1.1等腰三角形的性质和判定
等腰三角形的性质和判定
1.1等腰三角形的性质和判定(2)九年级数学备课组课型:新授【学习目标】在掌握了等腰三角形的性质定理和判定定理的基础上,探索等边三角形和其它相关知识的证明方法。
【重点、难点】1、等边三角形的性质及其证明。
2、应用性质解题。
【预习指导】上节课中,我们对等腰三角形的性质定理和判定定理进行了证明,请你写出这些定理。
等腰三角形性质定理:(1)_______________________;(2)_______________________。
等腰三角形判定定理:______________________。
【思考与交流】1、证明:两角及其中一角的对边对应相等的两个三角形全等。
(简写为“AAS”)2、证明:(1)等边三角形的每个内角都等于60°。
(2)3个内角都相等的三角形是等边三角形。
3、证明:(1)线段垂直平分线上的点到线段两端点的距离相等。
(2)到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
【典题选讲】例1.如图,在△ABC中,点O在AC上,过点O作M N∥BC,CE、CF分别是△ABC 的内外角平分线,与MN分别交于E、F,求证:OE=OF.例2、在△ABC中,AB=AC,点D在AC上,且BC=BD=AD,则∠A的度数是多少?变式; .如下图,在△ABC 中, AB=AC ,点D 、E 分别在AC 、AB 上,且BC=BD=DE=EA ,求∠A 的度数。
【课堂练习】1、如图,在△ABC 中,∠B =∠C =36°,∠ADE =∠AED =2∠B ,由这些条件你能得到哪些结论?请证明你的结论。
2、已知:如图,△ABC 是等边三角形,DE ∥BC ,分别交AB 、AC 于点D 、E 。
求证:△ADE 是等边三角形。
A BC D E ABCDE【学习体会】1.本节课,我们又证明了哪些定理?你掌握了吗?2、你有什么收获?你还有什么困惑吗?。
1.1等腰三角形的性质和判定教案(职称微型课)
9上§1.1 等腰三角形的性质和判定学习目标:1.能证明等腰三角形性质定理和判定定理;2.了解分析的思考方法;3.经历思考、猜想,并对操作活动的合理性进行证明的过程,不断感受证明的必要性,感受合情推理和演绎推理都是人们正确认识的事物的重要途径.学习重点:了解分析的思考方法;学习难点:合理添加辅助线。
学习过程:一、回顾旧知:文字命题的几何证明一般步骤是:①;②;③。
二、情境创设:1、什么叫做等腰三角形?2、等腰三角形有哪些性质?3、上述性质你是怎么得到的?你能否用从基本事实出发,对它们进行证明?(不妨动手操作做一做)三、合作探究:活动一:1、证明:等腰三角形的两个底角相等.2、思考:由上面的证明过程,你能否得出“等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合”的结论?请用符号语言表示.3、通过上面两个问题的证明,我们得到了等腰三角形的性质定理.定理:_______________________________________,(简称:________________)定理:_______________________________________,(简称:________________)活动二:如何证明“等腰三角形的两个底角相等”的逆命题是正确的? 要求:(1)写出它的逆命题:如果 ,那么 。
(2)画出图形,写出已知、求证,并进行证明.活动三:例:已知:如图∠EAC 是△ABC 的外角,AD 平分∠EAC ,且AD ∥BC. 求证:AB =AC拓展:在下图中,如果AB =AC ,AD ∥BC ,那么AD 平分∠EAC 吗?为什么?四、反馈检测:1.若等腰三角形的周长为12,一边长为5,那么另两边长分别为 ;2.若等腰三角形有两边长为2和5,那么周长为 ;3.若等腰三角形有一个角等于50°,那么另两个角为 ; 4.若等腰三角形有一个角等于120°,那么另两个角为 ;五、总结反思:六、布置作业: 必做题: 课本P8第1、2、4题;选做题: 课本P8第3题. 七、课外拓展:已知:如图,AB=AC .(1)若CE=BD ,求证:GE=GD ;(2)若CE=mBD (m 为正数),试猜想GE 与GD 有何关系。
1.1等腰三角形复习(教案)
1.分组讨论:学生们将分成若干小组,每组讨论一个与等腰三角形相关的实际问题,如如何计算等腰三角形的周长和面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用硬纸片制作等腰三角形,并测量其相关数据。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
针对本次教学,我总结了以下几点反思:
1.加强课堂互动,提高学生参与度,鼓励大家积极发表自己的观点,培养独立思考能力。
2.注重知识点的实际应用,设计更多与生活相关的案例,让学生在实践中感受数学的魅力。
3.在教学过程中,关注学生的个体差异,因材施教,帮助每个同学找到适合自己的学习方法。
4.加强课堂小结,通过提问、练习等方式,检验同学们对于课堂内容的掌握程度,及时发现问题并进行针对性指导。
2.发展学生的逻辑推理能力:在探讨等腰三角形的判定方法和性质应用过程中,引导学生运用逻辑推理,培养严谨的思维习惯。
3.增强学生的数学运算能力:让学生在解决等腰三角形周长和面积问题时,掌握相关计算方法,提高运算的准确性和速度。
4.培养学生的数据分析观念:通过对等腰三角形实例的分析,让学生学会从数据中寻找规律,培养数据分析能力,为解决实际问题奠定基础。
3.等腰三角形的底角和顶角:底角相等,顶角为两底角的补角。
4.等腰三角形的周长和面积:周长为底边加上两腰的长度之和;面积可通过底和对应高的乘积除以2计算得出。
二、核心素养目标
《1.1等腰三角形复习(教案)》
本节课的核心素养目标为:
1.培养学生的几何直观:通过复习等腰三角形的性质,使学生能够直观理解和把握等腰三角形的图形特征,提高空间想象能力。
(四)学生小组讨论(用时10分钟)
等腰三角形的性质及判定方法
等腰三角形的性质及判定方法等腰三角形是指两个边长度相等的三角形。
在几何学中,等腰三角形具有一些独特的性质和判定方法。
本文将介绍等腰三角形的性质,并提供几种判定等腰三角形的方法。
一、等腰三角形的性质1. 具有等腰线:等腰三角形的两边相等,因此它一定有一条对称轴,被称为等腰线或对称轴。
等腰线将等腰三角形分成两个对称的部分。
2. 具有等角:等腰三角形的底边上的两个角度相等,被称为底角。
而顶角则是等腰三角形顶点处的角。
因此,等腰三角形的两个底角相等,两个顶角也相等。
3. 底角和顶角补角相等:等腰三角形的底角补角和顶角补角相等。
底角补角是底角外两条边所成的角,而顶角补角则是顶角外两条边所成的角。
二、判定等腰三角形的方法1. 边长判定法:若三角形的两个边长度相等,则该三角形是等腰三角形。
使用此方法时,需要测量三角形的边长,然后将边长进行比较。
2. 角度判定法:若三角形的两个底角相等,则该三角形是等腰三角形。
使用此方法时,需要测量三角形的角度,然后将角度进行比较。
3. 对称性判定法:若三角形具有一条对称轴(等腰线),且该对称轴将三角形分成两个对称的部分,则该三角形是等腰三角形。
使用此方法时,需要判断三角形是否具有对称性,并找到对称轴。
4. 顶角补角判定法:若三角形的两个顶角补角相等,则该三角形是等腰三角形。
使用此方法时,需要计算并比较三角形的顶角补角。
根据以上的性质和判定方法,我们可以准确判断一个三角形是否为等腰三角形。
除了判定等腰三角形的方法,我们还可以应用等腰三角形的性质来解决一些几何问题。
总结起来,在判定一个三角形是否为等腰三角形时,我们可以根据其边长、角度、对称性以及顶角补角的关系进行判断。
等腰三角形具有独特的性质,这些性质在解决几何问题时也有一定的应用。
以上就是关于等腰三角形的性质及判定方法的介绍。
希望本文能够对读者有所帮助,理解并掌握等腰三角形的特点和判断方法,提升解决几何问题的能力。
九年级数学等腰三角形的性质和判定
定理 等腰三角形的两个底角相等.
(简称“等边对等角”) A
BDC 定理 等腰三角形的顶角平分线、底边 上的中线、底边上的高互相重合.
定理 等腰三角形的两个底角相等.
逆命题 如果一个三角形的两个角相等, 那么这两个角所对的边也相等.
已知:如图,在△ABC中,∠B=∠C.
求证:AB=AC.
A
B
C
逆定命理题 如果一个三角形的两个角相等,
那么这两个角所对的边也相等.(简称“等角
对等边”)
已知:如图,在△ABC中,∠B=∠C.
求证:AB=AC.
A
证明:作∠BAC的平分线AD.
在△ABD和△ACD中,
AB =AC(已知),
∠BAD =∠CAD(辅助线画法),B D C
AD =AD(公共边),
∴△ABD≌△ACD(SAS).
∴AB =AC(全等三角形的对应边相等).
怎么想
怎么写
要想证明∠B=∠C,
只要证△ABD≌△ACD,
只需有AB=AC, ∠BAD=∠CAD, AD=AD.
A BD C
;图文快印 图文快印
;
别来无恙乎,挑帘入座,可对弈纵横、把盏擎歌,可青梅煮酒、红袖添香 国学大师陈寅恪,托十载光阴,毕暮年全部心血,著皇皇80万言《柳如是别传》。我想,灵魂上形影相吊,慰先生枯寂者,唯有这位300年前的秦淮女子了。其神交之深、之彻,自不待言。 6 古人尚神交古人,今 人当如何? 附庸风雅的虚交、名利市场的攀交、蜂拥而上的公交、为稻粱谋的业交,甚嚣尘上,尤其炒栗子般绽爆的“讲坛热”“国学热”“私塾热”“收藏热”“鉴宝热”“拍卖热”。但人生意味的深交、挚交,纯粹的君子之交、私人的精神之恋,愈发稀罕。 读闲书者少了,读古人 者少了,读古心者更少。 星转斗移,今心
等腰三角形的性质及判定方法
等腰三角形的性质及判定方法等腰三角形是指两边长度相等的三角形。
在几何学中,等腰三角形有着独特的性质和判定方法。
本文将介绍等腰三角形的性质以及判定方法。
1. 等腰三角形的定义等腰三角形是指具有两条边的长度相等的三角形。
根据定义,等腰三角形的两边是等长的,它们被称为等腰三角形的腰,而剩下的边则被称为底边。
2. 等腰三角形的性质(1)等腰三角形的底边上的两个底角相等。
这是等腰三角形最基本的性质之一。
由于底边两边等长,所以两个底角的两边也相等,根据三角形内角和定理,两个底角相等。
(2)等腰三角形的顶角等于180度减去底角的一半。
这个性质可以通过角度和边的关系来推导。
设等腰三角形的两个底角为x度,则顶角为180度减去两个底角的和2x度。
(3)等腰三角形的高线线对称于底边中点的垂直平分线。
等腰三角形的高是从顶点到底边的垂直距离,而底边的中点是由两点确定的垂直平分线。
这两条线通过等腰三角形的顶点,并且垂直于底边。
3. 等腰三角形的判定方法(1)边长判定:如果一个三角形的两边长度相等,则它是一个等腰三角形。
通过测量三角形的两边长度,如果相等,则可以判定为等腰三角形。
(2)角度判定:如果一个三角形的两个底角相等,则它是一个等腰三角形。
通过测量三角形的两个底角,如果相等,则可以判定为等腰三角形。
(3)边角关系判定:如果一个三角形的一边与另外两边的边长比相等,并且底角相等,则它是一个等腰三角形。
通过测量三角形的边长和角度,如果满足该条件,则可判定为等腰三角形。
4. 实际应用等腰三角形在几何学中有着广泛的应用。
例如,在建筑物的设计中,等腰三角形常用于门窗的设计,通过运用等腰三角形的性质,可以确保门窗的开合顺畅和美观。
此外,在数学问题解答中,等腰三角形的性质和判定方法也经常被使用。
例如,在解决几何证明问题时,可以通过利用等腰三角形的性质进行推理和证明。
综上所述,等腰三角形具有底边两个底角相等和顶角等于底角的一半等独特性质。
1.1等腰三角形的性质和判定
第一章图形与证明(二)1.1 等腰三角形的性质和判定Ⅰ.核心知识点扫描1.等腰三角形和等边三角形的性质和判定性质判定等腰三角形⑴等腰三角形两个底角相等(简称“等边对等角”) .⑵等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).⑴如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).⑵定义:如果一个三角形中有两条边相等,那么这个三角形是等腰三角形.图示(1)在△ABC中,∵AB=AC ∴∠B=∠C;(2)在△ABC中,AB=AC.若∠BAD=∠CAD,那么AD⊥BC,BD=CD;若BD=CD,那么∠BAD=∠CAD,AD⊥BC;若AD⊥BC,那么∠BAD=∠CAD,BD=CD.在△ABC中,∵∠B=∠C ∴AB=AC.等边三角形⑴等边三角形是特殊的等腰三角形,因此等边三角形具有等腰三角形的所有性质,并且,在每条边上都有“三线合一”;⑵等边三角形的每个内角都等于60°.⑴定义:三条边都相等的三角形是等边三角形.⑵有一个角是60°等腰三角形是等边三角形.⑶三个角都相等的三角形是等边三角形.图示∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°.(1)∵AB=BC=AC,∴△ABC是等边三角形;(2) ∵AB=BC,∠A=60°,∴△ABC是等边三角形;(3)∵∠A=∠B=∠C,∴∴△ABC是等边三角形.Ⅱ.知识点全面突破知识点1:等腰三角形性质(重点)⒈等腰三角形的性质定理1:等腰三角形的两个底角相等(简称“等边对等角”);可用符号语言表述如下:如图1-1-1,在△ABC中,∵AB=AC ∴∠B=∠C.已知:如图1-1-1,在△ABC中, AB=AC.求证:∠B=∠C.图1-1-3定理的证明分析:利用分析法思考证明的过程:如下所示:作顶角的平分线AD.()AB AC B C ABD ACD SAS BAD CAD AD AD =⎧⎪∠=∠⇐≅⇐∠=⎨⎪=⎩,具体证明过程略.此外,我们还可以用AAS 、ASA 、SSS 证明这一性质.如取BC 的中点D ,连接AD,在△ABD 和△ACD中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD (SSS ),∴B C ∠=∠.2.等腰三角形的性质定理2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).可用符号语言表述如下:如图1-1-2,在△ABC 中,AB=AC.若∠BAD=∠CAD ,那么AD ⊥BC ,BD=CD ; 若BD=CD ,那么∠BAD=∠CAD ,AD ⊥BC ;若AD ⊥BC ,那么∠BAD=∠CAD ,BD=CD.详解:①等腰三角形是特殊的三角形,它拥有一般三角形所具有的所有的性质.同时它还具有一般三角形所没有的特点和性质;②定理1常用来证明同一个三角形中的两个角相等;定理2实际上是等腰三角形中的两个结论,已知其中任意一个可以得到另两个结论,常用来证明角相等、线段相等或垂直;③将这两条性质用在特殊的等腰三角形即等边三角形中,可得等边三角的性质:等边三角形的各角都相等,并且都等于60°;等边三角形每一条边上的中线高都与所对的角平分线互相重合.例1.如图1-1-3,房屋的顶角∠BAC=100O ,过屋顶A 的立柱,屋椽AB=AC 求∠B ,∠C ,∠BAD ,∠CAD 的度数.解:在△ABC 中, AB=AC(已知).∴∠B=∠C(等边对等角) .∴∠B=∠C=21(180O -∠BAC) 图1-1-1图1-1-2=21(180O -100O )=40O (三角形内角和定理) .又∵AD ⊥BC ,∴∠BAD=∠CAD(等腰三角形顶角的平分线与底边上的高互相重合),∴∠BAD=∠CAD=50O .点拨:已知等腰三角形的顶角,根据等边对等角及三角形的内角和定理可求出∠B 与∠C 的度数,再根据等腰三角形的三线合一,可得AD 是顶角的平分线,则∠BAD 与∠CAD 的度数即可求.例2:(2010,山东济南)(一题多解)如图1-1-4,已知AB AC AD AE ==,.求证BD CE =.证明:方法1 如图1-1-5过点A 作AH ⊥BC ,交BC 于点H . ∵AB=AC ,AD=AE ,AH ⊥BC , ∴BH=CH , DH=EH∴BH 一DH=CH 一EH 即BD=CE 方法2 ∵AB=AC ∴∠B=∠C ∵AD=AE ∴∠ADE=∠AED∴180O-∠ADE=180O-∠AED 即∠ADB=∠AEC ∵AB=AC ,∠B=∠C ,∠ADB=∠AEC ∴△ABD ≌△ACE ∴BD=CE .点拨:在等腰三角形中,虽然顶角平分线、底边上的中线、底边上的高互相重合,但如何添加,要根据具体情况来定.本题中适合高AH AH ,利用等腰三角形的“三线合一”来解决这个问题。
等腰三角形的性质定理和判定定理
教学内容(一)知识梳理知识点1:等腰三角形的性质定理1:等腰三角形的两个底角相等(简称“等边对等角”)证明:取BC的中点D,连接AD在△ABD和△ACD中∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)知识点2:等腰三角形性质定理2:等腰三角形的顶角平分线,底边上的中线,底边上的高,互相重合(简称“三线合一”)∵AB=AC ∵AB=AC ∵AB=AC∠1=∠2 AD⊥BC BD=DC∴AD⊥BC,BD=DC ∴∠1=∠2 ∴∠1=∠2,BD=DC AD⊥BC知识3:等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简写为“等角对等边”)证明:过A作AD⊥BC于D,则∠ADB=∠ADC=90°。
在△ABD和△ACD中∴△ABD≌△ACD (AAS)∴AB=AC【典型例题分析】例1. 如图,已知P、Q是△ABC边BC上两点,且BP=PQ=AP=AQ=QC,求∠BAC的度数。
解:∵AP=PQ=AQ(已知)∴△APQ是等边三角形(等边三角形的定义)∴∠APQ=∠AQP=∠PAQ=60°(等边三角形的性质)∵AP=BP(已知)∴∠PBA=∠PAB(等边对等角)又∠APQ=∠PAB+∠PBA=60°∴∠PBA=∠PAB=30°同理∠QAC=30°∴∠BAC=∠PAB+∠PAQ+∠QAC=30°+60°+30°=120°例2. 已知:如图,在△ABC中,∠B=∠C,D、E、F分别为AB,BC,AC上的点,且BD=CE,∠DEF=∠B。
求证:△DEF是等腰三角形。
证明:∵∠B+∠BDE+∠BED=180°(三角形内角和定理)∠BED+∠DEF+∠FEC=180°(平角性质)∠B=∠DEF(已知)∴∠BDE=∠FEC(等角的补角相等)在△BED和△CFE中,∠BDE=∠FEC中(已证),BD=CE (已知),∠B=∠C (已知)∴△BED≌△CFE (ASA),∴DE=EF (全等三角形对应边相等)∴△DEF是等腰三角形(等腰三角形定义)例3. 已知:如图,AC和BD相交于点O,AB∥CD,OA=OB,求证:OC=OD证明:∵AB∥CD (已知)∴∠A=∠C,∠B=∠D (两直线平行,内错角相等)∵OA=OB (已知)∴∠A=∠B (等边对等角)∴∠C=∠D (等量代换)∴OC=OD (等角对等边)例4. 如图,在四边形ABDC中,AB=2AC,∠1=∠2,DA=DB,试判断DC与AC的位置关系,并证明你的结论。
1.1等腰三角形的性质和判定
3
O
N
B
1 2
完 成 自 主 检 测 , 了 解 学 习 效 果 , 加 深 等 腰 C 三 角 形 性 质 的 理 解!
第 2 页 (共 4 页)
自我评价(书写规范:_______正确率:________)
泗洪育才初三数学◆上册◆自主学案 NO.
编制人:
审核人:
责任人:
四、合作探究 12.已知:如图,∠EAC 是△ABC 的外角,AD 平分∠EAC,且 AD∥BC. 求证:AB=AC
A y 2 D E 1 x B C -1 0 1 2 3 4 独 立 A
B. (1.0)
C. (-2 2 ,0)
D. (2,0)
第 13 题
第 14 题
15.如图,△ABC 中,AB=AC,D 是 BA 延长线的一点,DE⊥BC 交 AC 与点 F 完 成 求证:△ADF 是等腰三角形 D 课 堂
A
五、课堂自测 13.如图,等腰△ABC 的周长为 21,底边 BC =5,AB 的垂直平分线 DE 交 AB 于点 D,交 AC 于点 E,则△BEC 的周长为( ) A.13 B.14 C.15 D.16 14.如图,点 A 的坐标是(2,2),若点 P 在 x 轴上,且△APO 是等腰三角形, 则点 P 的坐标不可能 是( ) ... A.(4,0)
4.从上面的证明过程中,你还能得到什么结论? 定理:_______________________________________________________________. 5.如何证明“等腰三角形的两个底角相等”的逆命题是正确的? 要求: (1)写出它的逆命题:___________________________________________. (2)画出图形,写出已知、求证,并进行证明.
1.1等腰三角形的性质与判定
定理
等腰三角形的两个底角相等.
初 中 数 学
九 上
(简称“等边对等角”) A
B
D
C
定理
等腰三角形的顶角平分线、底边
上的中线、底边上的高互相重合.
定理
等腰三角形的两个底角相等.
初 中 数 学
九 上
逆命题 如果一个三角形的两个角相等,那么 这两个角所对的边也相等.
已知:如图,在△ABC中,∠B=∠C. 求证:AB=AC. A
B
D
C
等腰三角形的两个底角相等.
初 中 数 学
九 上
已知:如图,在△ABC中,AB=AC. 求证: ∠B=∠C.
A
证明:作∠BAC的平分线AD. 在△ABD 和△ACD 中, AB=AC(已知), B C D ∠BAD=∠CAD(辅助线画法), AD=AD(公共边), ∴△ABD≌△ACD(SAS). ∴∠B=∠C(全等三角形的对应角相等) .
D
C
学有所获
初 中 数 学
九 上
操作得到的 结论
证明
等腰三角形 的性质定理 和判定定理 证明思路(作 辅助线的方 法)
操作过程
证明思路 (怎么想)
发现
逆过来
证明过程 (怎么写)
C
初 中 数 学
九 上
例题 已知:∠EAC是△ABC的外角, AD平分∠EAC,且 AD∥BC. 求证:AB=AC. 怎么想 怎么写 E 要想证明AB =AC, 只需证∠B=∠C. A 已知∠EAD=∠DAC, 只需证∠EAD =∠B, ∠DAC =∠C. B
D
C
初 中 数 学
九 上
已知:∠EAC是△ABC的外角, AD平分∠EAC,且 AD∥BC. 求证:AB=AC. E 证明:∵AD∥BC, A ∴∠EAD=∠B, ∠DAC=∠C. ∵∠EAD =∠DAC,B ∴∠B=∠C. ∴ AB=AC (等角对等边). D
九年级数学等腰三角形的性质和判定
知识回顾
1、什么叫做等腰三角形? 2、等腰三角形有哪些性质? 3、上述性质你是怎么得到的?你能 否用从基本事实出发,对它们进行证 明?
等腰三角形的两个底角相等.
等腰三角形的顶角平分线、底 边上的中线、底边上的高互相重 合.
等腰三角形的两个底角相等.
已知:如图,在△ABC中,AB=AC. 求证:∠B=∠C.
例题
已知:∠EAC是△ABC的外角, AD平分∠EAC,且 AD∥BC.
求证:AB=AC.
怎么想
怎么写 E
要想证明AB =AC,
只需证∠B=∠C.
A
D
已知∠EAD=∠DAC,
只需证∠EAD =∠B,
∠DAC =∠C.
B
C
例题
已知:∠EAC是△ABC的外角, AD平分∠EAC,且 AD∥BC.
求证:AB=AC.
等腰三角形的两个底角相等.
已知:如图,在△ABC中,AB=AC. 求证:∠B=∠C.
证明:作∠BAC的平分线AD.
A
在△ABD 和△ACD 中,
AB=AC(已知),
∠BAD=∠CAD(辅助线画法),
AD=AD(公共边), ∴△ABD≌△ACD(SAS).
BD C
∴∠B=∠C(全等三角形的对应角相等) .
怎么想
怎么写
要想证明∠B=∠C,
只要证△ABD≌△ACD,
只需有AB=AC, ∠BAD=∠CAD, AD=AD.
A BD C
; 欧洲杯直播/
;
可当他快到终点时,才发现机会全错过了。 第三个弟子吸取了前边两个弟子的教训。当走过全程三分之一时,即分出大中小三类;再走三分之一时,验是否正确;等到最后三分之一时,他选择了属于大类中的一个美丽的
1.1等腰三角形的性质与判定
九 上
初中数学九年级 上册 (苏科版) 苏科版) 第一章 第一节 等腰三角形的性质与判定
初 中 数 学
九 上
初 中 数 学
九 上
等腰三角形的两个底角相等. 等腰三角形的两个底角相等. 等腰三角形的顶角平分线、底 等腰三角形的顶角平分线、 边上的中线、底边上的高互相重合. 边上的中线、底边上的高互相重合.
C
初 中 数 学九 上 Nhomakorabea课堂练习: 课堂练习:
1、如果等腰三角形的周长为12,一边长为 ,那么另两 、如果等腰三角形的周长为 ,一边长为5, 边长分别为( 边长分别为( ) 2、如果等腰三角形有两边长为2和5,那么周长为( 、如果等腰三角形有两边长为 和 ,那么周长为( )
3、如果等腰三角形有一个角等于50度,那么另两个角为 、如果等腰三角形有一个角等于 度 ( )度 4、如果等腰三角形有一个角等于120度,那么另两个角 、如果等腰三角形有一个角等于 度 为( )度 5、在△ABC中,∠A=40O,当∠B等于( )度时,是 、 等于( 度时, 中 等于 等腰三角形。 等腰三角形。
A
B
D
C
初 中 数 学
九 上
等腰三角形的两个底角相等. 等腰三角形的两个底角相等. 已知:如图, 已知:如图,在△ABC中,AB=AC.A 中 . 求证: 求证: ∠B=∠C. ∠ . 证明: 的平分线AD. 证明:作∠BAC的平分线 . 的平分线 在△ABD 和△ACD 中, AB=AC(已知 , 已知), 已知 B C D 辅助线画法), = 辅助线画法 ∠BAD=∠CAD(辅助线画法 , AD=AD(公共边 , 公共边), 公共边 ∴△ABD≌△ACD(SAS). ≌ . ∴∠B=∠ 全等三角形的对应角相等) =∠C(全等三角形的对应角相等 ∴∠ =∠ 全等三角形的对应角相等 .
1.1 等腰三角形的性质和判定
1C A B 1.1 等腰三角形的性质和判定班级 姓名 【学习目标】1.能证明等腰三角形的性质定理和判定定理.2.了解分析的思考方法.3.经历思考、猜想,并对操作活动的合理性进行证明过程,不断感受证明的必要性、感受合情推理和演绎推理都是人们认识事物的重要途径.【重点、难点】了解分析的思考方法;合理添加辅助线. 【知识回顾】以前,我们曾经学习过等腰三角形,你还记得吗?不妨我们来回忆一下下列几个问题:1. 什么叫做等腰三角形?(等腰三角形的定义)________________________ 2.等腰三角形的性质:①等腰三角形的 角相等.(简称“ ”)②等腰三角形的 、 、 互相重合.(简称“ ”) ③等腰三角形是 对称图形,它的对称轴是: .3.你能用刻度尺画一个等腰三角形,并用作垂线的方法画出它的顶角的平分线吗?若能,请画出.问题:上述等腰三角形性质你是怎么得到的?这些性质都是真命题吗?你能否用从基本事实出发,对它们进行证明? 【导学过程】 活动一:证明:等腰三角形的两个底角相等. 已知:如图,在△ABC 中,AB=AC. 求证:∠B=∠C你有不同的证明方法吗?活动二:证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合. 思考:如何证明文字命题的正确性?活动三:如何证明“等腰三角形的两个底角相等”的逆命题是正确的? 要求:(1)写出它的逆命题: .(2)画出图形,写出已知、求证,并进行证明.2例1.已知:如图∠EAC 是△ABC 的外角,AD 平分∠EAC,且AD∥BC .求证:AB =AC2.拓展:在上图中,如果AB =AC ,AD∥BC,那么AD 平分∠EAC 吗?为什么?你还能得出其他的结论吗?例2.已知:如图,锐角△ABC 的两条高BE 、CD 相交于点O ,且OB=OC.求证:△ABC 是等腰三角形.例3.在△ABC 中,AB=AC,O 是△ABC 内一点,且OB=OC ,求证:AO ⊥BC.【反馈练习】1.若等腰三角形的周长为12,一边长为5,那么另两边长分别为 .2.若等腰三角形有两边长为2和5,那么周长为 .3.等腰三角形的一个角为50°,那么它的一个底角为______.4.若等腰三角形有一个外角等于50°,那么另两个角为 . 5、在△ABC 中,∠A =40°,当∠B 等于多少度数时,△ABC 是等腰三角形?★6.若等腰三角形一腰上的高与另一腰的夹角等于30°,那么这个等腰三角形的顶角为 . ★7.若等腰三角形的周长等于12cm ,那么腰长x 的取值范围是 .8.如图在△ABC 中,AB =AC ,∠A=50°,BD 为∠ABC 的平分线,则∠BDC=_ ____°. ★9.在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有______个.10.如图在△ABC 中,AB =AC ,D 为AC 边上一点,且BD =BC =AD .•则∠A 等于 ( )A .30° B.36° C.45° D.72°ABCDE第8题图 第10题图311.已知:如图,AB=AC .(1)若CE=BD ,求证:GE=GD ; (2)若CE=mBD (m 为正数),试猜想GE 与GD 有何关系 (只写结论,不证明).12.如图,在△ABC 中,点O 在AC 上,过点O 作MN ∥BC ,CE 、CF 分别是△ABC 的内外角平分线,与MN 分别交于E 、F ,求证:OE=OF.变式: 如图,BO 平分∠CBA, CO 平分∠ABC, 且MN//BC,设AB=12,BC=24,AC=18,求△AMN 的周长.13.如图,等腰三角形ABC 中,AB=AC ,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.1 3ABCMNO。
1.1等腰三角形的性质与判定
当堂检测2
2.已知一个三角形有两个角的平分线分别 垂直于各角所对的边,那么这三角形是( ) A.直角三角形;B.等腰三角形; C.等边三角形;D.等腰直角三角形.
当堂检测3
3.等腰三角形的一个角为40°,则另外两个 角为________.
当堂检测4
4.若等腰三角形一腰上的高与另一腰的夹 角为30°,则顶角为 ______.
C
基础学习4
A
等腰三角形的判定
B
C
基础学习5 已知如图,在△ABC中,AB=AC, 文字性命题证题步骤 求证:∠B=∠C A 作底边上的中线 作底边上的高
B
D
C
基础学习6 已知如图,在△ABC中,∠B=∠,C, 如果一个三角形的两个角相等 那 写出“等腰三角形的两个底角相 求证: AB=AC 么这两个角所对的边也相等 等”的逆命题
当堂检测5
5.已知:如图,△ABC是等边三角形,点D、 E分别在AB、AC上,且DE∥BC. 求证:△ADE是等边三角形.
当堂检测6
如果AB=AC,AD∥BC,那么AD平分∠EAC 吗?如果结论成立,你能证明这个结论吗?
达标检测(二)
1.2.3.4.5.
1.已知:如图,点B、D、E、C在一 条直线上,且AD=AE,∠1=∠2.求 证: ∠B=∠C.
A
B
D
C
基础学习7
已知:如图,∠EAC是△ABC的外角AD 平分∠EAC,且AD∥BC.求证:AB=AC.
达标检测(一)
达标检测 1.A;2.C;3.70°,70°或100°,40°; 4.60°或120°;5.证明(略);6.
课外学习.
1;2;3
课外学习1
1.证明两角及其中一角的对边对应相等的 两个三角形全等(简写为“AAS”).
1.1第1课时等腰三角形的性质(教案)
3.数学建模:通过解决实际问题,让学生学会运用等腰三角形的性质建立数学模型,提高解决实际问题的能力。
4.数学抽象:使学生能够从具体实例中抽象出等腰三角形的性质,培养数学抽象思维能力。
5.数学运算:在论证等腰三角形性质的过程中,训练学生的运算能力和严谨的数学态度。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了等腰三角形的定义、性质和判定方法。同时,我们也通过实践活动和小组讨论加深了对等腰三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在上完这节等腰三角形的性质课程后,我进行了深入的思考。首先,我发现学生们对于等腰三角形的定义和性质的理解总体上是到位的。他们在课堂上能够积极参与,通过实际操作和小组讨论,对等腰三角形的性质有了直观的感受。
1.1第1课时等腰三角形的性质(教案)
一、教学内容
本节课选自八年级数学下册第五章“三角形”,第1课时“等腰三角形的性质”。教学内容主要包括以下三个方面:
1.等腰三角形的定义:两边相等的三角形称为等腰三角形,相等的两边称为腰,另一边称为底。
2.等腰三角形的性质:
a.等腰三角形的两底角相等。
b.等腰三角形的底边上的中线(即底边的中点到对角的线段)等于底边的一半,并且垂直于底边。
1.讨论主题:学生将围绕“等腰三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
1.1等腰三角形的性质和判定 课件2(苏科版九年级上册)
怎么想
要证 只要证
。 。 。
怎么写
. .
A
D
B
C
拓展与延伸
如图:如果 AB =AC,AD∥BC,那么 AD 平分∠EAC 吗? 如果结论成立你能证明这个结论吗? E A D
B
C
小练身手
课堂练习:课本练习1,2,3
小结
在等腰三角形中,顶角平分线、底边上的中线、底 边上的高是常用的辅助线,通过添画辅助线,把一个 等腰三角形分成一对全等三角形。 等腰三角形的性质定理是一个三角形中由两边相等 证明两角相等的依据;等腰三角形的判定定理,是一 个由两角相等证明两边相等的依据。 证明中常用的一种思考方法:从需要的证明的结论 出发,逆推出要使结论成立所需要的条件,再把这样 的“条件”看作“结论”,一步一步逆推,直至归结 为已知条件。
推论:
等腰三角形的顶角平分线、底边上的中线、 底边上的高互相重合
你能写出上面两个定理的符号语言吗? 文学语言 等边对等角 三线合一 图形符号语言 在△ABC中∵__; ∴__。 在△ABC中,AB=AC
(1)∵∠BAD=∠CAD∴__,__。
(2)∵BD=CD∴___,___。 (3)∵AD⊥BC∴___,__.
合情推理与演绎推理
几何证明
几何证明的一般步骤: (1)根据题意,画出图形; (2)结合图形,写出已知和求证; (3)经过分析,找出由条件推出求证的途径,写 出证明过程。 演绎证明 (题目是:已知…,求证…,证明…)。从条件出 发,根据公理(基本事实)或定理,进行符合逻辑 的有条理的推理(演绎推理),得到结论。
课外作业:1.课本习题2,4。 2.练习册相应课时.
谢谢
情景创设
1.1 等腰三角形的性质与判定 (2)
1.1等腰三角形的性质和判定---( 教案)第2课时【学习目标】在掌握了等腰三角形的性质定理和判定定理的基础上,探索等边三角形和其它相关知识的证明方法。
【重点、难点】1、等边三角形的性质及其证明。
2、应用性质解题。
【预习指导】上节课中,我们对等腰三角形的性质定理和判定定理进行了证明,请你写出这些定理。
等腰三角形性质定理:(1)_______________________;(2)_______________________。
等腰三角形判定定理:______________________。
【思考与交流】1、证明:两角及其中一角的对边对应相等的两个三角形全等。
(简写为“AAS”)2、证明:(1)等边三角形的每个内角都等于60°。
(2)3个内角都相等的三角形是等边三角形。
3、证明:(1)线段垂直平分线上的点到线段两端点的距离相等。
(2)到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
【典题选讲】例1.如图,在△ABC中,点O在AC上,过点O作M N∥BC,CE、CF分别是△ABC的内外角平分线,与MN分别交于E、F,求证:OE=OF.例2、在△ABC中,AB=AC,点D在AC上,且BC=BD=AD,则∠A的度数是多少?变式; .如下图,在△ABC中, AB=AC,点D、E分别在AC、AB上,且BC=BD=DE=EA,求∠A的度数。
【课堂练习】1、如图,在△ABC 中,∠B =∠C =36°,∠ADE =∠AED =2∠B ,由这些条件你能得到哪些结论?请证明你的结论。
2、已知:如图,△ABC 是等边三角形,DE ∥BC ,分别交AB 、AC 于点D 、E 。
求证:△ADE 是等边三角形。
【总结】本节课,我们又证明了哪些定理?你掌握了吗?A BC ABC DE。
专项1.1等腰三角形的性质与判定(解析版)
2020—2021八年级下学期专项冲刺卷(北师大版)专项1.1等腰三角形的性质与判定姓名:___________考号:___________分数:___________(考试时间:100分钟满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果等腰三角形一腰上的高与另一腰的夹角为45,那么这个等腰三角形的底角为()A.22.5B.67.5C.6750 D.22.5或67.5【答案】D解:有两种情况:(1)如图当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,已知∠ABD=45°,∴∠A=90°-45°=45°,∵AB=AC,∴∠ABC=∠C=12×(180°-45°)=67.5°,(2)如图当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,已知∠HFE=45°,∴∠HEF=90°-45°=45°,∴∠FEG=180°-45°=135°,∵EF=EG,∴∠EFG=∠G=12×(180°-135°)=22.5°.故选:D.2.如图,纸片△ABC中,AB=AC,∠A=40°,将纸片对折,使点A与点B重合,折痕为DE,连结BE.则∠EBC 的度数为()A.30°B.40°C.60°D.80°【答案】A由题可得,∠ABC=(180°-40°)÷2=70°,由翻折的性质可得:∠A=∠DBE=40°,∴∠EBC=∠ABC-∠DBE=70°-40°=30°,故选:A.3.如图,在△ABC中,∠C=90°,点D在边BC上,AD=BD,DE平分∠ADB交AB于点E.若AC=12,BC=16,则AE的长为()A.6B.8C.10D.12【答案】C解:如图,在△ABC中,∠C=90°,AC=12,BC=16,由勾股定理知:20AB==,∵AD=BD,DE平分∠ADB交AB于点E.∴1102AE BE AB===,故选:C.4.如图,AD是等边ABC∆的中线,E是AC边的中点,F是AD边上的动点,当EF+CF 取得最小值时,则ECF∠的度数为().A.20︒B.30︒C.45︒D.50︒【答案】B解:如图:∵AD是等边ABC∆的中线,∴AD⊥BC,BD=CD,∴BF=CF,∴CF+EF=BF+EF,∴当B、F、E位于同一直线,且BE⊥AC是,EF+CF最小.过点B作BE⊥AC于点E,交AD于点F,连接CF,∵△ABC是等边三角形,∴AE =EC ,AF =FC ,∴∠F AC =∠FCA ,∵AD 是等边△ABC 的BC 边上的中线,∴∠BAD =∠CAD =30°,∴∠ECF =30°.故选:B .5.等腰三角形的一个内角为120°,则底角的度数为( )A .30°B .40°C .60°D .120° 【答案】A解:∵等腰三角形中,一个内角为120°,而三内角的和为180°,∴该内角为顶角,设顶角为∠A ,底角为∠B、∠C,则有∠B=∠C ,∵∠A=120°,∴∠B=∠C=()1180-1202︒︒=30°, 故选:A .6.在△ABC 中,A x ∠=︒,B y ∠=︒,60C ∠≠︒.若1902y x =-,则下列结论正确的是( )A .AB BC =B .AB AC = C .AC BC =D .AB ,AC ,BC 中任意两边都不相等【答案】B【分析】由三角形内角和定理和已知条件得出∠B=∠C ,证出AC=AB .【详解】∵180A B C ∠+∠+∠=︒,A x ∠=︒,B y ∠=︒,∴180C x y ∠=︒-︒-︒, ∵1902y x =-, ∴∠C=11180(90)(90)22x x x y ︒-︒--︒=-︒=︒, ∴∠B=∠C ,∴AC=AB ,故选:B .7.如图,△ABC 是等边三角形,AQ = PQ ,PR ⊥AB 于点R ,PS ⊥AC 于点S ,PR =PS ,则四个结论:①点P 在∠A 的平分线上;②AS=AR ;③QP ∥AR ;④△BRP ≌△QSP ,正确的结论是( ).A .①②③④B .①②③C .②③④D .③④【答案】A 解:∵△ABC 是等边三角形,PR ⊥AB ,PS ⊥AC ,且PR=PS ,∴P 在∠A 的平分线上,∴①正确;由①可知,PB=PC ,∠B=∠C ,PS=PR ,∴△BPR ≌△CPS ,∴CS=BR∴AS=AR ,②正确;∵AQ=PQ ,∴∠PQC=2∠PAC=60°=∠BAC , ∴PQ ∥AR ,③正确;由③得,△PQC 是等边三角形,∴△PQS ≌△PCS ,又由②可知,④△BRP ≌△QSP ,④也正确∵①②③④都正确,故选:A .8.等边三角形的周长为18,则边长为( )A .2B .3C .4D .6 【答案】D解:因为等边三角形的三条边都是相等,所以边长为:18÷3=6 故选:D .9.如图,在ABC 中,AB AC =,D 、E 是ABC 内两点,AD 平分BAC ∠,60EBC E ∠=∠=︒,若7BE =,3DE =,则BC 的长度是( )A .12B .11C .10D .9【答案】C 解:延长DE 交BC 于M,延长AD 交BC 于N,∵AB=AC,AD 平分∠BAC, ∴AN ⊥BC, ∠EBC=∠E=60°,∴△BED 为等边三角形,∴BE=EM∵BE=7,DE=3,∴DM=EM-DE=7-3=4∵△BEM 为等边三角形,∴∠EMB=60°∵AN ⊥BC∴∠DNM=90°∴∠NDM=30°∴NM=2∴BN=5∴BC=2BN=10故答案为:C ..10.如图,已知△ABC 三个内角的平分线交于点O ,点D 在CA 的延长线上,且DC =BC ,AD =AO ,若∠BAC =80°,则∠BCA 的度数为( )A .80°B .60°C .40°D .30°【答案】B 解:∵△ABC 三个内角的平分线交于点O ,∴∠ACO =∠BCO ,在△COD 和△COB 中,CD CB OCD OCB CO CO =⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△COB ,∴∠D =∠CBO ,∵∠BAC =80°,∴∠BAD =100°,∴∠BAO =40°,∴∠DAO =140°,∵AD =AO ,∴∠D =20°,∴∠CBO =20°,∴∠ABC =40°,∴∠BCA =60°,故选B .11.如图,分别以ABC ∆的边AB ,AC 所在直线为对称轴作ABC 的对称图形ABD △和ACE △,150BAC ∠=︒,线段BD 与CE 相交于点O ,连接BE 、ED 、DC 、OA .有如下结论:①90EAD ∠=︒;②60BOE ∠=︒;③OA 平分BOC ∠;④BP EQ =.其中正确的结论个数是( )A .1B .2C .3D .4【答案】C ∵ABD ∆和ACE ∆是ABC ∆的轴对称图形,∴BAD CAE BAC ∠=∠=∠,AB AE =,AC=AD ,∴3360315036090EAD BAC ∠=∠-︒=⨯︒-︒=︒,故①正确. ∴1(36090150)602BAE CAD ∠=∠=︒-︒-︒=︒, 由翻折的性质得,AEC ABD ABC ∠=∠=∠,∵EPO BPA ∠=∠,∴60BOE BAE ∠=∠=︒,故②正确.∵ACE ADB ∆≅∆,∴ACE ADB S S ∆∆=,BD CE =,∴BD 边上的高与CE 边上的高相等,即点A 到BOC ∠两边的距离相等,∴OA 平分BOC ∠,故③正确.∵∠EAQ=90°,∴AE <EQ∵AB AE =,∠BAE=60°,∴△ABE 是等边三角形,∴BP <AB ,∴BP <EQ ,故④错误;综上所述,结论正确的是①②③共3个.故选:C .12.在ABC 中,90BAC ∠=︒,6AB AC cm ==,D 为BC 中点,E ,F 分别是AB ,AC 两边上的动点,且90EDF ∠=︒,下列结论:①BE AF =;②EF 的长度不变;③BED CFD ∠+∠的度数不变;④四边形AEDF 的面积为29cm .其中正确的结论个数是( )A .1个B .2个C .3个D .4个【答案】C 解:∵AB=AC ,∠BAC=90°,BD=CD ,∴AD ⊥BC ,AD=BD=DC ,∵∠BDA=∠EDF=90°,∴∠BDE=∠ADF ,∵∠B=∠DAF=45°,∴△BDE ≌△ADF (ASA ),∴BE=AF ,DE=DF ,故①正确,∵DE=DF ,∠EDF=90°,∴△DEF 是等腰直角三角形,∵DE 的长度是变化的,∴EF 的长度是变化的.故②不正确.∵△BDE ≌△ADF ,∴∠BED=∠AFD ,∴∠BED+∠CFD=∠AFD+∠CFD=180°,故③正确;∵△BDE ≌△ADF ,∴BDE ADF SS =, ∴21)11669(222ADE ADF ADE BDE ADB ABC S S S S S S cm +=+===⨯⨯⨯=. 故④正确.故选:C .二、 填空题(本大题共6小题,每小题3分,共18分)13.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D .若BC =28,则BD 的长为____.【答案】14∵AB=AC ,∴△ABC 为等腰三角形,∵AD ⊥BC ,∴根据“三线合一”知,BD=12BC=14, 故答案为:14.14.如图,在Rt △ABC 中,∠A =90°,∠B =30°,CM 平分∠ACB 交AB 于点M ,过点M 作MN ∥BC 交AC 于点N ,且MN 平分∠AMC ,若AN =1,则BC 的长为_____.【答案】6.解:3090B A ∠=︒∠=︒,,60ACB ∴∠=︒,∵CM 平分∠ACB ,30ACM BCM ∴∠=∠=︒,//MN BC ,∴3030AMN B NMC BCM ∠=∠=︒∠=∠=︒,,30NCM NMC ∴∠=∠=︒,,NM NC ∴=∵130AN AMN =∠=︒,, ∴2MN =,2NC ∴=,∴3AC AN NC =+=,∴ 6.BC =故答案为:6.15.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1BB 上分别截取1212B A B B =,连接22A B ,……按此规律作下去,若11A B O α∠=,则1010A B O ∠=___________.【答案】512α. 解:∵B 1A 2=B 1B 2,∠A 1B 1O =α,∴∠A 2B 2O 12=α, 同理∠A 3B 3O 12=∠A 2B 2O 212=α, ∠A 4B 4O 312=α, ∴∠A n B n O 112n -=α, ∴∠A 10B 10O 95221αα==. 故答案为:512α. 16.如图,是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC ,DE 分别垂直于横梁AC ,若DE =1.8m ,∠A =30°,则斜梁AB 的长为_____m .【答案】7.2由题意,DE ⊥AC ,BC ⊥AC ,∠A=30°,∴在Rt △ADE 中,AD=2DE=3.6m ,∵D 为AB 的中点,∴AB=2AD=7.2m ,故答案为:7.2.17.如图,在△ABC 中,AB =BC ,BE 平分∠ABC ,AD 为BC 边上的高,且AD =BD .则∠3=______°.【答案】22.5∵AD 为BC 边上的高,且AD =BD ,∴∠ABD =∠BAD =45°,∵AB =BC ,∴∠BAC =()1180ABC 2-∠=67.5°, ∴∠3=∠BAC -∠BAD =67.5°-45°=22.5°,故填:22.5°.18.如图,已知∠AOB=60°,点P 在边OA 上,OP=24,点M ,N 在边OB 上,PM=PN ,若NM=6,则OM=______________.【答案】9解:过P 作PD ⊥OB ,交OB 于点D ,∵∠AOB=60°,∴∠OPD=30°,∴OD =12OP=12. ∵PM =PN ,PD ⊥MN ,∴MD =ND =12MN =3, ∴OM =OD ﹣MD =12﹣3=9.故答案为:9.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.如图,在等边三角形ABC 中,D 是AB 上的一点,E 是CB 延长线上一点,连接,CD DE 、已知,6EDB ACD BC ∠=∠=,(1)求证:DEC ∆是等腰三角形(2)当5,8,2BDC EDB EC AD ∠=∠==时,求EDC ∆的面积.【答案】(1)证明见解析;(2)16(1)证明:ABC ∆是等边三角形60ABC ACB ∴∠=∠=,E EDB ACD BCD ∠+∠=∠+∠∴,EDB ACD ∠=∠,E BCD ∴∠=∠,DE DC ∴=,DEC ∴∆是等腰三角形;(2)设EDB ACD x ∠=∠=,则5BDC x ∠=,60ACB ∠=60BCD x ∠=∴-,60E x ∠=∴-,在DEC ∆中,180E EDC DCE ∠+∠+∠=︒,60560180x x x x ∴+︒-++︒-=,解得15x =,690EDC x ∴∠==,DEC ∴∆是等腰直角三角形,过点D 作DF EC ⊥于点F ,如图所示,DF EC ⊥,,DFE DFC ∆∆∴都是等腰直角三角形,12DF EC ∴= 8EC =,∴DF=4,EDC ∴∆的面积为:11841622EC DF ⋅⋅=⨯⨯=20.在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠B=90°,则线段AB = ,D C= ;(2)如图1,若∠DAB=120°,且∠B=90°.试探究边AD、AB与对角线AC的数量关系并说明理由.(3)如图2,若将(2)中的条件“∠B=90°”去掉,(2)中的结论是否成立?请说明理由.【答案】(1)AD,B C;(2)AC=AD+AB,理由见解析;(3)AB+ AD = A C,成立;理由见解析.解:(1)∵∠B=90°,∠B+∠D=180°,∴∠D=90°=∠B,∵AC平分∠BAD,∴∠BAC=∠DAC,∵AC=AC,∴△ABC≌△ADC,∴AB = AD,DC= BC;(2)AC=AD+AB,证明:∵对角线AC平分∠BAD.∠DAB=120°,∴∠CAD=∠CAB=60°又∵∠B+∠D=180°,∠B=90°∴∠D=90°,∴∠ACD=∠ACB=30°∴AD=12AC,AB=12AC,∴AC=AD+AB;(3)成立证明:以C为顶点,AC为一边作∠ACE=60°∠ACE的另一边交AB延长线于点E∵∠CAB=60°,∴△ACE为等边三角形∴EC= AC ,∠E=60°又∵∠B+∠D=180°,∠DAB=120°,∴∠B CD=60°.∴∠ACD=∠ECB=60°—∠B CA.又∵∠CAD=∠E=60°∴△ACD≌△ECB∴AD=BE∴AB+ AD =AB+BE= AE又∵△ACE为等边三角形∴AE= AC∴AB+ AD = AC.21.已知长方形纸片ABCD,将长方形纸片按如图所示的方式折叠,使点D与点B重合,折痕为EF.(1)△BEF是等腰三角形吗?若是,请说明理由;(2)若AB =4,AD =8,求BE 的长.【答案】(1)BEF 是等腰三角形,理由见解析;(2)5.(1)BEF 是等腰三角形,理由如下:四边形ABCD 是长方形,//AD BC ∴,DEF BFE ∴∠=∠,由折叠的性质得:DEF BEF ∠=∠,BFE BEF ∴∠=∠,BEF ∴是等腰三角形;(2)四边形ABCD 是长方形,90A ∴∠=︒,由折叠的性质得:BE DE =,设BE DE x ==,则8AE AD DE x =-=-,在Rt ABE △中,222AB AE BE +=,即2224(8)x x +-=,解得5x =,即BE 的长为5.22.图①、图②均是6×6的正方形网格,小正方形的边长为1,每个小正方形的顶点称为格点,点A 、B 均在格点上.只用无刻度的直尺,在给定的网格中按要求画图. (1)在图①中,画一个以AB 为底边的等腰三角形ABC ,点C 在格点上;(2)在图②中,画一个以AB 为腰的等腰三角形ABD ,点D 在格点上.【答案】(1)见解析图;(2)见解析图(1)如图所示,存在C1,C2,C3,三种情况,画出其中一个即可;(2)如图所示,存在D1,D2,两种情况,画出其中一个即可.23.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN//BC交AB于M,交AC于N,(1)请判断△BME与△ECN的形状,并说明理由?(2)若BM+CN=9,求线段MN的长.【答案】(1)△BME与△ECN都是等腰三角形;理由见解析;(2)9(1)△BME 与△ECN 都是等腰三角形;理由如下:∵∠ABC 、∠ACB 的平分线相交于点E ,∴∠MBE =∠EBC ,∠ECN =∠ECB ,∵MN ∥BC ,∴∠EBC =∠MEB ,∠NEC =∠ECB ,∴∠MBE =∠MEB ,∠NEC =∠ECN ,∴BM =ME ,EN =CN ,∴△BME 与△ECN 都是等腰三角形;(2)解:∵MN =ME +EN ,BM =ME ,EN =CN ,∴MN =BM +CN .∵BM +CN =9,∴MN =9.24.如图,已知ABC 中,BE 平分∠ABC ,且BE =BA ,点F 是BE 延长线上一点,且BF =BC ,过点F 作FD ⊥BC 于点D .(1)求证:∠BEC =∠BAF ;(2)判断AFC △的形状并说明理由.(3)若CD =2,求EF 的长.【答案】(1)证明见解析;(2)AFC 是等腰三角形,理由见解析;(3)4 解:(1)∵BE 平分∠ABC ,∴∠EBC =∠ABF ,在△BEC 和△BAF 中,BE BA EBC ABF BC BF =⎧⎪∠=∠⎨⎪=⎩,∴∠BEC =∠BAF ;(2)△AFC 是等腰三角形.证明:过F 作FG ⊥BA ,与BA 的延长线交于点G ,如图,∵BA =BE ,BC =BF ,∠ABF =∠CBF ,∴∠AEB =∠BCF ,∵∠BEC =∠BAF ,∴∠GAF =∠AEB =∠BCF ,∵BF 平分∠ABC ,FD ⊥BC ,FG ⊥BA ,∴FD =FG ,在△CDF 和△AGF 中,90DCF GAF CDF AGF FD FG ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△CDF ≌△AGF (AAS ),∴FC =FA ,∴△ACF 是等腰三角形;(3)设AB =BE =x ,∵△CDF ≌△AGF ,CD =2,∴CD =AG =2,∴BG =BA+AG =x+2,在Rt △BFD 和Rt △BFG 中,FD FG BF BF =⎧⎨=⎩,∴BD=BG=x+2,∴BF=BC=BD+CD=x+4,∴EF=BF﹣BE=x+4﹣x=4.。
1.1等腰三角形的性质和判定教案(职称微型课)
第一章图形与证明(二)1.1 等腰三角形的性质和判定学习目标:1.能证明等腰三角形性质定理和判定定理;2.了解分析的思考方法;3.经历思考、猜想,并对操作活动的合理性进行证明的过程,不断感受证明的必要性,感受合情推理和演绎推理都是人们正确认识的事物的重要途径.学习重点:了解分析的思考方法;学习难点:合理添加辅助线。
学习过程:一、回顾旧知:文字命题的几何证明一般步骤是:①;②;③。
二、情境创设:1、什么叫做等腰三角形?2、等腰三角形有哪些性质?3、上述性质你是怎么得到的?你能否用从基本事实出发,对它们进行证明?(不妨动手操作做一做)三、合作探究:活动一:1、证明:等腰三角形的两个底角相等.2、思考:由上面的证明过程,你能否得出“等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合”的结论?请用符号语言表示.3、通过上面两个问题的证明,我们得到了等腰三角形的性质定理.定理:_______________________________________,(简称:________________)定理:_______________________________________,(简称:________________)活动二:如何证明“等腰三角形的两个底角相等”的逆命题是正确的? 要求:(1)写出它的逆命题:如果 ,那么 。
(2)画出图形,写出已知、求证,并进行证明.活动三:例:已知:如图∠EAC 是△ABC 的外角,AD 平分∠EAC ,且AD ∥BC. 求证:AB =AC拓展:在下图中,如果AB =AC ,AD ∥BC ,那么AD 平分∠EAC 吗?为什么?四、反馈检测:1.若等腰三角形的周长为12,一边长为5,那么另两边长分别为 ;2.若等腰三角形有两边长为2和5,那么周长为 ;3.若等腰三角形有一个角等于50°,那么另两个角为 ; 4.若等腰三角形有一个角等于120°,那么另两个角为 ;五、总结反思:六、布置作业: 必做题: 课本P8第1、2、4题;选做题: 课本P8第3题. 七、课外拓展:已知:如图,AB=AC .(1)若CE=BD ,求证:GE=GD ;(2)若CE=mBD (m 为正数),试猜想GE 与GD 有何关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:等腰三角形的性质和判定
主备人:刘益军班级:姓名:
学习目标:
1、进一步掌握证明的基本步骤和书写格式。
2、能用“基本事实”和“已经证明的定理”为依据,证明等腰三角形的性质定理和判定定理。
重点难点:
1、等腰三角形的性质及判定的证明。
2、应用性质解题。
学习过程:
一、知识回顾:
在初中数学八(下)的第十一章中,我们学习了证明的相关知识,你还记得吗?不妨回忆一下。
1、用____________的过程,叫做证明。
经过__________称为定理。
2、证明与图形有关的命题,一般步骤有哪些?
(1)根据题意。
(2)根据题设、结论,结合图形,。
(3)经过分析,推出求证的途径,写出。
3、推理和证明的依据有哪几类?
_____________、___________、____________等。
4、我们初中数学中,选用了哪些真命题作为基本事实:
(1)__________________;(2)__________________;(3)________________________________;
(4)________________________________;
(5)______________________。
此外,还有_____________和____________也都看作是基本事实。
5、在八(下)的第十一章中,我们依据上述的基本事实,证明了哪些定理?你能一一列出来吗?(1)__________________;(2)__________________;(3)__________________;(4)__________________;(5)__________________;(6)__________________;(7)__________________;(8)__________________;(9)__________________;(10)__________________;
二、情景创设:
以前,我们曾经学习过等腰三角形,你还记得吗?不妨我们来回忆一下下列几个问题:
1、什么叫做等腰三角形?(等腰三角形的定义)
教师板书几何符号语言
2、等腰三角形有哪些性质?
3、上述性质你是怎么得到的?(不妨动手操作做一做)
4、这些性质都是真命题吗?你能否用从基本事实出发,对它们进行证明?
师生互动
三、探索活动:
1、合作与讨论
证明:等腰三角形的两个底角相等。
画出图形,写出已知求证
你有不同的证明方法吗?
学生自由发言,教师鼓励学生说
2、思考与讨论
怎样证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
师生互动,合作探究
3、通过上面两个问题的证明,我们得到了等腰三角形的性质定理。
定理:______________________,(简称:______)
定理:___________________________,(简称:______)
)
4
如何证明“等腰三角形的两个底角相等”的逆命题是正确的?
要求:(1)写出它的逆命题:__________________________。
(2)画出图形,写出已知、求证,并进行证明。
6、通过上面的证明,我们又得到了等腰三角形的判定定理:_____________。
四、例题讲解:
1、已知:如图∠EAC 是△ABC 的外角,AD 平分∠EAC ,且AD ∥BC 。
求证:AB =AC
2、在上图中,如果AB =AC ,AD ∥BC ,那么AD 平分∠EAC 吗?如果结论成立,你能证明这
个结论吗?
3、你还能得到其他的结论吗?与同学交流。
五、课堂小结:
1、在本节课中,我们用基本事实又证明了哪些定理。
(1)… (2)… (3)…
2、实际上,我们以前曾学习过很多图形的知识,对于这些图形,我们通过动手操作也得到了它们的性质和判定,在今后的学习中,我们将进一步证明它们的正确性。
六、巩固练习:
1、证明:两角及其中一角的对边对应相等的两个三角形全等。
(简写“AAS ”)
教师板书格式,画图,写出已知,求证。
2、等边三角形的每个内角都等于60°。
3、线段垂直平分线上的点到线段两端点的距离相等。
七、拓展训练:
1、如果等腰三角形有两边长为3和5,那么周长为_____。
2、如果等腰三角形有一个角等于50°,那么另两个角为_____。
3、用三角尺画出一个等腰三角形的对称轴,可画 条。
5、求证:如果一个等腰三角形中有一个角等于60°,那么这个三角形是等边三角形。
A B C D E A B C D E
八、课后作业:
1、如图,在△ABC 中,∠B =∠C =36°,∠ADE =∠AED =2∠B ,由这些条件可得到图中共有: 个等腰三角形;
对全等三角形。
2、证明:3个内角都相等的三角形是等边三角形。
3、证明:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
4、已知:如图,△ABC 是等边三角形,DE ∥BC ,分别交AB 、AC 于点D 、E 。
求证:△ADE 是等边三角形。
课后笔记:
等腰三角形的判定与等腰三角形的性质两课的课堂结构基本类似,预想学生学习应更好一些,但是课堂教学实施之后,学生学习的情况不是很好的,需要分析和反思.
上一课指明了在探究时不能用性质证明性质,学生都能做到探究性质时我们设计的一道题的设计意图,但是这堂课的探究题有不少同学不能领会其意图错误地用判定证明判定,究其原因,学生的探究能力和几何的说理意识不够好,因此在教学时,也列举了三角形内角和的证明等问题说明定理证明的要求,即用已学过的知识进行推理.
全等的证明有混乱和遗忘的现象,还是判定的推理论证,已知:∠B =∠C ,求证:AB =AC .学生交流得到:作AD 平分∠BAC ,用“AAS ”证全等,得到AB =AC ,可以的;作AD ⊥BC ,用“AAS ”证全等,得到AB =AC ,也是可以的,但是还是有同学取BC 的中点D ,连接AD 来证明全等.当然教者引导同学及时争论,及时引导同学纠错,并布置了研究问题,要求学生进行深入的研究,做得还是成功的,但是,从这一点可以看出,学生对全等的证明方法有遗忘现象,对“边边角”不能证明全等没有清醒地认识,还需经常提醒. 本课的解题方法的优化,通过比较更好地得到鉴别、证题经验的总结和应用,通过观察归纳更好A B C A
B C D E
地得到感悟、文字命题的说理,通过训练更好地得到巩固、变化中规律的探究,通过题组更好地得到提升,做得还是有效的。