对弧长的曲线积分(第一类曲线积分)

合集下载

对弧长的曲线积分

对弧长的曲线积分
都有 f (x, y) K.
函数f (x, y)在L上连续: >0,>0,当点(x, y), (x0 , y0 ) L,且 (x x0 )2 ( y y0 )2 时,总有 f (x, y) f (x0 , y0 ) . (5)可积性.若函数 f (x, y)在有限长光滑曲线 L上连续,则
B,
第i段弧M
i
1
M
的长度记为
i
si
,
(i
1,, n).
n
任取点(i ,i ) M i1M i ,作积分和 I n f (i ,i )si ,并令
max
1in
si
.如果无论如何分割,无论如何i取1 点,极限
n
lim
0
i 1
f (i ,i )si
存在,则称此极限值为 函数f (x, y)在曲线L上的对弧长的曲线
圆关于平面z y对称,关于平面 z x对称,关于平面y x对称,
故 x2ds y 2ds z 2ds 1 (x2 y 2 z 2 )ds 1 a2ds
L
L
L
3L
3L
2 a3.
3
例28.4 计算I L xds,其中L为双纽线
(x2 y2) 2 a2(x2 y2) (a 0)
L
L
a
(4)若光滑曲线 L : x x( y), y [c, d], f (x, y)在L上连续,则
f (x, y)ds
f (x( y), x)ds
d
f (x( y), y)
1 x2 ( y)dy.
L
L
c
(5)若光滑曲线 L : r r( ), [, ], f (x, y)在L上连续,则
其中, i [ti1, ti ], i 1,2,, n.

曲线积分

曲线积分

曲线积分一. 第一型曲线积分(对弧长的曲线积分) ds y x f L ),(⎰ 引入:开始接触这个概念对大家可能都很突兀,我们从直观上看它的形式,形式和定积分⎰dx x f )(很像,Right ?那它的物理意义和几何意义按照自然界对称的法则应该和定积分也是相似的咯-----我们如果把),(y x f 看成是线密度函数的话,ds y x f L),(⎰可以理解成为曲线形构件的质量咯(*^__^*) ,这当然是它的物理意义;几何意义呢?想想定积分,几何意义是曲边梯形的面积,那么对第一型曲线积分就是曲面的面积咯,沿着一段弧函数对它的曲线积分就是曲面的面积(PS :这个可以作为一种求曲面面积的求法,后面会有题目介绍) 想必通过上面形象的介绍,我们对第一型曲线积分有了一个初步的认识。

现在来看看它的求法:ds y x f L ),(⎰这个式子我们唯一没见过的就是ds 咯,在这里ds 实际上就是弧长,所以第一型也就是对弧长的曲线积分。

那么第一型的求法就等价于求ds ,然后解个定积分就ok 。

根据高数上学过的微分三角形,如果曲线能够表示成参数方程x =ϕ(t ), y =ψ (t ) (α≤t ≤β), 那么显然dtt t t t f ds y x f )()()]( ),([),(22ψϕψϕ'+'=,于是就有⎰⎰'+'=βαψϕψϕdt t t t t f ds y x f L)()()]( ),([),(22,当然如果不用表示成参数方程,把x 看为参数也可以。

注意注意注意注意注意:1.这里的定积分的下限α一定要小于上限β. 原因在于弧长始终是正的,所以t ∆>0,这样定积分的下限一定小于上限。

当然曲线不仅仅是平面上的,三维空间里也可以,计算方法还是一样 的,即dt t t t t t t f ds z y x f )()()()](),(),([),,(222ωψϕωψϕβα'+'+'=⎰⎰Γ。

第一型曲线积分的定义

第一型曲线积分的定义

第一型曲线积分的定义第一型曲线积分,是微积分中的一种重要概念与计算方法,它涉及曲线和向量场之间的积分。

本文将介绍第一型曲线积分的定义、性质和计算方法。

一、第一型曲线积分的定义第一型曲线积分,也称为曲线的线积分,是指在曲线上某个有向长度元素$\mathrm{d}s$上的函数值与该长度元素的乘积$d\boldsymbol{s}$在整个曲线上的积分。

设$C$是曲线,其参数方程为$\boldsymbol{r}(t)=(x(t), y(t), z(t)), t\in[a,b]$,则$C$的长度由公式:$$ L(C)=\int_{C}\mathrm{d}s=\int_{a}^{b}\left[\ left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\r ight)^{2}+\left(z^{\prime}(t)\right)^{2}\right]^{\f rac{1}{2}} \mathrm{d}t $$计算曲线$C$上的一个标量函数$f(x,y,z)$在曲线上的第一型曲线积分,即为:$$ \int_{C} f(x, y, z) \mathrm{d}s=\int_{a}^{b}f\left(\boldsymbol{r}(t)\right)\left[\left(x^{\prim e}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}\right]^{\frac{1}{2}}\mathrm{d}t $$若积分路径可以看成向量值函数$\boldsymbol{r}(t)$的积分,第一型曲线积分就可以写作:$$ \int_{\boldsymbol{r}}\boldsymbol{F}(\boldsymbol{r}) \cdot \mathrm{d}\boldsymbol{r}=\int_{a}^{b}\boldsymbol{F}\left(\boldsymbol{r}(t)\right) \cdot \boldsymbol{r}^{\prime}(t) \mathrm{d}t=\int_{a}^{b} \boldsymbol{F} \cdot \mathrm{d}\boldsymbol{s} $$其中$\boldsymbol{F}(\boldsymbol{r})$是向量场,$\mathrm{d}\boldsymbol{r}$表示一个有向长度元素,$\cdot$表示向量内积运算,$\mathrm{d}\boldsymbol{s}=\boldsymbol{r}^{\prime}(t ) \mathrm{d} t$表示线元素。

曲线积分与曲面积分复习

曲线积分与曲面积分复习


L
f ( x, y )ds f ( (t ), (t )) (t )2 ( t )2 dt


一定,二代,三换元,定,代,换关键在 方程。小下限,大上限.
L:
L:
步骤:
1.写出L的参数方程,确定参数的范围 2.化为定积分

L
f ( x, y )ds f ( (t ), (t )) (t )2 ( t )2 dt
应用:
例6 计算 L (3x y)dy ( x y)dx, 其中L为
( x 1) 2 ( y 4) 2 9 的负向.
例7 计算
2 2 xdy , 其中 L 为 x y 1上由点 L
A(1,0) 到点 B(0,1) 的一段弧.
例8 计算 原点的分段光滑正向闭曲线. y L
利用路径无关计算曲线积分
2 2 xy d x x dy,其中L是xoy平面内的任 例9 计算 L
意有向闭曲线. 特点:路径无关,闭曲线,积分为零.
x e 例10 计算 L cos ydx sin ydy,其中L是从点(0, 0)
到点 ( , ) 的任意有向曲线. 2 2
特点:路径无关,非闭曲线,选易积分路线.
i
n 1
L
L
对坐标的曲线积分

M i 1 M2 M 1
L
Pdx Qdy
A
o
x
对坐标的曲线积分

L
Pdx Qdy
特点(1)积分曲线是有向曲线弧. (2)被积函数的定义域是曲线弧.
P( x, y ), Q( x, y ),( x, y) L
(3)微元 dx,dy 是有向弧微分ds 在坐标轴上的投影 与一类曲线积分的 本质区别

微积分:10.1 第一类 (对弧长的) 曲线积分

微积分:10.1  第一类 (对弧长的) 曲线积分

i 1
n
取极限
A
lim
0
i 1
h(i ,i
) si .
A
y
Mn
MnA1 i
Mi
Mi1 (i ,i )
2:非均匀平面曲线形构件的质量
均匀的质量 M s.
分割 M0 , M1,, Mn , 近似 取 (i ,i ) Mi1Mi ,
Mi (i ,i ) si .
y
M0
o
(x, y) Mn
则 f ( x, y, z)ds
0,
当 f ( x, y, z) 是x (或y) (或z) 的奇函数
2 f ( x, y)ds, 当 f ( x, y, z) 是x (或y) (或z)的偶函数 1
Γ1是曲线Γ落在yz (或xz) (或x y平) 面一侧的部分.
运用对称性简化第一类曲线积分计 算时, 应同时考虑被积函数 与积分曲线 的对称性.
A⌒B
BO
yB
OA : y 0, 0 x a,ds 1 02dx
O
Ax
e x2 y2ds a e xdx ea 1
OA
0
A⌒B : x a cos t, y a sint, 0 t
4
A⌒B e x2 y2ds
4 ea
0
(a sint)2 (a cos t)2 dt aea
解2 选 y 为积分变量
y2 2x x y2 2
(0 y 2)
2
1
I
y
0
1 y2dy 3 (5
5 1)
例 求I xyzds,其 中 : x a cos , y a sin ,
z k 的 一 段. (0 2 )

高数曲线积分习题讲解

高数曲线积分习题讲解

第二类(对坐标的)曲线积分
变力做功问题 W = F d r
F (P,Q, R) r (dx,dy,dz)
n
定义
f ( x , y , z )ds lim 0 i1
f ( i , i , i ) si
n
Pdx
Qdy
Rdz
lim
0
i1
[ P ( i ,i ,
i )xi
Q ( i ,i , i )yi R( i ,i , i )zi ]
证:由对坐标的曲线积分的物理意义知,力F 沿右半平面任意有向
路径
L
所作的功为
W
LF dr
L
k
3
( xdx
ydy)

P
kx
3 ,
ky
Q 3 , 则
P y
kx
3
2
y
3kxy
3 ,
Q x
3kxy
3
,
P = Q . y x
所以此力场中场力所作的功与所取得路径无关.
例8.设曲线积分L xy2dx y(x)dy与路径无关,其中(x)具有连续的导数,
弧微分:ds x2(t) y2(t) z2(t) dt
f ( x, y, z)ds
f [ x(t ), y(t ), z(t )]
x2 (t ) y2 (t ) z2 (t )dt
2 间接计算: 化为第二类曲线积分.
注:利用对称性,质心公式等简化计算。
(ii)第二类曲线积分 1 直接计算 写出参数方程 x x(t), y y(t), z z(t);
2. 习题
例1. 计算 x2 y2ds,其中L 为圆周 x2+ y2 ax(a 0). L y

高数第十一章(1)对弧长的曲线积分

高数第十一章(1)对弧长的曲线积分

1 2
(由
组成)
( l 为曲线弧 的长度)
机动
目录
上页
下页
返回
结束
上 f ( x, y, z ) ( x, y, z ) , 则 (5). 若在


f ( x, y , z ) d s ( x, y , z ) d s

特别的,有



f ( x, y, z ) d s | f ( x, y, z ) | d s.
第十一章 曲线积分与曲面积分
积分学 定积分二重积分三重积分 曲线积分 曲面积分
积分域 区间域 平面域 空间域 曲线域
曲线积分 曲面积分 对弧长的曲线积分
曲面域
对坐标的曲线积分
对面积的曲面积分
对坐标的曲面积分
第一节 对弧长的曲线积分
第十一章
一、对弧长的曲线积分的概念与性质 二、对弧长的曲线积分的计算法
lim
记作
k 1
都存在, 则称此极限为函数
在曲线
上对弧长的曲线积分, 或第一类曲线积分.
称为被积函数, 称为积分弧段 . 曲线形构件的质量 M ( x, y, z ) ds

机动 目录 上页 下页
Mk sk M k 1

返回 结束
如果 L 是 xoy 面上的曲线弧 ,则定义对弧长的曲线积
机动 目录 上页 下页 返回 结束
sin R2
R
o

R x
例6. 计算曲线积分 线
其中为螺旋
的一段弧.
解:

( x 2 y 2 z 2 ) ds
a k
2
2
0
2

高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)

高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)

ds L ( L 表示曲线 L 的弧长 ) .
L
积函数可用积分曲线方程作变换.
( 6) 奇偶性与对称性 如果积分弧段 L (AB ) 关于 y 轴对称,
f (x, y)ds 存在,则
L( AB )
f ( x, y)ds
L ( AB )
0,
f ( x, y) 关于 x是奇函数 ,
2
f ( x, y)ds,f ( x, y) 关于 x是偶函数 .
切线的方向余弦是一个常量。 所以, 当积分曲线是直线时, 可能采用两类不同的曲线积分的
转换。
定理 4 (格林公式)
设 D 是由分段光滑的曲线 L 围成,函数 P( x, y), Q (x, y) 及其一阶偏导数在 D 上连续,
则有
P(x, y)dx Q (x, y)d y
Q P dxdy
L
Dx x
设 L (AB ) 的平面曲线: 其参数方程: x
分别是 和 ,则
(t), y
(t) ,起点和终点对应的参数取值
Pdx Qdy
L ( AB)
{ P( (t ), (t)] (t) Q[( (t), (t )] (t )}dt
设 L (AB ) 的空间曲线 :其参数方程: x (t), y (t ), z w(t ) ,起点和终点对应的
表示曲线的线密度。 定义 2 第二类曲线积分(对坐标的曲线积分)
( 1)平面曲线 L( AB) 的积分:
P(x, y)dx Q( x, y)dy
L ( AB )
( 2)空间曲线 L( AB) 的积分:
n
lim
(T ) 0
[ f ( k , k ) xk
k1
f ( k , k ) yk ]

十一章曲线积分与曲面积分

十一章曲线积分与曲面积分

- -第十一章 曲线积分与曲面积分一 、内容提要(一)曲线积分1.第一类曲线积分(对弧长)(1)定义:设),(y x f 是光滑曲线L 上的有界函数,把L 分成n 段,设i 段的弧长为i s ∆(最长者记{}i s ∆=max λ),在其上任取一点),(i i ηξ,则),(y x f 在L 上的第一类(对弧长)曲线积分为 ∑⎰=>-∆=ni i i i Ls f ds y x f 1),(lim ),(ηξλ.(2) 几何意义与物理意义几何意义是柱面面积,该柱面以L 为准线、其母线平行于z 轴、介于平面0=z 和曲面),(y x f z =之间的部分(图10.1). 物理意义是线密度为),(y x f 的物质曲线L 的质量. (3)计算方法 : 即“定限、代入”两步法第一步(定限):写出L 的方程及自变量的变化范围,用不等式表示,例如 βα≤≤t ,并且一定有βα<.第二步(代入):计算出弧长的微分式ds .将L 的方程和ds 一并代人曲线积分公式,即转变为定积分.共有三种形式: 参数式 L : ⎩⎨⎧≤≤==,),(),(βαψϕt t y t x ds t t ds 22))(())((ψϕ'+'=⎰⎰'+'=Ldt t t t t f ds y x f βαψϕψϕ22))(())(())(),((),(;直角坐标 把L :)()(b x a x y ≤≤=ψ看做曲线参数表达式⎩⎨⎧==)(x y xx ψ可以得到如下公式:⎰⎰'+=Lb adx x x x f ds y x f 2))((1))(,(),(ψψ;极坐标 L :,),(βθαθ≤≤=r r θθθd r r ds 22))(()('+=,⎰⎰'+=Ld r r r r f ds y x f βαθθθθθθθ22))(()()sin )(,cos )((),(.2.第二类曲线积分(对坐标)(1)定义 : 设),(y x P 和),(y x Q 是有向光滑曲线L 上的有界函数,把L 分成n 段,设第i段的- -分点为),(i i i y x M ,在弧 ⋂-i i M M 1上任取一点),(i i ηξ,设1--=∆i i i x x x , 1--=∆i i i y y y ,则),(y x P 在L 上对坐标x 的曲线积分是⎰∑=>-∆=Lni i i i x P dx y x P 1),(lim ),(ηξλ;而),(y x Q 在L 上对坐标y 的曲线积分是⎰∑=>-∆=Lni iiiyQ dy y x Q 1),(lim ),(ηξλ;在应用上往往表现为两者的和:⎰⎰⎰+=+LLLdy y x Q dx y x P dyy x Q dx y x P ),(),(),(),((记为).(2)物理意义第二类曲线积分的物理意义是变力j y x Q i y x P F),(),(+=沿有向曲线L 移动所作的功,即⎰⋅=Lr d F W⎰+=L dy y x Q dx y x P ),(),(.其中 j dy i dx r d+= .由微分三角形知ds dy dx r d =+=22,向量r d在切线上.(4)计算方法直接计算 即“定向、代入”两步法. 第一步(定向):写出L 的方程及自变量的变化范围,α和β分别对应L 的起点(下限)和终点(上限).即变量“t 由α向β”积分.与第一类曲线积分不同,在这里可能出现βα>的情况.第二步(代入):把L 的方程及dy dx ,代入被积分式中,即变为定积分,α和β分别是下限和上限.例如, (定向)L :⎩⎨⎧==βαψϕ向由t t y t x ),(),(.(代入)⎰+Ldy y x Q dx y x P ),(),(=⎰'+'βαψψϕϕψϕdt t t t Q t t t P )]())(),(()())(),((([.间接计算 主要使用两个重要定理.格林定理 设:① D 是由分段光滑曲线L 围成,L 的方向为正;② ),(y x P 和),(y x Q 在D 上具有一阶连续偏导数.则⎰⎰⎰=⎪⎪⎭⎫⎝⎛∂∂-∂∂=+L D dxdy y P x Q Qdy Pdx dxdy QP y x D⎰⎰∂∂∂∂. 注意 : 如果D 是单连通域,则L 逆时针方向为正.如果D 是复连通域,则 L 的外周界逆时针方向为正,而内周界顺针方向为正.如果L 的方向为负,那么在使用格林时时一定要补加一个负号.与路径无关定理 设:① D 是单连通域,有向曲线L ∈D ;② ),(y x P 和),(y x Q 在D 中有- -连续的偏导数.则⎰+LQdy Pdx 与路径无关<=>yPx Q ∂∂=∂∂ 对于一个第二类曲线积分计算题,如果不宜直接计算或直接计算较繁,就需要计算yPx Q ∂∂∂∂和,依不同情况,或使用格林定理或改变积分路径.(5)曲线积分与全微分的关系设D 是单连通域;P 和Q 具有连续偏导数.则在D 中存在),(y x u 使yPx Q Qdy Pdx du ∂∂=∂∂⇔+= .其计算公式是 ⎰⎰⎰+=+=xx yy y x y x dy y x Q dx y x P dy y x Q dx y x P y x u 000),(),(),(),(),(0),(),(⎰⎰+=y y x x dx y x P dy y x Q 0),(),(0. 3.两类曲线积分之间的转换设曲线了L :)(),(t y t x ψϕ==.在曲线上L 任一点的切向量是=t {)(),(t t ψϕ''},容易求出单位切向量{}ααsin ,cos 0=t,由微分三角形知ααsin ,cos ds dy ds dx ==.将这两式代入第二类曲线积分中得⎰⎰+=+LLds Q P Qdy Pdx ]sin cos [αα如用向量表示,{}{}{}{}ds t ds ds dy dx r d y x r Q P A 0sin ,cos ,,,,, =====αα,于是ds t A r d A LL⎰⎰⋅=⋅0(此式在三维空间也正确).4.常用计算技巧代人技巧 若计算⎰Lds y x f ,),(而L 的方程恰是a y x f =),(,则⎰⎰==LLal ads ds y x f ),((l 是l 的长度).注意: 这种代入技巧在两类曲线积分和两类曲面积分中都适用.但是绝不可以用在重积分上.例如,设D 是由222a y x =+围成的区域,则下面的“代入”是错误的:⎰⎰⎰=+DDdxdy a dxdy y x 222)( 错误的原因是在D 的内部222a y x <+.利用奇偶对称性 第一类曲线积分的奇偶对称性与二重积分类似.设L 关于y 轴对称,则- -⎰⎰⎪⎩⎪⎨⎧=LL x y x f x y x f ds y x f 为偶函数,关于当为奇函数,关于当),(2),(,0),(1其中1L 是L 在y 轴右边的部分.若L 关于x 对称,则有结果类似. 第二类曲线积分的奇偶对称性与第一类曲线积分相反.设L 关于y 轴对称,(1L 是L 在y 轴右边的部分)则⎰⎰⎪⎩⎪⎨⎧=LL x Q x Q dy y x Q 为偶函数。

曲线积分习题课

曲线积分习题课

y
y2
P y

[1 y y

yf ( xy)]

1 y2

f ( xy)
xyf ( xy)
Q x
在上半平面内处处成立,所以积分I在上半平面内与路径无关.
17
(2)I 1 [1 y 2 f ( xy)]dx x [ y 2 f ( xy) 1]dy
Ly
y2
((a, b) (c, d ),ab cd )

c 1 [1 b2 f (bx)]dx ab
d b
c y2
[
y
2
f
(cy)

1]dy
c a
c
bf (bx)dx
d cf (cy)dy c c
b
a
b
db
c a bc
cd
f (t)dt f (t)dt
的x待定函数 ( y ),同理
2t 1 ( t ) Q( x, y ) x2 2 y 1
P 对y积分后有关于x y
的待定函数 ( x ).
20
例7. 设在上半平面 D {(x, y) y 0}内函数 f (x, y) 具有
连续偏导数, 且对任意 t > 0 都有
[P(i
, i
)xi
Q(i , i
)yi
]


L Pdx Qdy L(P cos Qcos )ds
计 L f ( x, y)ds


f [,]
2 2dt


( )
LPdx Qdy

[P(,) Q(,)]dt

10考研数学大纲知识点解析(第十章曲线曲面积分(数学一)

10考研数学大纲知识点解析(第十章曲线曲面积分(数学一)

.
(3)第一类曲线积分表示的物理意义是曲线的质量,故与方向无关.
【第一类曲线积分的性质】
(1) (2) (3) (4) (5)设在 上
.
.
其中
没有公共部分.
. 其中 表示 的反方向的路径.
,则
.
特别的,
.
【第一类曲线积分的计算】设 为光滑曲线, (1)若 由参数方程
在 上连续. 给出 ,则
其中

上有一阶连续导数,且
(3)若积分曲线 关于
轴对称,则
【例题】(89 年,数学一/数学二)
设平面曲线 为下半圆
,则曲线积分
. .
【答案】 . 【解析 1】参数法:设 的参数方程为
【解析 2】将积分曲线 的方程
,即
于是 .
代入被积函数,得 .
【例题】(98 年,数学一)
设 为椭圆
,其周长记为 , 则

【答案】 .
【解析】将 的方程
函数
在空间曲线 上的第一类曲线积分可类似定义为
. 【空间中第一类曲线积分的计算】
若空间曲线 的参数方程为

.
【例题】计算曲线积分 上相应于 从 到 的一段弧. 【解析】原式
,其中 为螺旋线
.
【第二类曲线积分的概念(对坐标的曲线积分)】设 为 面内一条有向光滑曲线段,
函数
在 有界,则它们在 上的第二类曲线积分定义为
由 解得
得到的微分方程 ,带入
,得

所以
,于是

【综合题】(06 年,数学一)设在上半平面 偏导数,且对任意的 都有 向简单闭曲线 ,都有
内,函数
具有连续
.证明:对 内的任意分段光滑的有

§6.4第一型曲线积分的计算

§6.4第一型曲线积分的计算

故 ( x2 y2 z2 )ds 9 ds 2 9 2dt 18 .
L
L2
02
例 4.设 L 为椭圆 x2 y2 1 ,其周长为 a, 43
求 (3x 2 4 y 2 2xy)ds 的值. L
解:∵ x2 y2 1 ,∴ 3 x2 4 y2 12 , 43
∴ (3x 2 4 y 2 2xy)ds (代入L的方程) L
L
x2 y2 z2 9 与平面x z1 的交线. 2
解: L
:x2 y2Biblioteka x z1z29 2
(x 1)2 2
2 z1 x.
y2 4
1,
其参数方程为:
x 1 2cost, 2
y 2sint,
z
1 2
2 cos t .
(0t 2 ) ,
ds ( 2 sint)2 (2cos t)2 ( 2 sint)2 dt 2dt,
ds 1 y2 (x)dx R dx
R2 x2
R xR
xds
dx 0
L
R R2 x2
(法二)
:
L
:
x
y
R R
cos s in
,0
ds R 2 sin 2 R 2 cos2 d
xds R 2 cosd R 2 sin 0
L
0
0
例 2 L (x y)ds, L : 连接三点O(0,0), A(1,0), B(0,1)的折线.
而平面 x y z0 通过原点,
∴ L 为平面 x y z 0 上半径为 R 的圆,其周长为 2R .
∵曲线 L 的 方程对 x,y,z 具有轮换对称性,
∴ zds xds yds 1 ( x y z)ds 0 ,

第七讲线面积分

第七讲线面积分

S : z = z0 + r2 − ( x − x0 )2 − ( y − )y0 2 ,方向向上,若对任何点 ( x0, y0, z0 ) 和
r>0,第二型曲面积分
S
Pdydz
+
Rdxdy
=
0
。证明
P x
=
0
(2016
年,第
7
届决赛,14 分)
斯托克斯公式
6
( ) ( ) ( ) 例 22 求 I = y2 + z2 dx + z2 + x2 dy + x2 + y2 dz ,L 是球面 x2 + y2 + z2 = 2bx L
(1) S
(
z x, y,
z
)dS
;(2) S
z
(
x
+
3
y
+
z
)dS
(2011
年,第
2
届决赛,
16 分)
对坐标的曲面积分Βιβλιοθήκη 例15计算
axdydz + (
x2 +
z+ y2
a +
)2 dxdy
z2
,Σ
是下半球面 z = −
a2 − x2 − y2 的上
侧, a 0 。(2010 年,首届决赛)
例 16
的上侧。
答案:2
2.计算第一型曲面积分
S
(1 n r
)
dS
,其中曲面
S:
z = 1+ x2 + y2 (z 2) , r = x2 + y2 + z2 ,而 n = (cos, cos , cos ) 为 S 的

高数-对弧长的曲线积分

高数-对弧长的曲线积分
函数 f ( x, y, z)在空间曲线
o z
x
B
M n1
弧 上对弧长的曲线积分为
n
f
(
x,
y,
z)ds
lim
0
i 1
f
(i
,i
,
i
)
si
.
(i ,i , i ) Mi
0 M2
si
M i 1
y
A M1
x
(6) 函数f ( x, y)在闭曲线 L上对弧长的
曲线积分记为 L f ( x, y)ds. 三、第一类曲线积分的性质
( y0 Y )
L f ( x, y)ds f [(t), (t)] (t)2 (t)2d t
公式的其它几种情形
( 3 ) 若 f ( x, y) 1, 则有
n
L
f ( x, y)ds
lim
0
i 1
f
(
i
,i
)
si
n
lim
0
si
i 1
s
(曲线弧 L 的长度)
即曲线弧 L 的长度 Lds
可看作
x
y
t,
(t),
( x0 t X ),
f ( x, y) f [x, ( x)],
d s (t)2 (t)2d t 1 (t)2d t 1 ( x)2d x
所以有
L f ( x, y)ds xX0 f [ x, ( x)] 1 2( x)dx.
( x0 X )
L f ( x, y)ds f [(t), (t)] (t)2 (t)2d t

(3)将 表
示成参数方程
x
a cos

对弧长的曲线积分

对弧长的曲线积分

∫α
于是
β
f [(t),ψ(t)] ′2(t)+ψ′2(t)dt .
β α
∫L
f (x, y)ds = ∫ f [(t),ψ(t)] ′2(t)+ψ′2(t)dt .
二、对弧长的曲线积分的计算
定理 设f(x, y)在曲线弧L上有定义且连续, L的参数方程为 x=(t), y=ψ(t) (α≤t≤β), 其中(t)、ψ(t)在[α, β]上具有一阶连续导数, 且′2(t)+ψ′2(t)≠0,
a
b
设曲线 L的参数方程为x=(t), y=ψ(t) (α≤t≤β), 则
∫L
讨论:
f (x, y)ds =∫ f [(t),ψ(t)] ′2(t)+ψ′2(t)dt (α<β).
α
β
(1)若曲线 L 的方程为 y=ψ(x)(a≤x≤b), 则∫ f (x, y)ds =?
L
(2)若曲线 L 的方程为 x=(y)(c≤y≤d), 则∫ f (x, y)ds =?
提示: 曲线形构件L的质量元素为
f (x, y)ds = f [(t),ψ(t)] ′2(t)+ψ′2(t)dt .
二、对弧长的曲线积分的计算
根据对弧长的曲线积分的定义, 如果曲线形构件L的线密 度为f(x, y), 则曲线形构件L的质量为
∫L f (x, y)ds .
另一方面, 如果曲线L是光滑的, 其参数方程为 x=(t), y=ψ (t) (α≤t≤β), 则曲线形构件L的质量为
α
β
(1)若曲线 L 的方程为 y=ψ(x)(a≤x≤b), 则∫ f (x, y)ds =?
L
(2)若曲线 L 的方程为 x=(y)(c≤y≤d), 则∫ f (x, y)ds =?

曲线积分的计算法

曲线积分的计算法

曲线积分的计算法曲线积分第一类( 对弧长)第二类( 对坐标)转化定积分(1) 选择积分变量用参数方程用直角坐标方程用极坐标方程(2) 确定积分上下限第一类: 下小上大第二类: 下始上终对弧长曲线积分的计算定理)()()()](),([),(,],[)(),()(),(),(,),(22dt t t t t f ds y x f t t tt yt x L L y x f L且上具有一阶连续导数在其中的参数方程为上有定义且连续在曲线弧设注意:;.1一定要小于上限定积分的下限.,,),(.2而是相互有关的不彼此独立中y x y x f 特殊情形.)(:)1(b x a x y L .)(1)](,[),(2dx x x x f dsy x f baL .)(:)2(d ycy x L .)(1]),([),(2dy y y y f dsy x f dcL1. 基本方法).(,sin ,cos :,象限第椭圆求t b y t a x L xyds IL解dtt b t a t b t a I2220)cos ()sin (sin cos dtt b t a tt ab222220cossincos sin abduu baab 222)cos sin (2222t b ta u 令.)(3)(22b ab ab a ab 例2.)2,1()2,1(,4:,2一段到从其中求x y L yds ILxy42解dyy y I222)2(1.0例3)2(.,sin ,cos :,的一段其中求kza y a x xyzds I 解dk ak a 222sin cos2I.21222k aka例4.0,,22222zyxa z y x ds x I为圆周其中求解由对称性, 知.222ds z dsy ds x dsz yxI)(31222故例1对坐标的曲线积分的计算,),(),(,0)()(,)(),(,),(,),(),(,),(),,(22存在则曲线积分且续导数一阶连为端点的闭区间上具有及在以运动到终点沿的起点从点时到变单调地由当参数的参数方程为续上有定义且连在曲线弧设Ldy y x Q dxy x P t t t t B L A L y x M t t yt x L L y x Q y x P dtt t t Q t t t P dy y x Q dx y x P L)}()](),([)()](),([{),(),(且特殊情形.)(:)1(b a x x y y L ,终点为起点为.)}()](,[)](,[{dx x y x y x Q x y x P Qdy PdxbaL 则.)(:)2(d c y y x x L ,终点为起点为.]}),([)(]),([{dy y y x Q y x y y x P QdyPdxdcL则例5 计算,d d )2(Ly x x y a 其中L 为摆线,)sin (t t a x )cos 1(t a y上对应t 从0 到2的一段弧.提示: yx xy ad d )2()cos 1(t a tt a d )cos 1(tt a t ta d sin )sin (tt t a d sin 2π202d sin t t t a原式π202sin cos tt t a 2π2adsa32.323a ),2(球面大圆周长ds a,d z z y x 其中由平面y = z 截球面22yx,12所得z从z 轴正向看沿逆时针方向.提示:因在上有,1222yx故:txcos tysin 21)π20(t sin 21tz原式=tt t d sincos π2022221tt t d 2π22221)cos 1(cos 42π21432π21216π2曲面积分的计算法1. 基本方法曲面积分第一类( 对面积) 第二类( 对坐标)转化二重积分(2) 积分元素投影第一类: 始终非负第二类: 有向投影(3) 确定二重积分域例 6计算(1) 选择积分变量—代入曲面方程—把曲面积分域投影到相关坐标面定理:设有光滑曲面yx D y x y x z z),(),,(:f (x, y, z ) 在上连续, 则曲面积分Sz y x f d ),,(存在, 且有Sz y x f d ),,(yx Dy x f ),,(),(y x z yx y x z y x z y x d d ),(),(122例7计算ds z y x)(, 其中为平面5zy 被柱面2522yx所截得的部分.解积分曲面:y z5,dxdyz z dSy x221dxdy2)1(1,2dxdy dsz yx)(故xyDdxdyy y x )5(2投影域:}25|),{(22yx y x DxyxyD dxdyx)5(2rdrr d520)cos 5(2.2125对坐标的曲面积分计算:一投、二代、三定号例8.计算曲面积分,d d y x xyz 其中为球面2x122z y 122zy外侧在第一和第五卦限部分. 解:把分为上下两部分2211:yxz 2221:yxz 对面积的曲面积分的计算法例91d d yx z y x 0,01:),(22yxy x Dy x yx dydz x z)(2dsx zcos )(2dxdy x z cos cos )(2有上在曲面,.11cos,1cos2222yxy x xdxdy z x x z zdxdy dydz x z ]))([()(22xyD dxdyy xx x y x )}(21)(])(41{[2222xyDdxdyy xx)](21[222222220)21cos(rdrr r d.8yx z y x d d 2d d yx z y x yxD yx y x y x d d 1222221cossin2r r yx Dd d r r 20d2sin rrr d 1213152计算zdxdydydzx z)(2,其中Σ是旋转抛物面)(2122yxz介于平面z 及2z之间的部分的下侧.解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
积分弧段
n
积分和式
曲线形构件的质量 M ( x , y )ds.
L
2.存在条件:
当 f ( x , y )在光滑曲线弧 L上连续时, 对弧长的曲线积分 L f ( x , y )ds 存在.
3.推广
函数 f ( x , y , z )在空间曲线弧 上对弧长的 曲线积分为


f ( x , y , z )ds lim f ( i ,i , i ) si .
n
x
取 ( i ,i ) si , M i ( i ,i ) si .
求和 取极限
M ( i , i ) si .
i 1
近似值
精确值
M lim ( i , i ) si .
0
i 1
n
二、对弧长的曲线积分的概念
1.定义 设L为xoy面内一条光滑曲线弧 ,函数f ( x , y )
S柱面面积 f ( x , y )ds.
L
s
L
(4) 曲线弧对x轴及 y轴的转动惯量,
I x y 2 ds,
L
I y x 2 ds.
L
(5) 曲线弧的重心坐标
xds x , ds
L L
yds y . ds
L L
五、小结
1、对弧长曲线积分的概念
L
3 、对________的曲线积分与曲线的方向无关;
2 2 4 、 f ( x , y )ds = f [ ( t ), ( t )] ( t ) ( t ) dt 中 要 L 求 ________ .

二、计算下列求弧长的曲线积分: x2 y2 ds ,其中 L 为圆周x 2 y 2 a 2 ,直线 y x 1 、 Le 及x 轴在第一象限内所围成的扇形的整个边界;
L
y2 4 x
其中L : y 2 4 x , 从(1,2)到(1,2)一段.

y 2 I y 1 ( ) dy 0. 2 2
2
例3 求I xyzds, 其中 : x a cos , y a sin ,

z k的一段. ( 0 2)
L L1 L2
( L L1 L2 ).
三、对弧长曲线积分的计算
定理 设 f ( x, y )在曲线弧 L上有定义且连续,
x (t ), L的参数方程为 ( t )其中 y (t ), (t ), (t )在[ , ]上具有一阶连续导数, 则
解 I a 2 cos sin k a 2 k 2 d 0
1 2 2 2 ka a k . 2
2
例4 求I x 2ds,

x2 y2 z2 a2 , 其中为圆周 x y z 0.
解 由对称性, 知
2 2 2 x ds y ds z ds.
在L上有界.用L上的点M 1 , M 2 ,, M n1把L分成n 个小段.设第i个小段的长度为 si , 又( i , i )为第 i个小段上任意取定的一 点, 作乘积f ( i , i ) si , 并作和 f ( i , i ) si ,
i 1 n
y
B
L M n 1
( i , i ) M i M2 M i 1 A M1
o
x
如果当各小弧段的长度的最大值 0时, 这和的极限存在 , 则称此极限为函数 f ( x , y ) 在曲线弧L上对弧长的曲线积分或第一类曲 线积分, 记作 f ( x , y )ds, 即
被积函数
L
f ( i , i ) si . L f ( x , y )ds lim 0 i 1
练习题答案
一、1、 ( x , y )ds ; 2、 L 的弧长;
L
3、弧长;
a
4、<.
二、1、e ( 2 a ) 2 ; 2、9; 4 2 3 2 2 a ( 1 2 ); 3、 4、2a 2 ( 2 2 ) . 2 2 2 2 2 2 2 三、 I z a a k ( 3a 4 k ) ; 3 2 2 6ak 6ak x 2 y 2 2 2; 2 2 ; 3a 4 k 3a 4 k 3k ( a 2 2 2 k 2 ) z . 2 2 2 3a 4 k
四、几何与物理意义
(1) 当 ( x, y )表示 L的线密度时,
M L ( x , y )ds ; ( 2) 当 f ( x , y ) 1时, L弧长 Lds ;
z f ( x, y)
( 3) 当 f ( x , y )表示立于L上的 柱面在点( x , y )处的高时,
2、对弧长曲线积分的计算
3、对弧长曲线积分的应用
思考题
对弧长的曲线积分的定义中 S i 的符号 可能为负吗?
思考题解答
S i 的符号永远为正,它表示弧段的长度.
练习题
一、填空题: L 的质量 1 、已知曲线形构件L 的线密度为 ( x , y ) ,则 M =_______________; 2 、 ds =_______________;
L
L
( x 2 y 2 ) 2 a 2 ( x 2 y 2 ) ( a 0) . 三、设螺旋形弹簧一圈的方程为 x a cos t , y a sin t , z kt ,其中0 t 2 ,它的线密度 ( x , y , z ) x 2 y 2 z 2 ,求: 1、它关于Z 轴的转动惯量 I Z ; 2、它的重心 .
1 故 I ( x ds . ( 2a ds, 球面大圆周长) 3 3
2
例:计算

L
x y ds ,L:x y a
2 2 2 2
2
例、计算 (x y )ds ,
2 2
L
其中L是以O(0,0)、A(2,0)、B(0,1)为顶点 的三角形的边界。

L
f ( x, y )ds f [ (t ), (t )] 2 (t ) 2 (t )dt


( )
注意:
1. 定积分的下限 一定要小于上限 ; 2. f ( x, y )中 x, y 不彼此独立, 而是相互有关的 .
特殊情形
(1) L : y ( x ) a x b.
.

L
f ( x, y)ds

f [r ( ) cos , r ( ) sin ] r ( ) 2 r ( )2 d .
推广: : x ( t ), y ( t ), z ( t ). ( t )
f ( x , y, z )ds
b a

L
f ( x , y )ds f [ x , ( x )] 1 2 ( x )dx. ( a b )
( 2) L : x ( y )
c y d.
d c
(3) L : r r ( ),

L
f ( x , y )ds f [ ( y ), y ] 1 2 ( y )dy.
L 为折线ABCD ,这里A , B , C , D 2、 x 2 yzds ,其中

依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2); L 为曲线 3、 ( x 2 y 2 )ds ,其中
x a (cos t t sin t ) ( 0 t 2 ) ; y a (sin t t cos t ) L 为双纽线 4、计算 y ds ,其中
L
4.性质
(1) [ f ( x , y ) g( x , y )]ds f ( x , y )ds g( x , y )ds.
L L L
( 2) kf ( x , y )ds k f ( x , y )ds ( k为常数).
L L
( 3) f ( x , y )ds f ( x , y )ds f ( x , y )ds.
解 I a cos t b sin t ( a sin t ) 2 ( b cos t ) 2 dt
ab sin t cos t a 2 sin2 t b 2 cos 2 t dt
2 0 2 0
ab(a 2 ab b 2 ) . 3(a b)
例2 求I yds,
第一节
对弧长的曲线积分 (第一类曲线积分)
一、问题的提出
二、对弧长的曲线积分的概念 三、对弧长曲线积分的计算 四、几何与物理意义 五、小结
一、问题的提出
实例:曲线形构件的质量
匀质之质量 M s .
y
B
L M n 1
( i , i ) M i M2 M i 1 A M1
o M , M , , M s , 分割 1 2 n1 i
f [ ( t ), ( t ), ( t )] 2 ( t ) 2 ( t ) 2 ( t )dt

( )
x a cos t , 例1 求 I xyds, L : 椭圆 (第象限). L y b sin t ,
0
i 1
n
注意:
1. 若 L (或 )是分段光滑的 , ( L L1 L2 )

L1 L2
f ( x , y )ds f ( x , y )ds f ( x , y )ds.
L1 L2
2. 函数f ( x , y )在闭曲线 L上对弧长的 曲线积分记为 f ( x , y )ds.
相关文档
最新文档