高频电子线路教材(ppt)
合集下载
高频电子线路-高频功率放大器-课件
故称为丙类谐振功率放大电路
第一节 概述
高频功率放大的必要性
远距离无线传输,弥补信号衰落,提高信号抗噪声干扰能力 一些其他需要,如高频加热装置、微波功率源等需要
高频功率放大电路最主要的技术指标:(与低频功率放大电 路一样) 输出功率、效率和非线性失真。 高频功率放大器的特点:放大信号频率高,输出功率高、效 率高。
2,输出特性曲线 饱和区:iC g cruCE ( g cr : 临界饱和线的斜率) 放大区:iC g c (u BE U BZ ) 截止区:i 0 C
2、集电极余弦电流脉冲的分解
一、余弦电流脉冲的表示式
当输入信号 ub Ubm cos t 时, 集电极电流ic的波形为余弦电流脉冲
越好
高频功率放大器与小信号谐振放大器的对比
相同点: ①放大的信号均为高频信号,
②放大器的负载均为谐振回路。
不同点: ①激励信号幅度大小不同;
②放大器工作点不同;
③晶体管动态范围不同。
ic ic
ic ic
Q
o
eb
o
t
o VBZ
eb
o
t
t
小信号谐振放大器波形图
t
高频功率放大器波形图
高频功率放大器与非谐振功率放大器的对比
第二节 丙类(C类)高频功放工作原理
一、基本电路形式
无论中间级还是输出级,其负载可以等效为并联谐振回路
二、基本特点
为了提高效率,放大器常
谐振于输入 信号的频率
工作于丙类状态,流过晶
体管的电流为失真的脉冲 波形;
负载为谐振回路 :
第一节 概述
高频功率放大的必要性
远距离无线传输,弥补信号衰落,提高信号抗噪声干扰能力 一些其他需要,如高频加热装置、微波功率源等需要
高频功率放大电路最主要的技术指标:(与低频功率放大电 路一样) 输出功率、效率和非线性失真。 高频功率放大器的特点:放大信号频率高,输出功率高、效 率高。
2,输出特性曲线 饱和区:iC g cruCE ( g cr : 临界饱和线的斜率) 放大区:iC g c (u BE U BZ ) 截止区:i 0 C
2、集电极余弦电流脉冲的分解
一、余弦电流脉冲的表示式
当输入信号 ub Ubm cos t 时, 集电极电流ic的波形为余弦电流脉冲
越好
高频功率放大器与小信号谐振放大器的对比
相同点: ①放大的信号均为高频信号,
②放大器的负载均为谐振回路。
不同点: ①激励信号幅度大小不同;
②放大器工作点不同;
③晶体管动态范围不同。
ic ic
ic ic
Q
o
eb
o
t
o VBZ
eb
o
t
t
小信号谐振放大器波形图
t
高频功率放大器波形图
高频功率放大器与非谐振功率放大器的对比
第二节 丙类(C类)高频功放工作原理
一、基本电路形式
无论中间级还是输出级,其负载可以等效为并联谐振回路
二、基本特点
为了提高效率,放大器常
谐振于输入 信号的频率
工作于丙类状态,流过晶
体管的电流为失真的脉冲 波形;
负载为谐振回路 :
高频电子线路课件_(7).ppt
以及信道或接收机中的干扰与噪声问题。
25
本书的内容:
(1)信号的放大(第3章) (2)信号的产生(第4章)
(3)信号的频率变换(第5、6、7章)
这些基本单元电路的组成、原理及有关技 术问题,就是本书的研究对象。
26
1.1 无线通信系统概述
二、无线通信系统的类型 可根据不同的方法来划分: (1) 按工作频段或传输手段 有中波通信、短波通信、超短波通信、微波通信 和卫星通信等。 工作频率主要指发射与接收的射频(RF)频率。
21
1.1 无线通信系统概述
一、无线通信系统的组成 在接收设备中有相应的两种反变换。 (1)将接收到的已调信号变换为基带信号的过程称 为解调(Demodulating) 。 (2)将基带信号通过输出换能器转换为原始信息形式。
22
1.1 无线通信系统概述
一、无线通信系统的组成 分析三种信号: 调制信号、载波、已调波。 (1)调制后的信号称为已调信号(Modulated Signal);
1.2 无线电信号与调制 不同频段信号的产生、放大和接收的方法 不同,传播的能力和方式也不同,因而它们的 分析方法和应用范围也不同。 表中关于传播方式和用途的划分是相对而 言的,相邻频段间无绝对的分界线。
32
1.2 无线电信号与调制
高频的解释: 频段划分中的“高频”段,其范围为3~30 MHz, 这是“高频”的狭义解释,它指的就是短波频段。
9
振荡器:产生 fosc 的高频振荡信号,几十千赫以上。高 频放大器: 多级小信号谐振放大器,放大振荡信号, 使频率倍增至 fc,并提供足够大的载波功率。调制信 号放大器:多级放大器,前几级为小信号放大器,放 大微音器的电信号;后几级为功放,提供功率足够的 调制信号。振幅调制器:实现调幅功能,将输入的载 波信号和调制信号变换为所需的调幅波信号,并加到 天线上。
高频电子线路概要课件
高频电子线路的未来展望
5G及未来通信技术
随着5G及未来通信技术的不断发展,高频 电子线路将发挥更加重要的作用,为通信
技术的发展提供有力支撑。
人工智能技术
人工智能技术的发展将促进高频电子线路 的智能化发展,为高频电子线路的应用提
供更加广阔的领域。
物联网技术
物联网技术的发展将促进高频电子线路的 应用,高频电子线路将在物联网领域发挥 更加重要的作用。
高效化
随着通信技术的发展,高频电子线路需要更高的传输效率 和更低的功耗,高效化已成为高频电子线路的重要发展方 向。
集成化
随着集成电路制造工艺的不断进步,高频电子线路的集成 化程度越来越高,芯片级集成的高频电子系统已成为趋势 。
智能化
随着人工智能技术的不断发展,高频电子线路正逐渐向智 能化方向发展,智能化高频电子系统将具有更高的自适应 性、灵活性和可靠性。
高频电子线路进入高速发展阶段,广泛应用于移 动通信、无线局域网等领域。
02
高频电子线路基础知识
高频电子线路的基本元件
电阻
用于限制电流,调节电 压,起到分压、限流的
作用。
电容
用于储存电荷,实现电 场能量的交换和存储。
电感
用于储存磁场能量,实 现磁场能量的交换和存
储。
二极管
用于单向导电,实现整 流、开关等作用。
高频电子线路的基本电路
放大电路
用于放大信号,提高信号的幅度和功率。
滤波电路
用于滤除信号中的噪声和干扰,提高信号的 纯度。
振荡电路
用于产生高频信号,用于高频电子线路的信 号源。
调制解调电路
用于调制和解调信号,实现信号的传输和接 收。
高频电子线路的基本原理
高频电子线路正弦波振荡器.ppt
单调谐放大器
高频电子线路——第4章 正弦波振荡器
3.相位(频率)稳定条件
相位稳定条件和频率稳定条件实质上是一回事
正弦信号相位φ和频率ω的关系:
d
dt
dt
振荡器的角频率 增大导致相位不断超前 相位 的不断超前表明角频率 增大
高频电子线路——第4章 正弦波振荡器
(1)相位(频率)稳定过程
原平衡态: L (0 ) f F 0
4.1.2 起振条件
1.起振过程分析
单调谐放大器
刚通电:电路中存在很宽的频谱的电的扰动,幅值很小
通电后:
1)谐振回路的选频功能,从扰动中选出 osc 分量(osc 0)
2)放大器工作在线性放大区, |T (josc)|>1 ,形成增幅振荡
3)忽略晶体管内部相移: f =0
回路谐振: L=0
T (josc) =0,相移为零
起振 过程
平衡 状态
起振 过程
平衡 状态
输出波形:
高频电子线路——第4章 正弦波振荡器
4.1.4 稳定条件
1.平衡状态稳定分析:
(1)振荡电路中存在干扰
单调谐放大器
① 外部:电源电压、温度、湿度的变化,引起管子和回 路参数的变化。
② 内部:存在固有噪声(起振时的原始输入电压,进入平 衡后与输入电压叠加引起波动)。
单调谐放大器
外界干扰后: L (0 ) f F 0
Ub 相位超前 Ub 相位
升高
振荡回路相频特性 L 下降
L () f F 下降
L () f F 0
达到新的平衡 > 0
外界干扰消失后: L () f F 0
Ub 相位滞后 Ub 相位
降低
高频电子线路_第3章.ppt
C
1 1( ) Ucm 2 0 ( ) VCC
1 2
g1( )
其中 Ucm
VCC
为集电极电压利用系数
g1( )=
1( ) 0 ( )
Ic1m IC0
为波形系数
值越小,g1( )越大,放大器的效率也越高。
在 1时,可看不同工作状态下放大器的效率分别为: 甲类工作状态 180 , g1( ) 1,C =50% 乙类工作状态 90 , g1( ) 1.57,C =78.5% 丙类工作状态 60 , g1( ) 1.8,C =90%
若VCC、VBB、Vim参变量不变,则放大器的工作状态就由负 载电阻Re决定。此时放大器的电流、输出电压、功率、效 率等随Re而变化的特性,叫做放大器的负载特性(曲线)。
1、欠压、临界和过压工作状态
——根据集电极电流是否进入饱和区
绿线:欠压状态——未进入饱和状态的工作 状态。
为尖顶余弦脉冲。
蓝线:临界状态——刚好不进入饱和状态 的工作状态。
ic gc VBB Uim cost UBE(on)
余弦电流脉冲的主要参量
iC
和
max
,如c 图
当 t c 时,iC 0
cos UBE(on) VBB
Uim
ic gcUim cost cos
而当t 0时,ic iC max
iCmax gcUim 1 cos
iC
iC max
直流分量只能通过回路电感线圈去路,其直流电阻较小,对
直流也可看成短路。
集电极电流流经谐振回路时,只有基波电流才产生压降,
因而LC谐振回路两端输出不失真的高频信号电压。若回路谐振 电阻为Re,则
uc Ic1m Re cost Ucm cost,
《高频电子线路》PPT课件
uo(t)
uΩ(t)
Δuc
uo(t)=uΩ(t)+UDC
包含了直流及低频调制分量。
峰值包络检波器的应用型输出电路
+ (a) ui
-
VD
Cd
+
+UDC -
+
C uo R
RL uΩ
-
-
(b)
+ ui
-
VD
Rφ
+
C uo R Cφ
-
t
UDC t
+ UDC -
图(a):电容Cd的隔直作用,直流分量UDC被隔离,输出信号为解调恢复后 的原调制信号uΩ,一般常作为接收机的检波电路。 图(b):电容Cφ的旁路作用,交流分量uΩ(t)被电容Cφ旁路,输出信号为直 流分量UDC,一般可作为自动增益控制信号(AGC信号)的检测电路。
rd C R
②对高频载波信号uc来说,电容C的容抗
1 R ,电容C相当于短
cC
路,起到对高频电流的旁路作用,即滤除高频信号。
理想情况下,RC低通滤波网络所呈现的阻抗为分析
+ uD -
当输入信号ui(t)为调幅波时,那么载波正半 +
周时二极管正向导通,输入高频电压通过二 ui
☺调幅解调的分类
振幅调制
AM调 制DSB调制
SSB调制
包络检波 解调
同步检波
峰值包络检波 平均包络检波 叠加型同步检波 乘积型同步检波
☺调幅解调的方法
1. 包络检波
调幅波
t 调幅波频谱
非线形电路
ωc-Ω ωc ωc+Ω ω
低通滤波器
包络检波输出
t 输出信号频谱
高频电子线路课件
第1章 绪 论
各部分作用: 各部分作用: (1)振荡器 ) 的高频振荡信号,几十千赫以上。 产生 fosc 的高频振荡信号,几十千赫以上。
调幅广播发射机的组成
(2)高频放大器 ) 多级小信号谐振放大器, 放大振荡信号, 多级小信号谐振放大器 , 放大振荡信号 , 使频率倍增 并提供足够大的载波功率。 至 fc,并提供足够大的载波功率。 (3)调制信号放大器 ) 多级放大器,前几级为小信号放大器, 多级放大器 , 前几级为小信号放大器 , 放大微音器的 电信号;后几级为功放,提供功率足够的调制信号。 电信号;后几级为功放,提供功率足够的调制信号。 (4)振幅调制器 ) 实现调幅功能, 实现调幅功能 , 将输入的载波信号和调制信号变换为 所需的调幅波信号,并加到天线上。 所需的调幅波信号,并加到天线上。
18
第1章 绪 论
1.1 无线通信系统概述
一、无线通信系统的组成
发送设备
接收设备
超外差形式
19
第1章 绪 论
1.1 无线通信系统概述
一、无线通信系统的组成 图中虚线以上部分为发送设备 发信机 图中虚线以上部分为发送设备(发信机 , 发送设备 发信机), 虚线以下部分为接收设备 收信机), 虚线以下部分为接收设备(收信机 , 接收设备 收信机 天线及天线开关为收发共用设备。 天线及天线开关为收发共用设备。 为收发共用设备 信道为自由空间。 信道为自由空间。 为自由空间 话筒和扬声器属于通信的终端设备,分别为信源和 话筒和扬声器属于通信的终端设备,分别为信源和 属于通信的终端设备 信宿。 信宿。 接收机一般都采用超外差的形式。 接收机一般都采用超外差的形式。 一般都采用超外差的形式
2
第1章 绪 论
参考书
高频电子线路-高频小信号放大器-课件
似认为不能通过放大器
高频小信号放大器的指标
4 矩形系数 Kr0.1
➢ 矩形系数表征放大器选择性好坏的一个 ➢ 选择性:表示选取有用信号,抑制无用信号的能力 ➢ 理想:——矩形
Kr0.1
2f0.1 2f0.7
高频小信号放大器的指标
5 工作稳定性
➢ 指放大器的直流偏置、晶体管参数、电路元器件参数等发 生变化时,放大器主要性能的稳定程度
y11 y12U2 y21U1
U 1
I2
y22 U 2
共发射极晶体管
+
b
.
.
Ib
Ube
-
c . Ic
V
e
I b Yie U be Yre U ce I c Y fe U be Yoe U ce
.
.
Ib
Ic
b
c
+
+
+
. Uce
. Ube
Yie
.
Yoe .
.
U ce
Y reU ce
Y feU b e
已知 Rb1 15 k , Rb 2 6.2 k , Re 1.8k , C b C e 0.01uF , RL 5k ,工作频率 f0 10 .7 MHz ,回路电感 L13 4uH , Q0 100 , N 13 20 , N 23 6, N 45 5,晶体管在直流 工作点和工作频率为 10 .7 MHz 时的参数为:
Ui=Ube; Uc即Uce;
信号源用电流源代替;
输出电压在第二级;
y y Ib
ie yreUce y feUi oe Ic
Is
Ys
U i
U c
C
35
2
L 1
高频小信号放大器的指标
4 矩形系数 Kr0.1
➢ 矩形系数表征放大器选择性好坏的一个 ➢ 选择性:表示选取有用信号,抑制无用信号的能力 ➢ 理想:——矩形
Kr0.1
2f0.1 2f0.7
高频小信号放大器的指标
5 工作稳定性
➢ 指放大器的直流偏置、晶体管参数、电路元器件参数等发 生变化时,放大器主要性能的稳定程度
y11 y12U2 y21U1
U 1
I2
y22 U 2
共发射极晶体管
+
b
.
.
Ib
Ube
-
c . Ic
V
e
I b Yie U be Yre U ce I c Y fe U be Yoe U ce
.
.
Ib
Ic
b
c
+
+
+
. Uce
. Ube
Yie
.
Yoe .
.
U ce
Y reU ce
Y feU b e
已知 Rb1 15 k , Rb 2 6.2 k , Re 1.8k , C b C e 0.01uF , RL 5k ,工作频率 f0 10 .7 MHz ,回路电感 L13 4uH , Q0 100 , N 13 20 , N 23 6, N 45 5,晶体管在直流 工作点和工作频率为 10 .7 MHz 时的参数为:
Ui=Ube; Uc即Uce;
信号源用电流源代替;
输出电压在第二级;
y y Ib
ie yreUce y feUi oe Ic
Is
Ys
U i
U c
C
35
2
L 1
《高频电子线路》课件
《高频电子线路 》PPT课件
目录
• 高频电子线路概述 • 高频电子线路基础知识 • 高频电子线路中的信号传输 • 高频电子线路中的放大器 • 高频电子线路中的滤波器 • 高频电子线路中的混频器与变频
器
01
高频电子线路概述
高频电子线路的定义与特点
总结词
高频电子线路是研究高频信号传输、处理和应用的电子线路。其特点包括信号频率高、频带宽、信号传输速度快 、信号失真小等。
02
高频电子线路基础知识
高频电子线路的基本元件
电阻器
用于限制电流,调节电 压,起到分压、限流的
作用。
电容器
用于存储电荷,实现信 号的滤波、耦合和旁路
。
电感器
用于存储磁场能量,实 现信号的滤波、选频和
延迟。
晶体管
高频电子线路中的核心 元件,用于放大和开关
信号。
高频电子线路的基本电路
01
02
03
04
混频器与变频器的应用实例
混频器的应用实例
在无线通信中,混频器常用于将信号从低频转换为高频,或者将信号从高频转 换为低频。例如,在接收机中,混频器可以将射频信号转换为中频信号,便于 后续的信号处理。
变频器的应用实例
在雷达系统中,变频器可以将发射信号的频率改变,从而实现多普勒测速或者 目标识别。在电子对抗中,变频器可以用于干扰敌方雷达或者通信系统。
传输。
音频系统中的扬声器驱动电路
02
利用音频放大器将音频信号放大后驱动扬声器,实现声音的重
放。
测量仪器中的前置放大器
03
利用电压或电流放大器将微弱信号放大后传输至后续电路,实
现信号的处理和分析。
05
高频电子线路中的滤波器
目录
• 高频电子线路概述 • 高频电子线路基础知识 • 高频电子线路中的信号传输 • 高频电子线路中的放大器 • 高频电子线路中的滤波器 • 高频电子线路中的混频器与变频
器
01
高频电子线路概述
高频电子线路的定义与特点
总结词
高频电子线路是研究高频信号传输、处理和应用的电子线路。其特点包括信号频率高、频带宽、信号传输速度快 、信号失真小等。
02
高频电子线路基础知识
高频电子线路的基本元件
电阻器
用于限制电流,调节电 压,起到分压、限流的
作用。
电容器
用于存储电荷,实现信 号的滤波、耦合和旁路
。
电感器
用于存储磁场能量,实 现信号的滤波、选频和
延迟。
晶体管
高频电子线路中的核心 元件,用于放大和开关
信号。
高频电子线路的基本电路
01
02
03
04
混频器与变频器的应用实例
混频器的应用实例
在无线通信中,混频器常用于将信号从低频转换为高频,或者将信号从高频转 换为低频。例如,在接收机中,混频器可以将射频信号转换为中频信号,便于 后续的信号处理。
变频器的应用实例
在雷达系统中,变频器可以将发射信号的频率改变,从而实现多普勒测速或者 目标识别。在电子对抗中,变频器可以用于干扰敌方雷达或者通信系统。
传输。
音频系统中的扬声器驱动电路
02
利用音频放大器将音频信号放大后驱动扬声器,实现声音的重
放。
测量仪器中的前置放大器
03
利用电压或电流放大器将微弱信号放大后传输至后续电路,实
现信号的处理和分析。
05
高频电子线路中的滤波器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1887年,德国科学家赫兹(Hertz)用一 个振荡偶子产生了电磁波,在历史上第一次直 接验证了电磁波的存在;
1897年, 意大利科学家马可尼(Marconi) 在赫兹实验的基础上,实现了远距离无线电信 号的传送,这个距离在当时不过一百码,但一 年后他就实现了船只与海岸的通信。
1901年12月12日,马可尼做了跨越大西洋 传送无线电信号的表演。这一次他把信号从英 国的Cornwall发送到加拿大的Newfoundland。
1. 时间特性
一个无线电信号, 可以将它表示为电压或电流 的时间函数, 通常用时域波形或数学表达式来描述。
无线电信号的时间特性就是信号随时间变化 快慢的特性。 信号的时间特性要求传输该信号的 电路的时间特性(如时间常数)与之相适应。
2. 频谱特性
对于较复杂的信号(如话音信号、 图像信号 等), 用频谱分析法表示较为方便。
无线电技术的发展是从利用电磁波传输信 息的无线电通信扩展到计算机科学、宇航技术、自 动控制以及其他各学科领域的。
0.2 信号、频谱
在高频电路中, 我们要处理的无线电信号主要 有三种: 基带(消息)信号、 高频载波信号和已 调信号。 所谓基带信号, 就是没有进行调制之前 的原始信号, 也称调制信号。
0 t
图1 信号分解
信号幅度
对于周期性信号, 可以表示为许多离散的频率分量(各 分量间成谐频关系), 例如图 2即为图 1所示信号的频谱图; 对于非周期性信号, 可以用傅里叶变换的方法分解为连续谱, 信号为连续谱的积分。
同年,美国的费森登(Fessenden)和阿姆斯 特朗(Armstrong)改进了接收机的工作方式, 发明了外差式接受系统,这种形式仍是目前许多 无线电接收机的主要工作方式;
1938年,美国科学家香农(Shannon)指 出,利用布尔(Boole)代数能对复杂的开关 电路进行分析,电子科学中一个崭新的分支就 逐渐形成,发展起来。这就是电子计算机最初 的理论。真正的电子计算机一般说来是1942年 开始研制的ENIAC(Electronic numerical integrator and computer)。
晶体管的出世要归功于: 肖克莱﹙Shockley﹚ 巴丁﹙ Bardeen﹚ 布拉顿﹙Bratein﹚﹙1902年生于中国厦门 他们分享了1956年度诺贝尔物理学奖
肖克莱后来对美国旧金山西南端硅谷做出 了开创性贡献。
而巴丁则又与库柏(Cooper)和施莱弗 (Schrieffer)由于对超导理论的贡献共享了 1972年度诺贝尔物理学奖。
Electronic numerical integrator and computer
几乎与此同时,一个引起电子科学革命性 变化的工作也在进行,这就是对半导体器件的 研制。而现今半导体器件几乎占领了电子科学 所有特殊的和普通的领域。
1948年,确切地说应是1947年12月23日, 第一只晶体管在贝尔实验室(Bell Telephone Laboratories)诞生,这是电子技术发展史上第 二个重要里程碑。
1906年,美国科学家弗雷斯特( Forest) 发明了真空三极管,是电子技术发展史上第一个 重要里程碑。
1906年,美国科学家费森登(Fessenden) 在Massachusetts领导了第一次广播;
1912年,英国科学家埃克尔斯(Eccles)提 出了无线电波通过电离层传播的理论,这一理论 使得一群业余爱好者在1921年实现了短波试验性 广播;
晶体管出现后,无线电技术及电子学本身 发生了巨大变化,得到了长足的发展;
20世纪60年代,中、大规模乃至超大规模集成 电 路的不断涌现,是电子技术发展史上第三个重要 里 程碑。
1959年,美国科学家基尔比(Kilby)造出了世 界上第一块集成电路。
1967年研制成大规模集成(LSI)电路。
1978年研制成超大 规模集成(VLSI)电路,从 此电子技术进入了微电子技术时代。
信息传输是人类社会生活的重要内容。 古代的烽火到近代的旗语都是人们寻求快速远距 离通信的手段。 1837年,莫尔斯发明了电报,创造了莫尔斯电 码,开始了通信的新纪元。 1865年,英国的麦克斯韦总结了前人的科学成 果,提出电磁波学说。 1876年,贝尔发明了电话,能够直接将语言信 号变为电能沿导线传送。
马可尼因此获得1909年度诺贝尔奖。与他分 享这一年度诺贝尔奖的是布劳恩(Braun),因 为布氏发现金属硫化物具有单向导电性,这一成 果可用于无线电接收装置;
1904年,英国科学家弗莱明(Fleming) 获得了一项专利,在专利说明书中描述了一个 高频交变电流整流用的两极真空管,标志着进 入无线电电子学时代
这台计算机直到1946年完成,它主要是为 美国陆军阿贝尔丁检验基地计算弹道而设计的, 共用了18000个真空管;
ENIAC
项目开始: 1943 完成: 1946 速度: 5000次每秒
输入/输出: 卡片、光、开关、 插头
占平面积: 1000平方英尺 项目负责人: John Mauchly
J. Presper Eckert
绪论
0.1 无线电通信发展简史 0.2 信号、频谱与调制 0.3 通信系统的组成 0.4 元件的高频特性 0.5 本课程的特点、研究对象及任务
本介绍
本书主要讨论用于各种无线电技术设备和系统高 频电子线路,主要结合无线电通信这一方式讨论设备 和系统中高频电路的线路组成、工作原理及工程设 计计算。
0.1 无线电通信发展简史
随着半导体技术的发展,出现了许多电子 技术新的分支。而今所谓三C技术、三A革命 无一不是电子技术及半导体技术的发展所导致 的直接结果。
半导体技术的发展不仅影响了电子技术, 也影响了其它技术的发展。如:冶金术,精加 工,材料科学,化学等。
20世纪初首先解决了无线电报通信问题。接着又 解决了用无线电波传送语言和音乐的问题,从而 开展了无线电话通信和无线电广播。以后传输图象 的问题也解决了,出现了无线电传真和电视。20世 纪30年代中期到第二次世界大战期间,为了防空的 需要,无线电定位技术迅速发展和雷达的出现,带 动了其他科学的兴起,如无线电天文学、无线电气 象学等。20世纪50年代以来,宇航技术的发展又促 进了无线电技术向更高的阶段发展。