几何证明压轴题选.doc
平面几何的证明题压轴题
平面几何的证明题压轴题1. 问题描述给定平行四边形ABCD,证明以下结论:2. 证明过程步骤 1:作AE ⊥ AD,BF ⊥ AB,连接CF。
作AE ⊥ AD,BF ⊥ AB,连接CF。
作AE ⊥AD,BF ⊥AB,从而得到四边形AEBF是一个矩形。
步骤 2:作CF的中线DG,连接AG,BG。
作CF的中线DG,连接AG,BG。
作CF的中线DG,连接AG,BG,从而得到DG平分CF,并且DG ⊥ CF。
步骤 3:将四边形AEBF分为三个三角形:△AED,△BEF和△AFB。
将四边形AEBF分为三个三角形:△AED,△BEF和△AFB。
根据步骤1,我们知道△AED和△BEF是直角三角形。
步骤 4:分别证明△AED和△BEF为全等三角形。
分别证明△AED和△BEF为全等三角形。
根据步骤2,DG ⊥CF,所以△DEG和△FBG是全等三角形。
又因为△DEA和△BFA是直角三角形,且对边相等(DE = BF),根据勾股定理,△DEA和△BFA是全等三角形。
因此,根据全等三角形的性质,△AED和△BEF也是全等三角形。
步骤 5:根据全等三角形的性质,得到对应的边相等。
根据全等三角形的性质,得到对应的边相等。
根据步骤4,△AED和△BEF是全等三角形,所以对应的边相等:AE = BF,AD = BE步骤 6:得出结论。
得出结论。
根据平行四边形的性质,平行四边形的对边相等。
因此,由步骤5得出的结论,可以证明平行四边形ABCD的对边相等:AB = CD,AD = BC3. 结论通过以上证明过程,我们可以得出平行四边形ABCD的对边相等的结论:AB = CD,AD = BC。
(完整版)中考数学几何综合压轴题初三难题训练(真题附答案)
中考数学几何综合压轴题初三难题训练1. (2015金华中考)如图,正方形 ABCD 和正三角形 AEF 都内接于eO , EF 与BC , CD 分别相交 于点G , H ,则-EF 的值是()GHA.——B. 2C. . 3D. 222.(2015遵义中考)将正方形 ABCD 绕点A 按逆时针方向旋转 30°,得正方形 AB 1GD 1,B^!交CD 于点E , AB 3,则四边形A^ED 的内切圆半径为()D ,E 分别是OA ,OB 的中点,则图中影阴部分的面积为 ___________ cm 2 .A. D.3. (2015遵义中考)如图,在圆心角为90°的扇形OAB 中,半径 OA 2cm ,C 为弧AB 的中点,6Di到E ,且有 EBD CAB • (1) 求证:BE 是eO 的切线;(2 )若BC 3 , AC 5,求圆的直径 AD 及切线BE 的长.5. (2016岳阳中考)数学活动 旋转变换(1) 如图①,在 VABC 中, ABC 130°,将VABC 绕点C 逆时针旋转500得到VABC ,连接 BB ,求ABB 的大小;(2) 如图②,在 VABC 中, ABC 150° , AB 3, BC 5,将VABC 绕点C 逆时针旋转 60° 得到VABC ,连接BB ,以A 为圆心,AB 长为半径作圆.(I)猜想:直线 BB 与e A 的位置关系,并证明你的结论; (H)连接AB ,求线段AB 的长度;(3)如图③,在 VABC 中, ABC 90° 180° , AB m , BC n ,将VABC 绕点 C 逆180°得到VABC ,连接AB 和BB ,以A 为圆心,AB 长为半与角 满足什么条件时,直线 BB 与e A 相切,请说明理由,并求此条件下线段AB 的长度(结果用角或角 的三角函数及字母 m , n 所组成的式子表示)时针旋转2角度0° 2径作圆,问:角6. (2016成都中考)如图,在RtVABC中,ABC 90°,以CB为半径作eC,交AC于点D,交AC 的延长线于点E,连接BD , BE .(1)求证:VABD s VAEB ;AB 4(2)当一—时,求tanE ;BC 3BE父于点F .(3 )在(2 )的条件下,作BAC的平分线,与7. (2016苏州中考)如图,在矩形ABCD中,AB 6cm , AD 8cm •点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作圆O,点P与点O同时出发,设它们的运动时间为t (单位:s)(0 t 8)•3(1)如图,连接DQ,当DQ平分BDC时,t的值为.(2)如图,连接CM,若VCMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续连行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与圆O相切时,求t的值;并判断此时PM与圆O是否也相切?说明理由.8. (2015扬州中考)如图,已知 eO 的直径AB 12cm , AC 是eO 的弦,过点 延长线于点P ,连接BC •(1) 求证: PCA B ;(2) 已知 P 400 ,点Q 在优弧ABC 上,从点A 开始逆时针运动到点 重合),当VABQ 与VABC 的面积相等时,求动点 Q 所经过的弧长.C 作eO 的切线交BA 的C 停止(点Q 与点C 不9. ( 2015大庆中考)如图, 四边形ABCD 内接于eO ,ADPBC P 为BD 上一点,APB BAD . (1) 证明:AB CD ;(2) 证明:DP BD AD BC ; (3) 证明:BD 2 AB 2 AD BC .10. (2015武汉中考)如图,AB是eO的直径,ABT 4^ , AT AB •(1)求证:AT是eO的切线;(2)连接OT交e O于点C,连接AC,求tan TAC的值.11. (2016随州中考)如图,AB是eO的弦,点C为半径OA的中点,过点C作CD OA交弦AB 于点E,连接BD,且DE DB •(1)判断BD与eO的位置关系,并说明理由;5(2)若CD 15 , BE 10 , ta nA -,求eO 的直径.1212. (2015德州中考)如图,eO的半径为1 , A, P , B , C是eO上的四个点, APC CPB 60°•(1) 判断VABC的形状:;(2) 试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3) 当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.13. (2016淮安中考)问题背景:如图1,在四边形 ADBC 中, ACB形,所以CE . 2CD ,从而得出结论:AC BC . 2CD •(1) 简单应用:在图1中,若AC 2 , BC 2 2,则CD •(2) 如图3, AB 是eO 的直径,点 C 、D 在e 上,AD BD ,若AB 13, BC 12,求CD 的 长. (3) 拓展规律:如图 4 , ACB ADB 90° , AD BD ,若 AC m , BC n m n ,求 CD 的长(用含m , n 的代数式表示)1(4 )如图5 , ACB 90° , AC BC ,点P 为AB 的中点,若点E 满足AE 1AC ,3CE CA ,点Q 为AE 的中点,则线段 PQ 与AC 的数量关系是.ADB 90° , A D BD ,探究线段 AC,BC,CD 之间的数量关系•小吴同学探究此问题的思路是:将 VBCD 绕点D ,逆时针旋转 90°到 VAED 处,点 B,C 分别落在点 A,E 处(如图2),易证点 C,A,E 在同一条直线上,并且VCDE 是等腰直角三角li14. (2015宜昌中考)如图,四边形ABCD为菱形,对角线AC , BD相交于点E , F是边BA延长线上一点,连接EF,以EF为直径作eO,交边DC于D,G两点,AD分别与EF,GF交于I , H两占八、、♦(1)求FDE的度数;(2)试判断四边形FACD的形状,并证明你的结论;(3)当G为线段DC的中点时,(i)求证:FD FI ;(ii)设AC 2m, BD 2n,求eO的面积与菱形ABCD的面积之比.15. (2015株洲中考)已知AB是圆O的切线,切点为B,直线AO交圆O于C , D两点,CD 2 , DAB 30°,动点P在直线AB上运动,PC交圆O于另一点Q .(1)当点P运动到使Q , C两点重合时(如图1),求AP的长;(2)点P在运动过程中,有几个位置(几种情况)使VCQD的面积为丄?(直接写出答案)21(3)当使VCQD的面积为丄,且Q位于以CD为直径的的上半圆上,CQ QD时(如图2),2求AP的长.第11页(共29页)第12页(共29页)第一部分 1.C【解析】如图,连接 AC 、BD 、OF ,其中AC 与EF 交于点I . QAO 是EAF 的角平分线,OAF 60o 2 30o .QOA OF ,OFA OAF 30° ,COF 60° ,BD CO 2 1 1 GH BD 2r r , 2 2竺3 3 .GH r作 DAB 1与 AB 1C 1的角平分线交于点 O ,过O 作OF AB 1 , 则 OAF 30° , AB 1O 4^ ,答案EF 3 o r 2 23r . QAO 2OI ,OI -r , CI 21 r r2 FI r sin60°GH CI 11 r , 22.B 【解析】设eO 的半径为r ,则 OF r ,第13页(共29页)故B i FOF 〔OA , 2 设B i Fx , 则AF :丄3 x , 故 3 2 x 2 2 x 2 2x ,解得x3 -,负值舍去. 2 四边形AB iE D 的内切圆半径为宁-第二部分3. n 1二2 2 2 【解析】连接0C ,过C 点作CF OA 于F •Q 半径OA 2cm , C 为A B 的中点,D 、E 分别是OA 、OB 的中点, OD OE 1cm , OC 2cm , AOC 4^ •CF . 2 • 鸟白图形ACDS 扇形OACS VOCD 2 45 n 221 2 1 23601 n2 2 cm . 2 2Q S VODE 〔OD 2 1 OE cm 2 2S 阴影S 扇形OAB S 空白图形ACD S VODE90 n 221 2 1—n ------ —360 2 2 21 —n _! 12 cm . 2 2 2第三部分4. (1)如图,连接OB .第14页(共29页)QBD BC ,CAB BAD .Q EBD CAB ,BAD EBD .QAD 是eO 的直径,ABD 90o , OA BO .BAD ABO .EBD ABO .OBE EBD OBD ABD OBD ABD 90°.Q 点B 在e O 上,BE 是eO 的切线.(2)如图,设圆的半径为 R ,连接CD .QAD 为eO 的直径,ACCD 90° .QBC BD ,OB CD .OB PAC .QOA OD ,1 5 OF AC .2 2Q 四边形ACBD 是圆内接四边形,BDE ACB .Q DBE ACB ,VDBE s VCAB . DB DEAC BC .3DE 5 3 .DEQ OBE OFD 90 ,DF PBE .QR 0 ,R 3.QBE 是eO 的切线,5. (1)如图①中, QVA BC 是由VABC 旋转得到,ABC ABC 130°,CB CBCBB CBB ,Q BCB 50o ,CBB CB B 650,ABB ABC BB C 65° .(2 )(1)结论:直线 BB ,是e A 的切线. 理由:如图②中,150°,CB CB ,Q ABC ABC CBB CBB ,Q BCB 60° ,CBB CB B 60° ,ABB ABC BBC 90° .AB BB ,直线BB ,是e A 的切线.(H) Q 在 RtVABB 中,Q AB B 90° , BB BC 5 , AB AB 3,AB AB 2 BB 2 34 .(3 )如图③中,当 180°时,直线BB ,是e A 的切线 理由:Q ABC ABC ,CB CB ,OF OB ODOEBE JDE AE * 2 3 3\5 5 3 115(3)解法一:在 RtVABC 中, -AC 2 BG -AB 2 11BG 即 5x BG 4x 3x ,解得BG 2 2 12 x . 590°.AB BB ,直线BB ,是e A 的切线.在VCBB 中QCB CB n , BCB 2 ,BB 2 nsin ,在 RtVA BB 中,AB . BB 2 AB 2 ,m 2 4n 2si n 26. (1) QDE 为e C 的直径,DBE 90° . 又 Q ABC 90° ,DBE DBC 90° , CBE DBC 90° ,ABD CBE .又QCB CE ,CBE E , ABD E .又 Q BAD EAB ,VABD ^VAEB .(2 )由(1)知,VABD s VAEB 在 RtVDBE 中,BD 1 tanEBE 2CBB CBB ,Q BCB 2 ,CBB ABB CB B 180° 2-------------? 2ABC BBC90°180° 90°BD BE ABAEABQ - BC设 AB 4x ,贝U CE 在 RtVABC 中,AB CB 3x .5x ,AE AC CE 5x 3x 8x BD BE AB AE 4x8xQAF 是 BAC 的平分线, BF AB 4x 1 FHEF 2BG BE 32 2 12 8FH BG一x x3 3 5 5 1又 Qta nE2EH 2FH 16 x ,5AM AE EM24 x ・ 5 在 RtVAHF 中, 2 2 AH HF AF 1 2 3即 224 x5e C 的半径是3xQAF 平分 BAC , FE AE 8x 2AE 于 H , 【解析】解法二:如图 2过点A 作EB 延长线的垂线,垂足为点在 VBAE 中,有 1 2 3 E 180°90° 90° , 4 2 E 45 ,VGAF 为等腰直角三角形8.5 L ,AFeC 的半径是NG BN a ,CG 3 a ,4 NC BC 9 a,4BH 9a, 5AB 3a , AC AG 3a ,tan NAC NG AG sin NAC 10105a ,4 15 a,4 13由( 2) 可知, AE 8x , tanEAG AE 于点M , 解法三:AE 于点G ,FM BAC 的平分线,QAF 是AE 10 .在 RtVDBE 中,设 BP 4t ,则 PQ 3t , BQ 5t .Q DQ 平分 BDC , QC CD , QP BD .CQ PQ 3t .QCQ 8 5t.3t 8 5t ,即 t 1.(2)如图,过点M 作ME BC 于点E .在 RtVAFM 中, FM AF sin NAC 2 卫互,AM 10 5 3 10 5 在 RtVEFM 中, EM FM tanE2 10 QBH a,5 EH 18 a, 5 DE 9 a ,2 DC 9 a ,4 AD 3 a,2 又QAE DE3 a 2 9 a2 9a,10 106DC 3.1087. (1)【解析】由题意可VBPQ s VBCD .DH AE10 ,a在 RtVABD 中,AB 6cm , AD 8cm ,BD 10cm .由 BPQ BCD , QBP DBC ,得 VPBQ ^VCBD .PB PQ BQBC CD BD .Q PB 4t ,PQ 3t , BQ 5t .Q MQ MC ,1 1 QE CE —QC - 8 5t2 2Q VMEQ s VDCB , EQ BCMQ BD1 -8 5t 23t40t 49(3)如图1,设QM 所在直线交CD 于点F . ① Q VQCF s VBCD , CF CDCQ CB CF 68 5t 8E15 -t , DF 4 又DO 3t , DO DF CF 6 ,即点O 始终在QM 所在直线的左侧.②如图,设MQ与eO相切时,切点我G,连接OG ,OG BCOF BD,0.88吗3t 10,4丄4t3当t -时,正方形PQMN的边长为3解法一:连接MO并延长交PQ于点贝U VMOG s VMHQ ,OG MGHQ MQ,260.815HQ4,HQ241328PH13 °HK14 213HK HQ .点O不在PMQ的平分线上,当QM1与eO相切时,PM与eO【解析】解法二:连接OM , OP ,Q SVMPQ SVMOQ S VPOQ S VPOM ,则VOGF s VBCD ,534 , QF-,FG3 5 .H,过点H作HK PM于点K不相切.OQ,设点O到MP的距离为h ,1 4 0.8 1 344142 h 8 .2 2 152h7 20.8 .15当QM与eO相切时,PM与eO不相切QAB是eO的直径,ACB 1 2 90o,又PC是eO的切线,PCO PCA 1 90°,2 PCA.又OC OB .2 B,PCA B .(2) Q P 40°,AOC 50°.QAB 12,AO 6 .AOQ 130°时,VABQ与VABC的面积相等,优弧ABQ所对的圆心角为230°时,VABQ与VABC的面积相等,13n31803180当BOQ 50°时,即9. (1) Q AD PBC ,ADB DBC ,AB DC ,AB CD .(2) Q APB BAD , BAD BCD 180° , APBBCD APD ,Q ADB CBD .VADPWDBC ,AD DPBD BC ,DP BD AD BC .QBD 2DE 2 BE 2, DE 2 CD 2 CE 2 ,2 BD 2CD 2 BE 2 CE 2AB 2 BE CE BE CEAB 2 AD BC.10. (1) QAB AT ,ATB B 45°.BAT 90° .AT 是eO 的切线.(2 )设eO 半径为r ,延长TO 交eO 于D ,连接AD .点Q 所经过的弧长 230 n 6 180 23 n3AAPD 180° , (3)如图,过点D 作DE BC 交BC 于E .QCD是直径,CAD BAT 90°.TAC OAD D . 又ATC DTA,VTAC s VTDA.TA TCTD AT .TA2TC TD , 即4r2 TC TC 2r 解得TC 5 1r.tan TAC tan DACADTCAT.5 1 r2r51211. (1)连接OB .QOB OA, DE DB ,A OBA, DEB ABD.QCD OA,A AEC A DEB 90°,OBA ABD 90°,OB BD ,BD是eO的切线;(2)如图,过点D作DG BE于G .QDE DB,1EG -BE 5,2GDE A,VACE s VDGE,QVACE s VDGE12. (1)等边三角形(2) PA PB PC .证明:如图,在PC上截取PD PA,连接AD .PA AD , PAD 60o.Q BAC 60o,PAB DAC .Q APC 60o,VPAD是等边三角形.Q ACE DGE 90°, AEC GED ,tan EDG tanAEGDG5—,即DG 12 .12在RtVEDG 中,DE .DG2 EG213. QCD 15, DECE 2 .13 ,ACDGCEGE,AC CE DGGE245e O的直径2OA 4AD96QAB AC ,VPAB 也VDAC .PB DC .QPD DC PC ,PA PB PC .(3)当点P 为A B 的中点时,四边形 APBC 面积最大.理由如下:如图,过点 P 作PE AB ,垂足为E , 过点C 作CF AB ,垂足为F ,四边形APBC 面积最大. Qe O 的半径为1,其内接正三角形的边长AB 31S 四边形APBC 匚 2 32 3 . 13. (1) CD 3(2)连接 AC 、BD 、AD ,Q AB 是eO 的直径,ADB ACB 90° ,Q A D B D ,AD BD ,将VBCD 绕点D ,逆时针旋转90°到VAED 处,如图3 ,EADDBC , Q DBCDAC 180° , EADDAC 180° , E 、A 、C 三点共线,Q AB 13,BC 12,由勾股定理可求得: AC 5 ,Q BC AE ,CE AE AC 17,2 AB PE ,S VABC 1AB CF . 2S 四边形APBC 1 — AB PE 2 Q 当点P 为A B 的中点时, CF . PE CF PC , PC 为eO 直径, Q S VPABQ EDA CDB ,EDA ADC CDB ADC ,即 EDCADB 90° ,Q CD ED , VEDC 是等腰直角三角形,CE 2CD ,17近 CD 2(3)以AB 为直径作eO ,连接OD 并延长交eO 于点D 1 , 连接D 1A ,D 1B , D 1C ,如图D 1C又Q 0D 是eO 的直径,DCD 1 90o ,Q AC m , BC n由勾股定理可求得: 2 2 DQ AB2 n22PQ = -^」AC • 614.( 1)QEF 为eO 的直径,FDE 90° .(2)四边形FACD 为平行四边形•理由如下:QABCD 为菱形,AB PCD , AC BD ,AEB 90° • 又 FDE 90o ,AC PFD •四边形FACD 为平行四边形.(3)(i )如图,连接GE •由(2)的证明过程可知: ACBC ■ 2D 1C ,ABm 2 2 Q D 1C 2 CD 2 2 D 1D 2CD m 2 n 2CD (4)Q 在RtVDEC 中,G 为CD 的中点,EG DG ,弧DG 弧EG ,1 2.又EF 为eO 的直径,FGE 90° ,FG EG .QG 为DC 中点,E 为AC 中点,GE 为VDAC 的中位线,EG PAD . FGADF l HDFHI 90o . 1 3 24 90o , 3 4 ,FD FI .(ii ) Q 菱形ABCD , AE CE m , BE DE nQ 四边形FACD 为平行四边形,FD AC 2m FIQ FD PAC , 3 8 .又34 7, 78 , EI EA m . 在 RtVFDE 中,FE 2 FD 2 DE 2 ,3m $ 2m $ n 2,解得,n 5m .2 3m9 2 1 S eo n 测,S 菱形ABCD — 2m 2n 2mn 2 4 2 S e O : S 菱形ABCD 9 n m 2:2 5m 2葺5. 4 4015. (1) QAB 是圆O 的切线,OBA 90o .2 5m 2 ,QRtVOBA中,CD 2, DAB 30°,OB 1 ,OB OC AC 1 .Q当点P , C运动到Q , C两点重合时,PC为圆O的切线,PCA 90°,Q DAB 30°, AC 1 ,AP -A/3•3(2)有4个位置使VCQD的面积为-•21【解析】由于CD的长度2,而S VCQD1, 故CD上的高的长度为-,从而如下图,我们可得到答案.2(3)过点Q作QN AD于点N,过点P作PM AD于点M •QNQCD是圆O的直径,CQD 90°• 易证VQCN s VDQN •QN CNDN QNQN2 CN DN .1x 2 x4解得X i 2 3, x22QCQ QD ,CNCNQN易证VPMC s VQNC .易得列空2 3MP QNCM 2 3 MP .在RtVAMP中易得AM 3MP , QAM CM AC 1,2,3 MP . 3MP 1 ,MP 3 14 ,薦1AP2MP21 2.又QCB CE,3 E .。
中考数学几何压轴题(有关三角形、四边形)的综合专题(含答案解析)
中考数学几何压轴题(有关三角形、四边形)的综合专题1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.7、(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于时,线段BC的长取得最大值,且最大值为(用含b,c的式子表示)(直接填空).模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.17、在△ABC中,∠BAC=60°,点D、E分别在边AC、AB上,AD=AE,连接CE、BD相交于点F,且∠BEC=∠ADF,连接AF.(1)如图1,连接ED,求证:∠ABD=∠CED;(2)如图2,求证:EF+FD=AF;(3)如图3,取BC的中点G,连接AG交BD于点H,若∠GAC=3∠ABD,BH=7,求△ABH的面积.18、点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠F AE=∠F AD,FE=FD.(1)如图1,若∠AEF=∠ADF,求证:AE=AD;(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.中考数学几何压轴题(有关三角形、四边形)的综合专题参考答案1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,∴∠WNG=∠BND,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.4、如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.5、如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.7、如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为a+b(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.(1)解:∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a+b,(2)①证明:如图2中,∵△ACD与△BCE是等边三角形,∴CD=AC,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴AE=BD.②∵线段AE长的最大值=线段BD的最大值,由(1)知,当线段BD的长取得最大值时,点D在BA的延长线上,∴最大值为AD+AB=3+10=13;(3)如图3中,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠F AD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.9、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.解:(1)CP=BQ,理由:如图1,连接OQ,由旋转知,PQ=OP,∠OPQ=60°⊅∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(2)CP=BQ,理由:如图2,连接OQ,由旋转知,PQ=OP,∠OPQ=60°∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(3)如图3,在Rt△ABC中,∠A=30°,AC=,∴BC=AC•tan∠A=,过点O作OH⊥BC,∴∠OHB=90°=∠BCA,∴OH∥AB,∵O是AB中点,∴CH=BC=,OH=AC=,∵∠BPQ=45°,∠OHP=90°,∴∠BPQ=∠PQH,∴PH=OH=,∴CP=PH﹣CH=﹣=,连接BQ,同(1)的方法得,BQ=CP=.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为5.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC=3+2=5,∵AE=BD,∴线段AE长的最大值为5,模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线。
2021年上海市八年级数学期末复习-第19章几何证明压轴题专练(学生版)
第19章几何证明压轴题专练1.如图,已知△ABC中,求证:∠A+∠B+∠C=180°证明:过BC上一点D,分别作________,交AB于点E,交AC于点F,因为___________________,所以∠A=______.同理∠B=______,∠C=______.因为_________________,所以_________________.因为∠EDB+∠EDF+∠FDC=180°(),所以_________________.2.判断下列命题的真假,若是假命题,举出反例.(1)如果两个角的两边分别平行,那么这两个角相等;(2)有两边及第三边上的高对应相等的两个三角形全等.3.写出下列命题的逆命题,判断逆命题的真假,并说明其中哪些是逆定理.(1)等腰三角形两腰上的中线相等;(2)内错角相等,两直线平行;(3)等边对等角;(4)两条平行直线被第三条直线所截,截得的同旁内角的角平分线互相垂直.4.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC.求证:BE∥DF.5.如图,AB∥CD,分别探讨下面4个图形中∠BPD、∠ABP、∠CDP的关系,(直接写出关系即可),并对第3个图得到的关系进行证明(至少用两种方法).6.如图,四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=CD,AE=DF.(1)求证:BF=CE;(2)当点E、F相向运动,形成图2时,BF和CE还相等吗?证明你的结论.7.如图,已知△ABD、△ACE都是等腰直角三角形,∠DAB=∠EAC=90°,判断BE和CD的位置及长度关系,并证明.8.如图,三角形ABC中,AC = BC,∠ACB =90°,AD是BC边的中线,CE⊥AD ,BF⊥BC,CF与AB、BF分别相交于点E、F,联结DE,求证:∠1 =∠2.9.已知A、C、E在同一直线上,△ABC和△CDE都是等边三角形,M、N分别是AD、BE的中点,求证:△CMN是等边三角形.10.如图,在△ABC中,108=+.,°,点D在AC上且BC AB CDAB AC BAC=∠=求证:BD平分ABC∠.11.如图,已知AB AC∠.求证:BC BD AD∠=°,BD平分ABC=+.A=,10012.已知:如图,△ABC是等腰直角三角形,∠ACB=90°,△ADB是等边三角形,点C在△ADB的内部,DE⊥AC交直线AC于点E.(1)求证:DE=CE;(2)若点C在△ADB外部,DE=CE的关系是否成立?如不成立,请说明理由;如成立,请证明.13.如图,在直角△ABC 和直角△ADE 中,∠C=∠E =90°,BC=DE ,∠BAE=∠DAC ,BC 与DE 交于点F ,求证:BF=DF .14.如图,已知在△ABC 中,∠C=90°,∠A=45°,AB=a ,在线段AC 上有动点M ,在射线CB 上有动点N ,且AM=BN ,连接MN 交AB 于点P .(1)当点M 在边AC (与点A 、C 不重合)上,线段PM 与线段PN 之间有怎样的大小关系?试证明你的结论.(2)过点M 作边AB 的垂线,垂足为点Q ,随着M 、N 两点的移动,线段PQ 的长能确定吗?若能确定,请求出PQ 的长;若不能确定,请简要说明理由.F EDCBA15.已知:如图,△ABC是等边三角形,BD=DC,∠BDC=120°,∠MDN=60°,求证:23AMN ABCC C∆∆=.16.如图,正方形ABCD中,E、F分别是AD、DC上的点,且∠EBF = 45°,(1)求证:AE+CF = EF;(2)若,BC=1,求BE的长.17.已知,如图,在△ABC外作正方形ABDE和ACGF,M是BC的中点.求证:12AM EF.18.已知:如图,在△ABC中,BD=DC,ED⊥DF.求证:BE+CF >EF.19.已知:如图,点M是△ABC的边BC的中点,射线ME、MF互相垂直,且分别交AB、AC于E、F两点,连接EF.(1)求证:线段BE、CF、EF能够成一个三角形;(2)若∠A=120°,且BE=CF,试判断BE、CF、EF所构成三角形的形状,并证明.20.如图所示,在△ABC中,AD是∠BAC的平分线,M是BC的中点,MF//DA交BA的延长线于点E,交AC于点F,求证:BE=CF.21.已知:Rt△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,过F作FH∥AB,交BC 于H.求证:CE = BH.(提示:平行四边形的对边相等,对角相等)22.如图,在△ABC中,∠A=30°,DE垂直平分AB,FM垂直平分AD,GN垂直平分BD,求证:AF=FG=BG.23.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40°,(1)求∠NMB的大小;(2)如果将(1)中的度数改为70°,其余条件不变,再求∠NMB的度数;(3)若∠A=α,你发现了怎样的规律,并证明之;(4)将(1)中的∠A 改为钝角,对这个问题规律性的认识是否要加以修改.24.如图,在直角△ABC中,AD是斜边BC上的高,BF平分∠ABC,交AC于点F、AD于点E,EG∥BC 交AC于点G,求证:AF=CG.25.如图,以△ABC两边AB、AC为边,向外作等边△ABD和等边△ACE,连接BE、CD交于F点,CD 交AB于点G,BE交AC于点H,求证:AF平分∠DFE.26.如图,在△ABC中,∠CAB和∠ABC的平分线AD、BE交于点P,连接CP.(1)求证:CP平分∠ACB;(2)如图1,当△ABC为等边三角形时,求证:EP=DP;(3)如图2,当△ABC不是等边三角形,但∠ACB=60°,(2)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.27.如图,在△ABC中,OE、OF分别是边AB、AC的垂直平分线,∠OBC、∠OCB的平分线相交于点G,判断OG与BC的位置关系,并证明你的判断.28.已知,AC⊥BC,AD平分∠BAC,DE⊥AB,判断下面四个结论中哪些成立,(1)AD平分∠CDE;(2)∠BAC=∠BDE;(3)DE平分∠ADB;(4)BD+AC>AB哪些不成立,成立的说明理由,不成立的在原有条件的基础上,添加条件使之成立,并证明.29.如图,AD是等腰△ABC底边上的高,E、F为AD上两点,且∠ABE=∠EBF=∠FBC,联结CF并延长交AB于点G.求证:(1)△GBF为等腰三角形;(2)GE∥BF.30.在直角△ABC中,AB=AC,∠BAC=90°,直线l为经过点A的任一直线,BD⊥l于点D,CE⊥l 于点E,若BD>CE,试问:(1)AD与CE的大小关系如何?请说明理由;(2)线段BD、DE、CE之间的数量关系如何?你能说明清楚吗?试一试.31.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于E.(1)若BC在DE的同侧(如图1),且AD=CE,求证:AB⊥AC.(2)若BC在DE的两侧(如图2),其他的条件不变,问AB与AC仍垂直吗?若是,请予以证明,若不是,请说明理由.32.如图,在△ABC中,∠ACB=90°,CD是斜边AB上的高,在AB上截取AE=AC,过点E作EF∥CD、交BC边于点F,EG垂直BC于点G,求证:DE=EG.33.如图,已知在钝角∆ABC中,AC、BC边上的高分别是BE、AD,BE、AD的延长线交于点H,点F、G分别是BH、AC的中点.(1)求证:∠FDG=90°;(2)连结FG,试问∆FDG能否为等腰直角三角形?若能,试确定∠ABC的度数,并写出你的推理过程;若不能,请简要说明理由.34.如图,点A、B、C在同一直线上,在直线AC的同侧作△ABE和△BCF,连接AF、CE,取AF、CE的中点M、N,连接MB、NB、NM.(1)若△ABE和△FBC是等腰直角三角形,且∠ABE=∠FBC=90°,如图1所示,则△MBN 是_____________三角形;(2)若△ABE和△FBC中,BA=BE,BC=BF,且∠ABE=∠FBC= ,如图2所示,则△MBN是_____________三角形,且∠MBN=_______;(3)若(2)中的△ABE绕点B旋转一定的角度,如图3,其他的条件不变那么(2)中的结论是否成立?若成立,给出你的证明,若不成立,写出正确的结论并给出证明.35.已知,如图,在△ABC中,边AB上的高CF、边BC上的高AD与边CA上的高BE交于点H,连接EF,AH和BC的中点为N、M.求证:MN是线段EF的中垂线.36.在△ABC中,已知∠A=60°,BE⊥AC于E,CF⊥AB于F,点D是BC中点.(1)如果AB=AC,求证△DEF为等边三角形;(2)如果AB≠AC,试猜想△DEF是不是等边三角形,若是,请加以证明,若不是,请说明理由;(3)如果CM=4,FM=5,求BE的长度.37.已知∠MAN,AC 平分∠MAN,(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC.(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.38.如图,AB两个村子在河边CD的同侧,A、B两村到河边的距离分别为AC=1千米,BD =3千米,CD =3千米.现在河边CD建一座水厂,建成后的水厂,可以直接向A、B两村送水,也可以将水送一村再转送另一村.铺设水管费用为每千米2万元,试在河边CD选择水厂位置P确定方案,使铺设水管费用最低,并求出铺设水管的总费用(精确到0.01万元).39.如图,在直角△ABC中,∠BAC=90°,AB=AC,E、F是BC上的两点,且∠EAF=45°,求证:222BE CF EF.+=40.如图,∆ABC是等边三角形,P是三角形内一点,PA=3,PB=4,PC=5,求∠APB的度数.41.如图,P是凸四边形内一点,过点P作AB、BC、CD、DA的垂线,垂足分别为E、F、G、H,已知AH=3,DH=4,DG=1,GC=5,CF=6,BF=4,且BE-AE=1,求四边形ABCD的周长.42.已知,如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,设AC=b,BC=a,AB=c,CD=h.求证:(1)c h a b+>+;(2)以a b+、c h+、h为三边可构成一个直角三角形.43.已知直角坐标平面内的点A(4,32)、B(6,3),在x轴上求一点C,使得△ABC是等腰三角形.44.已知点A(4,0)、B(2,-1),点C的坐标是(x,2-x),若△ABC是等腰三角形,求C 的坐标.。
压轴题05 立体几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用-理)
压轴题05立体几何压轴题题型/考向一:点、线、面间的位置关系和空间几何体的体积、表面积题型/考向二:外接球、内切球等相关问题题型/考向三:平行关系、垂直关系、二面角等相关问题一、空间几何体的体积、表面积热点一空间几何体的侧面积、表面积柱体、锥体、台体和球的表面积公式:(1)若圆柱的底面半径为r,母线长为l,则S侧=2πrl,S表=2πr(r+l).(2)若圆锥的底面半径为r,母线长为l,则S侧=πrl,S表=πr(r+l).(3)若圆台的上、下底面半径分别为r′,r,则S侧=π(r+r′)l,S表=π(r2+r′2+r′l +rl).(4)若球的半径为R,则它的表面积S=4πR2.热点二空间几何体的体积柱体、锥体、台体和球的体积公式:(1)V柱体=Sh(S为底面面积,h为高);Sh(S为底面面积,h为高);(2)V锥体=13(S上+S下+S上S下)h(S上、S下分别为上、下底面面积,h为高);(3)V台体=13(4)V球=4πR3.3二、外接球、内切球问题类型一外接球问题考向1墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长.长方体同一顶点的三条棱长分别为a,b,c,外接球半径为R.则(2R)2=a2+b2+c2,即2R=a2+b2+c2.常见的有以下三种类型:考向2对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长,如图所示,(2R )2=a 2+b 2+c 2(长方体的长、宽高分别为a ,b ,c ),即R 2=18(x 2+y 2+z 2),如图.考向3汉堡模型汉堡模型是直三棱柱、圆柱的外接球模型,模型如下,由对称性可知,球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2的连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=h 2,所以R 2=r 2+h 24.考向4垂面模型垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球;如图所示,由对称性可知球心O 的位置是△CBD 的外心O 1与△AB 2D 2的外心O 2连线的中点,算出小圆O1的半径CO1=r,OO1=h2,则R=r2+h24.类型二内切球问题内切球问题的解法(以三棱锥为例)第一步:先求出四个表面的面积和整个锥体的体积;第二步:设内切球的半径为r,建立等式V P-ABC=V O-ABC+V O-P AB+V O-P AC+V O-PBC⇒V P-ABC=13S△ABC·r+13S△P AB·r+13S△P AC·r+13S PBC·r=13(S△ABC+S△P AB+S△P AC+S△PBC)r;第三步:解出r=3V P-ABCS△ABC+S△P AB+S△P AC+S△PBC.类型三球的截面问题解决球的截面问题抓住以下几个方面:(1)球心到截面圆的距离;(2)截面圆的半径;(3)直角三角形(球心到截面圆的距离、截面圆的半径、球的半径构成的直角三角形).三、平行关系和垂直关系的证明、二面角等热点一空间线、面位置关系的判定判断空间线、面位置关系的常用方法(1)根据空间线面平行、垂直的判定定理和性质定理逐项判断,解决问题.(2)利用直线的方向向量、平面的法向量判断.(3)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线、面的位置关系,并结合有关定理进行判断.热点二几何法证明平行、垂直1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.热点三空间向量法证明平行、垂直1.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,在平面α内的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.2.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.四、空间角、距离问题热点一异面直线所成的角求异面直线所成角的方法方法一:综合法.步骤为:①利用定义构造角,可固定一条直线,平移另一条直线,或将两条直线同时平移到某个特殊的位置;②证明找到(或作出)的角即为所求角;③通过解三角形来求角.方法二:空间向量法.步骤为:①求出直线a ,b 的方向向量,分别记为m ,n ;②计算cos 〈m ,n 〉=m ·n|m ||n |;③利用cos θ=|cos 〈m ,n 〉|,以及θ,π2,求出角θ.热点二直线与平面所成的角求直线与平面所成角的方法方法一:几何法.步骤为:①找出直线l 在平面α上的射影;②证明所找的角就是所求的角;③把这个角置于一个三角形中,通过解三角形来求角.方法二:空间向量法.步骤为:①求出平面α的法向量n 与直线AB 的方向向量AB →;②计算cos 〈AB →,n 〉=AB →·n |AB →||n |;③利用sin θ=|cos 〈AB →,n 〉|,以及θ∈0,π2,求出角θ.热点三平面与平面的夹角求平面与平面的夹角方法方法一:几何法.步骤为:①找出二面角的平面角(以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角就是二面角的平面角);②证明所找的角就是要求的角;③把这个平面角置于一个三角形中,通过解三角形来求角.求二面角的平面角的口诀:点在棱上,边在面内,垂直于棱,大小确定.方法二:空间向量法.步骤为:①求两个平面α,β的法向量m ,n ;②计算cos 〈m ,n 〉=m ·n|m |·|n |;③设两个平面的夹角为θ,则cos θ=|cos 〈m ,n 〉|.热点四距离问题1.空间中点、线、面距离的相互转化关系2.空间距离的求解方法有:(1)作垂线段;(2)等体积法;(3)等价转化;(4)空间向量法.一、单选题1.在正方体1111ABCD A B C D -中,直线m 、n 分别在平面ABCD 和11ABB A 内,且m n ⊥,则下列命题中正确的是()A .若m 垂直于AB ,则n 垂直于AB B .若m 垂直于AB ,则n 不垂直于ABC .若m 不垂直于AB ,则n 垂直于ABD .若m 不垂直于AB ,则n 不垂直于AB【答案】C【详解】AB 选项,若m 垂直于AB ,由面ABCD ⊥面11ABB A ,面ABCD ⋂面11ABB A AB =,可得m 垂直于面11ABB A ,即面11ABB A 内的所有直线均与m 垂直,而n 可能垂直于AB ,也可能不垂直于AB ,故A 错误,B 错误;CD 选项,若m 不垂直于AB ,则,BC m 为面ABCD 内的两条相交直线,由题可知BC n ⊥,m n ⊥,则n 垂直面ABCD ,又AB ⊂面ABCD ,所以n 垂直于AB ,故C 正确,D 错误.故选:C2.在中国古代数学经典著作《九章算术》中,称图中的多面体ABCDEF 为“刍甍”.书中描述了刍甍的体积计算方法:求积术曰,倍下袤,上袤从之,以广乘之,又以高乘之,六而一,即()216V AB EF AD h =+⨯⨯,其中h 是刍甍的高,即点F 到平面ABCD 的距离.若底面ABCD 是边长为4的正方形,2EF =,且//EF AB ,ADE V 和BCF △是等腰三角形,90AED BFC ∠=∠= ,则该刍甍的体积为()A .3B .3C .D .403【答案】B【详解】如图所示,设点F 在底面的射影为G ,,H M 分别为,BC AD 的中点,连接,,EM FH MH ,则FG 即为刍甍的高,-P ABC 面积恰为该容器的表面积)展开后是如图所示的边长为10的正方形123APP P (其中点B 为23P P 中点,点C为12PP 中点),则该玩具的体积为()A .6253B .1253C .125D .2503【答案】B【详解】该玩具为三棱锥-P ABC ,即三棱锥A PBC -,则PA ⊥底面PBC ,且10PA =,PBC 面积为252,所以12512510323P ABC V -=⨯⨯=.故选:B.4.攒尖是中国古代建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖.通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.如图所示的建筑屋顶是圆形攒尖,可近似看作一个圆锥,已知其轴截面(过圆锥旋转轴的截面)是底边长为6m ,腰长为5m 的等腰三角形,则该屋顶的体积约为()A .38πmB .39πmC .310πmD .312πm 【答案】D【详解】如图所示为该圆锥轴截面,由题知该圆锥的底面半径为15.已知为两条不同的直线,,为两个不同的平面,则下列命题中正确的是()A .若//,//a b b α,则//a αB .若//,,//a b a b αβ⊥,则αβ⊥C .若//,//,//a b αβαβ,则//a bD .若//,//,a b αβαβ⊥,则a b⊥【答案】B【详解】对于A ,若//,//a b b α,则//a α或a α⊂,故A 错误;对于B ,若//,//a b b β,则a β⊂或//a β,若a β⊂,因为a α⊥,则αβ⊥,若//a β,如图所示,则在平面β一定存在一条直线//m a ,因为a α⊥,所以m α⊥,又m β⊂,所以αβ⊥,综上若//,,//a b a b αβ⊥,则αβ⊥,故B 正确;对于C ,若//,//,//a b αβαβ,则直线,a b 相交或平行或异面,故C 错误;对于D ,若//,//,a b αβαβ⊥,则直线,a b 相交或平行或异面,故D 错误.故选:B.6.在直三棱柱111ABC A B C -中,ABC 为等腰直角三角形,若三棱柱111ABC A B C -的体积为32,则该三棱柱外接球表面积的最小值为()A .12πB .24πC .48πD .96π7.已知三棱锥-P ABC 中,底面ABC 是边长为的正三角形,点P 在底面上的射影为底面的中心,且三棱锥-P ABC 外接球的表面积为18π,球心在三棱锥-P ABC 内,则二面角P AB C --的平面角的余弦值为()A .12B .13C 22D 即PDC ∠为二面角P AB C --的平面角,由23AB =,得22OC OD ==,显然三棱锥线段PO 上,由三棱锥-P ABC 的外接球的表面积为8.已知三棱锥-P ABC 的四个顶点都在球O的球面上,4PB PC AB AC ====,2PA BC ==,则球O 的表面积为()A .316π15B .79π15C .158π5D .79π5而,,AB AC A AB AC =⊂ 平面ABC ,因此在等腰ABC 中,4,2AB AC BC ===,则215sin 1cos ABC ABC ∠=-∠=,二、多选题9.已知直线a ,b ,c 两两异面,且a c ⊥,b c ⊥,下列说法正确的是()A .存在平面α,β,使a α⊂,b β⊂,且c α⊥,c β⊥B .存在平面α,β,使a α⊂,b β⊂,且c α∥,c β∥C .存在平面γ,使a γ∥,b γ∥,且c γ⊥D .存在唯一的平面γ,使c γ⊂,且a ,b 与γ所成角相等【答案】ABC【详解】对于A,平移直线b 到与直线a 相交,设平移后的直线为b ',因为b c ⊥,所以b c '⊥,设直线,a b '确定的平面为α,则a c ⊥,b c '⊥,直线b '和a 相交,所以c α⊥,同理可得:c β⊥,故A 对;对于B,平移直线c 到与直线a 相交,设平移后的直线为c ',设直线,a c '确定的平面为α,因为c //c ',且α⊄c ,所以c α∥,同理可得:c β∥,故B 对;对于C,同时平移直线b 和直线a ,令平移后的直线相交,设平移后的直线为,a b '''',因为a c ⊥,b c ⊥,所以a c ''⊥,b c ''⊥,设直线,a b ''''确定的平面为γ,则a γ∥,b γ∥,且c γ⊥,故C 对;对于D ,由对称性可知,存在两个平面γ,使c γ⊂,且a ,b 与γ所成角相等,故D 错误;故选:ABC.10.已知正方体1111ABCD A B C D -的外接球表面积为12π,,,M N P 分别在线段1BB ,1CC ,1DD 上,且,,,A M N P 四点共面,则().A .AP MN=B .若四边形AMNP 为菱形,则其面积的最大值为C .四边形AMNP 在平面11AAD D 与平面11CC D D 内的正投影面积之和的最大值为6D .四边形AMNP 在平面11AA D D 与平面11CC D D 内的正投影面积之积的最大值为4设正方体1111ABCD A B C D -依题意,234π()12π2a ⋅=,解得因为平面11BCC B ∥平面ADD则M 在平面11AA D D 上的投影落在设为H ,则四边形AGHP 为四边形AMNP 由于,AM PN GM HN ==,则(当1x y ==时取“=”),故C 错误,D 正确,故选:ABD三、解答题11.如图,四棱锥S ABCD -的底面为菱形,60BAD ∠=︒,2AB =,4SD =,SD ⊥平面ABCD ,点E 在棱SB 上.(1)证明:AC DE ⊥;(2)若三棱锥E ABC -,求点E 到平面SAC 的距离.【详解】(1)证明:如图,连接BD ,因为四边形ABCD 为菱形,所以AC BD ⊥,因为SD ⊥平面ABCD ,AC ⊂平面ABCD ,所以SD AC ⊥,又因为SD BD D = ,所以AC ⊥平面SBD ,又因为DE ⊂平面SBD ,所以AC DE ⊥.(2)解:设点E 到平面ABC 则三棱锥E ABC -的体积V (11sin 18032AB BC =⨯⨯⨯⨯︒-12.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,,AB AD O =为BD 的中点.(1)证明:OA CD ⊥;(2)已知OCD 是边长为1的等边三角形,已知点E 在棱AD 的中点,且二面角E BC D --的大小为45 ,求三棱锥A BCD -的体积.【详解】(1)证明:AB AD = ,O 为BD 的中点,AO BD ∴⊥,又平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,AO ⊂平面BCD ,所以AO ⊥平面BCD ,又CD ⊂平面BCD ,AO CD ∴⊥.(2)取OD 的中点F ,因为OCD 为等边三角形,所以CF OD ⊥,过O 作//OM CF ,与BC 交于M ,则OM OD ⊥,由(1)可知OA ⊥平面BCD ,设OA a =,因为OA ⊥平面BCD ,所以设平面BCE 的一个法向量为n =3300x y n BC ⎧+=⎪⎧⋅= ○热○点○题○型二外接球、内切球等相关问题一、单选题1.已知ABC 是边长为3的等边三角形,其顶点都在球O 的球面上,若球O 的体积为323π,则球心O 到平面ABC 的距离为()A B .32C .1D 因为ABC 是边长为3的等边三角形,且所以13O B =,又因为球O 的体积为32π2.已知三棱锥-P ABC 的底面ABC 是边长为1的正三角形,侧棱,,PA PB PC 两两垂直,若此三棱锥的四个顶点都在同一个球面上,则该球的表面积是()A .3πB .πC .3π4D .3π23.一个圆锥的底面圆和顶点都恰好在一个球面上,且这个球的半径为5,则这个圆锥的体积的最大值时,圆锥的底面半径为()A .103B .2C .3D 【答案】C【详解】解:如图,设圆锥的底面半径为r ,球半径5R =,球心为O .过圆锥的顶点P 作底面的垂线2125OO r =-.所以圆锥的高h PO =4.已知圆锥的侧面积为2π,母线与底面所成角的余弦值为2,则该圆锥的内切球的体积为()A .4π3B .43π9C.27D5.如图,几何体Ω为一个圆柱和圆锥的组合体,圆锥的底面和圆柱的一个底面重合,圆锥的顶点为A ,圆柱的上、下底面的圆心分别为B 、C ,若该几何体Ω存在外接球(即圆锥的顶点与底面圆周在球面上,且圆柱的底面圆周也在球面上).已知24BC AB ==,则该组合体的体积等于()A .56πB .70π3C .48πD .64π【答案】A【详解】设该组合体外接球的球心为O ,半径为R ,易知球心在BC 中点,则224R AO ==+=.6.已知矩形ABCD的顶点都在球心为的体积为43,则球O的表面积为()A.76πB.112πC D.3故球的表面积为:2476πR π=,故选:A .7.水平桌面上放置了4个半径为2的小球,4个小球的球心构成正方形,且相邻的两个小球相切.若用一个半球形的容器罩住四个小球,则半球形容器内壁的半径的最小值为()A .4B .2C .2D .6此时,如上图示,O 为半球的球心,体的体对角线,且该小球与半球球面上的切点与8.已知三棱锥-PABC的四个顶点均在球的球面上,,PB AC== PC AB=Q为球O的球面上一动点,则点Q到平面PAB 的最大距离为()A2211BC2211D2223BD BE AB∴+==,BD2226BD BE BF∴++=,∴球在PAB中,cosABABP∠=二、填空题9.在三棱锥-P ABC 中,PA ⊥平面ABC ,14AB AC PA AB AC ⊥=+=,,,当三棱锥的体积最大时,三棱锥-P ABC 外接球的体积为______.则三棱锥-P ABC 外接球的直径为2R PA =因此,三棱锥-P ABC 外接球的体积为34π3R10.如图,在直三棱柱111中,1.设为1的中点,三棱锥D ABC -的体积为94,平面1A BC ⊥平面11ABB A ,则三棱柱111ABC A B C -外接球的表面积为______.【答案】27π【详解】取1A B 的中点E ,连接AE ,如图.因为1AA AB =,所以1AE A B ⊥.又面1A BC ⊥面11ABB A ,面1A BC ⋂面111ABB A A B =,且AE ⊂面11ABB A ,所以⊥AE 面1A BC ,BC ⊂面1A BC ,所以AE BC ⊥.在直三棱柱111ABC A B C -中,1BB ⊥面ABC ,BC ⊂面ABC ,所以1BB BC ⊥.又AE ,1BB ⊂面11ABB A ,且AE ,1BB 相交,所以BC ⊥面11ABB A ,AB ⊂面11ABB A ,所以BC AB ⊥.11.如图,直三棱柱111的六个顶点都在半径为1的半球面上,,侧面11BCC B 是半球底面圆的内接正方形,则直三棱柱111ABC A B C -的体积为___________.12.如图所示的由4个直角三角形组成的各边长均相等的六边形是某棱锥的侧面展开图,若该六边形的面积为12+,则该棱锥的内切球半径为___.由题意,侧面展开图的面积由,PD AD PD DC ⊥⊥,○热○点○题○型三平面关系、垂直关系、二面角等相关问题1.已知多面体ABCDEF 中,四边形CDEF 是边长为4的正方形,四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,36BE AB ==,4=AD .(1)求证:平面ADF ⊥平面BCE ;(2)求直线AF 与平面BCF 所成角的正弦值.【详解】(1)因为四边形CDEF 是边长为4的正方形,所以CE ⊥DF ,ED ⊥DC ,因为四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,所以AD ⊥CD ,AB ⊥AD ,故直线AF与平面BCF所成角的正弦值为-PA 2.如图,在四棱锥P ABCD平面PAD⊥平面ABCD.Array(1)证明:平面CDM⊥平面PAB;(2)若AD BC ∥,2AD BC =,2AB =,直线PB 与平面MCD ,求三棱锥P MCD -的体积.【详解】(1)取AD 中点为N ,连接PN ,因为PAD 为等边三角形,所以PN AD ^,且平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PN ⊂面PAD ,所以PN ^平面ABCD ,又AB ⊂平面ABCD ,所以PN AB ⊥,又因为PD AB ⊥,PN PD P = ,,PN PD ⊂平面PAD ,所以AB ⊥平面PAD ,又因为DM ⊂平面PAD ,所以AB DM ⊥,因为M 为AP 中点,所以DM PA ⊥,且PA AB A = ,,PA PB ⊂平面PAD ,所以DM ⊥平面PAB ,且DM ⊂平面CDM ,所以平面CDM ⊥平面PAB .(2)由(1)可知,PN AB ⊥且PD AB ⊥,PN PD P = ,所以AB ⊥平面PAD ,△为边长为6的等边三角形,E为BD的中点,F为AE的三等分点,且2AF FE ABD=.(1)求证://FM 面ABC ;(2)若二面角A BD C --的平面角的大小为23π,求直线EM 与面ABD 所成角的正弦值.【详解】(1)在BE 上取一点N ,使得12BN NE =,连接FN ,NM ,∵6BD =,∴116BN BD ==,2NE =,3ED =,∵12AF FE =,∴12BN AF NE FE ==,则FN AB ∥,又FN ⊄面ABC ,AB ⊂面ABC ,∴FN ∥面ABC ,∵15BN CM ND MD ==,∴NM BC ∥.∵NM ⊄面ABC ,BC ⊂面ABC ,∴NM ∥面ABC ,∵FN NM N = ,,FN NM ⊂面FNM ,∴面FNM ∥面ABC ,又FM ⊂面FNM ,4.已知底面是正方形,平面,,,点E 、F 分别为线段PB 、CQ 的中点.(1)求证://EF平面PADQ ;(2)求平面PCQ 与平面CDQ 夹角的余弦值;(3)线段PC 上是否存在点M ,使得直线AM 与平面PCQ 所成角的正弦值是7,若存在求出PM MC的值,若不存在,说明理由.【详解】(1)证明:法一:分别取AB 、CD 的中点G 、H ,连接EG 、GH 、FH ,由题意可知点E 、F 分别为线段PB 、CQ 的中点.所以//EG PA ,//FH QD ,因为//PA DQ ,所以//EG FH ,所以点E 、G 、H 、F 四点共面,因为G 、H 分别为AB 、CD 的中点,所以//GH AD ,因为AD ⊂平面ADQP ,GH ⊄平面ADQP ,所以//GH 平面ADQP ,又因为//FH QD ,QD ⊂平面ADQP ,FH ⊄平面ADQP ,所以//FH 平面ADQP ,法二:因为ABCD 为正方形,且以点A 为坐标原点,以AB 、空间直角坐标系,则()0,0,3P 、()3,3,0C 、()0,3,1Q 所以()0,3,1EF =- ,易知平面PADQ 所以0a EF ⋅= ,所以E F a ⊥ ,EF ⊄ADQP EF所在平面和圆所在的平面互相垂直,已知2,1AB EF ==.(1)求证:平面DAF ⊥平面CBF ;(2)当AD 的长为何值时,二面角C EF B --的大小为60︒?设()0AD t t =>,则(1,0,C -∴(1,0,0)EF = ,33,22CF ⎛= ⎝6.如图,在三棱柱111中,四边形11是边长为4的菱形,AB BC =,点D 为棱AC 上的动点(不与A 、C 重合),平面1B BD 与棱11AC 交于点E .(1)求证1BB DE //;(2)若平面ABC ⊥平面11AAC C ,160A AC ∠= ,判断是否存在点D 使得平面11A ABB 与平面1B BDE 所成的锐二面角为π3,并说明理由.【详解】(1)11//BB CC ,且1BB ⊂/平面11ACC A ,1CC ⊂平面11ACC A ,∴1//BB 平面11ACC A ,又∵1BB ⊂平面1B BD ,且平面1B BD 平面11ACC A DE =,∴1BB DE //;(2)连接1AC ,取AC 中点O ,连接1AO ,BO ,在菱形11ACC A 中,160A AC ∠=︒,∴1A AC △是等边三角形,又∵O 为AC 中点,∴1A O ⊥∵平面ABC ⊥平面11ACC A ,平面ABC ⋂平面11ACC A AC =∴1A O ⊥平面ABC ,OB ⊂平面。
几何证明 解答题之压轴题训练(1)(沪教版)(原卷版)-第一学期八年级压轴题训练(沪教版)
专题07 几何证明 解答题之压轴题训练(1)1.(徐汇龙华2019期中27)在△ABC 中,D 为AB 的中点,F 为BC 上一点,DF ∥AC ,延长FD 至E ,且DE=DF,联结AE 、AF.(1)求证:∠E=∠C;(2)如果DF 平分∠AFB ,求证:AC ⊥AB.2.(2019曹杨中学10月27)如图,在直角△ABC 中,∠BAC=90°,AB=AC ,点D 为射线BC 上一动点,联结AD ,以AD 为一边且在AD 的右侧作Rt △ADE ,且AD=AE. 解答下列问题:(1)当点D 在线段BC 上时(与点B 不重合),如图a ,联结线段CE ,那么CE 、BD 之间的位置关系为 ,数量关系为 ;(2)当点D 在线段BC 的延长线上时,如图b ,(1)中的结论是否仍然成立,并说明理由;(3)如果点D 在线段BC 上运动,如图c ,联结AD ,以AD 为一边且在AD 的右侧作∠EAD=45°,交边BC 于点E ,请问线段BD 、DE 、EC 所围成的三角形的形状,并说明理由.3.(2019复附10月27)已知△ABC 中,记∠BAC=α,∠ACB=β.FEDCBA图c图b图aAB CDE ABEEBA(1)如图a ,若AP 平分∠BAC ,BP 、CP 分别是△ABC 的外角∠CBM 和∠BCN 的平分线,BD ⊥AP ,用含α的代数式表示∠BPC 的度数,用含β的代数式表示∠PBD 的度数,并说明理由.(2)如图b ,若点P 为△ABC 的三条内角平分线的交点,BD ⊥AP 于点D ,猜想(1)中的两个结论是否发生变化,补全图形并直接写出你的结论.∠BPC= ;∠PBD= .4. (2019浦东一署10月29) 已知:如图,点A 、B 、C 在同一直线上,AB=2,BC=1,分别以AB 、BC 为边,在AC 同侧作等边△ABD 和等边△BCE ,分别联结AE 、CD. (1)找出图中的全等三角形(不添加辅助线),并证明你的结论;(2)线段AE 与线段CD 的关系是:AE CD (填>、=、<);AE 与CD 的夹角是: ;(3)△ABD 固定不动,使△BCE 绕着点B 旋转, ①这时(2)得出的结论还成立吗(不要求证明)?②在旋转过程中,线段DC 的长是变化的,它的变化范围是 ; ③在下面的备用图中,画出在△BCE 旋转过程中,BC 与AB 垂直时的图形.5.(2019位育10月25)已知△ABC 和△ADE 都是等腰直角三角形,其中∠ABC=∠ADE=90°,连接BD 、EC ,点M 为EC 的中点,连接BM 、DM.(1)如图1,当点D 、E 分别在AC 、AB 上时,求证:△BMD 为等腰直角三角形;ABCPNMPDCBA图a图b备用图备用图DDABAB B ACDE(2)如图2,将图1中的△ADE 绕点A 逆时针旋转45°,使点D 落在AB 上,此时(1)中的结论“△BMD 为等腰直角三角形”还成立吗?请对你的结论加以证明;(3)如图3,将图2中的△ADE 绕点A 逆时针旋转90°时,△BMD 为等腰直角三角形的结论是否仍成立?若成立,请证明;若不成立,请说明理由.6.(2019上宝25)如图,在长方形 ABCD 中,AB=3,AD=,点 P 为对角线 B D 上异于 B 、D 的一个动点, 联结 A P ,将△ABP 沿 A P 所在直线翻折,使得点 B 落在 E 处; (1)当∠DPA=45°时,求点 E 到直线 A B 的距离;(2)联结 A E,交线段 B D 于点 F ,当△EFP 为直角三角形时,求线段 B P 的长度; (3)当∠DPE=30°时,请直接..写出△ABP 的面积.7.(青浦实验2019期中25) 如图点O 是等边ABC 内一点,110,AOB BOC α︒∠=∠=,∠ACD=∠BCO ,OC=CD ,(1)试说明:COD 是等边三角形;(2)当150α︒=时,试判断AOD △的形状,并说明理由; (3)当BOC ∠为多少度时,AOD △是等腰三角形图3图2图1ABCDEMABCDEMME DCB A备用图AB CDDCBA8.(徐教院附2019期中29)已知在△ABC 中,AB =AC 在射线AC 上取一点D ,以D 为顶点、DB 为一条边作∠BDF =∠A ,点E 在AC 的延长线上,∠ECF =∠ACB (1)如图(1),当点D 在边AC 上时,求证:①∠FDC =∠ABD; ②DB =DF ;(2)如图(2),当点D 在AC 的延长线上时,请判断DB 与DF 是否相等,并说明理由.9.(川中南2019期中26)在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于点D ,BE ⊥MN 于点E.(1)当直线MN 绕点C 旋转到图1所示位置时,求证:DE=AD -BE ;(2)当直线MN 绕点C 旋转到图2、图3所示位置时,补全图形,并探索线段DE 、AD 、BE 之间的数量关系(直接写出答案).110°αODBAABC D EFFEDCBA图(1)图(2)10.(浦东南联合2019期中26)已知:点O 是△ABC 内一点,射线AO 、BO 交BC 、AC 于点D 、E .(1)若射线AO 、BO 分别平分∠B AC 、∠ABC ;①如图(1),设∠ACB =x °.试用含x 的代数式表示∠AOB 的大小;②如图(2),若AC =BC , ∠ACB =36°,射线BE 与射线AM 交于点M ,且∠BAC =∠OAM =∠AOM .求证:AM =CM ;(2)联结CO ,若AO =BO =CO ,且△AOB 中有一个内角是50°,请直接写出∠ACB 的度数.11.(浦东四署2019期中26)在等腰△OAB 和等腰△OCD 中,OA=OB ,OC=OD ,连接AC 、BD 交于点M.(1)如图1,若∠AOB=∠COD=40°.①AC 与BD 的数量关系为 ; ②∠AMB 的度数为 ; (2)如图2,若∠AOB=∠COD=90°.①判断AC 与BD 之间存在怎样的数量关系?并说明理由; ②求∠AMB 的度数.图1图2图3ABCMNAB CM NE NMDC BA12.(浦东四署2020期末26)阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形. (1)理解并填空:①根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗? (填“是”或“不是”)②若某三角形的三边长分别为1、2,则该三角形 (填“是”或“不是”)奇异三角形.(2)探究:在Rt ABC ∆,两边长分别是a 、c ,且2250,100a c ==,则这个三角形是否是奇异三角形?请说明理由.13.(川中南2020期末25)(1)问题发现如图1,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE . 填空:①∠AEB 的度数为 ;②线段AD ,BE 之间的数量关系为 ; (2)拓展探究如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.图1图2ABCDOMMOD CB A14.(西南模2019期中28)如图,等边ABE ∆,点D 为射线AE 上一点,延长BE 至点C ,使得EC=AD ,联结CD 并延长交射线AB 于点F.(1)当点D 在边AE 上时,如图1,若ED=AD ,则_____CFA DBC ︒∠-∠=; (2)当点D 在边AE 上时,如图2,若ED AD ≠,则(1)的结论还成立吗?若成立,请证明;若不成立,写出CFA ∠与DBC ∠的数量关系并证明;(3)当点D 在边AE 的延长线上时,则(1)的结论还成立吗?若成立,请证明;若不成立,写出CFA ∠与DBC ∠的数量关系并证明.15.(建平实验2019期中28)已知Rt △ABC 中,AC=BC ,∠C=90°,D 为AB 边中点,∠EDF 绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F. (1)当点E 在AC 边上时(如图1),求证CE=BF ; (2)在(1)的条件下,求证:△ABC △CEF △DEF 21S S S =+; (3)当∠EDF 绕D 点旋转到图3的位置即点E 、F 分别在AC 、CB 边的延长线上时,上述(2)结论是否成立?若成立,请给予证明;若不成立,△ABC △CEF △DEF S S S 、、又有怎样的数量关系?请写出你的猜想,不需证明.图1图2M EDCBAABCDE ABCDEF FEDC BA图1图2。
解答题压轴题专题五 几何计算与证明综合题(5)—反射角-专题六几何计算与证明综合题(6)—角的运动
模块二解答题压轴题专题五几何计算与证明综合题(5)——反射角1.当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等.例如:在下图中,∠1=∠2,∠3=∠4.设镜子AB与BC的夹角∠ABC=α.(1)如图1,若α=90∘,判断入射光线EF与反射光线GH的位置关系,并说明理由;(2)如图2,若90∘<α<180∘,入射光线EF与反射光线GH的夹角∠FMH=β.探索α与β的数量关系,并说明理由;(3)如图3和4,若α=120∘,设镜子CD与BC的夹角∠BCD=γ(90∘<γ<180∘),入射光线EF与镜面AB的夹角∠1=m(0∘<m<90∘),已知入射光线EF从镜面AB开始反射,经过n(n为正整数,且n⩽3)次反射,当第n次反射光线与入射光线EF平行时,请根据图3和图4直接写出γ的大小.(可用含有m的代数式表示)专题六几何计算与证明综合题(6)——角的运动1.“五一”期间,武汉市开启长江“灯光秀”供广大市民欢度小长假.如图1,灯A射线自AM开始顺时针旋转至AN便立即回转,灯B射线自BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射.若灯A转动的速度是a∘秒,灯B转动的速度是b∘秒,且a,b满足b=√a−3+√6−2a+1,假定这一带长江两岸河堤是平行的,即PQ//MN,且∠BAN=45∘.(1)求a,b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动多少秒时,两灯的光束互相平行?(3)如图2,两灯同时转动,在灯A射线已转过AB但末到达AN时,若两灯射出的光束交于点C,过C作CD⊥AC交PQ于点D,直接写出在转动过程中,∠BCD:∠BAC的比值.专题五几何计算与证明综合题(5)一反射角1.2.解:(1)EF//GH.理由如下:过点E作EP//BG,∴∠PEG=∠3,∴∠2+∠3+α=180∘,α= 90∘,∴∠2+∠3=90∘,∴∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180∘,∵∠1+∠2+∠FEG=180∘,∴∠3+∠4+∠EGH=180∘,∴∠FEG+∠EGH=180∘,∴EF//GH.3.(2)β=2α−180∘.理由如下:同(1)可证∠2+∠3+α=180∘,∠MEG+∠MGE+β= 180∘,∴∠2+∠3=180∘−α.∵∠1=∠2,∠1=∠MEB,∴∠2=∠MEB,∴∠MEG=2∠24.同理可得,∠MGE=2∠3.∴β=180∘−(∠MEG+∠MGE)=180∘−(2∠2+2∠3)= 180∘−2(∠2+∠3)=180∘−2(180∘−α)=2α−180∘5.(3)90∘+m或150∘.延长AB,DC交于点P,6.同(1)证:∠P+180∘−α+180∘−γ=180∘,∴∠P=α+γ−180∘=γ−60∘,7.图3中,∠P=180∘−∠2−∠3.8.作PQ//EF,易证∠P=∠1+∠4=∠2+∠3,∴∠P=90∘=γ−60∘,∴γ=150∘;9.在图4中,过G作GT//EF,∠1=m=∠BEG,∴∠FEG=180∘−2m,∴∠EGT=2m=∠TGH,∴∠BGE=90∘−2m=∠HGC,∠GHK=180∘−2m,∴∠GHC=m.10.在ΔGCH中,m+γ+90∘−2m=180∘.∵∠BEG+∠EBG+∠BGE=180∘,∴m+120∘+ 90∘−2m=180∘,∴m=30∘.11.过点P作PQ//EF,易证∠BPC=2m=γ−60∘,∴γ=120∘.12.综上,γ为150∘或120∘.13.专题六几何计算与证明综合题(6)一一角的运动1.解:(1)∵a,b满足b=√a−3+√6−2a+1,∴a−3⩾0,6−2a⩾0,∴a=3,b=1.(2)设A灯转动t秒,两灯的光束互相平行,(1)在灯A射线转到AN之前,3t=(20+t)×1,解得t=10;(2)在灯A射线转到AN之后,3t−180∘+(20+t)×1=180∘,解得t=85.综上所述,当t=10秒或85秒时,两灯的光束互相平行.(3)设两灯转动的时间为t(s),则∠MAC=3t,∠BAC=3t−135∘,∠CBD=t,∠BCA=∠CBD+∠CAN,∴∠BCA=t+180∘−3t=180∘−2t,∠BCD=90∘−∠BCA=2t−90∘,∴∠BCD∠BAC =2t−90∘3t−135∘=23.。
初二压轴题(几何证明直角三角形后)
1.如图,在Rt △ABC 中,90BAC ∠=︒,AB = AC ,点M 、N 在边BC 上. (1)如图1,如果AM = AN ,求证:BM = CN ; (2)如图2,如果M 、N 是边BC 上任意两点,并满足45MAN ∠=︒,那么线段BM 、MN 、 NC 是否有可能使等式222MN BM NC =+ 成立?如果成立,请证明;如果不成立, 请说明理由.2.如图,把矩形ABCD 折叠,使点C 落在AB 上的点C ˋ处(C ˋ与A 、B 不重合),点D 落在点D ˋ处,此时C ˋD ˋ交AD 于点E,折痕为MN. (1) 如果AB=1,BC=34,当C ˋ点在什么位置时,可使△NBC ˋ≌△C ˋAE; (2) 如果AB=BC=1,使△NBC ˋ≌△C ˋAE 的C ˋ点还存在吗?,若存在,求出C ˋ点的位置;若不存在,请说明理由.3.已知:在△ABC 中,∠CAB 和∠ABC 的平分线AD 、BE 交于点P 。
(1) 当△ABC 为等边三角形(如图1)时,求证:EP =DP ;(2) 当△ABC 不是等边三角形,但∠ACB =600(如图2)时,(2)中的结论是否还成立?若成立,请证明;若不成立,请说明理由。
ABCM NED `C `NMDCBAAB(图1) AB CDEP(图2)4.已知在∆ABC 中,AD ⊥BC ,垂足为D 点在边BC 上,BF ⊥AC 分别交射线DA 、射线CA 于点E 、F ,若BD=4,∠BAD= 45. (1)如图5:若∠BAC 是锐角,则点F 在边AC 上,① 求证:∆BDE ≌∆ADC ; ② 若DC=3,求AE 的长;(2)若∠BAC 是钝角,AE=1,求AC 的长5.已知在△ABC 中,45ABC ︒∠=,高AD 所在的直线与高BE 所在的直线交于点F ,过点F 作FG ∥BC ,交直线AB 于点G ,联结CF .(1)当△ABC 是锐角三角形时(如图a 所示),求证:AD FG CD =+; (2)当BAC ∠是钝角时(如图b 所示),①写出线段AD 、CD 、FG 三者之间的数量关系,不必写出证明过程,直接写结论;②当BE FE =,4BD =时,求FG 的长.6.已知:如图,D 是等腰直角三角形ABC 的斜边AB 上一动点,CE ⊥CD ,且CE =CD .试探究:(1)在点D 的运动过程中,是否存在与线段AD 始终相等的线段?如果存在,请证明;如果不存在,请说明理由.(2)△ACD 与△EDB 能否全等?如果能,请指出这两个三角形全等时点D 的位置,并证明你的判断;如果不能,请说明理由.A BD CEF图5A BD C备用图GFEDCB A第27(a )题GFEDBA第27(b )题CABDE7.在△ABC 中,∠ACB =90°,D 是AB 的中点,过点B 作∠CBE =∠A ,BE 与射线CA 相 交于点E ,与射线CD 相交于点F .(1)如图, 当点E 在线段CA 上时, 求证:BE ⊥CD ;(2)如果BE =CD ,那么线段AC 与BC 之间具有怎样的数量关系?并证明你所得到的结论;(3)如果△BDF 是等腰三角形,求∠A 的度数.8.已知ABC ∆中,AC =BC , =120C ∠,点D 为AB 边的中点,60EDF ∠=,DE 、DF 分别交AC 、BC 于E 、F 点.(1)如图(图1),若EF ∥AB .求证:DE =DF .(2)如图(图2),若EF 与AB 不平行. 则问题(1)的结论是否成立?说明理由.(图1)ABECD F(图2)ABECD F9.如图(图1),已知ABC ∆中, BC =3, AC =4, AB =5,直线MD 是AB 的垂直平分线,分别交AB 、AC 于M 、D 点. (1)求线段DC 的长度;(2)如图(图2),联接CM ,作ACB ∠的平分线交DM 于N .求证:CM =MN .10.在△ABC 中,AD ⊥BC ,垂足为点D (D 在BC 边上),BE ⊥AC ,垂足为点E ,M 为AB 边的中点,联结ME 、MD 、ED 。
九年级数学上册几何模型压轴题(培优篇)(Word版 含解析)
九年级数学上册几何模型压轴题(培优篇)(Word 版 含解析)一、初三数学 旋转易错题压轴题(难)1.如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是_________,位置关系是_________;(2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN 面积的最大值.【答案】(1)PM PN =,PM PN ⊥;(2)等腰直角三角形,见解析;(3)492【解析】【分析】(1)由三角形中位线定理及平行的性质可得PN 与PM 等于DE 或CE 的一半,又△ABC 为等腰直角三角形,AD=AE ,所以得PN=PM ,且互相垂直; (2)由旋转可推出BAD CAE ∆∆≌,再利用PM 与PN 皆为中位线,得到PM=PN ,再利用角度间关系推导出垂直即可;(3)找到面积最大的位置作出图形,由(2)可知PM=PM ,且PM ⊥PN ,利用三角形面积公式求解即可.【详解】(1)PM PN =,PM PN ⊥;已知点M ,P ,N 分别为DE ,DC ,BC 的中点,根据三角形的中位线定理可得 12PM EC =,12PN BD =,//PM EC ,//PN BD 根据平行线性质可得DPM DCE ∠=∠,NPD ADC ∠=∠在Rt ABC ∆中,90A ∠=︒,AB AC =,AD AE =可得BD EC =,90DCE ADC ∠+∠=︒即得PM PN =,PM PN ⊥故答案为:PM PN =;PM PN ⊥.(2)等腰直角三角形,理由如下:由旋转可得BAD CAE ∠=∠,又AB AC =,AD AE =∴BAD CAE ∆∆≌∴BD CE =,ABD ACE ∠=∠, ∵点M ,P 分别为DE ,DC 的中点∴PM 是DCE ∆的中位线∴12PM CE =,且//PM CE , 同理可证12PN BD =,且//PN BD ∴PM PN =,MPD ECD ∠=∠,PNC DBC ∠=∠,∴MPD ECD ACD ACE ACD ABD ∠=∠=∠+∠=∠+∠,DPN PNC PCN DBC PCN ∠=∠+∠=∠+∠,∴90MPN MPD DPN ACD ABD DBC PCN ABC ACB ∠=∠+∠=∠+∠+∠+∠=∠+∠=︒,即PMN ∆为等腰直角三角形.(3)把ADE ∆绕点A 旋转的如图的位置,此时1()72PN AD AB =+=,1()72PM AE AC =+= 且PN 、PM 的值最长,由(2)可知PM PN =,PM PN ⊥ 所以PMN ∆面积最大值为1497722⨯⨯=. 【点睛】本题主要考查三角形中位线的判定及性质、全等三角形的判定及性质、等腰直角三角形的判定及性质、旋转的性质等相关知识,解题关键在于找到图形中各角度之间的数量关系.2.综合与探究:如图1,Rt AOB 的直角顶点O 在坐标原点,点A 在y 轴正半轴上,点B 在x 轴正半轴上,4OA =,2OB =,将线段AB 绕点B 顺时针旋转90︒得到线段BC ,过点C 作CD x ⊥轴于点D ,抛物线23y ax x c =++经过点C ,与y 轴交于点(0,2)E ,直线AC 与x 轴交于点H .(1)求点C 的坐标及抛物线的表达式;(2)如图2,已知点G 是线段AH 上的一个动点,过点G 作AH 的垂线交抛物线于点F (点F 在第一象限),设点G 的横坐标为m .①点G 的纵坐标用含m 的代数式表示为________;②如图3,当直线FG 经过点B 时,求点F 的坐标,判断四边形ABCF 的形状并证明结论;③在②的前提下,连接FH ,点N 是坐标平面内的点,若以F ,H ,N 为顶点的三角形与FHC 全等,请直接写出点N 的坐标.【答案】(1)点C 的坐标为(6,2),21322y x x =-++;(2)①143m -+;②点F 的坐标为(4,6),四边形ABCF 为正方形,证明见解析;③点N 的坐标为(10,4)或4226,55⎛⎫ ⎪⎝⎭或384,55⎛⎫ ⎪⎝⎭. 【解析】【分析】(1)根据已知条件与旋转的性质证明ABO BCD ≌,根据全等三角形的性质得出点C 的坐标,结合点E 的坐标,根据待定系数法求出抛物线的表达式;(2)①设直线AC 的表达式为y kx b =+,由点A 、C 的坐标求出直线AC 的表达式,进而得解;②过点G 作GM x ⊥轴于点M ,过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q ,根据等腰三角形三线合一得出AG CG =,结合①由平行线分线段成比例得出点G 的坐标,根据待定系数法求出直线BG 的表达式,结合抛物线的表达式求出点F ;利用勾股定理求出AB BC CF FA ===,结合90ABC ︒∠=可得出结论; ③根据直线AC 的表达式求出点H 的坐标,设点N 坐标为(,)s t ,根据勾股定理分别求出2FC ,2CH ,2FN ,2NH ,然后分两种情况考虑:若△FHC ≌△FHN ,则FN =FC ,NH =CH ,若△FHC ≌△HFN ,则FN =CH ,NH =FC ,分别列式求解即可.【详解】解:(1)4=OA ,2OB =,∴点A 的坐标为(0,4),点B 的坐标为(2,0),线段AB 绕点B 顺时针旋转90︒得到线段BC ,AB BC ∴=,90ABC ︒∠=,90ABO DBC ︒∴∠+∠=,在Rt AOB 中,90ABO OAB ︒∴∠+∠=,=OAB DBC ∴∠∠,CD x ⊥轴于点D ,90BDC ︒∴∠=,90AOB BDC ︒∴∠=∠=.AB BC =,ABO BCD ∴△≌△,2CD OB ∴==,4BD OA ==,6OB BD ∴+=,∴点C 的坐标为(6,2),∵抛物线23y ax x c =++的图象经过点C ,与y 轴交于点(0,2)E , 236182c a c =⎧∴⎨++=⎩, 解得,122a c ⎧=-⎪⎨⎪=⎩, ∴抛物线的表达式为21322y x x =-++; (2)①设直线AC 的表达式为y kx b =+,∵直线AC 经过点()6,2C ,(0,4)A ,∴624k b b +=⎧⎨=⎩, 解得,134k b ⎧=-⎪⎨⎪=⎩,即143y x =-+, ∴点G 的纵坐标用含m 的代数式表示为:143m -+, 故答案为:143m -+.②过点G 作GM x ⊥轴于点M ,OM m ∴=,143GM m =-+, AB BC =,BG AC ⊥,AG CG ∴=,90AOB GMH CDH ︒∠=∠=∠=,OA GMCD ∴, 1OM AG MD GC∴==, 132OM MD OD ∴===, 3m ∴=,1433m -+=,∴点G 为(3,3), 设直线BG 的表达式为y kx b =+,将(3,3)G 和(2,0)B 代入表达式得,2033k b k b +=⎧⎨+=⎩, 36k b =⎧∴⎨=-⎩,即表达式为36y x =-, 点F 为直线BG 和抛物线的交点,∴得2132362x x x -++=-, 14x ∴=,24x =-(舍去),∴点F 的坐标为(4,6),过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q ,4PF ∴=,2AP =,2FQ =,4CQ =,在Rt AFP △中和Rt FCQ △中,根据勾股定理,得25AF FC ==,同理可得25AB BC ==,AB BC CF FA ∴===,∴四边形ABCF 为菱形,90ABC ︒∠=,∴菱形ABCF 为正方形;③∵直线AC :143y x =-+与x 轴交于点H ,∴1403x -+=, 解得,x =12,∴(12,0)H , ∴222(64)(26)20FC =-+-=,222(126)(02)40CH =-+-=,设点N 坐标为(,)s t ,∴222(4)(6)FN s t =-+-,222(12)(0)NH s t =-+-,第一种情况:若△FHC ≌△FHN ,则FN =FC ,NH =CH , ∴2222(4)(6)20(12)40s t s t ⎧-+-=⎨-+=⎩, 解得,11425265s t ⎧=⎪⎪⎨⎪=⎪⎩,2262s t =⎧⎨=⎩(即点C ), ∴4226,55N ⎛⎫ ⎪⎝⎭; 第二种情况:若△FHC ≌△HFN ,则FN =CH ,NH =FC ,∴2222(4)(6)40(12)20s t s t ⎧-+-=⎨-+=⎩, 解得,1138545s t ⎧=⎪⎪⎨⎪=⎪⎩,22104s t =⎧⎨=⎩, ∴384,55N ⎛⎫ ⎪⎝⎭或(10,4)N , 综上所述,以F ,H ,N 为顶点的三角形与△FHC 全等时,点N 坐标为(10,4)或4226,55⎛⎫⎪⎝⎭或384,55⎛⎫ ⎪⎝⎭. 【点睛】本题是函数与几何的综合题,考查了待定系数法求函数的表达式,全等三角形的判定与性质,菱形与正方形的判定,旋转的性质,勾股定理等知识,其中对全等三角形存在性的分析,因有一条公共边,可对另外两边进行分类讨论,本题有一定的难度,是中考压轴题.3.(1)如图①,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,交AD 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .①求证:四边形BFDE 是菱形;②直接写出∠EBF 的度数;(2)把(1)中菱形BFDE 进行分离研究,如图②,点G 、I 分别在BF 、BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH 并延长,交ED 于点J ,连接IJ 、IH 、IF 、IG.试探究线段IH 与FH 之间满足的关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图③,当矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE 、EF 、DF ,使△DEF 是等腰直角三角形,DF 交AC 于点G.请直接写出线段AG 、GE 、EC 三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH =3FH ;(3)EG 2=AG 2+CE 2.【解析】【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题.(2)IH =3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=3FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,DHG GHFDH GHJDH FGH∠∠⎧⎪⎨⎪∠∠⎩===,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,BI MJB MBF IM⎧⎪∠∠⎨⎪⎩===,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=3FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,DE DEEDG EDMDG DM⎧⎪∠∠⎨⎪⎩===,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.4.如图,△ABC和△DEC都是等腰三角形,点C为它们的公共直角顶点,连接AD、BE,F 为线段AD的中点,连接CF.(1)如图1,当D点在BC上时,BE与CF的数量关系是__________;(2)如图2,把△DEC绕C点顺时针旋转90°,其他条件不变,问(1)中的关系是否仍然成立?请说明理由;(3)如图3,把△DEC绕C点顺时针旋转一个钝角,其他条件不变,问(1)中的关系是否仍然成立?如成立,请证明;如果不成立,请写出相应的正确的结论并加以证明.【答案】(1)BE=2CF;(2)(1)中的关系是仍然成立,理由见解析;(3)(1)中的关系是仍然成立,理由见解析.【解析】试题分析:(1)根据“SAS”证明△ACD≌△BCE,可得AD=BE,又因为AD=2CF,从而BE=2CF;(2)由点F是AD中点,可得AD=2DF,从而AC= 2DF+CD,又由△ABC和△CDE是等腰直角三角形,可知BC=2DF+CE,所以BE= 2(DF+CE),CF= DF+CD,从而BE=2CF;(3)延长CF至G使FG=CF,即:CG=2CF,可证△CDF≌△GAF,再证明△BCE≌△ACG,从而BE=CG=2CF成立.解:(1)∵△ABC是等腰直角三角形,∴AC=BC,∵△CDE是等腰直角三角形,∴CD=CE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,在Rt△ACD中,点F是AD中点,∴AD=2CF,∴BE=2CF,故答案为BE=2CF;(2)(1)中的关系是仍然成立,理由:∵点F是AD中点,∴AD=2DF,∴AC=AD+CD=2DF+CD,∵△ABC和△CDE是等腰直角三角形,∴AC=BC,CD=CE,∴BC=2DF+CE,∴BE=BC+CE=2DF+CE+CE=2(DF+CE),∵CF=DF+CD=DF+CD,∴BE=2CF;(3)(1)中的关系是仍然成立,理由:如图3,延长CF至G使FG=CF,即:CG=2CF,∵点F是AD中点,∴AF=DF,在△CDF和△GAF中,,∴△CDF≌△GAF,∴AG=CD=CE,∠CDF=∠GAF,∴∠CAG=∠CAD+∠GAF=∠CAD+∠ADC=180°﹣∠ACD,∵∠ACB=∠DCE=90°,∴∠BCE=360°﹣∠ACB﹣∠DCE﹣∠ACD=180°﹣∠ACD,∴∠CAG=∠BCE,连接BE,在△BCE和△ACG中,,∴△BCE≌△ACG,∴BE=CG=2CF,即:BE=2CF.点睛:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质和旋转的性质,考查了学生综合运用知识的能力,熟练掌握旋转的性质、全等三角形的判定与性质是解答本题的关键.5.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE ,AB =AC ,AD =AE ,则BD =CE , (1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题: (2)如图2,AB =BC ,∠ABC =∠BDC =60°,求证:AD+CD =BD ;(3)如图3,在△ABC 中,AB =AC ,∠BAC =m°,点E 为△ABC 外一点,点D 为BC 中点,∠EBC =∠ACF ,ED ⊥FD ,求∠EAF 的度数(用含有m 的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12m°. 【解析】分析:(1)如图1中,欲证明BD=EC ,只要证明△DAB ≌△EAC 即可;(2)如图2中,延长DC 到E ,使得DB=DE .首先证明△BDE 是等边三角形,再证明△ABD ≌△CBE 即可解决问题;(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .想办法证明△AFE ≌△AFG ,可得∠EAF=∠FAG=12m°. 详(1)证明:如图1中,∵∠BAC=∠DAE , ∴∠DAB=∠EAC , 在△DAB 和△EAC 中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===, ∴△DAB ≌△EAC , ∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE .∵DB=DE,∠BDC=60°,∴△BDE是等边三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+AD.∴AD+CD=BD.(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.6.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=12AE,利用三角形全等证出AE=AF,而DM=12AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=12AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=12AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.7.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,FH⊥FG.【解析】试题分析:(1)证AD=BE,根据三角形的中位线推出FH=12AD,FH∥AD,FG=12BE,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE∴AD=BE,由(1)知:FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG ,FH ⊥FG . 连接AD ,BE ,两线交于Z ,AD 交BC 于X , 同(1)可证∴FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形, ∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°, ∴∠ACD=∠BCE ,在△ACD 和△BCE 中AC BC ACD BCE CE CD ⎧⎪∠∠⎨⎪⎩=== , ∴△ACD ≌△BCE , ∴AD=BE ,∠EBC=∠DAC ,∵∠DAC+∠CXA=90°,∠CXA=∠DXB , ∴∠DXB+∠EBC=90°, ∴∠EZA=180°﹣90°=90°, 即AD ⊥BE , ∵FH ∥AD ,FG ∥BE , ∴FH ⊥FG , 即FH=FG ,FH ⊥FG , 结论是FH=FG ,FH ⊥FG.【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.8.如图1,点O 是正方形ABCD 两对角线的交点. 分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接AG ,DE . (1)求证:DE ⊥AG ;(2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转角(0°< <360°)得到正方形,如图2.①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°【解析】分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.详解:如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,,,在和中,,≌,,,,,即;在旋转过程中,成为直角有两种情况:Ⅰ由增大到过程中,当时,,在中,sin∠AGO=,,,,,即;Ⅱ由增大到过程中,当时,同理可求,.综上所述,当时,或.如图3,当旋转到A、O、在一条直线上时,的长最大,正方形ABCD的边长为1,,,,,,,此时.点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.二、初三数学圆易错题压轴题(难)9.如图,抛物线的对称轴为轴,且经过(0,0),()两点,点P在抛物线上运动,以P为圆心的⊙P经过定点A(0,2),(1)求的值;(2)求证:点P在运动过程中,⊙P始终与轴相交;(3)设⊙P与轴相交于M,N(<)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.【答案】(1)a=,b=c=0;(2)证明见解析;(3)P的纵坐标为0或4+2或4﹣2.【解析】试题分析:(1)根据题意得出二次函数一般形式进而将已知点代入求出a,b,c的值即可;(2)设P(x,y),表示出⊙P的半径r,进而与x2比较得出答案即可;(3)分别表示出AM,AN的长,进而分别利用当AM=AN时,当AM=MN时,当AN=MN 时,求出a的值,进而得出圆心P的纵坐标即可.试题解析:(1)∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,∴抛物线的一般式为:y=ax2,∴=a()2,解得:a=±,∵图象开口向上,∴a=,∴抛物线解析式为:y=x2,故a=,b=c=0;(2)设P(x,y),⊙P的半径r=,又∵y=x2,则r=,化简得:r=>x2,∴点P在运动过程中,⊙P始终与x轴相交;(3)设P(a,a2),∵PA=,作PH⊥MN于H,则PM=PN=,又∵PH=a2,则MH=NH==2,故MN=4,∴M(a﹣2,0),N(a+2,0),又∵A(0,2),∴AM=,AN=,当AM=AN时,=,解得:a=0,当AM=MN时,=4,解得:a=2±2(负数舍去),则a2=4+2;当AN=MN时,=4,解得:a=﹣2±2(负数舍去),则a2=4﹣2;综上所述,P的纵坐标为0或4+2或4﹣2.考点:二次函数综合题.10.如图,矩形ABCD中,BC=8,点F是AB边上一点(不与点B重合)△BCF的外接圆交对角线BD于点E,连结CF交BD于点G.(1)求证:∠ECG=∠BDC.(2)当AB=6时,在点F的整个运动过程中.①若BF=22时,求CE的长.②当△CEG为等腰三角形时,求所有满足条件的BE的长.(3)过点E作△BCF外接圆的切线交AD于点P.若PE∥CF且CF=6PE,记△DEP的面积为S1,△CDE的面积为S2,请直接写出12SS的值.【答案】(1)详见解析;(2182当BE为10,395或445时,△CEG为等腰三角形;(3)724.【解析】【分析】(1)根据平行线的性质得出∠ABD=∠BDC,根据圆周角定理得出∠ABD=∠ECG,即可证得结论;(2)根据勾股定理求得BD=10,①连接EF,根据圆周角定理得出∠CEF=∠BCD=90°,∠EFC=∠CBD.即可得出sin∠EFC=sin ∠CBD ,得出35CE CD CF BD ==,根据勾股定理得到CF =CE ; ②分三种情况讨论求得: 当EG =CG 时,根据等腰三角形的性质和圆周角定理即可得到∠GEC =∠GCE =∠ABD =∠BDC ,从而证得E 、D 重合,即可得到BE =BD =10;当GE =CE 时,过点C 作CH ⊥BD 于点H ,即可得到∠EGC =∠ECG =∠ABD =∠GDC ,得到CG =CD =6.根据三角形面积公式求得CH =245,即可根据勾股定理求得GH ,进而求得HE ,即可求得BE =BH +HE =395; 当CG =CE 时,过点E 作EM ⊥CG 于点M ,由tan ∠ECM =43EM CM =.设EM =4k ,则CM =3k ,CG =CE =5k .得出GM =2k ,tan ∠GEM =2142GM k EM k ==,即可得到tan ∠GCH =GH CH =12.求得HE =GH =125,即可得到BE =BH +HE =445; (3)连接OE 、EF 、AE 、EF ,先根据切线的性质和垂直平分线的性质得出EF =CE ,进而证得四边形ABCD 是正方形,进一步证得△ADE ≌△CDE ,通过证得△EHP ∽△FBC ,得出EH =16BF ,即可求得BF =6,根据勾股定理求得CF =10,得出PE =106,根据勾股定理求得PH ,进而求得PD ,然后根据三角形面积公式即可求得结果.【详解】(1)∵AB ∥CD .∴∠ABD =∠BDC ,∵∠ABD =∠ECG ,∴∠ECG =∠BDC .(2)解:①∵AB =CD =6,AD =BC =8,∴BD =10,如图1,连结EF ,则∠CEF =∠BCD =90°,∵∠EFC =∠CBD .∴sin ∠EFC =sin ∠CBD , ∴35CE CD CF BD ==∴CF∴CE ②Ⅰ、当EG =CG 时,∠GEC =∠GCE =∠ABD =∠BDC .∴E 与D 重合,∴BE =BD =10.Ⅱ、如图2,当GE=CE时,过点C作CH⊥BD于点H,∴∠EGC=∠ECG=∠ABD=∠GDC,∴CG=CD=6.∵CH=BC CD24 BD5⋅=,∴GH185 =,在Rt△CEH中,设HE=x,则x2+(245)2=(x+185)2解得x=75,∴BE=BH+HE=325+75=395;Ⅲ、如图2,当CG=CE时,过点E作EM⊥CG于点M.∵tan∠ECM=43 EMCM=.设EM=4k,则CM=3k,CG=CE=5k.∴GM=2k,tan∠GEM=2142 GM kEM k==,∴tan∠GCH=GHCH=tan∠GEM=12.∴HE=GH=12412 255⨯=,∴BE=BH+HE=321244 555+=,综上所述,当BE为10,395或445时,△CEG为等腰三角形;(3)解:∵∠ABC=90°,∴FC是△BCF的外接圆的直径,设圆心为O,如图3,连接OE、EF、AE、EF,∵PE是切线,∴OE⊥PE,∵PE∥CF,∴OE⊥CF,∵OC=OF,∴CE=EF,∴△CEF是等腰直角三角形,∴∠ECF=45°,EF=2FC,∴∠ABD=∠ECF=45°,∴∠ADB=∠BDC=45°,∴AB=AD=8,∴四边形ABCD是正方形,∵PE∥FC,∴∠EGF=∠PED,∴∠BGC=∠PED,∴∠BCF=∠DPE,作EH⊥AD于H,则EH=DH,∵∠EHP=∠FBC=90°,∴△EHP∽△FBC,∴16 EH PEBF FC==,∴EH=16 BF,∵AD=CD,∠ADE=∠CDE,∴△ADE≌△CDE,∴AE=CE,∴AE=EF,∴AF=2EH=13 BF,∴13BF+BF=8,∴BF=6,∴EH=DH=1,CF10,∴PE=16FC=53,∴PH4 3 =,∴PD=47133 +=,∴1277 3824S PDS AD===.【点睛】本题是四边形的综合题,考查了矩形的性质,圆周角定理、三角形的面积以及相似三角形的判定和性质,作出辅助线构建直角三角形是解题的关键.11.在平面直角坐标系xOy中,已知 A(-2,0),B(2,0),AC⊥AB于点A,AC=2,BD⊥AB 于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示.(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.【答案】(1)12;(2)判断△OCD是直角三角形,证明见解析;(3)连接OC,交半圆O于点P,这时点P的关联图形的面积最大,理由风解析,82+【解析】试题分析:(1)判断出四边形AOPC是正方形,得到正方形的面积是4,根据BD⊥AB,BD=6,求出梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,二者相加即为点P的关联图形的面积是12.(2)根据CF=DF=4,∠DCF=45°,求出∠OCD=90°,判断出△OCD是直角三角形.(3)要使点P的关联图形的面积最大,就要使△PCD的面积最小,确定关联图形的最大面积是梯形ACDB的面积﹣△PCD的面积,根据此思路,进行解答.试题解析:(1)∵A(﹣2,0),∴OA=2,∵P 是半圆O 上的点,P 在y 轴上,∴OP=2,∠AOP=90°,∴AC=2,∴四边形AOPC 是正方形,∴正方形的面积是4,又∵BD ⊥AB ,BD=6,∴梯形OPDB 的面积=()(26)2822OP DB OB +⨯+⨯==, ∴点P 的关联图形的面积是12.(2)判断△OCD 是直角三角形.证明:延长CP 交BD 于点F ,则四边形ACFB 为矩形,∴CF=DF=4,∠DCF=45°,∴∠OCD=90°,∴OC ⊥CD ,∴△OCD 是直角三角形.(3)连接OC 交半圆O 于点P ,则点P 即为所确定的点的位置.理由如下:连接CD ,梯形ACDB 的面积=()(26)41622AC DB AB +⨯+⨯==为定值, 要使点P 的关联图形的面积最大,就要使△PCD 的面积最小,∵CD 为定长,∴P 到CD 的距离就要最小,连接OC ,设交半圆O 于点P , ∵AC ⊥OA ,AC=OA ,∴∠AOC=45°,过C 作CF ⊥BD 于F ,则ACFB 为矩形, ∴CF=DF=4,∠DCF=45°,∴OC ⊥CD ,OC=2∴PC 在半圆外,设在半圆O 上的任意一点P′到CD 的距离为P′H ,则P′H+P′O >OH >OC , ∵OC=PC+OP ,∴P′H >PC ,∴当点P 运动到半圆O 与OC 的交点位置时,点P 的关联图形的面积最大.∵CD=42CP=222,∴△PCD 的面积=()(26)41622AC DB AB +⨯+⨯==, ∴点P 的关联图形的最大面积是梯形ACDB 的面积﹣△PCD 的面积=16(842)842--=+考点:圆的综合题.12.如图,在ABC ∆中,90ACB ∠=︒,45ABC ∠=︒,12BC cm =,半圆O 的直径12DE cm =.点E 与点C 重合,半圆O 以2/cm s 的速度从左向右移动,在运动过程中,点D 、E 始终在BC 所在的直线上.设运动时间为()x s ,半圆O 与ABC ∆的重叠部分的面积为()2S cm .(1)当0x =时,设点M 是半圆O 上一点,点N 是线段AB 上一点,则MN 的最大值为_________;MN 的最小值为________.(2)在平移过程中,当点O 与BC 的中点重合时,求半圆O 与ABC ∆重叠部分的面积S ;(3)当x 为何值时,半圆O 与ABC ∆的边所在的直线相切?【答案】(1)24cm ,()926cm ;(2)2(189)cm π+;(3)0x =或6x =或932x =-【解析】【分析】(1)当N 与点B 重合,点M 与点D 重合时,MN 最大,此时121224()MN DB DE BC cm ==+=+=如图①,过点O 作ON AB ⊥于N ,与半圆交于点M ,此时MN 最小,MN ON OM =-,261218()92()OB OC CB cm ON BN cm =+=+====,所以926()MN ON OM cm =-=; (2)当点O 与BC 的中点重合时,如图②,点O 移动了12cm ,设半圆与AB 交于点H ,连接OH 、CH ,6OH OC OB ===,3602BOH HOC ∆阴影扇形(3)当半圆O 与直线AC 相切时,运动的距离为0或12,所以0x =(秒)或6(秒);当半圆O 与直线AB 相切时,如图③,连接OH ,则OH AB ⊥,6OH =,262OB OH ==,1262OC BC OB =-=-,移动的距离为612621862()cm +-=-,运动时间为18629322x -==-(秒). 【详解】解:解(1)当N 与点B 重合,点M 与点D 重合时,MN 最大,此时121224()MN DB DE BC cm ==+=+=如图①,过点O 作ON AB ⊥于N ,与半圆交于点M ,此时MN 最小,MN ON OM =-,45ABC ∠=︒,45NOB ∴∠=︒,在Rt ONB ∆中,61218()OB OC CB cm =+=+=292()ON BN OB cm ∴===, 926()MN ON OM cm ∴=-=-,故答案为24cm ,(926)cm -;(2)当点O 与BC 的中点重合时,如图②,点O 移动了12cm ,设半圆与AB 交于点H ,连接OH 、CH .BC 为直径,90CHB ∴∠=︒,45ABC ∠=︒45HCB ∴∠=︒,HC HB ∴=,OH BC ∴⊥,6OH OC OB ===,3602BOH HOC ∆阴影扇形(3)当半圆O 与直线AC 相切时,运动的距离为0或12,0x ∴=(秒)或6(秒);当半圆O 与直线AB 相切时,如图③,连接OH ,则OH AB ⊥,6OH =45B ∠=︒,90OHB ∠=︒,262OB OH ∴==,1262OC BC OB =-=-,移动的距离为612621862()cm +-=-,运动时间为1862932x -==-(秒), 综上所述,当x 为0或6或932-时,半圆O 与ABC ∆的边所在的直线相切.【点睛】本题考查了圆综合知识,熟练掌握勾股定理以及圆切线定理是解题的关键.要注意分类讨论.13.如图,AB 为⊙O 的直径,CD ⊥AB 于点G ,E 是CD 上一点,且BE =DE ,延长EB 至点P ,连接CP ,使PC =PE ,延长BE 与⊙O 交于点F ,连结BD ,FD .(1)连结BC ,求证:△BCD ≌△DFB ;(2)求证:PC 是⊙O 的切线;(3)若tan F =23,AG ﹣BG =533,求ED 的值.【答案】(1)详见解析;(2)详见解析;(3)DE 133 【解析】【分析】(1)由BE=DE可知∠CDB=∠FBD,而∠BFD=∠DCB,BD是公共边,结论显然成立.(2)连接OC,只需证明OC⊥PC即可.根据三角形外角知识以及圆心角与圆周角关系可知∠PEC=2∠CDB=∠COB,由PC=PE可知∠PCE=∠PEC=∠COB,注意到AB⊥CD,于是∠COB+∠OCG=90°=∠OCG+∠PEC=∠OCP,结论得证.(3)由于∠BCD=∠F,于是tan∠BCD=tanF=23=BGCG,设BG=2x,则CG=3x.注意到AB是直径,连接AC,则∠ACB是直角,由射影定理可知CG2=BG•AG,可得出AG的表达式(用x表示),再根据AG-BG=533求出x的值,从而CG、CB、BD、CD的长度可依次得出,最后利用△DEB∽△DBC列出比例关系算出ED的值.【详解】解:(1)证明:因为BE=DE,所以∠FBD=∠CDB,在△BCD和△DFB中:∠BCD=∠DFB∠CDB=∠FBDBD=DB所以△BCD≌△DFB(AAS).(2)证明:连接OC.因为∠PEC=∠EDB+∠EBD=2∠EDB,∠COB=2∠EDB,所以∠COB=∠PEC,因为PE=PC,所以∠PEC=∠PCE,所以∠PCE=∠COB,因为AB⊥CD于G,所以∠COB+∠OCG=90°,所以∠OCG+∠PEC=90°,即∠OCP=90°,所以OC⊥PC,所以PC是圆O的切线.(3)因为直径AB⊥弦CD于G,所以BC=BD,CG=DG,所以∠BCD =∠BDC ,因为∠F =∠BCD ,tanF =23, 所以∠tan ∠BCD =23=BG CG, 设BG =2x ,则CG =3x .连接AC ,则∠ACB =90°,由射影定理可知:CG 2=AG•BG ,所以AG =229922x C x G x G B ==,因为AG ﹣BG ,所以2392x x -=,解得x ,所以BG =2x CG =3x =所以BC =,所以BD =BC , 因为∠EBD =∠EDB =∠BCD ,所以△DEB ∽△DBC , 所以BDB DC DE D =,因为CD =2CG =所以DE =2DB CD =. 【点睛】本题为圆的综合题,主要考查了垂径定理,圆心角与圆周角的性质、等腰三角形的性质、全等三角形的判定与性质、切线的判定、射影定理、勾股定理、相似三角形的判定与性质等重要知识点.第(1)、(2)问解答的关键是导角,难度不大,第(3)问解答的要点在于根据射影定理以及条件当中告诉的两个等量关系求出BG 、CG 、BC 、BD 、CD 的值,最后利用“共边子母型相似”(即△DEB ∽△DBC )列比例方程求解ED .14.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,。
人教版八年级上册几何压轴题专项训练 含答案
人教版八年级上册几何压轴题专项训练1.已知,如图,△ABC为等边三角形,AE=C D,A D、BE相交于点P,B Q⊥A D于Q.(1)求证:BE=A D;(2)求∠BP Q的度数;(3)若P Q=3,PE=1,求A D的长.2.如图,已知在△ABC中,∠BAC为直角,AB=AC,D为AC上一点,CE⊥B D于E,交BA的延长线于F.(1)求证:△ABD≌△ACF;(2)若B D平分∠ABC,求证:CE=B D;(3)若D为AC上一动点,∠AED如何变化,若变化,求它的变化范围;若不变,直接写出它的度数.3.如图1,△ABE是等腰三角形,AB=AE,∠BAE=45°,过点B作BC⊥AE于点C,在B C上截取C D=C E,连接A D、D E,并延长A D交BE于点P;(1)求证:A D=BE;(2)试说明A D⊥BE;(3)如图2,将△C D E绕着点C旋转一定的角度,那么A D与BE的位置关系是否发生变化,说明理由.4.如图,已知△AB C中,AB=AC=10厘米,∠ABC=∠ACB,B C=8厘米,点D为AB 的中点,如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动,设点P运动的时间为t.(1)用含有t的代数式表示线段P C的长度;(2)若点Q的运动速度与点P的运动速度相等,经过1秒后△BP D与△C Q P是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BP D与△C Q P全等?5.以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接B D、CE.(1)试判断B D、CE的数量关系,并说明理由;(2)延长B D交C E于点F,试求∠BFC的度数;(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.6.如图1,在△AB C中,AB=AC,点D是BC边上一点(不与点B,C重合),以AD为边在A D的右侧作△A DE,使A D=AE,∠DAE=∠BA C,连接CE.设∠BAC=α,∠BCE =β.(1)求证:△CAE≌△BA D;(2)探究:当点D在BC边上移动时,α、β之间有怎样的数量关系?请说明理由;(3)如图2,若∠BA C=90°,CE与BA的延长线交于点F.求证:EF=D C.7.如图,∠BA D=∠CAE=90°,AB=A D,AE=A C,AF⊥CB,垂足为F.(1)求证:△ABC≌△A D E;(2)求∠FAE的度数;(3)求证:C D=2BF+DE.8.如图,在平面直角坐标系中,OA=OB,AC=C D,已知两点A(4,0),C(0,7),点D在第一象限内,∠D CA=90°,点B在线段O C上,AB的延长线与D C的延长线交于点M,A C与B D交于点N.(1)点B的坐标为:;(2)求点D的坐标;(3)求证:C M=C N.9.已知:如图1所示,等腰直角三角形AB C中,∠BAC=90°,AB=AC,直线M N经过点A,B D⊥M N于点D,CE⊥M N于点E.(1)求证:△BAD≌△ACE;(2)试判断线段D E,B D,CE之间的数量关系,并说明理由;(3)当直线M N运动到如图2所示位置时,其余条件不变,判断线段DE,B D,C E之间的数量关系.10.如图,已知△ABC和△C D E均为等边三角形,且点B、C、D在同一条直线上,连接A D、BE,交CE和AC分别于G、H点,连接G H.(1)请说出A D=BE的理由;(2)试说出△BCH≌△AC G的理由;(3)试猜想:△C G H是什么特殊的三角形,并加以说明.11.(1)如图1,△ABC和△D C E都是等边三角形,且B,C,D三点在一条直线上,连接A D,BE相交于点P,求证:BE=A D.(2)如图2,在△BC D中,若∠B C D<120°,分别以BC,C D和B D为边在△BC D外部作等边△ABC,等边△C D E,等边△B DF,连接A D、BE、CF恰交于点P.①求证:A D=BE=CF;②如图2,在(2)的条件下,试猜想PB,PC,P D与BE存在怎样的数量关系,并说明理由.12.已知:在等边△ABC中,点D、E、F分别为边AB、BC、A C的中点,点G为直线BC 上一动点,当点G在CB延长线上时,有结论“在直线EF上存在一点H,使得△D G H 是等边三角形”成立(如图①),且当点G与点B、E、C重合时,该结论也一定成立.问题:当点G在直线BC的其它位置时,该结论是否仍然成立?请你在下面的备用图②③④中,画出相应图形并证明相关结论.13.如图,在△AB C中,AB=BC=AC=20cm.动点P,Q分别从A,B两点同时出发,沿三角形的边匀速运动.已知点P,点Q的速度都是2cm/s,当点P第一次到达B点时,P,Q两点同时停止运动.设点P的运动时间为t(s).(1)∠A=度;(2)当0<t<10,且△AP Q为直角三角形时,求t的值;(3)当△AP Q为等边三角形时,直接写出t的值.14.如图,在三角形AB C中,AB=8,BC=16,AC=12.点P从点A出发以2个单位长度/秒的速度沿A→>B→C→A的方向运动,点Q从点B沿B→C→A的方向与点P同时出发;当点P第一次回到A点时,点P,Q同时停止运动;用t(秒)表示运动时间.(1)当t=秒时,P是AB的中点.(2)若点Q的运动速度是个单位长度/秒,是否存在t的值,使得BP=2B Q.(3)若点Q的运动速度是a个单位长度/秒,当点P,Q是AC边上的三等分点时,求a 的值.15.如图,等边△ABC的边长为15cm,现有两点M,N分别从点A,点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M,N同时停止运动(1)点M、N运动几秒后,M,N两点重合?(2)点M、N运动几秒后,△A M N为等边三角形?(3)当点M,N在BC边上运动时,能否得到以M N为底边的等腰三角形A M N?如存在,请求出此时M,N运动的时间.16.如图,已知△ABC中,AB=A C=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段C A 上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BP D与△C Q P是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BP D与△C Q P全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?参考答案1.(1)证明:∵△ABC为等边三角形,∴AB=CA,∠BAE=∠C=60°,在△AEB与△C D A中,,∴△AEB≌△C D A(SAS),∴BE=A D;(2)解:由(1)知,△AEB≌△C D A,则∠ABE=∠CA D,∴∠BA D+∠AB D=∠BA D+∠CA D=∠BAC=60°,∴∠BP Q=∠BAD+∠AB D=60°;(3)解:如图,由(2)知∠BP Q=60°.∵B Q⊥A D,∴∠PB Q=30°,∴P Q=BP=3,∴BP=6∴BE=BP+PE=7,即A D=7.2.解:(1)∵∠BA C是直角,CE⊥B D,∴∠BAC=∠CAF=∠BEC=90°,∴∠C D E+∠D C E=90°,∠AB D+∠A DB=90°,∵∠A DB=∠C D E,∴∠AB D=∠ACF,在△AB D和△ACF中,,∴△AB D≌△ACF(ASA);(2)由(1)知,△AB D≌A CF,∴B D=CF,∵B D⊥CE,B D平分∠ABC,∴BC=BF,∵B D⊥CE,∴CE=EF,∴CE=CF=B D;(3)∠AE D不变化理由:如图,过点A作A G⊥⊥CF于G,作A H⊥B D于H,由(1)证得△BAD≌△CAF(ASA),∴S BA D=S CAF,B D=CF,△△∴B D•A H=CF•AG,而B D=CF,∴A H=A G,∵A H⊥EB,A G⊥E G,∴EA平分∠BEF,∴∠BEA=∠BE G=45°,即:∠AE D不变化.3.解:(1)∵BC⊥AE,∠BAE=45°,∴∠CBA=∠CAB,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴A D=BE.(2)∵△BCE≌△AC D,∴∠EBC=∠DAC,∵∠B DP=∠A D C,∴∠BP D=∠D C A=90°,∴A D⊥BE.(3)A D⊥BE不发生变化.理由:如图(2),∵△BCE≌△ACD,∴∠EBC=∠DAC,∵∠BFP=∠AF C,∴∠BPF=∠ACF=90°,∴A D⊥BE.4.解:(1)由运动知,BP=3t,∵BC=8,∴PC=BC﹣BP=8﹣3t;(2)全等,理由:当t=1时,BP=3,CP=5,C Q=3,∵点D是AB的中点,∴B D=AB=5,∴CP=B D,,∴△BP D≌△C Q P(SAS);(3)∵BP=3t,C P=8﹣3t,设点Q的运动速度为xcm/s,∴C Q=xt,当△BP D≌△C Q P时,∴BP=C Q,∴3t=x t,∴x=3(不符合题意),当△BP D≌△CPQ时,∴BP=CP,B D=C Q,∴3t=8﹣3t,5=x t,∴t=,x=,∴点Q的运动速度为cm/s时,能够使△BP D与△C Q P全等.5.解:(1)CE=B D,理由如下:∵等腰Rt△ABC,等腰Rt△A DE,∴AE=A D,AC=AB,在△EAC与△DAB中,,∴△EAC≌△DAB(SAS),∴CE=B D;(2)∵△EA C≌△DAB,∴∠ECA=∠DBA,∴∠ECA+∠CBF=∠DBA+∠CBF=45°,∴∠ECA+∠CBF+∠D C B=45°+45°=90°,∴∠BFC=180°﹣90°=90°;(3)成立,∵等腰Rt△ABC,等腰Rt△A DE,∴AE=A D,AC=AB,在△EAC与△DAB中,∴△EAC≌△DAB(SAS),∴CE=B D;∵△EAC≌△DAB,∴∠ECA=∠DBA,∴∠ECA+∠CBF=∠DBA+∠CBF=45°,∴∠ECA+∠CBF+∠D C B=45°+45°=90°,∴∠BFC=180°﹣90°=90°.6.(1)证明:∵∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠BA C﹣∠D A C,∴∠CAE=∠BAD.∵A D=AE,AC=AB,∴△CAE≌△BAD(SAS).(2)解:α+β=180°,理由如下:由△CAE≌△BAD,∴∠ACE=∠B.∵AB=AC,∴∠B=∠ACB.∴∠ACE=∠B=∠ACB.∴∠BCE=β=2∠B,在△ABC中,∠BA C=α=180°﹣2∠B.∴α+β=180°.(3)证明:由(1)知,△CAE≌△BA D,∴CE=B D.∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,由(2)得,∠BCF+∠BA C=180°.∴∠BCF=90°.∴∠F=∠B=45°,∴CF=CB.∴CF﹣CE=CB﹣B D.∴EF=D C.7.证明:(1)∵∠BA D=∠CAE=90°,∴∠BAC+∠CA D=90°,∠CA D+∠DAE=90°,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得F G=FB,∵AF⊥B G,∴∠AF G=∠AFB=90°,在△AFB和△AFG中,∴△AFB≌△AF G(SAS),∴AB=A G,∠ABF=∠G,∵△BAC≌△DAE,∴AB=A D,∠CBA=∠E DA,CB=E D,∴A G=A D,∠ABF=∠C D A,∴∠G=∠C D A,∵∠G CA=∠D C A=45°,在△C G A和△C D A中,,∴△C G A≌△C D A(AAS),∴C G=C D,∵C G=CB+BF+FG=CB+2BF=DE+2BF,∴C D=2BF+D E.8.解:(1)∵A(4,0),∴OA=OB=4,∴B(0,4),故答案为:(0,4).(2)∵C(0,7),∴O C=7,过点D作DE⊥y轴,垂足为E,∴∠DE C=∠A O C=90°,∵∠D CA=90°,∴∠EC D+∠B CA=∠EC D+∠E D C=90°∴∠BCA=∠E D C,∴△DE C≌△C O A(AAS),∴DE=O C=7,E C=OA=4,∴OE=O C+E C=11,∴D(7,11);(3)证明:∵BE=OE﹣OB=11﹣4=7∴BE=DE,∴△DBE是等腰直角三角形,∴∠DBE=45°,∵OA=OB,∴∠OBA=45°,∴∠DBA=90°,∴∠BAN+∠ANB=90°,∵∠D CA=90°,∴∠C D N+∠D N C=90°,∵∠D N C=∠ANB,∴∠C D N=∠BAN,∵∠D CA=90°,∴∠AC M=∠D C N=90°,∴△D C N≌△ACM(ASA),∴C M=C N.9.(1)证明:∵B D⊥M N,CE⊥M N,∴∠B DA=∠AEC=90°,∴∠BA D+∠AB D=90°,又∵∠BAC=90°,∴∠BA D+∠CAE=90°,∴∠AB D=∠CAE,∴△BA D≌△ACE(AAS),(2)解:DE=BD+C E.理由如下:由(1)得:△BAD≌△ACE,∴B D=AE,A D=CE,又DE=AE+A D,∴DE=B D+CE,(3)DE=CE﹣BD,同(1)可得:△BA D≌△ACE,故B D=AE,A D=CE,又DE=A D﹣AE,∴DE=CE﹣B D.10.解:(1)∵△ABC和△C D E均为等边三角形∴AC=BC,EC=D C∠ACB=∠EC D=60°∴∠AC D=∠ECB∴△AC D≌△BCE∴A D=BE;(2)∵△AC D≌△BCE∴∠CB H=∠CAG∵∠ACB=∠ECD=60°,点B、C、D在同一条直线上∴∠ACB=∠ECD=∠AC G=60°又∵AC=BC∴△AC G≌△BCH;(3)△C G H是等边三角形,理由如下:∵△AC G≌△BCH∴C G=C H(全等三角形的对应边相等)又∵∠AC G=60°∴△C G H是等边三角形(有一内角为60度的等腰三角形为等边三角形);11.(1)证明:∵△ABC和△D C E都是等边三角形,∴BC=AC,CE=C D,∠ACB=∠D C E=60°,∴∠ABC+∠ACE=∠D CE+∠ACE,即∠BCE=∠ACD,∴∠BCE≌△ACD(SAS),∴BE=A D;(2)①证明:∵△ABC和△C D E是等边三角形,∴AB=BC,C D=BE,∠ACB=∠D C E=60°,∴∠ACB+∠BC D=∠D CE+∠BC D,即∠AC D=∠BCE,∴△AC D≌△BCE(SAS),∴A D=BE,同理:△AB D≌△CBF(SAS),∴A D=CF,即A D=BE=CF;②解:结论:PB+P C+P D=BE,理由:如图2,AD与BC的交点记作点Q,则∠A Q C=∠B Q P,由①知,△AC D≌△BCE,∴∠CA D=∠CBE,在△AC Q中,∠C A D+∠A Q C=180°﹣∠ACB=120°,∴∠CBE+∠B Q P=120°,在△BP Q中,∠APB=180°﹣(∠CBE+∠B Q P)=60°,∴∠DPE=60°,同理:∠APC=60°,∴∠CP D=120°,在PE上取一点M,使P M=P C,∴△CP M是等边三角形,∴CP=C M,∠PC M=∠C M P=60°,∴∠C M E=120°=∠CP D,∵△C D E是等边三角形,∴C D=CE,∠D C E=60°=∠PCM,∴∠PC D=∠M C E,∴△PC D≌△M C E(SAS),∴P D=M E,∴BE=PB+P M+M E=PB+P C+P D.12.证明:连接D E、EF、DF.(1)当点G在线段BE上时,如图①,在EF上截取E H使E H=B G.∵D、E、F是等边△ABC三边中点,在△DB G和△DEH中,,∴△DB G≌△DEH(SAS),∴D G=D H.∴∠B D G=∠E D H.∵∠B DE=∠G D E+∠B D G=60°,∴∠G D H=∠G D E+∠E D H=60°∴在直线EF上存在点H使得△D G H是等边三角形.(2)当点G在射线EC上时,如图②,在EF上截取E H使E H=B G.由(1)可证△DB G≌△DE H.∴D G=D H,∠BD G=∠E D H.∵∠B DE=∠B D G﹣∠E D G=60°,∴∠G D H=∠E D H﹣∠E D G=60°.∴在直线EF上存在点H使得△D G H是等边三角形.(3)当点G在BC延长线上时,如图③,与(2)同理可证,结论成立.综上所述,点G在直线BC上的任意位置时,该结论成立.13.解:(1)∵AB=BC=A C,∴△ABC为等边三角形,∴∠A=60°,故答案为:60.(2)∵∠A=60°,当∠AP Q=90°时,∠A QP=90°﹣60°=30°.∴QA=2PA.即20﹣2t=2t×2.解得.当∠A QP=90°时,∠AP Q=90°﹣60°=30°.∴PA=2QA.即2(20﹣2t)=2t.解得.∴当0<t<10,且△AP Q为直角三角形时,t的值为.(3)①由题意得:AP=2t,AQ=20﹣2t,∵∠A=60°,∴当A Q=AP时,△AP Q为等边三角形,∴2t=20﹣2t,解得t=5,②当P于B重合,Q与C重合,则所用时间为:4÷2=20,综上,当△AP Q为等边三角形时,t=5或20.14.解:(1)∵AB=8,点P的运动速度为2个单位长度/秒,∴当P为AB中点时,即4÷2=2(秒);故答案为:2.(2)由题意可得:当BP=2B Q时,P,Q分别在AB,BC上,∴点Q只能在BC上运动,当点P在AB上,∴BP=8﹣2t,BQ=t,则8﹣2t=2×t,解得t=,当点P在BC上时,BP=2t﹣8,B Q=,∴2t﹣8=2×t,解得t=12.当点P运动到AC上时,不存在BP=2B Q;故t=12或,使得BP=2B Q.(3)当点P为靠近点A的三等分点时,如图1,AB+BC+CP=8+16+8=32,此时t=32÷2=16,∵BC+C Q=16+4=20,∴a=20÷16=,当点P为靠近点C的三等分点时,如图2,AB+BC+CP=8+16+4=28,此时t=28÷2=14,∵BC+C Q=16+8=24,∴a=24÷14=.综上可得:a的值为或.15.解:(1)设运动t秒,M、N两点重合,根据题意得:2t﹣t=15,∴t=15,答:点M,N运动15秒后,M、N两点重合;(2)如图1,设点M、N运动x秒后,△A M N为等边三角形,∴AN=A M,由运动知,AN=15﹣2x,A M=x,∴15﹣2x=x,解得:x=5,∴点M、N运动5秒后,△A M N是等边三角形;(3)假设存在,如图2,设M、N运动y秒后,得到以M N为底边的等腰三角形A M N,∴A M=A N,∴∠A M N=∠ANM,∵△ABC是等边三角形,∴AB=AC,∠C=∠B=60°,∴△AC N≌△ABM(A AS),∴CN=B M,∴C M=B N,由运动知,C M=y﹣15,BN=15×3﹣2y,∴y﹣15=15×3﹣2y,∴y=20,故点M,N在BC边上运动时,能得到以M N为底边的等腰三角形A M N,此时M,N运动的时间为20秒.16.解:(1)①∵t=1s,∴BP=C Q=3×1=3cm,∵AB=10cm,点D为AB的中点,∴B D=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=B D.又∵AB=AC,∴∠B=∠C,在△BP D和△C Q P中,∴△BP D≌△C Q P(SAS).②∵v≠,vP Q∴BP≠C Q,若△BP D≌△CPQ,∠B=∠C,则BP=PC=4cm,C Q=B D=5cm,∴点P,点Q运动的时间s,∴cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80cm.△ABC周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm,∵84﹣80=4cm<AB的长度,∴点P、点Q在AB边上相遇,∴经过s点P与点Q第一次在边AB上相遇.∴CN=B M,∴C M=B N,由运动知,C M=y﹣15,BN=15×3﹣2y,∴y﹣15=15×3﹣2y,∴y=20,故点M,N在BC边上运动时,能得到以M N为底边的等腰三角形A M N,此时M,N运动的时间为20秒.16.解:(1)①∵t=1s,∴BP=C Q=3×1=3cm,∵AB=10cm,点D为AB的中点,∴B D=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=B D.又∵AB=AC,∴∠B=∠C,在△BP D和△C Q P中,∴△BP D≌△C Q P(SAS).②∵v≠,vP Q∴BP≠C Q,若△BP D≌△CPQ,∠B=∠C,则BP=PC=4cm,C Q=B D=5cm,∴点P,点Q运动的时间s,∴cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80cm.△ABC周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm,∵84﹣80=4cm<AB的长度,∴点P、点Q在AB边上相遇,∴经过s点P与点Q第一次在边AB上相遇.∴CN=B M,∴C M=B N,由运动知,C M=y﹣15,BN=15×3﹣2y,∴y﹣15=15×3﹣2y,∴y=20,故点M,N在BC边上运动时,能得到以M N为底边的等腰三角形A M N,此时M,N运动的时间为20秒.16.解:(1)①∵t=1s,∴BP=C Q=3×1=3cm,∵AB=10cm,点D为AB的中点,∴B D=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=B D.又∵AB=AC,∴∠B=∠C,在△BP D和△C Q P中,∴△BP D≌△C Q P(SAS).②∵v≠,vP Q∴BP≠C Q,若△BP D≌△CPQ,∠B=∠C,则BP=PC=4cm,C Q=B D=5cm,∴点P,点Q运动的时间s,∴cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80cm.△ABC周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm,∵84﹣80=4cm<AB的长度,∴点P、点Q在AB边上相遇,∴经过s点P与点Q第一次在边AB上相遇.∴CN=B M,∴C M=B N,由运动知,C M=y﹣15,BN=15×3﹣2y,∴y﹣15=15×3﹣2y,∴y=20,故点M,N在BC边上运动时,能得到以M N为底边的等腰三角形A M N,此时M,N运动的时间为20秒.16.解:(1)①∵t=1s,∴BP=C Q=3×1=3cm,∵AB=10cm,点D为AB的中点,∴B D=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=B D.又∵AB=AC,∴∠B=∠C,在△BP D和△C Q P中,∴△BP D≌△C Q P(SAS).②∵v≠,vP Q∴BP≠C Q,若△BP D≌△CPQ,∠B=∠C,则BP=PC=4cm,C Q=B D=5cm,∴点P,点Q运动的时间s,∴cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80cm.△ABC周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm,∵84﹣80=4cm<AB的长度,∴点P、点Q在AB边上相遇,∴经过s点P与点Q第一次在边AB上相遇.。
中考数学几何压轴题及答案及答案
中考数学几何压轴题及答案一、解答题(共30小题)1.观察猜想(1)如图①,在Rt△ABC中,∠BAC=90°,AB=AC=3,点D与点A重合,点E在边BC上,连接DE,将线段DE绕点D顺时针旋转90°得到线段DF,连接BF,BE与BF的位置关系是,BE+BF=;探究证明(2)在(1)中,如果将点D沿AB方向移动,使AD=1,其余条件不变,如图②,判断BE与BF的位置关系,并求BE+BF的值,请写出你的理由或计算过程;拓展延伸(3)如图③,在△ABC中,AB=AC,∠BAC=α,点D在边BA的延长线上,BD=n,连接DE,将线段DE绕着点D顺时针旋转,旋转角∠EDF=α,连接BF,则BE+BF的值是多少?请用含有n,α的式子直接写出结论2.在△ABC的边BC上取B′、C′两点,使∠AB′B=∠AC′C=∠BAC(1)如图1中∠BAC为直角,∠BAC=∠AB′B=∠AC′C=90°(点B′与点C′重合),则△ABC∽△B'BA∽△C'AC,,,进而可得AB2+AC2=;(2)如图2中当∠BAC为锐角,图3中∠BAC为钝角时(1)中的结论还成立吗?若不成立,则AB2+AC2等于什么(用含用BC和B′C′的式子表示)?并说明理由(3)若在△ABC中,AB=5,AC=6,BC=9,请你先判断出△ABC的类型,再求出B′C′的长3.(1)问题发现如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D是线段AB上一动点,连接BE填空:①的值为;②∠DBE的度数为.(2)类比探究如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D是线段AB上一动点,连接BE.请判断的值及∠DBE的度数,并说明理由;(3)拓展延伸如图3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE 的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案.4.(1)问题发现:如图①,在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,以点D为顶点作正方形DFGE,使点A、C分别在DE和DF上,连接BE、AF.则线段BE 和AF数量关系.(2)类比探究:如图②,保持△ABC固定不动,将正方形DFGE绕点D旋转α(0°<α≤360°),则(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由.(3)解决问题:若BC=DF=2,在(2)的旋转过程中,连接AE,请直接写出AE的最大值.5.如图,在平行四边形ABCD中,AC与BD交于点O,以点O为顶点的∠EOF的两边分别与边AB、AD交于点E、F,且∠EOF与∠BAD互补.(1)若四边形ABCD是正方形,则线段OE与OF有何数量关系?请直接写出结论;(2)若四边形ABCD是菱形,那么(1)中的结论是否成立?若成立,请画出图形并给出证明;若不成立,请说明理由;(3)若AB:AD=m:n,探索线段OE与OF的数量关系,并证明你的结论.6.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC=.7.如图1,在△ABC中,AB=AC=2,∠BAC=120°,点D、E分别是AC、BC的中点,连接DE.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.探索发现:图1中,的值为;的值为.(2)拓展探完若将△CDE绕点C逆时针方向旋转一周,在旋转过程中的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△CDE旋转至A,D,E三点共线时,直接写出线段BE的长.8.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE,设OD=m.(1)问题发现如图1,△CDE的形状是三角形.(2)探究证明如图2,当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.(3)解决问题是否存在m的值,使△DEB是直角三角形?若存在,请直接写出m的值;若不存在,请说明理由.9.等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,AB=4,AE=2,其中△ABC固定,△ADE绕点A作360°旋转,点F、M、N分别为线段BE、BC、CD 的中点,连接MN、NF.问题提出:(1)如图1,当AD在线段AC上时,则∠MNF的度数为,线段MN 和线段NF的数量关系为;深入讨论:(2)如图2,当AD不在线段AC上时,请求出∠MNF的度数及线段MN和线段NF的数量关系;拓展延伸:(3)如图3,△ADE持续旋转过程中,若CE与BD交点为P,则△BCP面积的最小值为.10.四边形是我们在学习和生活中常见的图形,而对角线互相垂直的四边形也比较常见,比如筝形、菱形、图1中的四边形ABCD等.它们给我们的学习和生活带来了很多的乐趣和美感.(1)如图2,在四边形ABCD中,AB=AD,CB=CD,则AC与BD的位置关系是,请说明理由.(2)试探究图1中四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,请写出证明过程.(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE的长.11.问题发现:如图(1)在Rt△ABC和Rt△BDE中,∠A=∠DEB=30°,BC=BE=6,Rt△BDE绕点B逆时针旋转,H为CD的中点,当点C与点E重合时,BH与AE的位置关系为,BH与AE的数量关系为;问题证明:在Rt△BDE绕点B旋转的过程中,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明若不成立,请说明理由;拓展应用:在Rt△BDE绕点B旋转的过程中,当DE∥BC时,请直接写出BH2的长.12.如图1,菱形ABCD与菱形GECF的顶点C重合,点G在对角线AC上,且∠BCD=∠ECF=60°,(1)问题发现的值为;(2)探究与证明将菱形GECF绕点C按顺时针方向旋转α角(0°<α<60°),如图2所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:菱形GECF在旋转过程中,当点A,G,F三点在一条直线上时,如图3所示连接CG并延长,交AD于点H,若CE=2,GH=,则AH的长为.13.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.14.如图,已知点E是射线BC上的一点,以BC、CE为边作正方形ABCD和正方形CEFG,连接AF,取AF的中点M,连接DM、MG(1)如图1,判断线段DM和GM的数量关系是,位置关系是;(2)如图2,在图中的正方形CEFG绕点C逆时针旋转的过程中,其他条件不变,(1)中的结论是否成立?说明理由;(3)已知BC=10,CE=2,正方形CEFG绕点C旋转的过程中,当A、F、E共线时,直接写出△DMG的面积.15.在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分别交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形P A'B′Q的面积是否存在最小值.若存在,求出四边形P A′B′Q的最小面积;若不存在,请说明理由.16.如图(1),在等边三角形ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M,N,P分别是BE,CD,BC的中点,连接DE,PM,PN,MN.(1)观察猜想,图(1)中△PMN是(填特殊三角形的名称)(2)探究证明,如图(2),△ADE绕点A按逆时针方向旋转,则△PMN的形状是否发生改变?并就图(2)说明理由.(3)拓展延伸,若△ADE绕点A在平面内自由旋转,AD=2,AB=6,请直接写出△PMN 的周长的最大值.17.已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β,(1)如图1,若点D在线段BC上,点E在线段AC上.∠ABC=60°,∠ADE=70°,则α=°;β=°.(2)如图2,若点D在线段BC上,点E在线段AC上,则α,β之间有什么关系式?说明理由.(3)是否存在不同于(2)中的α,β之间的关系式?若存在,请写出这个关系式(写出一种即可),说明理由;若不存在,请说明理由.18.问题提出:(1)如图1,在四边形ABCD中,连接AC、BD,AB=AD,∠BAD=∠BCD=90°,将△ABC绕点A逆时针旋转90°,得到△ADE,点B的对应点落在点D,点C的对应点为点E,可知点C、D、E在一条直线上,则△ACE为三角形,BC、CD、AC的数量关系为;探究发现:(2)如图2,在⊙O中,AB为直径,点C为的中点,点D为圆上一个点,连接AD、CD、AC、BC、BD,且AD<BD,请求出CD、AD、BD间的数量关系.拓展延伸:(3)如图3,在等腰直角三角形ABC中,点P为AB的中点,若AC=13,平面内存在一点E,且AE=10,CE=13,当点Q为AE中点时,PQ=.19.已知△ABC中,CA=CB,0°<∠ACB≤90°,点M、N分别在边CA,CB上(不与端点重合),BN=AM,射线AG∥BC交BM延长线于点D,点E在直线AN上,EA=ED.(1)【观察猜想】如图1,点E在射线NA上,当∠ACB=45°时,①线段BM与AN的数量关系是;②∠BDE的度数是;(2)【探究证明】如图2点E在射线AN上,当∠ACB=30°时,判断并证明线段BM与AN的数量关系,求∠BDE的度数;(3)【拓展延伸】如图3,点E在直线AN上,当∠ACB=60°时,AB=3,点N是BC 边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.20.如图①,在正方形ABCD和正方形AB'C'D'中,AB=2,AB'=,连接CC’(1)问题发现:.(2)拓展探究:将正方形AB'C'D'绕点A逆时针旋转,记旋转角为θ,连接BB',试判断:当0°≤θ<360°时,的值有无变化?请仅就图②中的情形给出你的证明;(3)问题解决:请直接写出在旋转过程中,当C,C′,D'三点共线时BB′的长.21.如图1,在正方形ABCD中,点O是对角线BD的中点.(1)观察猜想将图1中的△BCD绕点O逆时针旋转至图2中△ECF的位置,连接AC,DE,则线段AC与DE的数量关系是,直线AC与DE的位置关系是.(2)类比探究将图2中的△ECF绕点O逆时针旋转至图3的位置,(1)中的结论是否成立?并说明理由.(3)拓展延伸将图2中的△ECF在平面内旋转,设直线AC与DE的交点为M,若AB=4,请直接写出BM的最大值与最小值.22.如图1,点B在直线l上,过点B构建等腰直角三角形ABC,使∠BAC=90°,且AB=AC,过点C作CD⊥直线l于点D,连接AD.(1)小亮在研究这个图形时发现,∠BAC=∠BDC=90°,点A,D应该在以BC为直径的圆上,则∠ADB的度数为°,将射线AD顺时针旋转90°交直线l于点E,可求出线段AD,BD,CD的数量关系为;(2)小亮将等腰直角三角形ABC绕点B在平面内旋转,当旋转到图2位置时,线段AD,BD,CD的数量关系是否变化,请说明理由;(3)在旋转过程中,若CD长为1,当△ABD面积取得最大值时,请直接写AD的长.23.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F.另一边交CB的延长线于点G.(1)观察猜想:线段EF与线段EG的数量关系是;(2)探究证明:如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)拓展延伸:如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.24.如图1,在Rt△ABC中,∠B=90°,AB=2,BC=1,点D,E分别是边BC,AC的中点,连接DE.将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△EDC旋转至A、B、E三点共线时,直接写出线段BD的长.25.在△ABC中,AD为BC边上的中线,E为AD上一动点,设DE=nEA,连接CE并延长,交AB于点F.(1)尝试探究如图(1),当∠BAC=90°,∠B=30°,DE=EA时,BF,BA之间的数量关系是;(2)类比延伸如图(2),当△ABC为锐角三角形,DE=EA时,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)拓展迁移如图(3),当△ABC为锐角三角形,DE=nEA时,请直接写出BF,BA之间的数量关系.26.古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE ⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.(1)求证:CD是⊙O的切线;(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.27.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O 于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.28.【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当=时,求的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.29.如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转90°得到线段PE,连接AE,BP,CE.(1)求证:△APE∽△ABC;(2)当线段BP与CE相交时,设交点为M,求的值以及∠BMC的度数;(3)若正方形ABCD的边长为3,AP=1,当点P,C,E在同一直线上时,求线段BP 的长.30.如图1和图2,在△ABC中,AB=AC,BC=8,tan C=.点K在AC边上,点M,N 分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3<x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=,请直接写出点K被扫描到的总时长.参考答案与试题解析一.解答题(共30小题)1.【解答】解:(1)如图①中,∵∠EAF=∠BAC=90°,∴∠BAF=∠CAE,∵AF=AE,AB=AC,∴△BAF≌△CAE,∴∠ABF=∠C,BF=CE,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠FBE=∠ABF+∠ABC=90°,BC=BE+EC=BE+BF,故答案为:BF⊥BE,BC.(2)如图②中,作DH∥AC交BC于H.∵DH∥AC,∴∠BDH=∠A=90°,△DBH是等腰直角三角形,由(1)可知,BF⊥BE,BF+BE=BH,∵AB=AC=3,AD=1,∴BD=DH=2,∴BH=2,∴BF+BE=BH=2;(3)如图③中,作DH∥AC交BC的延长线于H,作DM⊥BC于M.∵AC∥DH,∴∠ACB=∠H,∠BDH=∠BAC=α,∵AB=AC,∴∠ABC=∠ACB∴∠DBH=∠H,∴DB=DH,∵∠EDF=∠BDH=α,∴∠BDF=∠HDE,∵DF=DE,DB=DH,∴△BDF≌△HDE,∴BF=EH,∴BF+BE=EH+BE=BH,∵DB=DH,DM⊥BH,∴BM=MH,∠BDM=∠HDM,∴BM=MH=BD•sin.∴BF+BE=BH=2n•sin.2.【解答】解:(1)如图1中,∵△ABC∽△B'BA∽△C'AC,∴=,=,∴AB2=BB′×BC,AC2=CC′×BC,∴AB2+AC2=BC(BB′+CC′)=BC×BC=BC2,故答案为BC2.(2)不成立.理由:如图2中当∠BAC为锐角时,BB′+CC′﹣B′C′=BC,且△ABC∽△B'BA∽△C'AC,∴∴=,=,∴AB2=BB′×BC,AC2=CC′×BC,∴AB2+AC2=BC(BB′+CC′)=BC2+BC•B′C′.图3中∠BAC为钝角时,BB′+CC′+B′C′=BC.AB2+AC2=BC(BB′+CC′)=BC2﹣BC•B′C′.(3)当AB=5,AC=6,BC=9时,则AB2+AC2<BC2,可知△ABC为钝角三角形,由图3可知:AB2+AC2=BC2﹣BC•B′C′,∴52+62=92﹣9B′C′,∴B′C′=.3.【解答】解:(1)∵∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,∴∠ABC=∠CAB=45°=∠CDE=∠CED,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD,∠CAB=∠CBE=45°,∴∠DBE=∠ABC+∠CBE=90°,=1,故答案为:1,90°(2),∠DBE=90°理由如下:∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴∠ACD=∠BCE,∠CED=∠ABC=30°∴tan∠ABC=tan30°==∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴Rt△ACB∽Rt△DCE∴∴,且∠ACD=∠BCE∴△ACD∽△BCE∴=,∠CBE=∠CAD=60°∴∠DBE=∠ABC+∠CBE=90°(3)若点D在线段AB上,如图,由(2)知:=,∠ABE=90°∴BE=AD∵AC=2,∠ACB=90°,∠CAB=90°∴AB=4,BC=2∵∠ECD=∠ABE=90°,且点M是DE中点,∴CM=BM=DE,∵△CBM是直角三角形∴CM2+BM2=BC2=(2)2,∴BM=CM=∴DE=2∵DB2+BE2=DE2,∴(4﹣AD)2+(AD)2=24∴AD=+1∴BE=AD=3+若点D在线段BA延长线上,如图同理可得:DE=2,BE=AD∵BD2+BE2=DE2,∴(4+AD)2+(AD)2=24,∴AD=﹣1∴BE=AD=3﹣综上所述:BE的长为3+或3﹣4.【解答】解:(1)∵△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,∴AD=BD=DC,∠BDA=90°,∵四边形DFGE是正方形,∴DE=DF,∠EDF=90°,∴∠BDE=∠ADF=90°,在△BDE和△ADF中,,∴△BDE≌△ADF(SAS),∴BE=AF故答案为:BE=AF;(2)成立;理由如下:当正方形DFGE在BC的上方时,如图②所示,连接AD,∵在Rt△ABC中,AB=AC,D为斜边BC的中点,∴AD=BD,AD⊥BC,∴∠ADE+∠EDB=90°,∵四边形DFGE为正方形,∴DE=DF,且∠EDF=90°,∴∠ADE+∠ADF=90°,∴∠BDE=∠ADF,在△BDE和△ADF中,,∴△BDE≌△ADF(SAS),∴BE=AF;当正方形DFGE在BC的下方时,连接AD,如图③所示:∵∠BDE=∠BDF+90°,∠ADF=∠BDF+90°,∴∠BDE=∠ADF,在△BDE和△ADF中,,∴△BDE≌△ADF(SAS),∴BE=AF;综上所述,(1)中的结论BE=AF成立;(3)在△ADE中,∵AE<AD+DE,∴当点A、D、E共线时,AE取得最大值,最大值为AD+DE.如图④所示:则AD=BC=1,DE=DF=2,∴AE=AD+DE=3,即AE的最大值为3.5.【解答】解:(1)如图1,过点O作OM⊥AB于M,ON⊥AD于N,∴∠OME=∠ONF=90°,∴∠BAD+∠MON=180°,∵∠BAD+∠EOF=180°,∴∠MON=∠EOF,∴∠EOM=∠FON,∵O是正方形ABCD的对角线的交点,∴∠BAO=∠DAO,∵OM⊥AB,ON⊥AD,∴OM=ON,∴△OME≌△ONF(AAS)∴OE=OF;(2)(1)的结论成立;理由:如图2,过点O作OM⊥AB于M,ON⊥AD于N,∴∠OME=∠ONF=90°,∴∠BAD+∠MON=180°,∵∠BAD+∠EOF=180°,∴∠MON=∠EOF,∴∠EOM=∠FON,∵O是菱形ABCD的对角线的交点,∴∠BAO=∠DAO,∵OM⊥AB,ON⊥AD,∴OM=ON,∴△OME≌△ONF(AAS)∴OE=OF;(3)如图3,过点O作OG⊥AB于G,OH⊥AD于H,∴∠OGE=∠OHF=90°,∴∠BAD+∠GOH=180°,∵∠BAD+∠EOF=180°,∴∠GOH=∠EOF,∴△EOG∽△FOH,∴,∵O是▱ABCD的对角线的交点,∴S△AOB=S△AOD,∵S△AOB=AB•OG,S△AOD=AD•OH,∴AB•OG=AD•OH,∴=,∴.6.【解答】解:(1)①∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形;②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴=,GE∥AB,∴==,故答案为:;(2)连接CG,由旋转性质知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=cos45°=、=cos45°=,∴==,∴△ACG∽△BCE,∴==,∴线段AG与BE之间的数量关系为AG=BE;(3)∵∠CEF=45°,点B、E、F三点共线,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴==,设BC=CD=AD=a,则AC=a,则由=得=,∴AH=a,则DH=AD﹣AH=a,CH==a,∴=得=,解得:a=3,即BC=3,故答案为:3.7.【解答】解:(1)如图1,连接AE,∵AB=AC=2,点E分别是BC的中点,∴AE⊥BC,∴∠BEC=90°,∵AB=AC=2,∠BAC=120°,∴∠B=∠C=30°,在Rt△ABE中,AE=AB=1,根据勾股定理得,BE=∵点E是BC的中点,∴BC=2BE=2,∴==,∵点D是AC的中点,∴AD=CD=AC=1,∴==,故答案为:,;(2)无变化,理由:由(1)知,CD=1,CE=BE=,∴=,,∴=,由(1)知,∠ACB=∠DCE=30°,∴∠ACD=∠BCE,∴△ACD∽△BCE,∴,(3)当点D在线段AE上时,如图2,过点C作CF⊥AE于F,∠CDF=180°﹣∠CDE=60°,∴∠DCF=30°,∴DF=CD=,∴CF=DF=,在Rt△AFC中,AC=2,根据勾股定理得,AF==,∴AD=AF+DF=,由(2)知,,∴BE=AD=当点D在线段AE的延长线上时,如图3,过点C作CG⊥AD交AD的延长线于G,∵∠CDG=60°,∴∠DCG=30°,∴DG=CD=,∴CG=DG=,在Rt△ACG中,根据勾股定理得,AG=,∴AD=AG﹣DG=,由(2)知,,∴BE=AD=即:线段BE的长为或.8.【解答】解:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;故答案为:等边;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤m<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴m=2;③当6<m<10时,由∠DBE=120°>90°,∴此时不存在;④当m>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴m=14,综上所述:当m=2或14时,以D、E、B为顶点的三角形是直角三角形.9.【解答】解:(1)如图1中,连接DB,MF,CE,延长BD交EC于H.∵AC=AB,AE=AD,∠BAD=∠CAE=90°,∴△BAD≌△CAE(SAS),∴BD=EC,∠ACE=∠ABD,∵∠ABD+∠ADB=90°,∠ADB=∠CDH,∴∠ADH+∠DCH=90°,∴∠CHD=90°,∴EC⊥BH,∵BM=MC,BF=FE,∴MF∥EC,MF=EC,∵CM=MB,CN=ND,∴MN∥BD,MN=BD,∴MN=MF,MN⊥MF,∴∠NMF=90°,∴∠MNF=45°,NF=MN.故答案为:45°(2):如图2中,连接MF,EC,BD.设EC交AB于O,BD交EC于H.∵AC=AB,AE=AD,∠BAD=∠CAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=EC,∠ACE=∠ABD,∵∠AOC+∠ACO=90°,∠AOC=∠BOH,∴∠OBH+∠BOH=90°,∴∠BHO=90°,∴EC⊥BD,∵BM=MC,BF=FE,∴MF∥EC,MF=EC,∵CM=MB,CN=ND,∴MN∥BD,MN=BD,∴MN=MF,MN⊥MF,∴∠NMF=90°,∴∠MNF=45°,NF=MN.(3):如图3中,如图以A为圆心AD为半径作⊙A.当直线PB与⊙A相切时,此时∠CBP的值最小,点P到BC的距离最小,即△BCP的面积最小,∵AD=AE,AB=AC,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABD,BD=EC,∵∠ABD+∠AOB=90°,∠AOB=∠CPO,∴∠CPB=90°,∵PB是⊙A的切线,∴∠ADP=90°,∵∠DPE=∠ADP=∠DAE=90°,∴四边形ADPE是矩形,∵AE=AD,∴四边形ADPE是正方形,∴AD=AE=PD=PE=2,BD=EC==2,∴PC=2﹣2,PB=2+2,∴S△BCP的最小值=×PC×PB=(2﹣2)(2+2)=4.10.【解答】(1)解:AC⊥BD,理由如下:连接AC、BD,如图2所示:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,故答案为:AC⊥BD;(2)解:AD2+BC2=AB2+CD2;理由如下:如图1,已知四边形ABCD中,AC⊥BD,设BD、AC相交于E,∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;(3)解:如图3,连接CG、BE,∵四边形ACFG和四边形ABDE是正方形,∴AC=AG,AB=AE,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,由(2)得,CG2+BE2=CB2+GE2,在Rt△ABC中,AC=4,AB=5,根据勾股定理得,BC2=52﹣42=9,∵CG和BE分别是正方形ACFG和正方形ABDG的对角线,∴CG2=42+42=32,BE2=52+52=50,∴GE2=CG2+BE2﹣CB2=32+50﹣9=73,∴GE=.11.【解答】解:问题发现:如图1中,结论:AE=2BH,AE⊥BH.理由:在Rt△ABC中,∵BC=6,∠A=30°,∴AE=2BC=12,在Rt△CDB中,∵∠DCB=30°,∴CD==4,∵CH=DH,∴BH=CD=2,∴==2,∴AE=2BH.故答案为AE⊥BH,AE=2BH.问题证明:如图2中,(1)中结论成立.理由:延长BH到F使得HF=BH,连接CF.设AE交BF于O.∵CH=DH,BH=HF,∠CHF=∠BHD,∴△CHF≌△DHB(SAS),∴BD=CF,∠F=∠DBH,∴CF∥BD,∵AB=BC,BE=BD,∴BE=CF,∴==,∵CF∥BD,∴∠BCF+∠CBD=180°,∵∠ABC+∠DBE=∠ABD+∠CBD+∠CBD+∠CBE=∠CBD+∠ABE=180°,∴∠BCF=∠ABE,∴△ABE∽△BCF,∴∠CBF=∠BAE,==,∴AE=BF=2BH,∵∠CBF+∠ABF=90°,∴∠ABF+∠BAE=90°,∴∠AOB=90°,∴BH⊥AE.拓展应用:如图3﹣1中,当DE在BC的下方时,延长AB交DE于F.∵DE∥BC∴∠ABC=∠BFD=90°,由题意BC=BE=6,AB=6,BD=2,DE=4,∵•BD•BE=•DE•BF,∴BF==3,∴EF=BF=3,∴AF=6+3,∴AE2=AF2+EF2=(6+3)2+(3)2=144+36.∵AE=2BH,∴AE2=12BH2,∴BH2=12+3如图3﹣2中,当DE在BC的上方时,同法可得AF=6﹣3,EF=3,∴BH2==(=12﹣3.12.【解答】解:(1)如图1中,作EH⊥CG于H.∵四边形ECFG是菱形,∠ECF=60°,∴∠ECH=∠ECF=30°,EC=EG,∵EH⊥CG,∴GH=CG,∴=cos30°=,∴=2•=,∵EG∥CD,AB∥CD,∴GE∥AB,∴==.故答案为.(2)结论:AG=BE.理由:如图2中,连接CG.∵四边形ABCD,四边形ECFG都是菱形,∠ECF=∠DCB=60°,∴∠ECG=∠EGC=∠BCA=∠BAC=30°,∴△ECG∽△BCE,∴=,∵∠ECB=∠GCA,∴△ECB∽△GCA,∴==,∴AG=BE.(3)如图3中,∵∠AGH=∠CGF=30°.∠AGH=∠GAC+∠GCA,又∵∠DAC=∠HAG+∠GAC=30°,∴∠HAG=∠ACH,∵∠AHG=∠AHC,∴△HAG∽△HCA,∴HA:HC=GH:HA,∴AH2=HG•HC,∴FC=2,CG=CF,∴GC=2,∵HG=,∴AH2=HG•HC=•3=9,∵AH>0,∴AH=3.故答案为3.13.【解答】解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴=1,∴=1(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴.(3)由(2)有,△ADE∽△CDF,∵=,∴=,∴CF=2AE,在Rt△DEF中,DE=2,DF=4,∴EF=2,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(﹣CE)]2=40∴CE=2,或CE=﹣(舍)而AC=<CE,∴此种情况不存在,②当E在AC延长线上时,在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(+CE)]2=40,∴CE=,或CE=﹣2(舍),③如图1,当点E在CA延长线上时,CF=2AE=2(CE﹣AC)=2(CE﹣),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(CE﹣)]2=40,∴CE=2,或CE=﹣(舍)即:CE=2或CE=.14.【解答】解:(1)如图1,延长GM交AD于H,∵AD∥GF,∴∠GFM=∠HAM,在△FMG和△AMH中,,∴△FMG≌△AMH(ASA),∴HM=GM,AH=FG,∵AD=CD,AH=FG=CG,∴DH=DG,∵∠HDG=90°,HM=GM,∴DM=MG,DM⊥MG,故答案为DM=MG,DM⊥MG.(2)结论成立:DM=MG,DM⊥MG,理由:如图2中,延长GM使得MH=GM,连接AH、DH、DG,延长AD交GF的延长线于N,交CD于O.∵AM=MF,∠AMH=∠FMG,MH=MG,∴△AMH≌△FMG(SAS),∴AH=GF=CG,∠AHM=∠FGM,∴AH∥GN,∴∠HAD=∠N,∵∠ODN=∠OGC=90°,∠DON=∠GOC,∴∠N=∠OCG,∴∠HAD=∠DCG,∵AH=CG,AD=CD,∴△HAD≌△GCD(SAS),∴DH=DG,∠HDA=∠CDG,∴∠HDG=∠ADC=90°,∴△HDG是等腰直角三角形,∵MH=MG,∴DM⊥GH,DM=MH=MG,(3)①如图3﹣1中,连接AC.在Rt△ABC中,AC==10,在Rt△ACE中,AE==14,∴AF=AE=EF=14﹣2=12,∴FM=AM=AF=6,在Rt△MGF中,MG==2,∴S△DMG=×2×2=20,②如图3﹣2中,连接AC.同法可得AE=14,AF=16,FM=8,MG==2,∴S△DMG=×2×2=34,综上所述,满足条件的△DMG的面积为20或34.15.【解答】解:(1)由旋转可得:AC=A'C=2,∵∠ACB=90°,AB=,AC=2,∴BC=,∵∠ACB=90°,m∥AC,∴∠A'BC=90°,∴cos∠A'CB==,∴∠A'CB=30°,∴∠ACA'=60°;(2)∵M为A'B'的中点,∴∠A'CM=∠MA'C,由旋转可得,∠MA'C=∠A,∴∠A=∠A'CM,∴tan∠PCB=tan∠A=,∴PB=BC=,∵∠PCQ=∠PBC=90°,∴∠BQC+∠BPC=∠BCP+∠BPC=90°,∴∠BQC=∠BCP=∠A,∴tan∠BQC=tan∠A=,∴BQ=BC×=2,∴PQ=PB+BQ=;(3)∵S四边形P A'B′Q=S△PCQ﹣S△A'CB'=S△PCQ﹣,∴S四边形P A'B′Q最小,即S△PCQ最小,∴S△PCQ=PQ×BC=PQ,法一:(几何法)取PQ的中点G,∵∠PCQ=90°,∴CG=PQ,即PQ=2CG,当CG最小时,PQ最小,∴CG⊥PQ,即CG与CB重合时,CG最小,∴CG min=,PQ min=2,∴S△PCQ的最小值=3,S四边形P A'B′Q=3﹣;法二(代数法)设PB=x,BQ=y,由射影定理得:xy=3,∴当PQ最小时,x+y最小,∴(x+y)2=x2+2xy+y2=x2+6+y2≥2xy+6=12,当x=y=时,“=”成立,∴PQ=+=2,∴S△PCQ的最小值=3,S四边形P A'B′Q=3﹣.16.【解答】解:(1)结论:△PMN是等边三角形.理由:如图1中,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∵AD=AE,∴BD=EC,∵PB=PC,CN=ND,BM=EM,∴PN∥BD,PM∥EC,PN=BD,PM=EC,∴PM=PN,∠NPC=∠ABC=60°,∠MPB=∠ACB=60°,∴∠MPN=60°,∴△PMN是等边三角形,故答案为等边三角形.(2)△PMN的形状不发生改变,仍为等边三角形,理由如下:如图2中,连接BD,CE.由旋转可得∠BAD=∠CAE,∵△ABC是等边三角形,∴AB=AC,∠ACB=∠ABC=60°又∵AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵M是BE的中点,P是BC的中点,∴PM是△BCE的中位线,∴PM=,且PM∥CE.同理可证PN=BD且PN∥BD,∴PM=PN,∠MPB=∠ECB,∠NPC=∠DBC,∴∠MPB+∠NPC=∠ECB+∠DBC=(∠ACB+∠ACE)+(∠ABC﹣∠ABD)=∠ACB+∠ABC=120°,∴∠MPN=60°,∴△PMN是等边三角形.(3)∵PM=EC,∴当EC最大时,等边△PMN的周长最大,∵EC≤AE+AC,∴EC≤8,∴PM≤4,∴PM的最大值为4,∴△PMN的周长的最大值为12.17.【解答】解:(1)∵AB=AC,∠ABC=60°,∴∠BAC=60°,∵AD=AE,∠ADE=70°,∴∠DAE=180°﹣2∠ADE=40°,∴α=∠BAD=60°﹣40°=20°,∴∠ADC=∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC﹣∠ADE=10°,故答案为:20,10;(2)设∠ABC=x,∠AED=y,∴∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β=β+x+β,∴α=2β;(3)①当点E在CA的延长线上,点D在线段BC上,如图1设∠ABC=x,∠ADE=y,∴∠ACB=x,∠ACE=y,在△ABD中,x+α=β﹣y,在△DEC中,x+y+β=180°,∴α=2β﹣180°,②当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°﹣2β.18.【解答】解:(1)由旋转变换的性质可知,∠CAE=90°,AC=AE,∴△ACE为等腰直角三角形,∴CE=AC,∵CE=CD+DE=CD+BC,∴BC+CD=AC,故答案为:等腰直角;BC+CD=AC;(2)延长CO交⊙O于E,连接AE、BE、DE,则∠CDE=90°,∵点C为的中点,∴点E为的中点,∴EA=EB,∵AB为⊙O的直径,∴∠ADB=90°,由(1)得,DE=(AD+BD),由勾股定理得,CD2=CE2﹣DE2=AD2+BD2﹣(AD+BD)2=(AD﹣BD)2,∴CD=(BD﹣AD);(3)如图3,当点E在直线AC的左侧时,连接CQ、PC,∵CA=CB,点P为AB的中点,∴CP⊥AB,∵CA=CE,点Q为AE中点,∴CQ⊥AE,AQ=QE=AE=5,∴由勾股定理得,CQ==12,由(1)得,AQ+CQ=PQ,。
立体几何压轴题
1. 如图,四棱锥P-ABCD中,底面ABC[为矩形,AB=8 AD=4 3,侧面PAD为等边三角形,并且与底面ABCD所成二面角为60(1)求四棱锥P-ABCD勺体积(2)证明PAL BD2、如图,长方体框架ABCD- A,B,C,D,,三边AB、AD、AA,的长分别为6、&3.6,AE与底面的对角线B,D,垂直于E。
(1)证明A,E BD ;(2)求AE的长n(2)若直线AM 与平面VAC 所成角为-,求三棱锥B-ACM 的体积 43、如图,已知。
O 的直径AB=3点C 为。
0上异于A , B 的一点,VC 1平面ABC, 且VC=2点M 为线段VB 的中点。
(1)求证:BC 丄平面VAC;4、如图,在多面体ABCDE中,四边形ABCD是正方形,AB=2EF=2 EF// AB, EF 丄FB,CF丄FB, BF=CF G为BC的中点,(1)求证:FG//平面BDE⑵求平面BDE与平面BCF所成锐二面角的大小;⑶求四面体B-DEF的体积。
5、如图,三棱锥P-ABC中,PC丄平面ABC PC=AC=2AB=BC D是PB上的一点, 且CD L平面PAB(1)求证AB丄平面PCB(2)求二面角C-PA-B的大小的余弦值。
仁BE7、如图,直二面角D-AB-E 中,四边形ABCD 是边长为2的正方形,AE=EB,F 为 CE上的点,且BF 丄平面ACE(1)求证AE!平面BCE(2)求二面角B-AC-E 的正弦值;(3)求点D 到平面ACE 的距离。
1.如图,四棱锥 P-ABCD 中,底面ABCD 为矩形,AB=8, AD=4. 3,侧面PAD 为等边三角形, 并且与底面ABCD 所成二面角为60°(3 )求四棱锥P-ABCD 的体积(4)证明 PA ^ BD解;< I )如园L ,5UD 的中点E ,连接FE ,则PE 丄舶)・所以NFEO 为側面P2D 与底面所成的二面角的平面角*所以PO3也,四複锥P-ABCD 的体积^P-ABCO=y x 8^443«343=96 ・迭二:如图2,连接込 延卡;L O 交BD 于点F.通过计算可得£0二4 AE=2^J )又知和二4於,A0=S -得 EO-ADAE AB朋以5.t AAEGcoRt A BAD - 得 ZEAO=ZABD-所以 ZIAO+ZADF=90°所BUF 丄BD ・因为直线AF 为頁线菲在平面圧CDF1的身剧,所以醐丄前. 2、如图,长方体框架 ABCD - A 'BC 'D ',三边 与底面的对角线 B ,D ,垂直于E 。
人教版数学八年级下册 第十八章 平行四边形 几何证明压轴题训练
初二数学平行四边形压轴:几何证明题1.在四边形ABCD 中,E、F、G、H 分别是AB、BC、CD、DA 的中点,顺次连接EF、FG、GH、HE.(1)请判断四边形EFGH 的形状,并给予证明;(2)试探究当满足什么条件时,使四边形EFGH 是菱形,并说明理由。
2.如图,在直角三角形ABC 中,∠ACB=90°,AC=BC=10,将△ABC 绕点B 沿顺时针方向旋转90°得到△A 1BC 1.(1)线段A 1C 1的长度是,∠CBA 1的度数是.(2)连接CC 1,求证:四边形CBA 1C 1是平行四边形.3.如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点,PO 的延长线交BC 于Q.(1)求证:OP=OQ ;(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.4.已知:如图,在□ABCD 中,AE 是BC 边上的高,将△ABE 沿BC 方向平移,使点E 与点C 重合,得△GFC.⑴求证:BE =DG;⑵若∠B =60︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.5.如图,在四边形ABCD 中,AD∥BC,E 为CD 的中点,连结AE、BE,BE⊥AE,延长AE 交BC 的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.A BE FCGD HBA 1C 1CA C ADGCBFE A Q CDPBOA DEFB6.如图,在△ABC 中,AB=AC,D 是BC 的中点,连结AD,在AD 的延长线上取一点E,连结BE,CE.(1)求证:△ABE≌△ACE(2)当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由.7.如图,在平行四边形ABCD 中,点E 是边AD 的中点,BE 的延长线与CD 的延长线交于点F.(1)求证:△ABE≌△DFE(2)连结BD、AF,判断四边形ABDF 的形状,并说明理由.8.如图,已知点D 在△ABC 的BC 边上,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .(1)求证:AE =DF ;(2)若AD 平分∠BAC ,试判断四边形AEDF 的形状,并说明理由.9.如图,在平行四边形中,点E F ,是对角线BD 上两点,且BF DE =.(1)写出图中每一对你认为全等的三角形;(2)选择(1)中的任意一对全等三角形进行证明.10.在梯形ABCD 中,AD∥BC,AB=DC,过点D 作DE⊥BC,垂足为点E,并延长DE 至点F,使EF=DE.连接BF、CF、AC.(1)求证:四边形ABFC 是平行四边形;(2)若CE BE DE ⋅=2,求证:四边形ABFC 是矩形.ABED CABCDEFEAFCDBA BCDE F AB FCDE11.如图,△ABC 中,AB=AC,AD、AE 分别是∠BAC 和∠BAC 的外角平分线,BE⊥AE.(1)求证:DA⊥AE(2)试判断AB 与DE 是否相等?并说明理由。
初二数学几何压轴题选编
1.如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,F为BC的中点.BE与DF、DC分别交于点G、H,连接AG.(1)求证:BH=AC;(2)若AB=BC,求证:AG=BG.2将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,如图②,请直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.3已知:如图,点E 在△ABC 的边AC 上,且∠AEB=∠ABC. (1) 求证:∠ABE=∠C ;(2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=6,AC=10,求DC 的长; (3) 若BE 平分∠ABC ,AF 平分∠BAC ,且FD ∥B C 交AC 于点D ,连接FC ,则△DFC 是什么三角形?为什么?4.如图①,在△ABC 中,∠BAC=90°,AB = AC ,∠ABC=45°.MN 是经过点A 的直线,BD MN⊥于D ,CE MN ⊥于E . (1)求证:BD = AE .(2)若将MN 绕点A 旋转,使MN 与BC 相交于点G (如图②),其他条件不变,求证:BD = AE .(3)在(2)的情况下,若CE 的延长线过AB 的中点F (如图③),连接GF ,求证:∠1=∠2.26题图①DEAB CNG D EABNM26题图② 21F GD E ACN M26题图③6、(1)如图①,已知:△ABC 中,∠BAC= 090 ,AB=AC ,直线 m 经过点A ,BD ⊥m 于D ,CE ⊥m 于E ,求证:DE=BD+CE(2)拓展:如图②,将(1)中的条件改为:△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且∠BDA=∠AEC=∠BAC=α ,α为任意锐角或钝角,请问结论DE=BD+CE 是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC 中,∠BAC 是钝角,AB=AC ,∠BAD >∠CAE ,∠BDA=∠AEC=∠BAC ,直线m 与BC 的延长线交于点F ,若BC=2CF ,△ABC 的面积是12,求△ABD 与△CEF 的面积之和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
儿何体精选1、如图,在梯形ABCD 中,AB〃CD, ZBCD=90°,且AB=1, BC=2, tanZADC=2.(1)求证:DC=BC;(2)E是梯形内一点,F是梯形外一点,旦NEDC=NFBC, DE=BF,试判断Z\ECF的形状,并证明你的结论;(3)在(2)的条件下,当BE: CE=1: 2, ZBEC=135°时,求sinZBFE 的值.[解析](1)过A作DC的垂线AM交DC于M,则AM=BC=2.2又tanZADC=2,所以DM =- = 1.即DC=BC.2(2)等腰三角形.证明:因为DE = DF,』EDC = ZFBC, DC = BC .所以,ADEC竺ZXBFC所以,CE = CF,ZECD = ZBCF.所以,ZECF =』BCF + ZBCE = ZECD + ZBCE = ZBCD = 90°即AECF是等腰直角三角形. (3)设BE = k,则CE = CF = 2k,所以EF = 2&.因为为BEC = 135。
, XZCEF= 45°,所以ZBEF = 90°.所以BF =+(2gkV = 3kk 1所以sinZBFE = —=-.3k 32、已知:如图,在OABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG〃DB 交CB的延长线于G.(1)求证:AADE^ACBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.[解析](1)..•四边形ABCD是平行四边形,.\Z1 = ZC, AD=CB, AB=CD .・.•点E、F分别是AB、CD的中点,1 1・.・AE=-AB , CF=-CD . 2 2・・・AE=CFA AADE^ACBF .(2)当四边形BEDF是菱形时,[解析] (1) BM=FN. 证明:(2) (3)四边形AGBD 是矩形..・・四边形ABCD 是平行四边形, ・.・AD 〃BC . •.・AG 〃BD ,.・・四边形AGBD 是平行四边形. ・.•四边形BEDF 是菱形, ・・・DE=BE . VAE=BE ,・・・AE = BE = DE . .*.Z1 = Z2, Z3=Z4.V Z1 + Z2+ Z3+ Z4= 180° , .•.2Z2+2Z3 = 180° . .•.Z2+Z3=90° . 即 ZADB=90° ..•・四边形AGBD 是矩形3、如图13-1, 一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在 —起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点。
也是8。
中点) 按顺时针方向旋转.(1) 如图13-2,当与A8相交于点M, GF 与8。
相交于点N 时,通过观察或测 量BM,FN 的长度,猜想BM, FN 满足的数量关系,并证明你的猜想;(2) 若三角尺GEF 旋转到如图13-3所示的位置时•,线段FE 的延长线与A8的延长线相交于点M,线段BD 的延长线与GF 的延长线相交于点N,血,(1)中的矜 想还成立吗?若成立,请证明;若不成立,请说明理由.•: 4GEF 是等腰直角三角形,四边形时CO 是正方形,ZABD=ZF =45° , OB = OF. 又•: ZBOM=ZFON,:.BM=FN. BM=FN 仍然成立.证明:VAGEF 是等腰直角三角形,四边形ABCD 是正方形, /. ZDBA=ZGFE=45° , OB=()F.:.ZMBO=ZNFO=\35Q.乂 ,:匕MOB 二 ZNOF, :. △O8M 竺△OF/V .・・・BM=FN.A(G)B(E)图 13-1图 13-24、如图,已知。
0的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5。
3(1)若sin ZBAD =-,求CD 的长;(2)若ZADO: ZEDO=4: 1,求扇形OAC (阴影部分)的而枳(结果保留4)。
[解析](1)因为AB是。
O的直径,OD = 5 所以ZADB=90° , AB=1()BD在Rt^ABD 中,sin ZBAD =——ABQ Dr\Q又sin ABAD =-,所以——=-,所以BD = 6 5 10 5AD = ^AB2 -BD2= V102 -62 = 8因为NADB=90°,AB1CD所以DE • AB = AD • BD, CE = DE所以。
Ex 10 = 8x624所以DE =—548所以CD = IDE =—5(2)因为AB是(DO的直径,AB±CDo o o所以CB = BD, AC=AD所以/BAD=/CDB, ZAOC=ZAOD 因为AO = DO,所以ZBAD=ZADO 所以NCDB = NAD0设ZAD0=4x,则ZCDB=4x由ZADO: ZED0=4: 1,则ZED0 = x因为ZADO+ ZEDO+ ZEDB=90°所以4x + 4x + x = 90°所以x=10°所以ZAOD=180° - (ZOAD+ZADO) =100°所以ZA0C= ZA0D= 100°Q _ 100 _2 _ 125扇形。
M 360 18A B[解析]VCH1AB, DB1AB,.EH AE CE'~BF~~AF~~FD •「HE=EC, ..・BF=FD5、如图,已知:C是以AB为宜径的半圆0上一点,CH1AB于点H,直线AC与过B点的切线相交于点D, E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G(1)求证:点F是BD中点;(2)求证:CG是。
的切线;(3)若FB=FE=2,求。
0的半径.(2)方法一:连接CB、OC,VAB是直径,・../ACB=90°・..F是BD中点,.•.ZBCF=ZCBF=90° -ZCBA=ZCAB=ZACO・.・ZOCF=90° "・CG是。
0的切线 --- 6'方法二:可证明△ OCF^AOBF(参照方法一标准得分)⑶解:由FC=FB=FE 得:ZFCE=ZFEC可证得:FA=FG,旦AB = BG由切割线定理得:(2 + FG)2=BGXAG=2BG2①在RtZXBGF中由勾股定理得:BG2=FG2-BF2②由①、(2)得:FG2-4FG-12=0解之得:FG】=6, FG2=-2 (舍去)・・・AB = BG=4VI・・.。
0半径为2次6、如图,已知0为原点,点A的坐标为(4, 3), 0A的半径为2.过A作直线/平行于尤轴,点P在直线/上运动.(1 )当点P在。
O上时,请你直接写出它的坐标;(2 )设点P的横坐标为12,试判断直线OP与。
A的位置9介y[解析]解:⑴点P的坐标是(2,3)或(6,3)⑵作AC_LOP,C为垂足.ZACP=ZOBP= 9O°,Z1=Z1AAACP^AOBP・AC - AP'~OB~~OP在Rt\OBP中,。
F = JOB,+ 时2 = ,又A P= 12-4=8,.•.AC=244-Vi53 ^1.941.94<2.・・0P与OA相.•.△AEH S AFB, AACE^AADF7、如图,延长。
的半径。
人到B,使OA=AB,OE 是圆的一条切线,E 是切点,过点8作。
E 的垂线, 垂足为点C.求证:zACB=-zOAC.3[解析]证明:连结OE 、AE,并过点A 作AFLDE 于点F,•:DE 是圆的一条切线,E 是切点, /. OEA.DC,又 V BC-LDE,:.OE//AF//BC.・•.匕 1=NAC8, Z2=Z3.*:OA=OE,:.Z4=Z3. 「・ Z4=Z2.乂..•点人是OB 的中点, .••点F 是EC 的中点.,*.AE=AC,/.Z1=Z2. 「・ Z4=Z2=Z 1.^VZACB=- ZOAC.38、[解析](1) RtAAOB 中,ZO=90°, Na =60°・.・,匕 OAB 二 30°, 乂AB =4 米,・・・OB = -AB = 2米.2OA = AB-sin 60。
= 4 x= 2右米. ----------- 2 ⑵设 AC = 2x,BD = 3x,在Rt\COD 中,OC = 2^3 - 2x,OD = 2 + 3x,CD = 4根据勾股定理:OC 2+OD 2=CD 2・・.(20-2x )~+(2 + 3x )2 =4?13X 2+(12-8V3)X = 0x 013x+12-8V3 =0 ,8^3-12 • • X —••••••••.■ 13(3分)(5分)(7分)16 右-24AC=2x= -------------1316\/3-24即梯子顶端A沿NO下滑了 ------- 米.....(8分)13⑶..•点P和点P'分别是RtAAOB的斜边AB与RtAAOB的斜边A B'的中点PA = PO, P A'=P'O------------ (9 分)・.・ ZPAO = ZAOP,ZP f A f O = ZA,OP,——(10 分).・. ZP'A'。
- ZPAO = ZA'OP' —ZAOP:.ZP f A f O一ZPAO = /POP' = 15°・.• ZPAO = 30°:.ZP f A f O = 45° ---------------------- (11 分):.A r O = A'B' x cos 45° = 4 x — = 2^2 —- (12 分)2・・・ AA f = OA-A'O = (2>/3 -2^2)米. -- (13 分)。