污水处理生物除磷工艺.
生物脱氮除磷原理及工艺
生物脱氮除磷原理及工艺 1 引言氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害;然而, 我国现有的城市污水处理厂主要集中于有机物的去除,污废水一级处理只是除去水中的沙砾及悬浮固体;在好氧生物处理中,生活污水经生物降解,大部分的可溶性含碳有机物被去除;同时产生N NH -3、N NO --3和-34PO 和-24SO ,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除;二级生物处理则是去除水中的可溶性有机物,能有效地降低污水中的5BOD 和SS , 但对N 、P 等营养物只能去除10%~ 20% , 其结果远不能达到二级排放标准;因此研究开发经济、高效的, 适于现有污水处理厂改造的脱氮除磷工艺显得尤为重要;2 生物脱氮除磷机理生物脱氮机理污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝态氮,即,将3NH 转化为N NO --2和N NO --3;在缺氧条件下通过反硝化作用将硝氮转化为氮气,即,将N NO --2经反亚硝化和N NO --3经反硝化还原为氮气,溢出水面释放到大气,参与自然界氮的循环;水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的1;错误!硝化——短程硝化:O H HNO O NH 22235.1+→+硝化——全程硝化亚硝化+硝化:O H HNO O NH 22235.1+−−−→−+亚硝酸菌错误!反硝化——反硝化脱氮:O H H CO N OH CH CH HNO 2222333][222+++→+ 反硝化——厌氧氨氧化脱氮:O H N HNO NH 22232+→+反硝化——厌氧氨反硫化脱氮:O H S N SO H NH 2242342++→+废水中氮的去除还包括靠微生物的同化作用将氮转化为细胞原生质成分;主要过程如下:氨化作用是有机氮在氨化菌的作用下转化为氨氮;硝化作用是在硝化菌的作用下进一步转化为硝酸盐氮;其中亚硝酸菌和硝酸菌为好氧自养菌,以无机碳化合物为碳源,从+4NH 或-2NO 的氧化反应中获取能量;其中硝化的最佳温度在纯培养中为25-35 ℃,在土壤中为30-40 ℃,最佳pH 值偏碱性;反硝化作用是反硝化菌大多数是异养型兼性厌氧菌,DO< mg/L 在缺氧的条件下,以硝酸盐氮为电子受体,以有机物为电子供体进行厌氧呼吸,将硝酸盐氮还原为2N 或-2NO ,同时降解有机物2;生物除磷原理磷在自然界以2 种状态存在:可溶态或颗粒态;所谓的除磷就是把水中溶解性磷转化为颗粒性磷,达到磷水分离;废水在生物处理中,在厌氧条件下,聚磷菌的生长受到抑制,为了自身的生长便释放出其细胞中的聚磷酸盐,同时产生利用废水中简单的溶解性有机基质所需的能量,称该过程为磷的释放;进入好氧环境后,活力得到充分恢复,在充分利用基质的同时,从废水中摄取大量溶解态的正磷酸盐,从而完成聚磷的过程;将这些摄取大量磷的微生物从废水中去除,即可达到除磷的目的3;聚磷菌在厌氧条件下,分解体内的多聚磷酸盐产生ATP,利用ATP 以主动运输方式吸收产酸菌提供的三类基质进入细胞内合成PHB;与此同时释放出-34PO 于环境中1; 好氧吸磷过程聚磷菌在好氧条件下,分解机体内的PHB 和外源基质,产生质子驱动力将体外的-34PO 输送到体内合成ATP 和核酸,将过剩的 -34PO 聚合成细胞贮存物:多聚磷酸盐异染颗粒; 3 生物脱氮除磷工艺从生物脱氮除磷的机理分析来看,生物脱氮除磷工艺基本上包括厌氧、缺氧、好氧3 种状态,这3个不同的工作状态可以在空间上进行分离,也可以在时间上进行分离;近年来,随着对生物脱氮除磷的机理研究不断深入,以及各种新材料、新技术、新设备的不断运用,衍生出了许多新的生物脱氮除磷工艺,其中典型的几种处理工艺如下;SBR 工艺SBR 工艺是一种新近发展起来的新型处理废水的工艺,即为序批式好氧生物处理工艺,其去除有机物的机理在于充氧时与普通活性污泥法相同,不同点是其在运行时,进水、反应、沉淀、排水及空载5个工序,依次在一个反应池中周期性运行,所以该法不需要专门设置二沉池和污泥回流系统,系统自动运行及污泥培养、驯化均比较容易;该法处理焦化废水有着独有的优势:一是不要空间分割,时序上就能创造出缺氧和好氧的环境,即具有A /O 的功能,十分有利于氨氮和COD 的去除;二是该法的沉淀是一种静止的沉淀,对污泥沉淀性能不好的废水,固液分离效果非常明显;三是该法可以省去二沉池,其占地面积相对要小一些;自动控制系统的发展和完善,为SBR 工艺的应用提供的物质基础;但因为SBR 是间歇运行的,为了解决连续进水问题,至少需要设置两套SBR 设施,进行切换运行;SBR 工艺流程图见图14;CAST 工艺CAST 实际上是一种循环SBR 活性污泥法,应器中活性污泥不断重复曝气和非曝气过程,生物反应和泥水分离在同一池内完成,与SBR 同样使用滗水器;污水首先进入选择器,污水中溶解性的有机物通过生物作用得到去除,回流污泥中硝酸盐也此时得到反硝化;然后进入厌氧区,此时为微生物释磷提供条件;第三区为主曝气区,主要进行BOD 降解,同时硝化反硝化;CAST 选择器设置在池首,防止了污泥膨胀; 3.3 MSBR 工艺连续流序批式活性污泥法工艺ModifiedSequencing Batch Reactor,简称MSBR;首先,污水进入厌氧池,回流活性污泥中的聚磷菌在此充分释磷,然后混合液进入缺氧池反硝化;反硝化后的污水进入好氧池,有机物在好氧条件下被降解,活性污泥充分吸磷后再进入起沉淀作用的SBR,澄清后上清液排放;此时另一边的SBR 在回流量的条件下进行反硝化、硝化或静置预沉;回流污泥首先进入浓缩池浓缩,上清液直接进入好氧池,而浓缩污泥进入缺氧池;这样,一方面可以进行反硝化,另一方面可先消耗掉回流浓缩污泥中的溶解氧和硝酸盐,为随后进行的厌氧释磷提供更为有利的条件;CAST 综合了以往除磷脱氮工艺的优点,保证了各污染物质降解的最大速率环境,去除有机污染物效率更高,脱氮除磷效果更好A/2工艺OA/2工艺传统OA/2工艺或称AAO工艺,在一个处理系统中同时具有厌氧区、缺氧区、好氧区,能够同时作到脱氮、O除磷和有机物的降解,其工艺流程见图2;污水进入厌氧反应区,同时进入的还有从二沉池回流的活性污泥,聚磷菌在厌氧条件下释磷,同时转化易降解COD、VFA为PHB,部分含氮有机物进行氨化;污水经过第一个厌氧反应器以后进入缺氧反应器,本反应器的首要功能是进行脱氮;硝态氮通过混合液内循环由好氧反应器传输过来,通常内回流量为2~4倍原污水流量,部分有机物在反硝化菌的作用下利用硝酸盐作为电子受体而得到降解去除;混合液从缺氧反应区进入好氧反应区,混合液中的COD浓度已基本接近排放标准,在好氧反应区除进一不降解有机物外,主要进行氨氮的硝化和磷的吸收,混合液中硝态氮回流至缺氧反应区,污泥中过量吸收的磷通过剩余污泥排除;该工艺流程简洁,污泥在厌氧、缺氧、好氧环境中交替运行,丝状菌不能大量繁殖,污泥沉降性能好5;它将厌氧段、缺氧段放在工艺的第一级, 充分发挥了厌氧菌群承受高浓度、高有机负荷能力的优势, 处理效果较好, 产生的污泥较一般的生物法少;可用于处理工业废水比重较大城市污水, 另外, 由于它是在普通活性污泥法的基础上发展起来的, 因而也较容易用于生物法处理的老污水厂的改造;A/2工艺改良O改良O A /2工艺是中国市政工程华北设计研究院提出的,工艺综合了A/O 工艺和改良UCT 工艺的优点,即在厌氧池之前增设厌氧/缺氧池;首先回流污泥和10%的污水进入厌氧/缺氧池进行反硝化以去除回流污泥中的硝酸盐;90%的污水进入厌氧区与回流污泥混合,在兼性厌氧发酵菌的作用下将部分易生物降解的大分子有机物转化为VFA ;聚磷菌释磷,同时吸收VFA 以PHB 的形式贮存于胞内;在缺氧区,反硝化菌利用污水中的有机物和经混合液回流而带来的硝酸盐进行反硝化,同时去碳脱氮;在好氧区,有机物浓度相当低,有利于自养硝化菌生长繁殖,进行硝化反应,同时聚磷菌过量摄磷;通过沉淀、排除剩余污泥达到除磷的目的;该工艺降低回流污泥中硝态氮对后续厌氧池的不利影响,有利于厌氧池的聚磷菌释磷,改善了泥水分离性能6;3.5 UCT 改良工艺改良的UCT 工艺University of Cape Town 脱氮除磷工艺由厌氧池、缺氧1 池、缺氧2 池、好氧池、沉淀池系统组成,有2 个缺氧池;缺氧1 池只接受沉淀池的回流污泥,同时缺氧1 池有混合液回流至厌氧池,以补充厌氧池中污泥的流失;回流污泥携带的硝态氮在缺氧1 池中经反硝化被完全去除;在缺氧2池中接受来自好氧池的混合液回流,同时进行反硝化,缺氧1 池出水中的N NO --3 带进厌氧池使之保持较为严格的厌氧环境,从而提高系统的除磷效率7;立体循环一体化氧化沟氧化沟是一种而有效的污水处理技术,具有稳定的处理效果,是污水生物处理技术之一;特别是用于污水脱氮,氧化沟比其它生物脱氮工艺费用低、TN 去除效率高;然而,与活性污泥法相比,氧化沟占地面积较大,在土地紧张的城市或地区,氧化沟的应用受到限制8;针对常规氧化沟存在的问题,成功地研究出立体循环一体化氧化沟;其特点是:① 氧化沟采用立体循环,在循环过程中完成降解有机物和脱氮过程;与现有氧化沟相比,占地面积可减少约50%;② 沉淀区与氧化沟合建,沉淀的污泥可自动回流到氧化沟内,可节省投资和能耗;③ 结构紧凑,运行操作简便;新型立体循环一体化氧化沟既保留氧化沟设备和运行操作简单等优点,又可减少占地面积; 4 结语污水生物脱氮除磷是当今水处理的热点与难点;新的脱氮除磷理论的提出,为生物脱氮除磷工艺指引了方向;如:SND 同时硝化反硝化工艺、SHARON 工艺、氧限制自氧硝化—反硝化工艺、厌氧氨氧化工艺以及短程硝化—厌氧氨氧化组合工艺等;但是,生物脱氮除磷工艺的发展已不仅仅要求对N,P 去除率,而且要求处理效果稳定,可靠的运行工艺;今后对此技术的研究应集中在以下方面:第一、加深除磷机理的研究;反硝化聚磷菌的出现解决了硝化菌与聚磷菌争夺碳源,污泥龄不同等主要矛盾;为新型同步脱氮除磷工艺提供了理论依据;但是对于反硝化聚磷菌的了解还不够全面,尤其是其除磷机理还待于进一步研究;应突破传统理论,从微生物的角度来调控工艺;第二、随着脱氮除磷工艺的进一步发展,许多研究者在进行小试时,都驯化出颗粒污泥,而颗粒污泥的出现改善了污泥膨胀这一难题;同时发现颗粒污泥对N,P 的去除要远远优于絮状污泥;今后在对颗粒污泥的研究上应更加深入,研究了解颗粒污泥外部的胞外聚合物是否对N,P 有吸附作用,并进一步研究颗粒污泥的形成机理,调整现有反应器的运行参数,从而加速颗粒污泥的形成,提高脱氮除磷效率;。
污水处理中的脱氮除磷工艺
污水处理中的脱氮除磷工艺摘要:在陈述城市污水生物脱氮除磷机理的基础下,简单分析生物脱氮除磷的处理工艺。
关键词:脱氮除磷;机理;工艺1 前言城市污水中的氮、磷主要来自生活污水和部分工业废水。
氮、磷的主要危害:一是使受纳水体富营养化;二是影响水源水质, 增加给水处理成本;三是对人和生物产生毒害。
上述危害严重制约了城市水环境正常功能的发挥, 并使城市缺水状况加剧,而且随着人民生活水体的提高和环境的恶化,对水质的要求也越来越高。
为了达到较好的脱氮除磷效果,环境工作者对一些传统工艺进行了改进或设计出新工艺,本文简单介绍一些脱氮除磷工艺。
2 生物脱氮原理【1】一般来说, 生物脱氮过程可分为三步: 第一步是氨化作用, 即水中的有机氮在氨化细菌的作用下转化成氨氮。
在普通活性污泥法中, 氨化作用进行得很快, 无需采取特殊的措施。
第二步是硝化作用, 即在供氧充足的条件下, 水中的氨氮首先在亚硝酸菌的作用下被氧化成亚硝酸盐, 然后再在硝酸菌的作用下进一步氧化成硝酸盐。
为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。
第三步是反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。
这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。
反应方程式如下:( 1) 硝化反应:硝化反应总反应式为:( 2) 反硝化反应:另外, 由荷兰Delft 大学Kluyver 生物技术实验室试验确认了一种新途径, 称为厌氧氨( 氮) 氧化。
即在厌氧条件下,以亚硝酸盐作为电子受体,由自养菌直接将氨转化为氮, 因而不必额外投加有机底物。
反应式为:NH4+NO2→N2+2H2O3 生物除磷原理【1】所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。
而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。
生物脱氮除磷工艺
生物脱氮除磷工艺生物脱氮除磷工艺是一种通过微生物代谢作用来减少废水中氮和磷的浓度的工艺。
该工艺逐渐被广泛应用于城市污水处理、农业生产、工业废水处理等领域。
生物脱氮除磷工艺涉及多个过程,包括生物脱氮池、一/二级沉淀池、生物滤池、化学除磷装置等。
其中生物脱氮池和生物滤池是主要的过程单元。
生物脱氮池是一个特殊的好氧反应器,主要是使用异养菌为营养基础,利用硝化反应将氨氮和有机氮转化为硝态氮,然后通过反硝化反应将硝态氮还原为氮气排出。
为了使池内的好氧环境被保持,池内需要提供足够的氧气。
生物滤池是一个非常重要的污水处理单位,它是通过微生物群落代谢作用,利用吸附作用来吸附废水中的氮和磷元素。
微生物生长在滤料表面,铺设在水平或者竖直的格栅上,滤料可以是沙砾、玄武岩等物质。
滤料的特殊结构、表面特性和自备的微生物群落成为生物滤池内的去除污染物的主要手段。
废水在流经滤料层时,氮和磷元素在滤料表面被吸附,吸附到细胞表面的氮被异养菌氧化为氮气,磷元素则随着污泥浓度增加,在池内逐步沉积。
生物脱氮除磷工艺的优点在于原理简单,适用范围广泛,处理效率高,成本较低,不需要大量的化学物质,并且不会产生二次污染。
然而,这种工艺也存在一些缺陷。
例如,处理后的产物含有大量的氮和磷,商业利用它们困难,造成浪费;污水中如果有过多的脂肪和油脂,可能会对生物脱氮除磷工艺产生影响,导致工艺失效。
总之,生物脱氮除磷工艺是一种受到广泛关注的废水处理方案。
未来,随着社会对环境保护意识的不断提高,生物脱氮除磷工艺势必会在更多的领域得到应用,成为减少污染物排放的重要手段。
《2024年污水生物脱氮除磷工艺优化技术综述》范文
《污水生物脱氮除磷工艺优化技术综述》篇一一、引言随着工业化的快速发展和城市化进程的加速,污水处理问题日益严峻。
在污水处理中,脱氮除磷是两个重要的处理目标。
传统的物理、化学处理方法虽然能够达到一定的处理效果,但往往能耗高、成本大,且易产生二次污染。
因此,对污水生物脱氮除磷工艺的优化技术进行研究,不仅对环境保护具有重要意义,也对可持续发展具有长远影响。
本文旨在综述当前污水生物脱氮除磷工艺的优化技术及其应用现状。
二、污水生物脱氮技术1. 传统生物脱氮工艺传统生物脱氮工艺主要包括硝化与反硝化两个过程。
其中,硝化过程由自养型硝化细菌完成,反硝化过程则由异养型反硝化细菌完成。
这一过程虽然简单,但在实际运行中往往受到多种因素的影响,如温度、pH值、营养物质等。
2. 优化技术针对传统生物脱氮工艺的不足,研究者们提出了多种优化技术。
其中包括:改良菌种、引入新型反应器、优化运行参数等。
改良菌种主要是通过选育高效、耐污的菌种来提高脱氮效率;新型反应器的引入则能够更好地实现硝化与反硝化的分离与结合,提高整体脱氮效果;而优化运行参数则包括调整pH值、温度等,以适应不同环境条件下的脱氮需求。
三、污水生物除磷技术1. 传统生物除磷工艺传统生物除磷工艺主要依靠聚磷菌在好氧、厌氧条件下的生长特性来实现除磷。
这一过程虽然有效,但易受到污泥产量、营养物质等因素的影响。
2. 优化技术针对传统生物除磷工艺的不足,研究者们提出了多种优化技术。
其中包括:强化生物除磷、化学辅助生物除磷等。
强化生物除磷主要是通过优化反应条件、改良菌种等方式来提高除磷效率;而化学辅助生物除磷则是通过添加化学药剂来辅助生物除磷过程,进一步提高除磷效果。
四、污水生物脱氮除磷组合工艺及优化在实际应用中,往往需要将脱氮与除磷两种工艺结合起来,以实现更好的处理效果。
为此,研究者们提出了多种组合工艺及优化策略。
这些策略包括:分点投药、同步硝化反硝化除磷、新型反应器等。
分点投药可以在不同阶段针对性地添加药剂,以提高处理效果;同步硝化反硝化除磷则是在同一反应器中实现脱氮与除磷的双重目标;而新型反应器的引入则可以更好地实现各工艺阶段的分离与结合,提高整体处理效果。
污水处理生物除磷化学除磷工艺介绍
磷在废水中存在的形式是什么?磷是一种活泼元素,在自然界中不以游离状态存在,而是以含磷有机物、无机磷化合物及还原态PH3这三种状态存在。
污水中含磷化合物可分为有机磷与无机磷两类。
无机磷几乎都以各种磷酸盐形式存在,包括正磷酸盐、偏磷酸盐、磷酸氢盐、磷酸二氢盐,以及聚合磷酸盐如焦磷酸盐、三磷酸盐等。
有机磷大多是有机磷农药,如乐果、甲基对硫磷、乙基对硫磷、马拉硫磷等构成,他们大多呈胶体和颗粒状,不溶于水,易溶于有机溶剂。
可溶性有机磷只占30%左右,多以葡萄糖-6-磷酸、2-磷酸-甘油酸及磷肌酸等形式存在。
溶解磷占总磷的1/3 左右,PO4ˉ-P磷中大分子磷占40%。
磷是怎样转化的?影响因素有哪些?水体中的可溶性磷很容易与Ca2+、Fe3+ 、Al3+ 等离子生成难溶性沉淀物,例如AIPO4、FePO4等,沉积于水体底部成为底泥。
聚积于底泥中的磷的存在形式和数量,一方面决定于污染物输入和通过地表与地下径流的排出情况;另一方面决定于水中的磷与底泥中的磷之间的交换情况。
沉积物中的磷通过颗粒态磷的悬浮和水流的湍流扩散再度被稀释到上层水体中,或者当沉积物中的可溶性磷大大超过水体中磷的浓度时,则可能重新释放到水体中。
在水中,磷离子以HPO42ˉ还是以H2PO4ˉ形式存在取决于pH值,当pH 值在2~7时,水中磷酸盐离子多数以H2PO4ˉ形式存在,而pH值在7~12时,则水中的磷酸盐离子多数以HPO42ˉ形式存在。
所有含磷化合物都是首先转化为正磷酸盐(PO43ˉ) 后,再转化为其他形式。
此时测定PO的含量,测定结果即是总磷的含量。
磷的来源是什么?污水中的磷部分来源于化肥和农业废弃物。
同时,生活中含磷洗涤剂的大量使用也使生活污水中磷的含量显著增加。
此外,化工、造纸、橡胶、染料和纺织印染、农药、焦化、石油化工、发酵、医药与医疗及食品等行业排放的废水常含有有机磷化合物。
磷的危害是什么?(1)磷对人体的危害高磷洗衣粉对皮肤有直接刺激作用,严重的会导致接触性皮肤炎、婴儿尿布疹等疾病。
污水生物脱氮除磷原理及工艺
一般用Al2(SO4)3,聚氯化铝(PAC)和铝酸钠(NaAlO2) 2)铁盐除磷:FePO4 、 Fe(OH)3
一般用FeCl2、FeSO4 或 FeCl3 、Fe2(SO4)3
3)石灰混凝除磷:
2 5Ca 2 4OH 3HPO4 Ca5 (OH )(PO4 ) 3 3H 2O
二、生物除磷过程的影响因素
①溶解氧: l厌氧池内:绝对的厌氧,即使是NO3-等也不允许存在; l好氧池内:充足的溶解氧。 ②污泥龄: l剩余污泥对脱磷效果有很大影响,泥龄短的系统产生的剩余
污泥多,可以取得较好的除磷效果;
l 有报道称:污泥龄为 30d ,除磷率为 40%;污泥龄为 17d,
除磷率为50%;而污泥龄为5d时,除磷率高达87%。
一、巴颠甫(Bardenpho)同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要 功能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。 工艺复杂,反应器单元多,运行繁琐,成本高
二、A—A—O(A2/O)同步脱氮除磷工艺
工艺特点: l工艺流程比较简单;总的水力停留时间短 l厌氧、缺氧、好氧交替运行,不利于丝状菌生长,污泥膨胀 较少发生; l无需投药,两个A段只需轻缓搅拌, 只有O段供氧, 运行费用低。
3
2
2 反硝化反应的影响因素
• 碳源:
①废水中有机物,若BOD5/TKN>3~5时,即可; ②外加碳源,多为甲醇; ③内源呼吸碳源—细菌体内的原生物质及其贮存 的有机物。 • 适宜pH:6.5~7.5; • 溶解氧应控制在0.5mg/l以下;
• 适宜温度:20~40C
生物脱氮的基本原理
二、Phostrip除磷工艺——生物除磷和化学除磷相结合
磷的去除有化学除磷生物除磷两种工艺
磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0.5mg/l 出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。
化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。
实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。
FeCl3+K3PO4→FePO4↓+3KCl 式1污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。
在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。
如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。
另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。
最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。
根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。
许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。
出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。
这些药剂是以溶液和悬浮液状态使用的。
二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。
现代污水处理生物脱氮除磷工艺分析
统工艺中的碳源问题以及不同菌种之间的竞争问题。 其培养
驯化状 况 .会 直接影 响到 污水 中氮磷 的 同时高 效稳 定去 除
(9 5 , 吉林省 东辽县人 , 业于吉林建筑工程学院给水排 水理 方面的设计和研究。
. .
11 同 步 硝 化 反 硝 化 .. 2
传统脱氮理论 认为 :硝 化反应 只能 由 自养 细菌完 成 : 而 反 硝化只能在 缺氧和低 溶解氧条 件下进行 。但 是 , 异养硝化 细菌 以及好 氧反硝化 细菌 的发现 则打破 了这 一观点[。硝化 2 ]
和反硝化 可以实现 同步进行 。 同步硝化反硝 化技术能够节 省
现代泻 处理望翱脱氮踩磷
刘 跃
鳕桁
( 北京 土人城 市规 划设计有 限公 司 北京 10 8 ) 0 0 0
摘要 概述生物 脱氮除磷机 理 , 包括 生物脱 氮、 生物除磷机理 以及 同步脱 氮除磷机理 、 反硝 化脱 氮除磷机 理 。分析 不 同生
反 硝 化 脱 氮 除 磷
物脱 氮除磷 机理的 处理工 艺, 阐述 了脱氮 除磷 工艺的发展 趋势 。 并
工艺 。
l 机 理 分 析
11 生 物 脱 氮机 理 .
生物除磷原 理 即:聚磷 菌在有氧 条件下 过量吸 收磷 . 在 厌 氧条件下 释放 磷 。厌氧状 态下 。 聚磷菌将 体 内的有 机磷 转 化 成无机磷 释放 , 同时合成 聚一 一 B 羟基 丁酸( HB 颗粒 ; P ) 而好 氧 状态 时 , 聚磷 菌则将 积贮 的 P B降 解 。 H 释放 出能量 。当环 境 中存在 溶解状 态的磷 时 .聚磷 菌可利用 降解 P HB释放 出 的能量主动 吸收磷酸盐 , 以聚磷的形式 贮存于 细胞 内 随 并
《2024年污水生物脱氮除磷工艺的现状与发展》范文
《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着城市化进程的加速和工业的迅猛发展,大量生活污水和工业废水被排放到水环境中,造成了严重的环境问题。
为了有效减少污水对环境的危害,人们研发了多种污水处理技术。
其中,污水生物脱氮除磷工艺因具有较好的处理效果和较低的运行成本,得到了广泛的应用。
本文将就污水生物脱氮除磷工艺的现状及其发展进行详细探讨。
二、污水生物脱氮除磷工艺的现状1. 工艺概述污水生物脱氮除磷工艺是一种基于微生物作用,利用活性污泥法等生物处理技术,将污水中的氮、磷等营养元素去除的工艺。
该工艺主要利用微生物的代谢作用,将污水中的氮、磷转化为无害物质,从而达到净化水质的目的。
2. 国内外应用现状目前,国内外广泛应用的污水生物脱氮除磷工艺主要包括A/O法、A2/O法、氧化沟法等。
这些工艺在我国污水处理领域得到了广泛应用,特别是在城市污水处理厂和工业废水处理中。
此外,一些新型的生物脱氮除磷技术,如MBR(膜生物反应器)技术、超声波强化生物脱氮除磷技术等也在逐步推广应用。
三、工艺运行机制与原理污水生物脱氮除磷工艺主要依靠活性污泥中的微生物完成。
在反应过程中,微生物通过吸附、吸收、代谢等作用,将污水中的氮、磷等营养元素转化为无害物质。
具体来说,脱氮过程主要通过氨化、硝化和反硝化等步骤实现;除磷过程则主要通过聚磷菌的过量摄磷和释磷实现。
四、工艺发展及挑战1. 技术发展随着科技的不断进步,污水生物脱氮除磷工艺也在不断发展和完善。
新型的生物反应器、高效的微生物菌剂、智能化的控制系统等技术手段的应用,使得污水处理效率得到了显著提高。
同时,一些新型的污水处理理念和技术,如低碳、低能耗、资源化等也得到了广泛关注。
2. 面临的挑战尽管污水生物脱氮除磷工艺取得了显著的成果,但仍面临一些挑战。
如:如何进一步提高处理效率、降低运行成本;如何解决污泥处理与处置问题;如何应对复杂多变的水质等。
此外,一些新兴污染物(如微塑料、新型有机污染物等)也对传统污水处理技术提出了新的挑战。
污水处理中的脱氮除磷工艺
污水处理中的脱氮除磷工艺
通常污水处理设备的外壳都是金属材质(碳钢、不锈钢)或者玻璃钢材质制作。
不同的污水处理设备对污染水的敏感度处理工艺和处理后的排放标准都不相同。
污水中95%以上的氨氮(HN3-N)以NH4的形式存在。
通过鼓风曝气,亚硝酸菌首先将氨氮转化为亚硝酸盐:
(亚硝酸菌)NH4+1.5O2NO2-+2H+H2O。
然后将亚硝酸盐转化为硝酸盐:硝酸菌No2总体反应为:NH4+2O2NO3+2H+H2O。
污水处理设备
以上反应在好氧部分进行。
在厌氧部分,硝酸盐和亚硝酸盐通过兼氧微生物或厌氧微生物(如碱生产菌、假单胞菌、无色杆菌等)进行反硝化和脱氮。
反消化菌利用NO3中的氧(又称化合态氧或硝化氧)继续分解代谢有机污染物,去除BOD5,同时将NO3中的氮转化为氮N2这个过程可以用以下方式表示:
反消化菌NO3-+有机物N2+N2O+OH。
除磷原理:
厌氧段优势的非丝状储磷菌分解储存的聚磷酸盐,提供能量,吸收水中大量的BOD5,释放正磷酸盐,降低厌氧段的BOD5,提高磷含量。
公厕污水进入好氧段后,好氧微生物利用氧化分解获得的能量,吸收原水中释放的大量正磷和磷,完成磷的过渡积累,达到去除BOD5和除磷的目的。
污水处理脱氮除磷工艺原理。
BCFS—生物除磷新工艺
BCFS一生物除磷新工艺1BCFS工艺BCFS(Biologisch—Chemische—Fosfaat—Stikstof Verwijdering)工艺是由荷兰DELFT 科技大学的Mark 教授在Pasveersloot和UCT工艺及原理的基础上开发的,它充分利用DPB (反硝化除磷菌)的缺氧反硝化除磷作用以实现磷的完全去除和氮的最佳去除,对于城市污水在处理过程中无需添加化学药剂。
最近,荷兰BDG咨询公司在此基础上开发了BCFS的新型反应器。
该反应器由5个同轴圆环组成,依次构成功能相对专一的5个独立反应器。
这些同轴圆环使水流具有活塞流与完全混合流的优点,采用预制混凝土建造这种一体化构筑物减少了工程投资,同时使污水厂的布置简洁,节约了工程投资及建设用地。
1.1工艺流程BCFS工艺将每一种属不同功能的细菌用空间分隔开来,并通过不同的循环系统来控制其生长环境。
BCFS工艺流程如图1所示。
由图1可见,BCFS工艺由5个功能相对专一的独立反应器(厌氧池、选择池、缺氧池、缺氧/好氧池、好氧池)及3路循环系统构成,各循环的作用如表1所示。
1.2特点BCFS工艺的主要特点可归纳如下:①对氮、磷的去除率高,可使出水中总氮v5mg/L,正磷酸盐含量几乎为零。
②SVI值低(80—120山14)且稳定(夏季为80mL/g,冬季为100山14,最大值为120山1/的,从而可有效地减少曝气池及二沉池的容积。
③控制简单,通过氧化还原电位与溶解氧可有效地实现过程稳定,尤其利于对负荷的控制。
④与常规污水厂相比,其污泥产量减少了 10%,从而进一步减少了污泥的处理费用。
⑤利用DPB实现生物除磷(测定结果表明,约50%的磷是由DPB去除的),使碳源£。
及能被有效地利用,从而使该工艺在COD/(N+P)值相对低的情况下仍能保持良好的运行状态,同时使除磷所需的化学药剂量大大减少。
⑥使用生物除磷器获得富含磷的污泥,使磷的循环利用成为可能。
污水处理中的化学除磷的工艺和方法
污水处理中的化学除磷的工艺和方法磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0。
5mg/l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。
化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1.实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。
FeCl3+K3PO4→FePO4↓+3KCl 式1污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。
在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。
如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。
另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。
最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。
根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰).许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。
出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。
这些药剂是以溶液和悬浮液状态使用的。
二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。
污水处理中的生物除磷技术
通过调整温度、pH值、溶解氧等运行参数,为微 生物提供适宜的生长条件,提高生物除磷效率。
投加外源物质
通过投加某些营养物质或化学药剂,促进微生物 的代谢活动,提高除磷效果。
新型生物除磷工艺的研究和开发
高效除磷菌种的筛选和培育
通过基因工程技术筛选和培育具有高效除磷能力的菌种,提高生 物除磷的效率。
厌氧-好氧联合工艺
01
在厌氧阶段,聚磷菌释放磷元素并产生PHB,同时 产生乙酸等有机物。
02
在好氧阶段,聚磷菌过量吸收磷元素,同时利用 PHB作为能源进行生长繁殖。
03
通过反复的厌氧-好氧循环,聚磷菌不断将磷元素从 污水中去除。
生物除磷的工艺流程
污水首先进入厌氧池,与回流 污泥混合,进行释磷反应和 PHB的合成。
随后进入好氧池,在好氧条件 下进行吸磷反应和细胞合成。
高级氧化技术与生物除磷技术的联合应用
通过高级氧化技术将难降解有机物转化为易降解有机物,为微生物提供更多的营养源,提 高生物除磷效率。
生物除磷技术与生态湿地系统的联合应用
将生物除磷技术与生态湿地系统相结合,利用湿地植物、微生物和动物的协同作用,提高 污水处理效果和生态效益。
05
生物除磷技术的未来展望
原理
通过微生物的摄取作用,将污水中的 磷元素转化为细胞内的磷酸盐储存物 质,从而实现磷的去除。
生物除磷技术的分类
好氧除磷
在好氧条件下,利用聚磷菌的摄取作用将磷元素释放到细胞内,同 时通过细胞内储存物质氧化代谢产生能量,用于细胞生长繁殖。
厌氧除磷
在厌氧条件下,利用厌氧聚磷菌将磷元素释放到细胞内,同时将细 胞内的储存物质进行厌氧发酵,产生能量用于细胞生长繁殖。
经过沉淀池进行泥水分离,上 清液达标排放,剩余污泥进行 回流或进一步处理。
污水除磷原理
污水除磷原理
污水除磷是一种常见的污水处理工艺,其原理是通过添加化学物质或利用生物活性来去除污水中的磷含量。
一种常用的化学方法是使用化学沉淀剂,如氯化铁、硫酸铝等。
这些化学物质可以与污水中的磷元素形成难溶性的沉淀物,从而使磷的浓度降低。
沉淀后的磷可以通过沉积池或沉淀池进行分离,并进行后续的处理或处置。
另一种常见的方法是生物吸附或生物吸除磷。
这种方法利用某些细菌(如磷酸盐累积细菌)吸附或吸收污水中的磷元素。
在厌氧条件下,这些细菌可以将污水中的磷元素转化为无机磷酸盐,然后以生物物质的形式沉淀下来。
这种方法相比化学方法更为环保,并且可以有效地去除磷。
此外,还有一种较新的技术是利用藻类来去除污水中的磷。
某些藻类(如蓝藻)可以吸收污水中的营养物质,包括磷元素。
通过培养适当的藻类菌种,可以将污水中的磷含量降低到较低的水平。
这种方法对于磷的去除效果较好,同时还具有环境友好和可持续发展的特点。
总之,污水除磷的原理可以通过化学沉淀、生物吸附和藻类吸收等方式来实现。
根据不同的情况和需求,可以选择合适的方法来进行污水处理,以达到高效、环保的效果。
《2024年污水生物脱氮除磷工艺的现状与发展》范文
《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着工业化和城市化的快速发展,污水处理问题日益突出。
其中,氮、磷等营养物质的排放对水环境造成了严重污染。
污水生物脱氮除磷工艺作为一种高效、经济的污水处理技术,得到了广泛的应用和关注。
本文将介绍污水生物脱氮除磷工艺的现状,并探讨其未来的发展趋势。
二、污水生物脱氮除磷工艺的现状1. 工艺原理污水生物脱氮除磷工艺主要利用微生物的作用,通过一系列的生化反应,将污水中的氮、磷等营养物质转化为无害物质,从而达到净化水质的目的。
该工艺主要包括硝化、反硝化、厌氧释磷和好氧吸磷等过程。
2. 常见工艺目前,常见的污水生物脱氮除磷工艺包括A/O(厌氧/好氧)工艺、A2/O(厌氧-缺氧-好氧)工艺、MBBR(移动床生物反应器)工艺等。
这些工艺在不同领域得到了广泛应用,取得了显著的成效。
3. 现状分析(1)优点:污水生物脱氮除磷工艺具有处理效率高、运行成本低、污泥产量少等优点,能够有效地去除污水中的氮、磷等营养物质。
(2)挑战:然而,该工艺在应用过程中也面临一些挑战,如硝化菌和反硝化菌的生长条件差异大、运行管理复杂等。
此外,某些工业废水中的特殊成分可能对微生物产生抑制作用,影响处理效果。
三、污水生物脱氮除磷工艺的发展趋势1. 技术创新随着科技的不断进步,新的污水处理技术不断涌现。
未来,污水生物脱氮除磷工艺将更加注重技术创新,通过优化工艺参数、改进设备结构、提高微生物活性等方式,提高处理效率,降低运行成本。
2. 组合工艺为了进一步提高处理效果,未来将更加注重将不同的污水处理工艺进行组合。
例如,将物理、化学和生物处理方法相结合,形成组合工艺,以适应不同类型污水的处理需求。
3. 智能化管理随着信息技术的发展,污水处理行业的智能化管理将成为未来发展的重要方向。
通过引入物联网、大数据、人工智能等技术手段,实现对污水处理过程的实时监控、远程控制和智能调度,提高运行管理的效率和准确性。
4. 资源化利用为了实现污水的资源化利用,未来将更加注重对污水处理过程中产生的污泥进行资源化利用。
生物除磷的原理和工艺
生物除磷的原理和工艺城市污水所含的磷主要来源于人类活动的排泄物及废弃物、工矿企业、合成洗涤剂和家用清洗剂等,所存在的含磷物质基本上都是不同形式的磷酸盐。
那么它的原理是什么呢?工艺又有哪些呢?一起来了解一下!1、生物除磷的基本原理在废水生物除磷过程中,活性污泥在好氧、厌氧交替条件下时,在活性污泥中可产生所谓的“聚磷菌”,聚磷菌在好氧条件下可超出其生理需要而从废水中过量摄取磷,形成多聚磷酸盐作为贮藏物质。
在生物除磷污水处理厂中,都能观察到聚磷菌对磷的转化过程,即厌氧释放磷酸盐——好氧吸收磷,也就是说,厌氧释放磷是好氧吸收磷和最终除磷的前提条件。
2、生物除磷的影响因素⑴有机物负荷及其性质⑵温度温度对除磷效果的影响不如对生物脱氮过程的影响那么明显,在一定温度范围内,温度变化不是十分大时,生物除磷都能成功运行。
试验表明,生物除磷的温度宜大于10℃,因为聚磷菌在低温时生长速度会减慢。
⑶溶解氧由于磷是在厌氧条件下被释放、好氧条件下被吸收而被去除,因此,溶解氧对磷的去除速率和去除量影响很大。
溶解氧的影响体现在厌氧区和好氧区两个方面。
⑷厌氧区的硝态氮在生物除磷工艺中,硝酸盐的去除是除磷的先决条件。
进入生物除磷系统厌氧区的硝态氮会降低除磷能力。
⑸泥龄由于生物脱磷系统主要是通过排除剩余污泥去除磷的,因此,处理系统中泥龄的长短对污泥摄磷作用及剩余污泥的排放量有直接的影响,从而决定系统的脱磷效果,以除磷为目的的污水处理系统的污泥龄一般控制在3、5~7d。
⑹pH值生物除磷系统合适的pH值范围与常规生物处理相同,为中性和弱碱性。
较高的pH值会导致磷酸钙的沉积,堵塞管道,影响污水厂的正常运行。
3、生物除磷的典型工艺典型工艺为A/O除磷工艺,由活性污泥反应池和二沉池构成。
活性污泥反应池分为厌氧区和好氧区,污水和污泥顺次经厌氧和好氧交替循环流动。
回流污泥进入厌氧池,微生物在厌氧条件下吸收去除一部分有机物,并释放出大量的磷,然后进入好氧池并在好氧条件下摄取比在厌氧条件下所释放的更多的磷,同时废水中有机物得到好氧降解,部分富磷污泥以剩余污泥的'形式排出处理系统,实现磷的去除。
污水处理生物除磷工艺
污水处理生物除磷工艺(一)缺氧好氧活性污泥法(a/o工艺)当除磷为主要工艺时,可采用无内循环的厌氧/好氧工艺,基本工艺流程如下图所示。
厌氧/好氧工艺流程1.设计参数a/o工艺生物除磷设计参数见下表a/O工艺中生物除磷的设计参数2.工艺计算缺氧-好氧活性污泥法生物除磷的工艺计算包括厌氧池(区)容积和好氧池(区)容积。
具体计算公式如下表所示。
a/o工艺生物除磷容积基计算公式(二)磷肥除磷工艺phostrip工艺是由levin在1965年首先提出的,该工艺是在回流污泥的分流管线上增设一个脱磷池和化学沉淀池而构成的,其工艺流程见下图。
该工艺将在常规好氧活性污泥工艺中增加厌氧释磷池和化学沉淀池。
工艺流程如下:部分回流污泥(约10%~20%进水量)通过侧流进入厌氧池,在厌氧池中停留时间为8~12h,使磷从固相中释放并转移到水中;脱磷污泥流入好氧池,继续吸收磷。
厌氧池的上清液含有高浓度的磷(高达100mg/L以上)。
上清液排入石灰混凝沉淀池进行化学处理,生成磷酸钙沉淀。
含磷污泥可用作农业肥料,混凝沉淀池出水进入初沉池处理。
Phostrip工艺不仅可以去除高磷剩余污泥中的磷,还可以通过化学沉淀去除磷。
该工艺具有生物除磷和化学除磷的双重功能,因此Phostrip工艺具有高效脱氮除磷的功能。
phostrip工艺比较适合于对现有工艺的改造,只需在污泥回流管线上增设少量小规模的处理单元即可,且在改造过程中不必中断处理系统的正常运行。
总之,phostrip工艺受外界条件影响小,工艺操作灵活,脱氮除磷效果好且稳定。
但该工艺存在流程复杂、运行管理麻烦、处理成本较高等缺点。
四、厌氧/缺氧/好氧活性污泥法脱氮除磷工艺需要同时脱氮除磷时,可采用厌氧/缺氧/好氧(a2/o)工艺,基本工艺流程如下图。
A2/O工艺脱氮除磷工艺(一)一般规定进入系统的污水应满足以下要求:(1)脱氮时,污水中的五日生化需氧量(bod5)与总凯氏氮(tkn)之比宜大于4;(2)除磷时,污水中的bod5与总磷(tp)之比宜大于17;(3)同时脱氮、除磷时,宜同时满足前两款的要求;(4)好氧池(区)剩余碱度应大于70mg/L(按碳酸钙CaC03计算);(5)当工业废水进水cod超过1000mg/l时,前处理可采用升流式厌氧污泥床反应器(uasb)等厌氧处理措施;在处理水质与城市污水类似的城市污水或工业废水时,主要设计参数可按下表规定取值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
污水处理生物除磷工艺(一)缺氧好氧活性污泥法(A/O工艺)当以除磷为主时,可采用无内循环的厌氧/好氧工艺,基本工艺流程如下图所示。
厌氧/好氧工艺流程1. 设计参数A/O工艺生物除磷设计参数见下表A/O工艺生物除磷设计参数2. 工艺计算缺氧好氧活性污泥法生物除磷的工艺计算包括厌氧池(区)容积、好氧池(区)容积。
具体计算公式见下表。
A/O工艺生物除磷容积基计算公式(二)弗斯特利普( Phostrip) 除磷工艺Phostrip工艺是由Levin在1965年首先提出的,该工艺是在回流污泥的分流管线上增设一个脱磷池和化学沉淀池而构成的,其工艺流程见下图。
该工艺将在常规的好氧活性污泥法工艺中增设厌氧释磷池和化学沉淀池。
工艺流程为:部分回流污泥(约为进水量的10%~20% )通过旁流进入厌氧池,在厌氧池中的停留时间为8~ 12h, 使磷由固相中释放,并转移到水中;脱磷后的污泥问流到好氧池中继续吸磷,厌氧池上清液含有高浓度磷(可高达100mg/L 以上),将此上清液排入石灰混凝沉淀池进行化学处理生成磷酸钙沉淀,该含磷污泥可作为农业肥料,而混凝沉淀池出水应流入初沉池再进行处理。
Phostrip工艺不仅通过高磷剩余污泥除磷,而且还通过化学沉淀除磷。
该工艺具有生物除磷和化学除磷双重作用,所以Phostrip工艺具有高效脱氮除磷功能。
Phostrip工艺比较适合于对现有工艺的改造,只需在污泥回流管线上增设少量小规模的处理单元即可,且在改造过程中不必中断处理系统的正常运行。
总之,Phostrip工艺受外界条件影响小,工艺操作灵活,脱氮除磷效果好且稳定。
但该工艺存在流程复杂、运行管理麻烦、处理成本较高等缺点。
四、厌氧/缺氧/好氧活性污泥法脱氮除磷工艺需要同时脱氮除磷时,可采用厌氧/缺氧/好氧(A2/O)工艺,基本工艺流程如下图。
A2/O工艺脱氮除磷流程(一)一般规定进入系统的污水应符合下列要求:(1) 脱氮时,污水中的五日生化需氧量(BOD5 )与总凯氏氮(TKN)之比宜大于4 ;(2) 除磷时,污水中的BOD5与总磷( TP)之比宜大于17 ;(3) 同时脱氮、除磷时,宜同时满足前两款的要求;(4) 好氧池(区)剩余碱度宜大于70mg/L( 以碳酸钙CaC03计);(5) 当工业废水进水COD超过1000mg/L 时,前处理可采用升流式厌氧污泥床反应器( UASB) 等厌氧处理措施;(6) 当工业废水进水的BOD5/COD小于0. 3时,前处理需采用水解酸化等预处理措施。
更多污水处理技术文章参考易净水网(二)工艺设计1. 设计参数处理城镇污水或水质类似城镇污水的工业废水时主要设计参数,可按下表的规定取值。
工业废水的水质与城镇污水水质差距较大时,设计参数应通过试验或参照类似工程确定。
厌氧/缺氧/好氧(A/A/O)工艺主要设计参数(水温20℃)2. 曝气设备1)供气量选用曝气设备时,应根据不同设备的特征、位于水面下的深度、水温、污水的氧总转移特性,当地的海拔高度以及预期生物反应池中溶解氧浓度等因素,将计算的污水需氧量按公式(6)换算为标准状态(0. 1Mpa、20℃)下污水需氧最( SOR )。
更多污水处理技术文章参考易净水网Os = K。
•O2 (7)式中Os—标准状态下污水需氧量,kgO2/d ;O2一污水需氧量,kgO2/d ;K。
—需氧量修正系数,采用鼓风曝气装置时按下式计算。
а一混合液中KLa值与清水中KLa值之比,一般取0. 8~0. 85;β一混合液的饱和溶解氧值与清水中的饱和溶解氧值之比,取0. 9~0.97 ;Cs一标准条件下清水中饱和溶解氧浓度,取9. 17mg/L;Csw—温度、实际计算压力时,清水饱和溶解氧,mg/L;C。
一混合液剩余溶解氧,一般取2mg/L;T—混合液温度,一般取5~30℃;Csw—T温度、实际计算压力时,曝气池中氧的平均饱和浓度;mg/L;Ot一曝气池逸出气体中含氧,%;Pb—曝气装置所处绝对压力,MPa;EA一曝气设备氧的利用率,%。
采用鼓风曝气装置时,可按下式将标准状态下污水需氧量,换算为标准状态下的供气量。
Gs=Os/0.28EA式中Gs—标准状态下的供气量,m³/h ;Os一标准状态下污水需氧量,kgO2/h ;0. 28—标准状态下的每m³空气中含氧量,kgO2/m³;EA—曝气设备氧的利用率,%2) 曝气方式的选择(1)曝气方式应结合供氧效率、能耗和维护检修等因素进行综合比选后确定;(2)大、中型污水处理厂宜选择鼓风式中、微孔曝气系统等水下曝气系统;(3)鼓风式中微孔曝气系统宜选择共用鼓风机的供气方式。
3) 鼓风机与鼓风机房(1)应根据风蜇和风压选择鼓风机。
大、中型污水处理厂宜选择单级高速离心鼓风机或多级低速离心鼓风机,小型污水处理厂和工业废水处理站可选择罗茨鼓风机;更多污水处理技术文章参考易净水网(2)鼓风机房设置的常用鼓风机的供气总量应符合设计供气量(Gs)的要求,并保持10%的富余供气能力。
4)曝气器的数星与布置(1)曝气器的数量应根据曝气池的供气蜇和所选曝气器的参数要求确定;(2)曝气器一般布置均匀,不留有死角和空缺区域。
5) 推流器(1)缺氧池(区)和厌氧池(区)应采用推流器,推流器功率宜采用5~8W/m³, 应选用安装角度可调的推流器;(2)推流器器布置的间距、位置应根据试验确定或由供货厂方提供;(3)推流器应对称布置,搅拌器的轴向有效推动距离应大于反应池的池长;(4)每个反应池内应设置2台以上的推流器,反应池若分割成若干廊道,每条廊道至少应设置1台推流器。
3. 加药系统1)外加碳源当进入反应池废水的BOD5/TKN小于4时,应在缺氧池中投加碳源。
投加碳源量可按一下公式确定。
BOD5=2.86×△N×QBOD5一投加的碳源相当于BOD5量,mg/L;△N—硝态氮的脱除量,mg/L;Q一设计污水流量,m³/d。
2)化学除磷(1)当出水总磷不能达到排放标准要求时,宜采用化学除磷作为辅助手段;(2)最佳药剂种类、投加量和投加点宜通过试验或参照类似工程确定。
化学药剂储存罐容量应为理论加药量的4~7d投加量,加药系统应不少于2套,应采用计量泵投加。
(3)化学除磷时应考虑产生的污泥量,污泥增量可参照下表设计。
絮凝剂投加位置污泥增量铝盐或铁盐作絮凝剂前置投加40%~75%铝盐或铁盐作絮凝剂后置投加20%~35%铝盐或铁盐作絮凝剂同步投加15%~50%化学除磷污泥增量(4)接触铝盐和铁盐等腐蚀性物质的设备和管道应采取防腐措施。
4. 硝化液回流系统(1)污泥回流设施应采用不易产生复氧的离心泵、混流泵、潜水泵等设;(2)回流设施宜分别按生物处理工艺系统中的最大污泥回流比和最大混合液回流比计算确定;(3)回流设备不应少于2 台,并设备用,回流设备宜有洞节流量的措施。
5. 剩余污泥量1) 按下式计算污泥泥龄。
式中△X—剩余污泥量,kgSS/d;V一生物反应池的容积,m³;X一生物反应池内混合液悬浮固体平均浓度,gMLSS/L;θe一污泥泥龄,d。
2 ) 按污泥产率系数、衰减系数及不可生物降解和惰性悬浮物计算剩余污泥量。
式中:△X一剩余污泥量,kgSS/d ;V一生物反应池的容积,m³;Y 一污泥产率系数,20℃时取0. 4~0. 8kgMLVSS/kgBOD5 ;Q一设计平均日污水量,m³/ d ;S。
一生物反应池进水五日生化需氧量,kg/m³;Se—生物反应池出水BOD5 , kg/m³;Kd—衰减系数,d-1Xv一生物反应池内混合液挥发性悬浮固体平均浓度,gMLVSS/L;f—SS的污泥转换率,宜根据试验资料确定,无试验资料时可取0.5~0.7gMLVSS/gSS;SS。
一生物反应池进水悬浮物浓度,kg/m³;SSe一生物反应池出水悬浮物浓度,kg/m³;3)剩余污泥量设置计量装置可采用湿污泥计量和干污泥计量两种方式。
(三)A2/O工艺的影响因素1. 污水中可生物降解有机物的影响厌氧段:如果污水中可生物降解有机物很少,则聚磷菌无法正常进行磷的释放,导致好氧段也不能大量地吸收污水中的磷,从而影响除磷的效果。
试验证明:进水中溶解性磷与溶解性BOD5之比应小于0. 06才会有较好的除磷效果。
缺氧段:C/N 较高时,NOx -N反销化速率大,则HRT=0.5~1.0h; C/N较低时,Nox-N反硝化速率小,则HRT=2.0~3. 0h。
对于低BOD5浓度的城市污水,C/N 比较低,脱氮率不高。
一般来说,污水中COD/ TKN >8 , N的总去除率可达80%。
2.污泥龄(θe)的影响污泥龄θe受硝化和除磷两个方面的影响:一方面硝化反应要求污泥龄θe比普通活性污泥工艺时间长;另一方面由于除磷的要求,使污泥龄不能过长,A2/O工艺中的θe一般为15~20d。
3. DO的影响好氧段DO过高,DO会随污泥回流和混合液回流带至厌氧段与缺氧段,造成厌氧段的厌氧不完全而影响聚磷菌释放磷。
而缺氧段DO升高则影响NOx -N的反硝化。
相反,好氧段DO下降,则氨氮的硝化速度下降,即氧化速度下降。
因此在好氧段DO以2mg/L左右为好,缺氧段DO≤0.5mg/L, 厌氧段DO <0.5mg/L。
4. 有机物负荷率( Ns ) 的影响好氧段:Ns≤0.18kgBOD5/(kgMLVSS•d), 否则异氧菌会大大超过硝化菌,使硝化反应受到抑制;厌氧段:Ns >0.1kgBOD5/( kggMLVSS•d), 否则除磷效果会下降。
5. TKN/MLSS负荷率的影响过高浓度的氨氮对硝化菌会产生抑制作用,影响其硝化,一般控制TKN/MLSS <0.05kgTKN/ ( kgMLSS•d)。
更多污水处理技术文章参考易净水网 6.污泥回流比(R)与混合液回流比(RN)的影响R为25%~100%为宜。
R太高,污泥将DO和NOx -N带入厌氧段太多,影响其厌氧状态,使释磷不利;如果R太低,可能维持不了反应池内污泥正常浓度2500~3500mg/L, 影响生化反应速率。
缺氧段的脱氮效果与混合液回流比RN有较大的影响,一般采用RN≥200%。