正确.故答案为:①③⑤.13.1k >-且0k ¹【分析】此题考查了一元二次方程的定义,一元二次方程的判别式,解题的关键是熟练掌握一元二次方程的定义,一元二次方程的判别式.由一元二次方程的定义可得0k ¹,由一元二次方程2410kx x +-=有两个不相等的实数根,可得判别式240b ac D =->,解不等式求解即可.【详解】解:∵2410kx x +-=是一元二次方程,∴0k ¹,又∵一元二次方程2410kx x +-=有两个不相等的实数根,∴240b ac D =->,即()24410k -´->,解得:1k >-,综上所述,k 的取值范围是1k >-且0k ¹.故答案为:1k >-且0k ¹.14.()24001288x -=【分析】设平均每次降价的百分率为x ,利用经过连续两次降价后的价格=原价×(1-降价率)2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设平均每次降价的百分率为x ,依题意得:400(1-x )2=288.故答案为:400(1-x )2=288.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.15.123y -£<-【分析】先求出点A 和点B 的坐标,确定直线l 的函数表达式,配合二次函数的图像求解即可;【详解】解:分别将(5,)A m - 、(),3B n - 代入248y x x =+-得:()()m =-+´--=-254583n n +-=-2483 ,解得:11n = ,25n =-(舍)∴(5,3)A --,(1,3)B -∴直线l 的表达式为:=3y -()y x x x =+-=+-2248212Q ∴y 的最小值为:12-y 的取值范围为:123y -£<-故答案为:123y -£<-【点睛】本题考查了二次函数的性质、二次函数图像与表达式的关系;熟练配合函数图像将复杂问题直观化是解决问题的关键.16.(1)121,3x x ==;(2)12x x ==【分析】(1)解一元二次方程,用因式分解法求解;(2)解一元二次方程,用公式法求解.【详解】解:(1)()()2121x x -=-()()21210x x ---=()()1120x x ---=1=0x -或120x --=121,3x x \==(2)22520x x --=2,5,2a b c ==-=-Q 224(5)42(2)410b ac \D =-=--´´-=>∴x \=1x \【点睛】本题考查解一元二次方程,掌握解方程的步骤因式分解的方法及求根公式,正确计算是解题关键.17.(1)见解析;(2)见解析.【分析】(1)利用点平移的坐标规律写出点A 1、B 1、C 1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A 1、B 1、C 1的对应点A 2、B 2、C 2即可.【详解】(1)解:如图,△A 1B 1C 1为所作;(2)解:如图,△A 2B 2C 2为所作;【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.18.(1)捐款增长率为20%(2)第四天该单位能收到5184元捐款【分析】(1)设捐款增长率为x ,根据“第一天收到捐款3000元,第三天收到捐款4320元,第二天、第三天收到捐款的增长率相同”列方程,解方程即可得到答案;(2)用第三天收到的捐款乘以()120%+即可得到答案.【详解】(1)设捐款增长率为x ,根据题意列方程得,23000(1)4320x ´+=,解得10.2x =,2 2.2x =-(不合题意,舍去);答:捐款增长率为20%.(2)第四天收到捐款为:()4320120%5184´+=(元),答:第四天该单位能收到5184元捐款.【点睛】此题考查了一元二次方程的应用,根据题意找到等量关系列出方程是解题的关键.19.241460x x -+=.【分析】首先表示出无盖长方体盒子的底面长为(4-2x )dm ,宽为(3-2x )dm 再根据长方形的面积可得方程()()14232432x x --=´´.【详解】由题意得:无盖长方体盒子的底面长为()42x dm -,宽为()32x dm -,由题意得,()()14232432x x --=´´整理得:241460x x -+=.【点睛】此题主要考查了由实际问题抽象出一元二次方程,关键是根据题意表示出无盖长方体盒子的长与宽.20.(1)98k >-且0k ¹(2)1k =-【详解】解:(1)2(3)4(2)9+8k k D =--´-=,∵一元二次方程2320kx x --=有两个不相等的实数根,∴9+800k k >ìí¹î∴98k >-且0k ¹.(2)∵k 为不大于2的整数,∴1k =-,1k =∴当1k =-时,方程2320x x ---=2-都是整数;当1k =时,方程2320x x --=综上所述,1k =-.21(3)2【分析】(1)由矩形ABCG 与矩形CDEF 全等得AC CE =,然后证明出90ACE Ð=°,再由勾股定理得AC =AE =;(2)由CF 平分ACE Ð结合等腰三角形“三线合一”得:CF AE ^,4AF EF ==,再由等面积法得点E 到直线AC (3)过点E 作AG 的平行线交DG 的延长线于H ,连接EG ,先证明HME GMA V V ≌得AM ME =,再由中位线定理得12MN GE =,再由在矩形CDEF 绕点C 逆时针旋转过程中GE的范围为:CE CG GE CE CG -££+得GE 的最小值为4,故MN 的最小值为2-.【详解】(1)Q 矩形ABCG 与矩形CDEF 全等,AC CE \=,ACB ECF Ð=Ð,90ACB ACG Ð+Ð=°Q ,90ECF ACG \Ð+Ð=°,90ACE \Ð=°,∴ACE △是等腰直角三角形,222AE AC CE \=+,QAC =,AE\=;(2)当CF平分ACEÐ时,AC CE=Q,由等腰三角形“三线合一”得:CF AE^,4AF EF==,\设点E到直线AC的距离为d,则由等面积法:1122ACES EF CF AC d =×=×V,d\=\此时点E到直线AC(3)如图,过点E作AG的平行线交DG的延长线于H,连接EG,HE AGQ∥,H MGA\Ð=Ð,CG CD=Q,CGD CDG\Ð=Ð,90AGC CDEÐ=Ð=°Q,90MGA CGD\Ð+Ð=°,90CDG HDEÐ+Ð=°,MGA HDE\Ð=Ð,HDE H\Ð=Ð,HE ED AG\==,在HMEV与GMAV中,HME GMAH MGAHE AGÐ=ÐìïÐ=Ðíï=î,(AAS)HME GMA\V V≌,AM ME\=,AGQ的中点为N,12MN GE \=,MN GE ∥,Q 在矩形CDEF 绕点C 逆时针旋转过程中GE 的范围为:CE CG GE CE CG -££+,44GE \-££+,GE \的最小值为4,MN \的最小值为2.【点睛】本题是矩形旋转变换综合题,主要考查了矩形的性质、旋转的性质、矩形全等的性质、全等三角形的判定与性质、等面积法求高、中位线定理,过点E 作AG 的平行线交DG 的延长线于H 、构造HME GMA V V ≌是本题的关键.22.(1)213++222y x x =-.(2)直线CM 与以AB 为直径的圆相切.(3)((()12321212,3N N N +---,,.【分析】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,相似三角形的判定和性质,二次函数的性质,直线与的位置关系,平行线的性质.(1)Rt ACB V 中,OC AB ^,利用相似三角形能求出OC 的长,即可确定C 点坐标,再利用待定系数法能求出该抛物线的解析式.(2)证明CM 垂直于过点C 的半径即可.(3)先求出线段BC 的长,根据BCN △的面积,可求出BC 边上的高,那么做直线l ,且直线l 与直线BC 的长度正好等于BC 边上的高,那么直线l 与抛物线的交点即为符合条件的N 点.【详解】(1)解:Rt ACB V 中,14OC AB AO BO ^==,,,∴ACO ABO V V ∽.∴CO AO OB CO =,∴24OC OA OB =×=.∴2OC =.∴点()0,2C .∵抛物线2y ax bx c =++经过A 、B 两点,∴设抛物线的解析式为:()()+14y a x x =-,将C 点代入上式,得:()()20+104a =-,解得1=2a -.∴抛物线的解析式:()()1x+142y x =--,即213++222y x x =-.(2)直线CM 与以AB 为直径的圆相切,理由如下:如图,设抛物线的对称轴与x 轴的交点为D ,连接CD .由于A 、B 关于抛物线的对称轴对称,则点D 为Rt ABC V 斜边AB 的中点,32CD AB =.由(1)知:22131325++2=22228y x x x æö=---+ç÷èø,则点325,28M æöç÷èø,259288ME =-= .而32CE OD ==,2OC =,∴ME CE OD OC =::.又∵90MEC COD Ð=Ð=°,∴COD CEM V V ∽.∴CME CDO Ð=Ð.∴9090CME CDM CDO CDM DCM Ð+Ð=Ð+Ð=°Ð=°,.∵CD 是D e 的半径,∴直线CM 与以AB 为直径的圆相切.(3)由()()4,00,2B C 、得:BC =则:11422BCN S BC h h h =×=´==V ,过点B 作BF BC ^,且使BF h =F 作直线l BC P 交x 轴于G .Rt BFGV中,sin sinBGF CBOÐ=Ð=1 2 -,sin4BG BF BGF=¸Ð==.∴()0,0G或()8,0.易知直线BC:122y x=-+,则可设直线l:12y x b=-+,将G点坐标代入,得:0b=或4b=,则:直线l:12y x=-142y x=-+;联立抛物线的解析式,得:21213++222y xy x xì=-ïïíï=-ïî或214213++222y xy x xì=-+ïïíï=-ïî.解得:2y1xì=+ïí=-ïî2y1xì=-ïí=-ïî或2y3x=ìí=î∴抛物线上存在点N,使得S4BCN=V,这样的点有3个:((()12321212,3N N N+---,,23.(1)221y x x=-++(2)22t-<£(3)当1m=M>;当1m=M<【分析】本题主要考查了求二次函数解析式,二次函数图象的性质,二次函数与x轴的交点问题:(1)把()0,1代入解析式可得1c=,再根据对称轴计算公式可得1a=-,据此可得答案;(2)根据(1)所求可得当1x£时,y随x的增大而增大;当1x>时,y随x的增大而减小,分别求出当1s=-时,当1s=时,t得值即可得到答案;(3)先根据题意得到2210m m -++=,即221m m =+,再把221m m =+整体代入分子中把分子进行降次求解即可.【详解】(1)解:把()0,1代入()220y ax x c a =++¹中得1c =.∵对称轴是直线1x =,∴212a-=,解得1a =-.∴抛物线的解析式为221y x x =-++.(2)解:∵由(1)知:221y x x =-++.∵对称轴是直线1x =,∴当1x £时,y 随x 的增大而增大;当1x >时,y 随x 的增大而减小,当1x =时,y 有最大值为212112-+´+=,∵点(),s t 在该抛物线上,且12s -<<,∴当1s =-时,2t =-;当2s =时,1t =;∴22t -<£;(3)解:∵m 是抛物线与x 轴的一个交点的横坐标,∴2210m m -++=,即221m m =+.∴629140m M -=()32911402m -+=()()2021212914m m -++=()()20214412914m m m -+++=()()129140214214m m m =++++éù-ëû()()1252911402m m +-+=22422529140m m ++-=()242122529140m m +++-=702929140m +-=2m =,∵221m m =+,∴m =∴2m =∴当1m =时,M > 当1m =M <.。

初三数学同步测试卷

初三数学同步测试卷

一、选择题(每题5分,共25分)1. 若a,b,c成等差数列,且a+b+c=12,则b的值为()A. 4B. 6C. 8D. 102. 已知函数f(x) = x^2 - 4x + 4,则f(x)的图像是()A. 顶点在x轴上,开口向上B. 顶点在x轴上,开口向下C. 顶点在y轴上,开口向上D. 顶点在y轴上,开口向下3. 在等腰三角形ABC中,底边BC=8,腰AB=AC=10,则三角形ABC的面积是()A. 24B. 32C. 40D. 484. 下列函数中,是奇函数的是()A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = x^45. 已知一元二次方程x^2 - 5x + 6 = 0,其解为()A. x = 2,x = 3B. x = 1,x = 4C. x = 2,x = 4D. x = 1,x = 6二、填空题(每题5分,共25分)6. 若等差数列{an}的公差为d,首项为a1,则第n项an=________。

7. 函数f(x) = -2x^2 + 8x + 3的对称轴方程为________。

8. 在直角坐标系中,点A(2,3),点B(-3,2),则线段AB的中点坐标为________。

9. 若sinα = 1/2,且α在第二象限,则cosα的值为________。

10. 若等比数列{an}的首项为a1,公比为q,则第n项an=________。

三、解答题(每题10分,共40分)11. 已知数列{an}的通项公式为an = 3n - 2,求:(1)数列的前5项;(2)数列的求和公式。

12. 已知函数f(x) = x^3 - 3x^2 + 4x + 1,求:(1)函数的对称轴方程;(2)函数的极值。

13. 在等边三角形ABC中,BC=8,求:(1)三角形ABC的周长;(2)三角形ABC的高。

14. 已知函数f(x) = 2x - 3,求函数f(x)的图像与x轴、y轴的交点坐标。

九年级数学同步练习试卷习题大全

九年级数学同步练习试卷习题大全

九年级数学同步练习试卷习题大全初三数学同步练习题一、选择题(每小题3分,共30分)。

1.在0,-2,-1,这四个数中,最小的数是。

A.0B.-2C.-1D.2.设x是有理数,那么下列各式中一定表示正数的是。

A、2023xB、x+2023C、|2023x|D、|x|+20233.下面的图1绕直线m旋转一周所形成的几何体是。

4.设互为相反数,互为倒数,则2023-的值是。

A.2023B.0C.1D.-15.如果线段AB=6cm,BC=4cm,且线段A、B、C在同一直线上,那么A、C间的距离是。

A.10B.2C.10或2D.无法确定6.绝对值小于4.6的整数有。

A.10个B.9个C.8个D.7个7.下列说法正确的是。

A.8x的指数是0;B.x的系数是0;C.-3是一次单项式;D.-ab的系数是-8.已知,则多项式的值是。

A.B.C.D.9.钟表上的时间为晚上8点时的时针和分针之间的夹角的度数是。

A.120°B.105°C.100°D.90°10.商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为。

A.330元B.210元C.180元D.150元二、填空题(每小题3分,共24分).11.的相反数的倒数是________。

12.若单项式是同类项,则a+b的值是________。

13.某工程队在修建高速公路时,有时需要将弯曲的道路改直以缩短路程,这样做用到的几何学的原理是______________________________。

14.已知________,________,则________。

15.宁夏国土面积约为66400平方千米,用科学记数法表示并保留两个有效数字为________平方千米。

16.潜水艇原停在海面下650米,先上浮200米,又下潜150米,这时潜水艇________米处。

17.如图直线AB、CD相交于E,EF平分∠BED,已知∠DEF=70°,则∠AED的度数是________。

中考数学复习同步检测(30)-初中三年级数学试题练习、期中期末试卷-初中数学试卷

中考数学复习同步检测(30)-初中三年级数学试题练习、期中期末试卷-初中数学试卷

中考数学复习同步检测(30)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载中考数学复习同步检测(30)姓名(直线与圆的位置关系2)一.填空题:1.一条弦分圆成2∶3两部分,过这条弦的一个端点引远的切线,则所成的两弦切角为;∶2.如图∶,AB为∶O的直径,PB、PC分别切∶O于B、C,若∶ACE = 38°,则∶P =;3.∶ABC内接于∶O,DE切∶O于B,若∶CBE = 77°,AB所地的圆心角为100°,则∶ABC = ;4.如图∶,AB切∶O于A,∶BAC = 37°,则∶AOC =;5.如图∶,∶ABC内接于∶O,PA、PB是切线,A、B是切点,AC // PB,∶APB = 70°,则∶ACB =,∶CAB =,∶ABC =;6.如图∶,BD为∶O的直径,AB、AE切∶O于B、C,∶BDC = 65°,则∶BAC =;7.如图∶,四边形ABCD内接于∶O,AB为直径,EF切∶O于D,∶ADE = 43°,则∶BCD =;∶8.如图∶,直径AB = 8cm,B到过C的切线距离为6ccm,则BC =;9.如图∶,弦AB的长等于∶O的半径,如果C是AmB上任意一点,则sinC =;10.圆的外切四边形一定是形;11.圆外切梯形的周长为24 cm,则它的中位线的长是;12.直角三角形的两条直角边为5cm和12 cm,则此直角三角形的外接圆半径为,内切圆半径为;13.如图,PA、PB分别切∶O于A、B,PA = 6 cm,∶APB = 60,PO交AB于C,交∶O于D,则AC = ,OD = ;14.如图11,直线AB、BC、CD分别与∶O相切于E、F、G,且AB∶CD,若OB = 6 cm,OC = 8 ccm则∶BOC = ,∶O的半径是,BE + CG = ;15.如图12,PA、PB是∶O的切线,AB交OP于M,若OM = 2 cm,AB = PB,则∶O的半径是16.圆的外切四边形ABCD中,AB:BC:CD = 2:1:4,周长为36 cm,则AB = ;DA = ;二.选择题:17.过圆内接∶ABC的顶点A引圆的切线交BC延长线于D,若∶B = 35°,∶ACB = 80°,则∶D()A.45°B.50°C.55°D.60°18.圆内接四边形ABCD的顶点C引切线MN,AB为圆的直径,若∶BCM =38°,则∶ABC为()A.38°B.52°C.68°D.42°19.圆的一个弦切角大小为42°16 /,则这条弦所对的弧的度数为()A.42°18 /B.84°32 /C.275°28 /D.84°32 / 或275°28 / 20.如图∶,∶ABC内接于∶O,EC切∶O于点C;若∶BOC = 76°,则∶BCE =()A.14°B.38°C.52°D.76°21.如图∶,已知四边形ABCD为圆内接四边形,AD为圆的直径,直线MN切圆于B,DC的延长线交MN于G;若cos∶ABM = ,则tan∶BCG的值为()A.B.C.1D.22.若∶O的切线长和半径相等,则两条切线所夹的角的度数是()A30B45C60D9023.四边形中,有内切圆的是()A平行四边形B菱形C矩形D以上答案都不对24.如图,∶O的半径为2 cm,∶O切AC于D,切BE于E,∶ACB = 60,则CE的长为()AB C D25.如图,PA、PB、DE分别切圆于A、B、C,∶O的半径为6 cm,PO的长为10 cm,则∶PDE的周长是()A16 cm B14 cm C12 cm D10 cm26.PA切∶O于A,PA = ,∶APO = 30,则PO的长为()A B2C1D27.下列命题中正确的有()A 和圆只有一个公共点的直线是圆的切线B 和圆心的距离等于半径的直线是圆的切线C 经过半径的一端和这条半径垂直的直线是圆的切线D圆的外切四边形的对边相等A 1 个B 2 个C 3 个D 4 个28.直角三角形的内心在()A 三角形内B三角形外C三角形一边上D可在三角形内、形外、或一边上三.解答题:29如图,AB是∶O的直径,CD是∶O的切线,C为切点,AC平分∶BAD。

中考数学复习同步检测(25)-初中三年级数学试题练习、期中期末试卷-初中数学试卷

中考数学复习同步检测(25)-初中三年级数学试题练习、期中期末试卷-初中数学试卷

中考数学复习同步检测(25)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载中考数学复习同步检测(25)姓名(解直角三角形1)一.填空题:1.在Rt△ABC,△C=900,,则=;2.已知,且为锐角,则的取值范围是;3.已知为锐角,若,=;若,则;4.在Rt△ABC,△C=900,已知,S△=,则;5.已知△A是锐角,且;6.在平行四边形ABCD中,已知△B=600,AB=4cm,BC=6cm,则平行四边形ABCD的面积是;7.如图,在△ABC中,△B=600,AD△BC,AD=,AC=,则AB=,BC=;8.已知△A、△B分别是Rt△ABC的两个锐角,且和是方程的两个根,则△A=度,;9.如图,已知DC△BC于C,DA△AB于A,BD=,AD=,CD=2,则△ABC=度;10.在Rt△ABC中,△C=900,△A=600,,则斜边;二.选择题:11.在Rt△ABC中,已知△C=900,则=()A.B.1C.D.12.在△ABC中,△C=900,则下列关系式中不成立的是()A.B.C.D.13.当角度在到之间变化时,函数值随着角度的增大反而减小的三角函数是()A.正弦和正切B.余弦和余切C.正弦和余切D.余弦和正切14.当,则()A.B.C.D.15.在△ABC中△C=,,,则等于()A.B.1C. 2 D.316.在平面直角坐标系内P点的坐标(,),则P点关于轴对称点P/的坐标为()A.B.C.D.17.下列不等式成立的是()A.B.C.D.18.已知,化简得()A.B.C.D.19.已知△为锐角,则的值()A.大于1 B.等于1C.小于1 D.不能确定20.若△为锐角,且是方程的一个根,则等于()A.1 B.C.D.三.解答题:21.22.如图,在△ABC,△C=900,D是BC的中点,△ADC=600,AC=,求:△ABD的周长22.等腰梯形的腰长是6cm,一个底角的余弦值是,上底长为,求它的面积。

中考数学复习同步检测(17)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-

中考数学复习同步检测(17)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-

中考数学复习同步检测(17)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------中考数学复习同步检测(17)姓名(三角形1)一.填空题:1.在中,与∠B相邻的外角等于140°,则∠A +∠C=度;2.如图:AD、AE分别是的角平分线和中线,如果∠BAD=50°,CE=5cm,那么∠BAC=度,BC=cm;3.等腰三角形的两条边长分别为10cm和5cm,它们的周长是cm;4.如图1,图中共有个三角形,其中以AB为一边的三角形有,以为一个内角的三角形有。

5.如图2,在中,已知AE是中线,AD是角平分线,AF是高,根据已知条件填空:(1)BE==;(2)==;(3)=6.两根木棒的长分别是7cm和10cm,要选择第三根木棒,将它们盯成三角形,第三根木棒长的范围是;7.判断具备下面条件的三角形是直角三角形、锐角三角形还是钝角三角形:(1)如果,那么是三角形;(2)如果,,那么是三角形;(3)如果,那么是三角形。

8.如图3所示,,则,=。

9.中,AD是的中线,且,则BD=cm;10.在中,,AD为的平分线,则=度;11.三角形三边为3,5 ,则的范围是;12.三角形两边长分别为25cm和10cm,第三条边与其中一边的长相等,则第三边长为;13.等腰三角形的周长为14,其中一边长为3,则腰长为;14.一个三角形周长为27cm,三边长比为2∠3∠4,则最长边比最短边长。

15。

等腰三角形两边为5cm和12cm,则周长为;16.已知:等腰三角形的底边长为6cm,那么其腰长的范围是;二.选择题:17.如图,共有三角形的个数是()A.3B.4C.5D.618.如图,AB∠BC,垂足为B;BD∠AC,垂足为D,图中共有直角三角形()A2个B3个C4个D5个19.三角形只有一条高在三角形内,另两条高在三角形边上,这个三角形一定是()A锐角三角形B直角三角形C钝角三角形D任意三角形20.以下列长度(cm)的三条小木棒,如果首尾顺次连洁,能钉成三角形的是()A10、14、24B12、16、32C16、6、4D8、10、1221.一个三角形的内角中,至少有一个角的度数不会大于()A60°B90°C120°D150°22.以下长度为边的三条线段能组成三角形的组数是()① 1,2,3 ;② 2,3,4;③ 4,5,6 ;④ 5,6,10;A一组B两组C三组D四组23.已知三角形的三边分别为2,,4那么的取值范围是()A B C D24.如图,于D,于E,于F,于A,则中,AC边上的高为()AAD B GA C BE D CF25.在一个三角形,若,则是()A直角三角形B锐角三角形C钝角三角形D以上都不对27.三角形的高线是()A直线B垂线C射线D直线28.如果一个三角形的三条高线的交点恰好是三角形的一个顶点,那么这个三角形是()A直角三角形B锐角三角形C钝角三角形D不能确定29.在下图中,正确画出AC边上高的是()A BCD30.等腰三角形的周长为16,且边长为整数,则腰与底边分别为()A5,6B6,4C7,2D以上三种情况都有可能31.一个三角形两边分别为3和7,第三边为偶数,第三边长为()A4,6B4,6,8C6,8D6,8,1032.已知三角形的一个外角小于与它相邻的内角,那么这个三角形()A、是锐角三角形B、是直角三角形C、是钝角三角形D、以上三种都有可能三.解答题:33.已知等腰三角形的两边长分别为11cm和5cm,求它的周长;34.已知等腰三角形的底边长为8cm,一腰的中线把三角形的周长分为两部分,其中一部分比另一部分长2cm,求这个三角形的腰长;35.已知等腰三角形一边长为24cm,腰长是底边的2倍,求这个三角形的周长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学同步练习题-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中
数学试卷-试卷下载
九年级数学同步练习题(园)
一、选择题:
1.下列说法正确的是()
A.垂直于半径的直线是圆的切线
B.经过三点一定可以作圆
C.圆的切线垂直于圆的半径
D.每个三角形都有一个内切圆
2.三角形的外心是()
A.三条中线的交点
B.三条边的垂直平分线的交点
C.三个内角平分线的交点
D.三条高的交点
3.如图(1),已知PA切⊙O于B,OP交AB于C,则图中能用字母表示的直角共有() 个
A.3
B.4
C.5
D.6
图3
4.已知⊙O的半径为10cm,弦AB⊙CD,AB=12cm,CD=16cm,则AB和CD的距离为()
A.2cm
B.14cm
C.2cm或14cm
D.10cm或20cm
5.在半径为6cm的圆中,长为2 cm的弧所对的圆周角的度数为()
A.30°
B.100
C.120°
D.130°
6.如图(2),已知圆心角⊙AOB的度数为100°,则圆周角⊙ACB的度数是()
A.80°
B.100°
C.120°
D.130°
7.若两圆半径分别为R和r(R&gt;r),圆心距为d,且R2+d2=r2+2Rd, 则两圆的位置关系为()
A.内切
B.内切或外切
C.外切
D.相交
8.圆锥的母线长5cm,底面半径长3cm,那么它的侧面展开图的圆心角是()
A.180°
B.200°
C.225°
D.216°
9.如图(3),某城市公园的雕塑是由3个直径为1m的圆两两相垒
图4
立在水平的地面上,则雕塑的最高点到地面的距离为[]
A. B. C. D. 图5
二、填空题:
1.如果⊙O的直径为10cm,弦AB=6cm,那么圆心O到弦AB的距离为______cm.
2.如图(4),在⊙O中,直径AB为10cm,弦AC为6cm,⊙ACB的平分线交⊙O于D,则BC=cm, ⊙ABD=°
3.如图(5):PT切⊙O于点T,经过圆心的割线PAB交⊙O于点A和B,PT=4,PA=2,则⊙O的半径是
;15.PA、PB是⊙O的切线,A、B为切点,若⊙AOB=136°,则⊙P=______.
4.⊙O的半径为6,⊙O的一条弦AB长6,以3为半径的同心圆与直线AB的位置关系是__________.
5.两圆相切,圆心距为10cm,已知其中一圆半径为6cm,
则另一圆半径为____
6.两圆半径长分别为R和r(R&gt;r),圆心距为d,若关于x的方程x2-2rx+(R-d)2=0有相等的实数根,则两圆的位置关系是_________.1、正方形ABCD中,AB=1,分别以A、C为圆心作两个半径为R、r(R&gt;r)的圆,当R、r满足条件时,⊙A与⊙C有2个交点。

(A)
R+r&gt; (B)R-r&lt;&lt; R+r (C)R-r&gt;(D)0&lt;R-r&lt;
7、已知圆柱的母线长是10cm,侧面积是40cm2,则这个圆柱的底面半径是
cm;
8、已知图(6)中各圆两两相切,⊙O的半径为2r,⊙O1
、⊙O2 的半径为r,则⊙O3 的半径是______________;
图7
图6
9、某工厂要选一块矩形铁皮加工一个底面半径为20cm,高为cm的锥形漏斗,要求只能有一条接缝(接缝忽略不计),要想用料最省,矩形的边长分别是
10.如图7,两个半圆中,长为6的弦CD与直径AB平行且与小半圆相切,那么图中阴影部分的面积等于_____.
11.如图,三个半径为的圆两两外切,且ΔABC的每一边都与其中的两个圆相切,那么ΔABC 的周长是

三、解答题
1.如图,P是⊙O外一点,PAB、PCD分别与⊙O相交于A、B、C、D.
(1)PO平分⊙BPD;(2)AB=CD;(3)OE⊙CD,OF⊙AB;(4)OE=OF.
从中选出两个作为条件,另两个作为结论组成一个真命题,并加以证明,与同伴交流.
2.如图,已知AB为⊙O的直径,CE切⊙O于C点,过B点的直线BD交直线CE于D点,如果BC平分⊙ABD。

求证:BD⊙CE。

3。

如图,AB是⊙O的直径,BC是弦,延长BC到D,使CD = BC,CE切⊙O于点C,交AD于E,
求证:CE⊙AD
4.如图,以Rt⊙ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连结DE.
(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由;
(2)若AD、AB的长是方程x2-10x+24=0的两个根,求直角边BC的长。

5.如图,在矩形ABCD中,AB=3,BC=4,P是边AD上一点(除端点外),过三点A,B,P作⊙O.
(1)指出圆心O的位置;
(2)当AP=3时,判断CD与⊙O的位置关系;
(3)当CD与⊙O相切时,求BC被⊙O截得的弦长.
6.如图⊙O1与⊙O2是等圆,相交于A、B,CD过点A与两圆交于C、D,BE⊙CD,求证:CE=ED。

7.如图⊙O与⊙O1交于A、B两点,O1点在⊙O上,AC是⊙O直径,AD是⊙O1直径,连结CD,求证:AC=CD。

8.如图,⊙O1与⊙O2交于A、B两点,P是⊙O1上的点,连结PA、PB交⊙O2于C、D,求证:PO1⊙CD。

9.如图,⊙O和⊙O相交于A、B两点,CD是过A点的割线交⊙O于C点,交⊙O于D点,BE是⊙O 的弦交⊙O于F,求证:DE⊙CF
10.如图,⊙AOB=120°,的长为2π,⊙O1和、OA、OB相切于点C、D、E,
求:⊙O1的周长.
11.如图,一个圆锥的高为3 cm,侧面展开图是半圆.求:(1)圆锥的母线长与底面半径之比;
(2)锥角的大小(锥角为过圆锥高的平面上两母线的夹角); (3)圆锥的侧面积
12.如图所示,在Rt⊙ABC中,⊙BAC=90°,AC=AC=2,以AB为直径的圆交BC于D, 求图形阴影部分的面积.
13. 已知如图7-101所示,矩形ABCD中AB=1,BC=2,以B点为圆心,BC长为半径画弧交AC于F,交BA于E,求阴影部分的面积。

14. 已知:如图,在一个长18cm,宽12cm的矩形ABCD内,有一个扇形,扇形的圆心O在AB上,以OB为半径作弧与CD相切于E,与AD相交于F,若将扇形剪下,围成一个圆锥,求圆锥底面积(接缝不计)。

15.如图13,正三角形ABC的中心恰好为扇形ODE的圆心,且点B在扇形内,要使扇形ODE绕点O无论怎样转动,⊙ABC与扇形重叠部分的面积总等于⊙ABC的面积的,扇形的圆心角应为多少度?说明你的理由.
.
16、如图,⊙O半径为2,直径CD以O为中心,在⊙O所在平面内转动,
当CD 转动时,OA固定不动,0°≤⊙DOA≤90°,且总有BC⊙OA,AB⊙CD,
若OA=4,BC与⊙O交于E,连AD,设CE为x,四边形ABCD的面积为y。

(1)求y关于x的函数解析式,并指出x的取值范围;
(2)当x=2时,求四边形ABCD在圆内的面积与四边形ABCD的面积之比;
(3)当x取何值时,四边形ABCD为直角梯形?连EF,此时OCEF变成什么图形?(只需说明结论,
不必证明)。

17.已知,如图,⊙D交y轴于A、B,交x轴于C,过C的直线:y=-2x-8与y轴交于P.
(1)求证:PC是⊙D的切线;(2)判断在直线PC上是否存在点E,使得S⊙EOC=4S⊙CDO,若存在,
求出点E的坐标;若不存在,请说明理由.
18.如图,O是已知线段AB上一点,以OB为半径的⊙O交线段AB于点C,以线段AO为直径的半圆交⊙O于点D,过点B作AB的垂线与AD的延长线交于点E;
(1)求证:AE切⊙O于点D;
(2)若AC = 2,且AC、AD的长是关于的方程的两根,求线段EB的长;
(3)当点O位于线段AB何处时,⊙ODC恰好是等边三角形?并说明理由。

欢迎下载使用,分享让人快乐。

相关文档
最新文档