模拟电子技术基础01-微变等效电路法
模拟电子技术基础c1
外电场使空间电荷区变宽;
不利于扩散运动,有利于漂移运动,漂移电流大于扩 散电流,电路中产生反向电流 I ;
由于少数载流子浓度很低,反向电流数值非常小。
P
耗尽层
N
IS
内电场方向
外电场方向
V
R
半导体的导电机理不同于其它物质,所以它 具有不同于其它物质的特点。
例如:
当受外界热和光的作用时, 它的导电能力明显变化。
光敏器件
往纯净的半导体中掺入某些杂质, 会使它的导电能力明显改变。
二极管
二、本征半导体的晶体结构
完全纯净的、不含其他杂质且具有晶体结构的半导体
称为本征半导体
+4
+4
+4
将硅或锗材料提
电容效应包括两部分 势垒电容 扩散电容
1. 势垒电容Cb 是由 PN 结的空间电荷区变化形成的。
空间
空间
P 电荷区 N
P
电荷区
N
I+ V U R
(a) PN 结加正向电压
I
V UR
+
(b) PN 结加反向电压
空间电荷区的正负离子数目发生变化,如同电容的 放电和充电过程。
势垒电容的大小可用下式表示:
第一章 半导体器件
课外阅读教材:
1.谢自美 电子线路设计.实验.测试
华中理工大学出版社。
2.毕满清 电子技术实验与课程设计
机械工业出版社。
3.高伟涛 Pspice8.0电路设计实例精粹 国防工业出版社 。
4.李东生 Protel99SE电路设计技术入门 电子工业出版社。
模拟电子技术基础(第四版)第1章
ID
理想二极管符号 UD
(V)
ID
开关模型等效电路
0.7V 0 0.7
0
UD
(V)
(a)理想模型 特性 )理想模型VA特性
(b)开关模型 特性 )开关模型VA特性
3、折线模型:正向导通时。相 、折线模型:正向导通时。 当于理想二极管串联一个等效 和一个电压源U 电阻rD和一个电压源 ON ,特 性曲线如图( 所示 所示。 性曲线如图(c)所示。
二极管的伏安特性仍可由 二极管的伏安特性仍可由
iD = IS (e
近似描述。 近似描述。
UD / UT
−1)
D E
导通电压
IS:反向饱和电流 UT:电压当量,室温下26mV
IR
反向 漏电
开启电压 Uon
开启电压 导通电压
硅二极管 0 .5 V 0 . 6 ~ 0 .8 V (取 0 .7 V )
锗二极管 0 .1 V 0 . 2 ~ 0 .3 V (取 0 .3 V )
发射区:发射载流子 发射区: 集电区: 集电区:收集载流子 基区: 基区:传送和控制载流子 为例) (以NPN为例) 为例
演示
载流子的传输过程
以上看出,三极管内有两种载流子 自由电子 自由电子和 以上看出,三极管内有两种载流子(自由电子和空 参与导电, 穴)参与导电,故称为双极型三极管-BJT (Bipolar 参与导电 故称为双极型三极管- Junction Transistor)。 。
二极管伏安特性与温度T的关系: 二极管伏安特性与温度T的关系:
的增加而增加 所以二极管的正向压降 增加, 的增加而降低 降低。 由于IS随T 的增加而增加,所以二极管的正向压降VF随T 的增加而降低。 一般线性减少2 2.5mV/C° 一般线性减少2~2.5mV/C° (利用该特性,可以把二极管作为温度传感器) 利用该特性,可以把二极管作为温度传感器)
模拟电子技术基本教程 - 华成英主编
三、PN结的形成及其单向导电性
物质因浓度差而产生的运动称为扩散运动。气 体、液体、固体均有之。
P区空穴 浓度远高 于N区。
N区自由电 子浓度远高
于P区。
扩散运动
扩散运动使靠近接触面P区的空穴浓度降低、靠近接触面 N区的自由电子浓度降低(相遇而复合) ,产生内电场。
PN 结的形成
由于扩散运动使P区与N区的交界面缺少多数载流子,形成 内电场,从而阻止扩散运动的进行。内电场使空穴从N区向P 区、自由电子从P区向N 区运动。
材料 硅Si 锗Ge
开启电压 0.5V 0.1V
导通电压 0.5~0.8V 0.1~0.3V
反向饱 开启 和电流 电压
反向饱和电流 1µA以下 几十µA
从二极管的伏安特性可以反映出:
1. 单向导电性
正向特性为 指数曲线
u
i IS(eUT 1)
u
若正向电压u
U T,则i
I
eUT
S
若反向电压u U价键
由于热运动,具有足够能量 的价电子挣脱共价键的束缚
而成为自由电子
自由电子的产生使共价键中 留有一个空位置,称为空穴
自由电子与空穴相碰同时消失,称为复合。 动态平衡
一定温度下,自由电子与空穴对的浓度一定;温度升高, 热运动加剧,挣脱共价键的电子增多,自由电子与空穴对 的浓度加大。
• 为什么半导体器件有最高工作频率?
3.2 半导体二极管
一、二极管的组成 二、二极管的伏安特性及电流方程 三、二极管的等效电路 四、二极管的主要参数 五、稳压二极管
一、二极管的组成
将PN结封装,引出两个电极,就构成了二极管。
小功率 二极管
大功率 二极管
稳压 二极管
模拟电子技术2.4(1)等效电路法.ppt
0.81V
Au
UOL Ui
UOL UOC
UOC Ui
Ao
UOL UOC
Ao
RL Ro RL
90
带负载后放大倍数下降。
例题2:
已知:VCC=12V,Rb=510K,RC=3K;晶体管的rbb`=150, β=80,UBEQ=0.7V,RL=3K,耦合电容对交流信号视为短路。
Rb
_+
Rs
c1
u+_s
Rc Rb rbe
带上负载后电压放大倍数减小。
输入电阻:
Ri
Ui Ii
Rb
rbe
计算输出电阻Ro有两种方法:
(1)将负载RL去掉,信号源短路,保留其内阻;在输 出端加正弦信号Uo,产生电流Io,Ro= Uo/ Io.
Ii Rb +
b Ib +
Ib=0
ui
ube
rbe βIb
_
_
e
Ic c Ic=0
RS +
ui Rb
ube
US_ _
_
rbe βIb
e
交流等效电路
+
RC RL uo
_
R i R b//rbe
RO RC
R i RS R b//rbe ×
R o R C // RL ×
输入电阻与信号源内阻无关,输出电阻与负载无关。
•
• Aus
Uo •
Us
• ••
•
• Aus
Uo • Us
Uo • Ui
Rs
+
u_s
+Vcc
Rc
+
Rs
RL
小信号模型分析法(微变等效电路法)
ic hoe vce
β = hfe
rce= 1/hoe
• ur很小,一般为10-3∼10-4 , 很小,一般为10 • rce很大,约为100kΩ。故 很大,约为100kΩ 100k 一般可忽略它们的影响, 一般可忽略它们的影响, 得到简化电路 BJT的 BJT的H参数模型为
上页
下页
返回
模拟电子技术基础
2
β 一般用测试仪测出; 一般用测试仪测出;
H参数的确定 H参数的确定
rbe 与Q点有关,可用图示 点有关,
仪测出。 仪测出。 也用公式估算 rbe rbe= rb + (1+ β ) re
rb为基区电阻,约为200Ω 为基区电阻,约为200 200Ω
VT (m ) V 26(m ) V re = = IEQ(m ) IEQ(m ) A A
上页
下页
返回
模拟电子技术基础
二
建立小信号模型的思路
当放大电路的输入信号电压很小时,就可以把三极管 当放大电路的输入信号电压很小时, 小范围内的特性曲线近似地用直线来代替, 小范围内的特性曲线近似地用直线来代替,从而可以把三 极管这个非线性器件所组成的电路当作线性电路来处理。 极管这个非线性器件所组成的电路当作线性电路来处理。
dvBE = ∂vBE ∂iB
VCE ⋅ di + B
ic ib + vbe – b e c + vce –
∂iC d iC = ∂iB
∂iC VCE ⋅ diB + ∂vCE
∂vBE ∂vCE
IB
⋅ dvCE
IB
⋅ dvCE
下页 返回
上页
模拟电子技术基础
vbe = hieib + hrevce ic = hfe ib + hoevce
模拟电路基础第二章微变等效电路
(Rs rbe R E )Uo rbe rce ] rce (Rs rbe
RE)
R o
Uo Io
rce
R
E (Rs rbe rce ) Rs rbe R E
通常, rce Rs rbe
R o
rce (1
R s
I b Au
Uo Ui
rbe
(1 )R E
Au
Uo Ui
Ib (rce // R C // R L ) Ib rbe (Ib Ib )R E
(rce // R C // R L ) rbe (1 )R E
求输出电阻Ro
Ii
B Ib
B’
Rs
RB
rce
e
二、晶体管共发H参数模型
iC
B
iB
uBE
E
将晶体管视为一二端
口网络,根据两个端
C 口的 电压和电流之间 的相互关系导出的模
型是网络模型,对H
uCE
参数模型,选择的自 变量为iB, 和uCE,因变量
为uBE和iC。
u BE f1 (iB , u CE )
iC f 2 (iB , u CE )
hie
Ic
hfeIb
1
h oe Uce
h ie rbb rbe rbe b Ib h fe g m rbe
h oe
1 rce
Ub
rbe
e
c
Ic
Ib
rce Uce
e
Ib b
c Ic
Ube
rbe
Ib
傅丰林 模拟电子线路基础 笫一部分
二、模拟电子线路基础课程的教学方法
课程存在的主要问题:内容多、概念多、技术 更新快、学时少、实践性和工程性强、难学难教的 特点。 ●内容多:第1章 半导体器件 第2章 放大器基础 第3章 放大器的频率特性 第4章 负反馈放大器 第5章 低频功率放大器 第6章 集成运算放大器原理及应用 第7章 直流稳压电源
3
一、模拟电子线路课程的重要性
且当模拟电路提供(并将继续提供)比同类功能数 字电路更好的性能和功耗时,为什么不愿意使用简 洁的模拟电路呢? 因此,模拟电路的明天存在,还没有消亡!在 电路需要更多地与现实环境互动的时候,它们怎么 可能是纯粹的数字?我们很难想像未来数字信号能 从天线发射出去、人耳能直接听数字信号。
23
二、模拟电子线路基础课程的教学方法
●要培养兴趣,“兴趣是最好的老师” ; ●要重视基本概念、基本原理、基本分析方法和基 本应用; ●学会工程近似分析方法,用工程观点分析问题; ●重视作业和实验; ●学会听课、适当笔记; ●学问学问,要学要问; ●重视小结归纳,读书由薄到厚,再由厚到薄; ●要知难而进,不要知难而退。 ●向学生推荐好的学习方法。
21
二、模拟电子线路基础课程的教学方法
3.教学方法 (1)教师必须“吃透”课程内容,不要“半瓶子 水晃荡”,这是关键。只有对这门课的相邻课程能充 分理解,讲课就游刃有余。 自己学过≠已经掌握 已经掌握≠彻底搞通;
自己明白≠讲得清楚;
讲得清楚≠学生理解; 教书是学问,又是艺术。
22
二、模拟电子线路基础课程的教学方法
13
二、模拟电子线路基础课程的教学方法
●概念多:半导体基础、多子、少子;扩散、漂移;
双极型、单极型晶体管工作原理;放大、截止、饱 和;甲类、乙类、甲乙类;偏流、偏压;静态、动 态;图解法、微变等效电路法;CE、CB、CC;CS、 CG、CD;有源负载;线性失真、非线性失真;负 反馈、正反馈;……
电子技术基础(模拟电子电路)精选全文完整版
Ω
1.86
kΩ
ri RB // rbe (1 β )RE Ii
8 .03 kΩ
+
ro RC 6 kΩ
Au
rbe
βRL (1 β
) RE
RS
E
+ S-
U i
B Ib
Ic C
IRB
β Ib rbe
RB
E RC RL
RE Ie
8.69
-
+ U o -
微变等效电路
射极输出器
RB C1 +
RB1 C1
RC
+C2
+
+
+
ui RB2 RE1
RL uo
–
RE2
+ CE
–
解: (1)由直流通路求静态工作点。
VB
RB2 RB1 RB2
UCC
20 12V 60 20
3V
IC
IE
VB
UBE RE
3 0.6 3
mA
0.8 mA
RB1 VB
RC IB
+UCC IC +
UCE
IB
IC β
0.8 μ A 50
2. 放大电路的微变等效电路
将交流通路中的晶 体管用晶体管微变等 效电路代替即可得放 大电路的微变等效电 路。
ii B ib
+
RS+ eS -
ui RB -
ic C
+
RC RL uO -
E
ii B ib
ic C
+
RS
ib
+ ui RB rbe
模拟电子技术基础知识点总结
模拟电子技术复习资料总结第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6.杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。
*三种模型微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
模拟电子技术基础习题及答案(清华大学出版社)
第一章 半导体器件1-1 当T=300K 时,锗和硅二极管的反向饱和电流I S 分别为1A μ和0.5pA 。
如将此两个二极管串联起来,有1μA 的正向电流流过,试问它们的结电压各为多少 解:二极管正偏时,TD U U S eI I ≈ , ST D I I lnU U ≈ 对于硅管:mV 6.179A1mA1ln mV 26U D =μ≈ 对于锗管:mV 8.556pA5.0mA1lnmV 26U D =≈ 1-2 室温27C 时,某硅二极管的反向饱和电流I S =0.1pA 。
(1)当二极管正偏压为0.65V 时,二极管的正向电流为多少(2)当温度升至67C 或降至10C -时,分别计算二极管的反向饱和电流。
此时,如保持(1)中的正向电流不变,则二极管的正偏压应为多少 解:(1)mA 2.7e 101.0eI I mA26mA65012U U S TD =⨯⨯=≈-(2)当温度每上升10℃时,S I 增加1倍,则 T=300k(即27℃), 则67℃时,1-3 二极管电路如图P1-3(a )所示,二极管伏安特性如图P1-3(b )所示。
已知电源电压为6V ,二极管压降为0.7伏。
试求:(1)流过二极管的直流电流;(2)二极管的直流电阻D R 和交流电阻D r 。
解:(1)(2)1-4 当0.7V 0.8V 时正向电流为多少 解:1-5 双极型晶体管可以等效为二只背靠背的二极管,如图P1-5所示。
反之二只背靠背连接的二极管可等效为一个三极管吗解:集电结反偏,用二极管等效集电结反偏时不可能有电流, 1-6 P1-6 解:D 0.7图 P1-3 6V(a)(b)图 NPNPNPe图 P1-61-7 已测得晶体三极管各极对地电位如图P1-7所示。
判断它们处于何种工作状态(饱和,放大,截止或损坏)。
截止U BE =U CE1-8P1-8=0,E B =5.6V Ω,E C =12V ,U(=2K ΩCEQ(C =5.1K Ω(3)如晶体管工作在放大状态,调节R B 使I CQ =2mA 。
模拟电子技术基础教案
云南民族大学教案课程名称: 模拟电子技术基础授课班级: 12级电子信息类1班、12级电子信息类2班、12级网络工程班、12级电气类1班、12级电气类2班任课教师: 王霞职称: 助教课程性质: 专业必修课授课学期: 2013-2014学年第一学期云南民族大学教案云南民族大学教案九、教学主要内容及教学安排:1.2 半导体二极管1.2.1 PN结及其单向导电性1.PN结中载流子的运动2. PN结的单向导电性加正向电压加反向电压PN结处于正向导通(on)状态,正向等效电阻较小。
反向电流非常小,PN结处于截止(cut-off)状态。
结论:PN结具有单向导电性:正向导通,反向截止。
1.2.2二极管的伏安特性1.二极管的结构2.二极管的类型3.二极管的伏安特性(1)正向特性(2)反向特性1.2.3 二极管的主要参数1.最大整流电流I F2.最高反向工作电压U R3.反向电流I R4.最高工作频率f M5.势垒电容C b6.扩散电容C d二极管单向导电举例1 1.2.4 稳压管1.PN结反向击穿机理解释2.稳压管的主要参数3.稳压管的稳压原理(1)稳压管必须工作在反向击穿区(2)稳压管应与负载R L并联,(3)必须限制流过稳压管的电流I Z4.举例说明如何选择限流电阻R补充内容:二极管的等效电路(或称为等效模型)1)理想模型:即正向偏置时管压降为0,导通电阻为0;反向偏置时,电流为0,电阻为∞。
适用于信号电压远大于二极管压降时的近似分析。
2)简化电路模型:是根据二极管伏安特性曲线近似建立的模型,它用两段直线逼近伏安特性,即正向导通时压降为一个常量Uon;截止时反向电流为0。
3)小信号电路模型:即在微小变化范围内,将二极管近似看成线性器件而将它等效为一个动态电阻r D 。
这种模型仅限于用来计算叠加在直流工作点Q上的微小电压或电流变化时的响应。
【教学方法】利用PPt的图形显示,设计一些动画图形讲解PN结的单向导电原理。
模拟电子技术基础_知识点总结归纳
欢迎阅读第一章半导体二极管1.本征半导体❑单质半导体材料是具有4价共价键晶体结构的硅Si和锗Ge。
❑导电能力介于导体和绝缘体之间。
❑特性:光敏、热敏和掺杂特性。
❑本征半导体:纯净的、具有完整晶体结构的半导体。
在一定的温度下,本征半导体内的最重要的物理现象是本征激发(又称热激发),产生两种带电性质相反的载流子(空穴和自由电子对),温度越高,本征激发越强。
◆空穴是半导体中的一种等效+q的载流子。
空穴导电的本质是价电子依次填补本征晶体中空位,使局部显示+q电荷的空位宏观定向运动。
◆在一定的温度下,自由电子和空穴在热运动中相遇,使一对自由电子和空穴消失的现象称为复合。
当热激发和复合相等时,称为载流子处于动态平衡状态。
2.杂质半导体❑在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
◆P型半导体:在本征半导体中掺入微量的3价元素(多子是空穴,少子是电子)。
◆N型半导体:在本征半导体中掺入微量的5价元素(多子是电子,少子是空穴)。
❑杂质半导体的特性◆载流子的浓度:多子浓度决定于杂质浓度,几乎与温度无关;少子浓度是温度的敏感函数。
◆体电阻:通常把杂质半导体自身的电阻称为体电阻。
◆在半导体中,存在因电场作用产生的载流子漂移电流(与金属导电一致),还才能在因载流子浓度差而产生的扩散电流。
3.PN结❑在具有完整晶格的P型和N型半导体的物理界面附近,形成一个特殊的薄层(PN结)。
❑PN结中存在由N区指向P区的内建电场,阻止结外两区的多子的扩散,有利于少子的漂移。
❑PN结具有单向导电性:正偏导通,反偏截止,是构成半导体器件的核心元件。
◆正偏PN结(P+,N-):具有随电压指数增大的电流,硅材料约为0.6-0.8V,锗材料约为0.2-0.3V。
◆反偏PN结(P-,N+):在击穿前,只有很小的反向饱和电流Is。
◆PN结的伏安(曲线)方程:4.半导体二极管❑普通的二极管内芯片就是一个PN结,P区引出正电极,N区引出负电极。
模拟电子技术基础知识点总结.
模拟电子技术复习资料总结第一章半导体二极管一。
半导体的基础知识1.半导体——-导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2。
特性—-—光敏、热敏和掺杂特性。
3.本征半导体————纯净的具有单晶体结构的半导体。
4。
两种载流子-—--带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体——-—在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴).6.杂质半导体的特性*载流子的浓度—-—多子浓度决定于杂质浓度,少子浓度与温度有关.*体电阻——-通常把杂质半导体自身的电阻称为体电阻。
*转型—-—通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7.PN结*PN结的接触电位差——-硅材料约为0。
6~0。
8V,锗材料约为0。
2~0.3V.*PN结的单向导电性---正偏导通,反偏截止.8。
PN结的伏安特性二。
半导体二极管*单向导电性—---—-正向导通,反向截止。
*二极管伏安特性-——-同PN结。
*正向导通压降——--——硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压--—-—-硅管0。
5V,锗管0。
1V。
3.分析方法--—-—-将二极管断开,分析二极管两端电位的高低:若V阳>V阴(正偏),二极管导通(短路);若V阳<V阴(反偏),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2)等效电路法➢直流等效电路法*总的解题手段-———将二极管断开,分析二极管两端电位的高低:若V阳〉V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。
*三种模型➢微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性—--正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
《微变等效电路》课件
单口网络的等效变换方法
通过串并联关系、电压电流关系、互易定理等,将复杂的单口网络化简为简单的等效电路。
含受控源电路的等效变换
要点一
受控源的概念
受控源是指在电路中,其电压或电方法
利用虚短、虚断的概念,将受控源转化为独立源的形式, 再进行等效变换。
电容元件
定义
电容元件是表示电场储能 的元件,其值由电极间距 离和电极面积决定。
特性
电容元件在交流电路中具 有容抗作用,其容抗值与 频率成反比,在直流电路 中容抗为无穷大。
应用
电容元件广泛应用于耦合 器、滤波器、调谐器等电 子设备中,用于控制电压 的幅度和频率。
电阻元件
定义
电阻元件是表示导体对电流阻碍 作用的元件,其值由导体的长度
戴维南定理和诺顿定理是两种常用的电路分析定理,它们可以将复杂电路等效为简单电路,从而简化分析过程。
详细描述
戴维南定理和诺顿定理都是用于简化电路分析的定理,它们可以将一个复杂电路等效为一个简单电路,从而方便 求解未知量。戴维南定理将一个有源二端网络等效为一个电压源和一个电阻的串联,而诺顿定理则将其等效为一 个电流源和一个电阻的并联。通过应用这些定理,可以大大简化复杂电路的分析过程。
LC振荡回路分析
总结词
LC振荡回路是一种常见的振荡电路,通过对 其微变等效电路的分析,可以深入理解振荡 回路的工作原理和特性。
详细描述
在LC振荡回路的微变等效电路中,电感和电 容被线性化,形成一个简单的RC振荡回路 。通过分析LC振荡回路的微变等效电路,可 以了解振荡频率、阻尼比等参数对振荡特性 的影响。
总结词
RL电路是另一种微变等效电路的实例, 其由一个电阻和一个电感串联而成。通 过对RL电路的微变等效电路进行分析, 可以进一步理解电感在交流电路中的作 用。
高教版《模拟电子技术基础(第五版)课程讲义复习要点第2章教案4(2.5)
(8) Ri 1K (√)
(9) RO 5K (√)
(10)RO 2.5K (× )
(11) US 20mV (× )
(12) US 60mV (√)
2、 电路如图所示,已知晶体管=50,在下列情况下,用直流
电压表测晶体管的集电极电位,应分别为多少?设VCC=12V,
即从晶体管输入端看 进去等效为一个电阻 :
rbe
uBE = ube
iB
ib
近似计算得:
rbe
rbb
(1
)
26(mV) IEQ (mA)
式中: rbb ——为晶体管基区的体电阻,一般取100~300Ω。
IEQ ——是发射极电流的静态值,单位为mA。
⑵ 输出端口
观察:在静态工作点Q附近一个微小的范围内,输出特性曲 线具备什么特点?
• Au
式中 Ri Rb // rbe rbe
【例2-5-3】 在如图2.5.4(a)所示放大电路中,已知VCC=12V ,RB=370kΩ,RC=2kΩ,RE=2kΩ,RL=3kΩ,电流放大系数 β=80,rbe=1KΩ,UBEQ=0.7V,试求:
1、静态工作点; 2、动态参数:A&u、Ri 和 Ro
0.22mA
ICS
VCC UCES RC
2.2mA
I BS
ICS
0.045mA
T饱和,UC=UCES=0.5V。
(5)RC短路 UC=VCC =12V。
晶体管简化微变等效电路
2、用微变等效电路法分析放大电路动态参数
动态参数
(Au、Ri、Ro)
用交流等效电路法解题的步骤:
(1)画出交流通路;
(2)画出放大电路的微变等效电路;
第6讲 微变等效电路分析法
③ 求输出电阻
理想电压源内阻Rs=0
ro
U&t I&1 I&2
I&3
I&1
U&t I&1
I&3
(1
U&t )I&1
I&3
rbe
U&t I&1
Re
U&t I&3ro(11 Nhomakorabea)
I&1 U&t
I&3 U&t
(1
1 )1 rbe
1 Re
Re
/
/ rbe 1
信号源的内阻不为零时
rbe
Rs
//Rb
射极跟随器虽然没有放大电压信号但是却放大了电流信号射极输出到r共集电极放大器输入电阻值远高于共射极放大电路输入信号源在信号源内阻上的损耗小使得信号源电压尽可能多的加载到放大器的输入端
2.4.1 微变等效电路模型
微变等效电路是在适当的静态偏置条件下,放大电路加入小信号时对三极 管的线性化处理模型。 1. 微变等效电路
Au
Uo Ui
Ib( Rc // Ib rbe
RL
)
(
Rc
// rbe
RL
)
RL rbe
② 求输入电阻
ri
Ui Ii
Rb
//
rbe
③ 求输出电阻
ro Rc
RL RC // R L
例2-2 如图2-19(a)所示为某共射极放大电路,Rs=2kΩ,Rb=200kΩ,Rc=1kΩ,RL=1kΩ电源电压为
① 请估算放大电路的静态工作点;
② 计算动态参数 Au 、Aus 、ri及ro。