新高考数学模拟试题及答案
2023届新高考高三模拟数学试题
2023年普通高等学校招生全国统一考试模拟演练数学(考试时间120分钟,满分150分)注意事项:1.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合A {}01242<--∈x x Z x ,{}R x x e y y B ∈=,sin ,求B A (){}2,1,0,1,2.--A {}21.<<-x x B {}2,1,0,1.-C {}12.-≤≥x x x D ,2、化简=++-3)]60sin 60)(cos 2321[( i i ()1.-A 1.B iC .iD -.3、在ABC ∆中,点D 在BC 边上,且DC BD =,点E 在AC 边上,且AC AE 54=,连接DE ,若AC n AB m DE +=,则=+n m ()51.-A 54.B 54.-C 51.D 4、日常生活中,我们定义一个食堂的菜品受欢迎程度为菜品新鲜度。
其表达式为NR σ=,其中R 的取值与在本窗口就餐人数有关,其函数关系式我们可简化为xy 75.56.81470-+=,其中y 为就餐人数(本窗口),x 为餐品新鲜度(R ),则当2000,2==σN 时,y 近似等于()(已知675.51023.46.8--⨯≈)470.A 471.B 423.C 432.D 5、素数对)2,(+p p 称为孪生素数,将素数17拆分成n 个互不相等的素数之和,其中任选2个数构成素数对,则为孪生素数的概率为()51.A 31.B 41.C 21.D 6、设)2023.0sin(,20232024ln ,2023120231===c b e a ,则()ba c A >>.cb a B >>.ca b C >>.ab c D >>.7、已知空间四边形ABCD ,BC DB AC BC AB ⊥==,,且6,4==BD BC ,面ABC 与面BCD 夹角正弦值为1,则空间四边形ABCD 外接球与内切球的表面积之比为()363301172.+A 365301172.+B 363172301.+C 365172301.+D 8、已知函数3)ln )(1()(++-+=x x a xe x f x ,对于[)+∞∈∀,0x ,4)(≥x f 恒成立,则满足题意的a 的取值集合为(){}0.A {}1,0.B {}1,0,1.-C {}1.D 二、多项选择题:本题共4小题,每小题5分,共20分。
高考数学模拟试题含答案详解
高考数学模拟试题含答案详解一、选择题1. 已知函数 $ f(x) = x^2 4x + 3 $,求 $ f(2) $ 的值。
答案:将 $ x = 2 $ 代入函数 $ f(x) $,得 $ f(2) = 2^2 4\times 2 + 3 = 1 $。
2. 已知等差数列 $\{a_n\}$ 的首项为 $a_1 = 3$,公差为 $d = 2$,求第 $n$ 项 $a_n$ 的表达式。
答案:等差数列的通项公式为 $a_n = a_1 + (n 1)d$,代入$a_1 = 3$ 和 $d = 2$,得 $a_n = 3 + (n 1) \times 2 = 2n + 1$。
3. 已知等比数列 $\{b_n\}$ 的首项为 $b_1 = 2$,公比为 $q = 3$,求第 $n$ 项 $b_n$ 的表达式。
答案:等比数列的通项公式为 $b_n = b_1 \times q^{n1}$,代入 $b_1 = 2$ 和 $q = 3$,得 $b_n = 2 \times 3^{n1}$。
4. 已知三角形的两边长分别为 $a = 5$ 和 $b = 8$,夹角为$60^\circ$,求第三边长 $c$。
答案:利用余弦定理 $c^2 = a^2 + b^2 2ab \cos C$,代入 $a = 5$,$b = 8$,$C = 60^\circ$,得 $c^2 = 5^2 + 8^2 2 \times5 \times 8 \times \cos 60^\circ = 49$,所以 $c = 7$。
5. 已知函数 $ g(x) = \frac{1}{x} $,求 $ g(x) $ 的定义域。
答案:由于 $x$ 不能为 $0$,所以 $g(x)$ 的定义域为 $x \neq 0$。
二、填空题1. 已知函数 $ h(x) = \sqrt{4 x^2} $,求 $ h(x) $ 的定义域。
答案:由于根号内的值不能为负,所以 $4 x^2 \geq 0$,解得$2 \leq x \leq 2$。
2023年高中数学高考模拟试题3(附答案)
2023年高中数学高考模拟试题(附答案)姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间90分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)评卷人得分一、单选题(每题5分,共50分)1.(本题5分)()A.B.C.D.2.(本题5分)已知集合,,则()A.B.C.D.3.(本题5分)函数的零点个数是()A.0B.1C.2D.34.(本题5分)已知数列为递减的等比数列,,且,,则公比为()A.B. C.D.25.(本题5分)在中,已知,D为BC中点,则()A.2B.C.D.6.(本题5分)函数的单调递增区间为()A.B.C.D.7.(本题5分)已知函数,则在上()A.单调递增B.单调递减C.先增后减D.先减后增8.(本题5分)如图,在长方体中,已知,,E为的中点,则异面直线BD与CE所成角的余弦值为()A.B.C.D.9.(本题5分)在中,,且,则()A.2B.3C.D.10.(本题5分)已知函数的最小正周期为,将函数的图象向左平移个单位长度,得到图象,则()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二、填空题(共25分)11.(本题5分)定义在R上的奇函数,当x≥0时,(k为常数),则______.12.(本题5分)等差数列的前n项和为,若,则当取到最大值时n__________.13.(本题5分)已知不等式组表示的平面区域不包含点,则实数的取值范围是__________.14.(本题5分)已知双曲线的左右焦点分别是,直线与双曲线交于p,且,则双曲线C的离心率为______.15.(本题5分)设A是椭圆(φ为参数)的左焦点.p是椭圆上对应于的点,那么线段AP的长是________.如图,在斜三棱柱中,底面的正三角形,,侧棱过点的直线交曲线的垂线,垂足分别为、,判,使得四边形的对角线交于一定点18.(本题15分)已知等差数列的n前项和为,,,数列满足.(1)求数列和的通项公式;(2)若数列满足,求数列的n前项和.19.(本题15分)已知在中,,,为内角A,B,C所对的边,,且.(1)求A与C;(2)若,过A作BC边的垂线,并延长至点D,若A,B,C,D四点共圆,求的CD长.20.(本题15分)已知函数.(1)当m>0时,求函数f(x)的极值点的个数;(2)当a,b,c∈(0,+∞)时,恒成立,求m的取值范围.参考答案一、单选题第1题第2题第3题第4题第4题A A C A D第6题第7题第8题第9题第10题C D C B B二、填空题第11题:-4;第12题:6;第13题:(-∞,3]第14题:√2;第15题:5。
2022普通高等学校招生全国统一考试(新高考地区)仿真模拟训练(二)数学试题 (含答案)
2022普通高等学校招生全国统一考试(新高考地区)仿真模拟训练(二)数学试题(时间:120分钟满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-2,0,1,2},B={y|y=-x-1},则A∩B=()A.{1,2} B.{-2,0}C.{-2,0,1} D.{-2}2.已知a+5i=-2+b i(a,b∈R),则复数z=a+b i5+2i=()A.1 B.-iC.i D.-2+5i3.函数f(x)=sin xln(x2+1)的大致图象是()4.已知(a+2x)7的展开式中的常数项为-1,则x2的系数为()A.560 B.-560C.280 D.-2805.已知抛物线C:y2=12x的焦点为F,经过点P(2,1)的直线l与抛物线C交于A,B两点,且点P恰为AB的中点,则|AF|+|BF|=()A.6 B.8C.9 D.106.已知等比数列{a n}的前n项和为S n,若a1=a2+2a3,S2是S1与mS3的等比中项,则m=()A.1 B.9 761则实数a的最小值为()A.1-1e B.2-1eC.1-e D.2-e8.过点M(a,0)作双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线的平行线,交双曲线的另一条渐近线于点N,O为坐标原点,若锐角三角形OMN的面积为212(a2+b2),则该双曲线的离心率为()A.3 B.3或6 2C.62D. 3二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.某家庭2019年的总支出是2018年的总支出的1.5倍,下图分别给出了该家庭2018年、2019年的各项支出占该家庭这一年总支出的比例情况,则下列结论中正确的是()①日常生活②房贷还款③旅游④教育⑤保险⑥其他①日常生活②房贷还款③旅游④教育⑤保险⑥其他A.2019年日常生活支出减少B.2019年保险支出比2018年保险支出增加了一倍以上C.2019年其他支出比2018年其他支出增加了两倍以上D.2018年和2019年,每年的日常生活支出和房贷还款支出的和均占该年总支出的一半以上10.直线2x-y+m=0与圆(x-1)2+(y-2)2=1相交的必要不充分条件是()2C.m2+m-12<0 D.3m>111.在三棱锥D-ABC中,AB=BC=CD=DA=1,且AB⊥BC,CD⊥DA,M,N分别是棱BC,CD的中点,则下列结论正确的是()A.AC⊥BDB.MN∥平面ABDC.三棱锥A-CMN的体积的最大值为2 12D.AD与BC一定不垂直12.已知函数f(x)=2x2-a|x|,则下列结论中正确的是()A.函数f(x)的图象关于原点对称B.当a=-1时,函数f(x)的值域为[4,+∞)C.若方程f(x)=14没有实数根,则a<-1D.若函数f(x)在(0,+∞)上单调递增,则a≥0题号123456789101112答案三、填空题:本题共4小题,每小题5分,共20分.13.(一题多解)已知平面单位向量i,j互相垂直,且平面向量a=-2i+j,b=m i-3j,c=4i+m j,若(2a+b)∥c,则实数m=________.14.有一匀速转动的圆盘,其中有一个固定的小目标M,甲、乙两人站在距离圆盘外的2米处,将小圆环向圆盘中心抛掷,他们抛掷的圆环能套上小目标M的概率分别为14与15,现甲、乙两人分别用小圆环向圆盘中心各抛掷一次,则小目标M被套上的概率为________.15.如图,圆锥的高为3,表面积为3π,D为PB的中点,AB是圆锥底面圆的直径,O为AB16.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,a =30,c =20,若b ·sin C =20cos ⎝ ⎛⎭⎪⎫B -π6,则sin(2C -B )=________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知D 是△ABC 的边AC 上的一点,△ABD 的面积是△BCD 的面积的3倍,∠ABD =2∠CBD =2θ.(1)若∠ABC =π2,求sin Asin C 的值; (2)若BC =2,AB =3,求AC 的长.18.(本小题满分12分)给出以下三个条件:(1)S n +1=4S n +2;(2)3S n =22n +1+λ(λ∈R );(3)3S n =a n +1-2.请从这三个条件中任选一个将下面的题目补充完整,并求解.设数列{a n }的前n 项和为S n ,a 1=2,且满足________,记b n =log 2a 1+log 2a 2+…+log 2a n ,c n =n 2+nb n b n +1,求数列{c n }的前n 项和T n .19.(本小题满分12分)如图,已知在斜平行六面体ABCD -A 1B 1C 1D 1中,AB 1⊥A 1D 1,A 1B =AB =BB 1=4,AD =2,A 1C =2 5.(1)(一题多解)求证:平面ABB 1A 1⊥平面A 1BC ; (2)求二面角A -CA 1B 的余弦值.20.(本小题满分12分)2019年12月9日,记者走进浙江缙云北山村,调研“中国淘宝村”的真实模样,作为最早追赶电商大潮的中国村庄,地处浙中南偏远山区的北山村,是电商改变乡村、改变农民命运的生动印刻.互联网的通达,让这个曾经的空心村在高峰时期生长出400多家网店,网罗住500多位村民,销售额达两亿元.一网店经销缙云土面,在一个月内,每售出1 t 缙云土面可获利800元,未售出的缙云土面,每1 t 亏损500元.根据以往的销售统计,得到一个月内五地市场对缙云土面的需求量的频率分布直方图,如图所示.该网店为下一个月购进了100 t 缙云土面,用x (单位:t ,70≤x ≤120)表示下一个月五地市场对缙云土面的需求量,y (单位:元)表示下一个月该网店经销缙云土面的利润.(1)将y 表示为x 的函数;(2)根据直方图估计利润y 不少于67 000元的概率;(3)在直方图的需求量分组中,同一组中的数据用该组区间的中点值为代表,将需求量落入该区间的频率作为需求量取该区间中点值时的概率(例如:若需求量x ∈[80,90),则取x =85,且x =85的概率等于需求量落入[80,90)的频率),求该网店下一个月利润y 的分布列和期望.21.(本小题满分12分)已知椭圆G :x 2a 2+y 2b 2=1(a >b >0),椭圆短轴的端点B 1,B 2与椭圆的左、右焦点F 1,F 2构成边长为2的菱形,MN 是经过椭圆右焦点F 2(1,0)的椭圆的一条弦,点P 是椭圆上一点,且OP ⊥MN (O 为坐标原点).(1)求椭圆G 的标准方程; (2)求|MN |·|OP |2的最小值.22.(本小题满分12分)已知函数f(x)=12x2ln x,函数f(x)的导函数为f′(x),h(x)=f′(x)-12x-mx2(m∈R).(1)求函数f(x)的单调区间;(2)若函数h(x)存在单调递增区间,求m的取值范围;(3)若函数h′(x)存在两个不同的零点x1,x2,且x1<x2,求证:e x1x22>1.2022普通高等学校招生全国统一考试(新高考地区)仿真模拟训练(二)数学试题参考答案1.解析:选B.因为y =-x -1≤0,所以B ={y |y ≤0}.因为A ={-2,0,1,2},所以A ∩B ={-2,0}.故选B.2.解析:选C.由a +5i =-2+b i(a ,b ∈R )及复数相等的定义可得⎩⎨⎧a =-2,b = 5.所以z =a +b i5+2i =-2+5i 5+2i =(-2+5i )(5-2i )(5+2i )(5-2i )=9i9=i ,故选C. 3.解析:选 B.由题意知函数f (x )的定义域为{x |x ≠0}.因为f (-x )=sin (-x )ln[(-x )2+1]=-sin xln (x 2+1)=-f (x ),所以f (x )是奇函数,其图象关于原点对称,所以C 不正确;又f (k π)=0(k ∈Z ,k ≠0),所以A 不正确;当x ∈(0,π)时,f (x )>0,故D 不正确.故选B.4.解析:选B.由题意可知(a +2x )7的展开式的通项公式为T r +1=C r 7⎝⎛⎭⎪⎫2x 12r a 7-r=C r 72r a 7-rx r 2.因为展开式中的常数项为-1,所以令r =0,得C 0720a 7=-1,所以a =-1.令r =4,得x 2的系数为C 47×24×(-1)7-4=-560.5.解析:选D.分别过点A ,B ,P 向抛物线的准线x =-3作垂线,设垂足分别为A 1,B 1,P 1.由抛物线的定义及梯形的中位线定理,得|P 1P |=12(|A 1A |+|B 1B |)=12(|AF |+|BF |)=2-(-3)=5,所以|AF |+|BF |=10,故选D.6.解析:选B.设数列{a n }的公比为q ,则由a 1=a 2+2a 3,得a 1=a 1q +2a 1q 2,易知a 1≠0,所以2q 2+q -1=0,解得q =-1或q =12.当q =-1时,S 2=0,这与S 2是S 1与mS 3的等比中项矛盾;当q =12时,S 1=a 1,S 2=32a 1,mS 3=74a 1m ,由S 2是S 1与mS 3的等比中项,得S 22=S 1·mS 3,即94a 21=m ·74a 21,所以m =97.故选B.7.解析:选C.f (x )=x ln x ,则f ′(x )=ln x +1.对任意的x ∈[1,+∞),f ′(x )≤a +e x 恒成立,即a ≥ln x +1-e x 对任意的x ∈[1,+∞)恒成立.设g (x )=ln x +1-e x (x ≥1),则g ′(x )=1x -e x <0,因而g (x )在[1,+∞)上单调递减,g (x )≤ln 1+1-e =1-e ,所以实数a 的最小值为1-e.8.解析:选D.不妨设点N 在第一象限,如图,由题意知∠1=∠2=∠3,所以△OMN 是以∠ONM 为顶角的等腰三角形.因为△OMN 是锐角三角形,所以∠1>45°,即有b a >1,进而e 2=1+b 2a 2>2.由y =b a x 与y =-b a (x -a ),得y N =b 2,所以12×a ×b 2=212(a 2+b 2),即9a 2(c 2-a 2)=2c 4,所以2e 4-9e 2+9=0,得e 2=32(舍)或e 2=3,所以e = 3.9.解析:选BD.设2018年的总支出为x ,则2019年的总支出为1.5x ,2018年日常生活支出为0.35x ,2019年日常生活支出为0.34×1.5x =0.51x ,故2019年日常生活支出增加,A 错误;2018年保险支出为0.05x ,2019年保险支出为0.07×1.5x =0.105x ,B 正确;2018年其他支出为0.05x ,2019年其他支出为0.09×1.5x =0.135x ,(0.135x -0.05x )÷0.05x =1.7,故C 错误;由题图可知,D 正确.10.解析:选BC.若直线2x -y +m =0与圆(x -1)2+(y -2)2=1相交,则|2×1-2+m |22+(-1)2<1,解5<m < 5.A 项中,由m 2≤1,得-1≤m ≤1,因为{m |-1≤m ≤1}⊆{m |-5<m <5},所以m 2≤1不是-5<m <5的必要不充分条件;B 项中,因为{m |m ≥-3}⊇{m |-5<m <5},所以m ≥-3是-5<m <5的必要不充分条件;C 项中,由m 2+m -12<0,得-4<m <3,因为{m |-4<m <3}⊇{m |-5<m <5},所以m 2+m -12<0是-5<m <5的必要不充分条件;D 项中,由3m >1,得0<m <3,所以3m >1不是-5<m <5的必要不充分条件.11.解析:选ABD.设AC 的中点为O ,连接OB ,OD ,则AC ⊥OB ,AC ⊥OD ,又OB ∩OD =O ,所以AC ⊥平面OBD ,所以AC ⊥BD ,故A 正确;因为M ,N 分别是棱BC ,CD 的中点,所以MN ∥BD ,且MN ⊄平面ABD ,BD ⊂平面ABD ,所以MN ∥平面ABD ,故B 正确;当平面DAC 与平面ABC 垂直时,V A -CMN 最大,最大值V A -CMN =V N -ACM =13×14×24=248,故C 错误;若AD 与BC 垂直,因为AB ⊥BC ,AD ∩AB =A ,所以BC ⊥平面ABD ,所以BC ⊥BD ,又BD ⊥AC ,BC ∩AC =C ,所以BD ⊥平面ABC ,所以BD ⊥OB ,因为OB =OD ,所以显然BD 与OB 不可能垂直,故D 正确.12.解析:选BD.由题意知,函数f (x )的定义域为{x |x ≠0},且f (-x )=2(-x )2-a|-x |=f (x ),因此函数f (x )是偶函数,其图象不关于原点对称,故A 选项错误;当a =-1时,f (x )=2x 2+1|x |,而x 2+1=|x |+1|x |≥2,所以f (x )=2x 2+1|x |≥4,即函数f (x )的值域为[4,+∞),B 选项正确;由f (x )=14,得x 2-a |x |=-2,得x 2+2|x |-a =0.要使原方程没有实数根,应使方程x 2+2|x |-a =0没有实数根.令|x |=t (t >0),则方程t 2+2t -a =0应没有正实数根,于是需Δ<0或⎩⎨⎧Δ≥0,-2≤0,-a ≥0,即4+4a <0或⎩⎨⎧4+4a ≥0,-2≤0,-a ≥0,解得a <-1或-1≤a ≤0,综上,a ≤0,故C 选项错误;要使函数f (x )在(0,+∞)上单调递增,需g (x )=x 2-a |x |在(0,+∞)上单调递增,需φ(x )=x 2-a x =x -a x 在(0,+∞)上单调递增,需φ′(x )=1+ax 2≥0在(0,+∞)上恒成立,得a ≥0,故D 选项正确.13.解析:方法一:因为a =-2i +j ,b =m i -3j ,所以2a +b =(m -4)i -j .因为(2a +b )∥c ,所以(2a +b )=λc ,所以(m -4)i -j =4λi +mλj ,所以⎩⎨⎧m -4=4λ,-1=mλ,所以m =2.方法二:不妨令i =(1,0),j =(0,1),则a =(-2,1),b =(m ,-3),c =(4,m ),所以2a +b =(m -4,-1).因为(2a +b )∥c ,所以m (m -4)=-4,所以m =2.答案:214.解析:小目标M 被套上包括甲抛掷的套上了、乙抛掷的没有套上;乙抛掷的套上了、甲抛掷的没有套上;甲、乙抛掷的都套上了.所以小目标M 被套上的概率P =14×⎝ ⎛⎭⎪⎫1-15+⎝ ⎛⎭⎪⎫1-14×15+14×15=25.答案:25 15.解析:如图,连接OD ,OC ,BC ,OP ,设圆锥的底面半径为r ,由题意得,πr 2+12×2πr ×3+r 2=3π,得r =1,则OC =1,PA =2.因为点O ,D 分别为AB ,PB 的中点,所以OD ∥PA ,且OD =12PA =1,所以∠ODC 为异面直线PA 与CD 所成的角(或其补角).过点D 作DH ⊥AB ,垂足为H ,连接HC ,易得DH ⊥HC ,DH =12PO =32.由弧AC 与弧BC 的长度之比为2∶1,得△OCB 为等边三角ODC =1+⎝ ⎛⎭⎪⎫622-12×1×62=64,所以异面直线PA 与CD 所成角的正弦值为1-⎝ ⎛⎭⎪⎫642=104.答案:10416.解析:在△ABC 中,由正弦定理c sin C =b sin B ,得b sin C =c sin B .又b ·sin C =20cos ⎝ ⎛⎭⎪⎫B -π6,所以c sin B =c cos ⎝ ⎛⎭⎪⎫B -π6,所以sin B =cos ⎝⎛⎭⎪⎫B -π6,所以tan B = 3.又0<B <π,所以B =π3.在△ABC 中,由余弦定理得b 2=202+302-2×20×30×cos π3=700,所以b =107,由b ·sin C =20cos ⎝ ⎛⎭⎪⎫B -π6,得sin C =217.因为a >c ,所以cos C =277,所以sin(2C -B )=sin 2C cos B -cos 2C sinB =2sinC cos C cos π3-(cos 2C -sin 2C )sin π3=2×217×277×12-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2772-⎝ ⎛⎭⎪⎫2172×32=3314. 答案:331417.解:(1)因为∠ABC =π2,∠ABD =2∠CBD =2θ,所以θ=π6. 所以12AB ·BD sin π3=3×12BC ·BD sin π6, 所以BC AB =sin A sin C =33.(2)因为12AB ·BD sin 2θ=3×12BC ·BD sin θ, 即2AB cos θ=3BC ,所以cos θ=22,所以θ=π4,∠ABC =3θ=3π4,AC 2=9+2-2×3×2×⎝ ⎛⎭⎪⎫-22=17,所以AC =17.18.解:方案一:选(1),已知S n +1=4S n +2 ①, 当n ≥2时,S n =4S n -1+2 ②,①-②得,a n +1=4(S n -S n -1)=4a n ,即a n +1=4a n , 当n =1时,S 2=4S 1+2,即2+a 2=4×2+2, 所以a 2=8,满足a 2=4a 1,故{a n }是以2为首项、4为公比的等比数列,所以a n =22n -1.c n =n 2+n b n b n +1=n (n +1)n 2(n +1)2=1n (n +1)=1n -1n +1,所以T n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.方案二:选(2),已知3S n =22n +1+λ ③, 当n ≥2时,3S n -1=22n -1+λ ④, ③-④得,3a n =22n +1-22n -1=3·22n -1, 即a n =22n -1,当n =1时,a 1=2满足a n =22n -1, 下同方案一.方案三:选(3),已知3S n =a n +1-2 ⑤, 当n ≥2时,3S n -1=a n -2 ⑥,⑤-⑥得,3a n =a n +1-a n ,即a n +1=4a n ,当n =1时,3a 1=a 2-a 1,而a 1=2,得a 2=8,满足a 2=4a 1, 故{a n }是以2为首项、4为公比的等比数列, 所以a n =22n -1.下同方案一.19.解:(1)证明:方法一:由题意知BC ∥A 1D 1, 因为AB 1⊥A 1D 1,所以AB 1⊥BC .在△A 1BC 中,A 1B =4,BC =AD =2,A 1C =25, 所以A 1B 2+BC 2=A 1C 2,所以BC ⊥A 1B .又A 1B ,AB 1是平行四边形ABB 1A 1的两条对角线, 所以BC ⊥平面ABB 1A 1.因为BC ⊂平面A 1BC ,所以平面A 1BC ⊥平面ABB 1A 1. 方法二:由题意知BC ∥A 1D 1, 因为AB 1⊥A 1D 1,所以AB 1⊥BC . 在平行四边形ABB 1A 1中,BB 1=AB , 所以四边形ABB 1A 1为菱形, 所以AB 1⊥A 1B .因为A 1B ∩BC =B ,A 1B ,BC ⊂平面A 1BC ,所以AB 1⊥平面A 1BC , 因为AB 1⊂平面ABB 1A 1,所以平面ABB 1A 1⊥平面A 1BC . (2)由(1)知BC ⊥平面ABB 1A 1,因为BC ⊂平面ABCD ,所以平面ABCD ⊥平面ABB 1A 1,所以平面ABCD ⊥平面CDD 1C 1.在斜平行六面体ABCD -A 1B 1C 1D 1中,由AB =BB 1=4得四边形ABB 1A 1为菱形, 所以四边形CDD 1C 1为菱形.连接BD ,设AC ,BD 交于点E ,取DC 的中点O ,连接D 1O ,OE ,易证得D 1O ⊥平面ABCD ,故以OE ,OC ,OD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系O -xyz ,则C (0,2,0),B (2,2,0),A (2,-2,0),A 1(2,0,23),所以A 1C →=(-2,2,-23),AC →=(-2,4,0),BC →=(-2,0,0). 设平面AA 1C 的法向量为m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n ·A 1C →=0,n ·AC →=0,即⎩⎨⎧-2x 1+2y 1-23z 1=0,-2x 1+4y 1=0,令x 1=2,得y 1=1,z 1=-33,所以平面AA 1C 的一个法向量为m =⎝ ⎛⎭⎪⎫2,1,-33.设平面BA 1C 的法向量为n =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n ·A 1C →=0,n ·BC →=0,即⎩⎨⎧-2x 2+2y 2-23z 2=0,-2x 2=0,令z 2=1,得y 2=3,所以平面BA 1C 的一个法向量为n =(0,3,1). cos 〈m ,n 〉=m ·n |m ||n |=3-3322+12+⎝ ⎛⎭⎪⎫-332×02+(3)2+12=14.由图可知二面角A -CA 1B 为锐二面角,故二面角A -CA 1B 的余弦值为14. 20.解:(1)依题意知,当x ∈[70,100)时, y =800x -500(100-x )=1 300x -50 000; 当x ∈[100,120]时,y =800×100=80 000.所以y =⎩⎨⎧1 300x -50 000,70≤x <100,80 000,100≤x ≤120.(2)由1 300x -50 000≥67 000,得x ≥90,所以90≤x ≤120.由直方图知需求量x ∈[90,120]的频率为(0.030+0.025+0.015)×10=0.7, 所以利润y 不少于67 000元的概率为0.7. (3)依题意可得该网店下一个月利润y 的分布列为所以利润y 的期望E (y )×0.4=70 900. 21.解:(1)因为椭圆短轴的端点B 1,B 2与左、右焦点F 1,F 2构成边长为2的菱形,所以a =2, 又椭圆的右焦点F 2(1,0),所以c =1, 所以b 2=a 2-c 2=3,所以椭圆G 的标准方程为x 24+y 23=1.(2)①当MN ⊥x 轴时,|MN |=2b 2a =3,|OP |=a =2, 此时|MN |·|OP |2=12.②当MN 不垂直于x 轴且斜率不为0时,可设直线MN 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2),将直线MN 的方程与椭圆G 的方程联立,得⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),化简并整理得(4k 2+3)x 2-8k 2x +4k 2-12=0, 所以x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=1+k2(x 1+x 2)2-4x 1x 2=12(1+k 2)4k 2+3.因为OP ⊥MN ,所以直线OP 的方程为y =-1k x , 将直线OP 的方程与椭圆G 的方程联立, 得⎩⎪⎨⎪⎧x 24+y 23=1,y =-1k x ,得x 2P =12k 23k 2+4,y 2P=123k 2+4,所以|OP |2=x 2P +y 2P =12(1+k 2)3k 2+4,所以|MN |·|OP |2=12(1+k 2)4k 2+3×12(1+k 2)3k 2+4=144(1+k 2)2(4k 2+3)(3k 2+4)=144⎝ ⎛⎭⎪⎫11+k 2+3⎝ ⎛⎭⎪⎫4-11+k 2. 令11+k 2=t ,因为k ∈R 且k ≠0,所以0<t <1, |MN |·|OP |2=144(t +3)(4-t )=144-t 2+t +12=144-⎝ ⎛⎭⎪⎫t -122+494, 所以当t =12时,|MN |·|OP |2取得最小值,且(|MN |·|OP |2)min =57649. ③当MN 的斜率为0时,|MN |=4,此时|OP |2=b 2=3, 所以|MN |·|OP |2=12.由①②③可知,(|MN |·|OP |2)min =57649. 22.解:(1)易知函数f (x )=12x 2ln x 的定义域为(0,+∞). f ′(x )=x ln x +12x .令f ′(x )>0,得x >e -12,令f ′(x )<0,得0<x <e -12,所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫e -12,+∞,单调递减区间为⎝ ⎛⎭⎪⎫0,e -12.(2)依题意得,h (x )=x ln x -mx 2,若函数h (x )存在单调递增区间,则h ′(x )=ln x +1-2mx >0在(0,+∞)上有解,即存在x >0,使2m <ln x +1x .令φ(x )=ln x +1x ,则φ′(x )=-ln xx 2,当x >1时,φ′(x )<0,当0<x <1时,φ′(x )>0, 所以φ(x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减, 所以φ(x )max =φ(1)=1,所以2m <1,所以m <12. 故m 的取值范围为⎝ ⎛⎭⎪⎫-∞,12.(3)证明:因为函数h ′(x )存在两个不同的零点x 1,x 2,且x 1<x 2,所以h ′(x )=ln x +1-2mx =0有两个不相等的实数根x 1,x 2,且0<x 1<x 2, 所以ln x 1+1-2mx 1=0,ln x 2+1-2mx 2=0,所以ln x 1+2ln x 2=2m (x 1+2x 2)-3,ln x 1-ln x 2=2m (x 1-x 2),所以ln x 1+2ln x 2=ln x 1-ln x 2x 1-x 2(x 1+2x 2)-3.要证e x 1x 22>1,只需证ln x 1+2ln x 2>-1,即证ln x 1-ln x 2x 1-x 2(x 1+2x 2)>2(0<x 1<x 2),即证ln x 1x 2<2(x 1-x 2)x 1+2x 2,即证ln x 1x 2<2⎝ ⎛⎭⎪⎫x 1x 2-1x 1x 2+2,令t =x 1x 2,因为0<x 1<x 2,所以0<t <1,即证ln t <2(t -1)t +2在(0,1)上恒成立.令g (t )=ln t -2(t -1)t +2(t ∈(0,1)),则g ′(t )=1t -6(t +2)2=(t -1)2+3t (t +2)2>0在(0,1)上恒成立.所以g (t )=ln t -2(t -1)t +2在(0,1)上单调递增,所以g (t )<g (1)=0-0=0,所以ln t <2(t -1)t +2在(0,1)上恒成立.故e x 1x 22>1得证.。
高考数学模拟试题与解析(数列)-普通用卷
数学强化训练(数列)1. 等比数列{a n }中,a 4,a 8是关于x 的方程x 2+10x +4=0的两个实根,则a 2a 6a 10=( )A. 8B. −8C. 4D. 8或−82. 已知等差数列{a n }{b n }的前n 项和分别为S n ,T n (n ∈N ∗)若S nT n=2n−1n+1则实数a 12b 6( ) A. 154B. 158C. 237D. 33. 定义数列{a n }的“项的倒数的n 倍和数”为T n =1a 1+2a 2+⋯+na n(n ∈N ∗),已知T n =n 22(n ∈N *),则数列{a n }是 ( )A. 单调递减的B. 单调递增的C. 先增后减的D. 先减后增的4. 已知数列{a n }中,a 1=2,a n =-1an−1(n ≥2),则a 2010等于 ( )A. −12B. 12C. 2D. −25. 数列{a n }满足a n +a n +1=(-1)n •n ,则数列{a n }的前20项的和为 ( )A. −100B. 100C. −110D. 110 6. 等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A. 1+log 35B. 2+log 35C. 12D. 10 7. 设数列{a n }的前n 项和为S n ,若S n =2a n -2n +1(n ∈N +),则数列{a n }的通项公式为______. 8. 在数列{a n }中,若a 1=1,a n+1=2a n +3(n ∈N ∗),则数列的通项公式是______ . 9. 已知数列{a n }满足a n +2-2a n +1+a n =0,且a 4=π2,若函数f (x )=sin2x +2cos 2x2,记y n =f(a n ),则数列{y n }的前7项和为______.10. 已知数列{a n }的通项公式为a n =n +λn ,若{a n }为递增数列,则实数λ的取值 范围是________.11. 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则a 1的值为______.12. 已知数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公差为1的等差数列,则数列{a n }的通项公式a n =______.13. 已知数列{a n }的前n 项和为S n ,且S n =a n +n 2−1(n ∈N ∗). (Ⅰ)求数列{a n }的通项公式(Ⅱ)定义x =[x ]+<x >,其中[x ]为实数x 的整数部分,<x >为x 的小数部分, 且0≤<x ><1,记c n =<a n a n+1S n>,求数列{c n }的前n 项和T n .14.设数列{a n}满足:a1=1,a n+1=2a n+1.(1)证明:数列{a n}为等比数列,并求出数列{a n}的通项公式;(2)求数列{n•(a n+1)}的前n项和T n.15.已知n为正整数,数列{a n}满足a n>0,4(n+1)a n2-na n+12=0设数列{b n}满足b n=a n2t n}为等比数列;(2)若数列{b n}是等差数列,求实数t的值:(1)求证:数列{n√n(3)若数列{b n}是等差数列,前n项和为S n,对任意的n∈N*,均存在m∈N*,使得8a12S n-a14n2=16b m成立,求满足条件的所有整数a1的值.答案和解析1.【答案】B解:根据题意,等比数列{a n}中,有a4a8=a2a10=(a6)2,a4,a8是关于x的方程x2+10x+4=0的两个实根,则a4a8=4,a4+a8=-10,则a4<0,a8<0,则有a6=a4q2<0,即a6=-2,a2a6a10=(a6)3=-8;2.【答案】A解:由题意可设,,,(k≠0).则a12=S12-S11=288k-12k-242k+11k=45k.b6=T6-T5=36k+6k-25k-5k=12k.∴实数=.3.【答案】A解:当n=1时,,解得a1=2.当n≥2时,,所以,综上有,所以a1>a2>a3>…,即数列{a n}是单调递减的.(或用).4.【答案】A解:数列{a n}中,a1=2,a n=-(n≥2),则a2=-=-,a3=-=2,a4=-=-,a5=-=2,…,则数列{a n}为最小正周期为4的数列,则a2010=a4×502+2=a2=-,5.【答案】A解:∵数列{a n}满足,∴a2k-1+a2k=-(2k-1).则数列{a n}的前20项的和=-(1+3+……+19)=-=-100.6.【答案】D解:∵等比数列{a n}的各项均为正数,且a5a6+a4a7=18,∴a5a6=a4a7=9,∴log3a1+log3a2+…+log3a10=log3(a1×a2×…×a10)=log3(a5a6)5==10.7.【答案】a n=(n+1)•2n解:∵S n=2a n-2n+1(n∈N+),∴n=1时,a1=2a1-4,解得a1=4;n≥2时,a n=S n-S n-1=2a n-2n+1-,化为:a n-2a n=2n,∴=1,∴数列是等差数列,公差为1,首项为2.∴=2+(n-1)=n+1,∴a n=(n+1)•2n.8.【答案】a n=2n+1-3解:∵a n+1=2a n+3,两边同时加上3,得a n+1+3=2a n+6=2(a n+3)∴=2数列{a n+3}是一个等比数列,首项a1+3=4,公比为2故数列{a n+3}的通项公式是a n+3=4•2n-1=2n+1,∴a n=2n+1-3,9.【答案】7解:根据题意数列{a n}满足a n+2-2a n+1+a n=0则数列{a n}是等差数列,又由a4=,则a1+a7=a2+a6=a3+a5=2a4=π,函数f(x)=sin2x+2cos2=sin2x+cosx+1,f(a1)+f(a7)=sin2a1+cosa1+1+sin2a7+cosa7+1=sin2a1+cosa1+1+sin2(π-a1)+cos(π-a1)+1=2,同理可得:f(a2)+f(a6)=f(a3)+f(a5)=2,f(a4)=sinπ+cos+1=1,则数列{y n}的前7项和f(a1)+f(a2)+f(a3)+f(a4)+f(a5)+f(a6)+f(a7)=7;10.【答案】(-∞,2)解:∵数列{a n}的通项公式为a n=n+(n=1,2,3,…),数列{a n}是递增数列,∴a n+1-a n=(n+1)-n+=>0恒成立所以=∴当n=1时,有最小值2,即实数λ的取值范围是(-∞,2).11.【答案】-1解:由题意可得,a n=a1+(n-1)(-1)=a1+1-n,S n==2,再根据若S1,S2,S4成等比数列,可得=S1•S4,即=a1•(4a1-6),解得a1=-12.【答案】1n(n+1)解:因为a1,a2-a1,a3-a2,…,a n-a n-1,…是首项为1、2公差为1的等差数列,所以当n≥2时a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=n+,又因为a1=1满足上式,所以,13.解:(Ⅰ)∵S n=a n+n2−1(n∈N∗),当n ≥2时,a n =S n −S n−1=a n +n 2−1−[a n−1+(n −1)2−1], 整理得:a n -1=2n -1,∴a n =2n +1; (Ⅱ)由(Ⅰ)知,S n =n 2+2n , ∴a n a n+1S n=(2n+1)(2n+3)n 2+2n =4n 2+8n+3n 2+2n=4+3n 2+2n .∴当n =1时,c 1=<4+1>=0,当n ≥2时,有0<3n 2+2n <1.∴c n =3n 2+2n =32(1n −1n+2)(n ≥2). ∴T n =c 1+c 2+…+c n=0+32(12−14+13−15+14−16+⋯+1n−1−1n+1+1n −1n+2) =32(12+13−1n+1−1n+2)=5n 2+3n−84n 2+12n+8.验证n =1成立,∴T n =5n 2+3n−84n 2+12n+8. 14.(1)证明:a 1=1,a n +1=2a n +1.可得:a n +1+1=2(a n +1).∴数列{a n +1}是等比数列,公比为2,首项为2.∴a n +1=2n ,可得a n =2n -1.(2)解:n •(a n +1)=n •2n .数列{n •(a n +1)}的前n 项和T n =2+2×22+3×23+…+n •2n , ∴2T n =22+2×23+…+(n -1)•2n +n •2n +1, ∴-T n =2+22+…+2n -n •2n +1=2(2n −1)2−1-n •2n +1=(1-n )•2n +1-2,故T n =(n -1)•2n +1+2.15.(1)证明:数列{a n }满足a n >0,4(n +1)a n 2-na n +12=0,∴2√n +1a n =√n a n +1,即n+1√n+1=2n √n ,∴数列{n√n }是以a 1为首项,以2为公比的等比数列.(2)解:由(1)可得:n √n =a 1×2n−1,∴a n 2=n a 12•4n -1.∵b n =a n 2tn,∴b 1=a 12t,b 2=a 22t2,b 3=a 32t3, ∵数列{b n }是等差数列,∴2×a 22t2=a 12t+a 32t3,∴2×2a 12×4t=a 12+3a 12×42t2, 化为:16t =t 2+48,解得t =12或4.(3)解:数列{b n }是等差数列,由(2)可得:t =12或4. ①t =12时,b n =na 12⋅4n−112n=na 124×3n,S n =n(a 1212+na 124×3n)2,∵对任意的n ∈N *,均存在m ∈N *,使得8a 12S n -a 14n 2=16b m 成立,∴8a 12×n(a 1212+na 124×3n )2-a 14n 2=16×ma 124×3m,∴a 12(n3+n 23n −n 2)=4m 3m ,n =1时,化为:-13a 12=4m3m >0,无解,舍去. ②t =4时,b n =na 12⋅4n−14n=na 124,S n =n(a 124+na 124)2,对任意的n ∈N *,均存在m ∈N *,使得8a 12S n -a 14n 2=16b m 成立,∴8a 12×n(a 124+na 124)2-a 14n 2=16×ma 124,∴n a 12=4m ,∴a 1=2√m n.∵a 1为正整数,∴√m n=12k ,k ∈N *.∴满足条件的所有整数a 1的值为{a 1|a 1=2√mn,n ∈N *,m ∈N *,且√m n=12k ,k ∈N *}.。
2023年高考数学第三次模拟考试及答案解析(新高考Ⅰ卷A卷)
2023年高考数学第三次模拟考试及答案解析(新高考Ⅰ卷A 卷)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.若集合3{|0}3x A x x +=≤-,{}3,1,0,3,4B =--,则A B ⋂的元素个数为()A .2B .3C .4D .5【答案】B 【解析】303x x +≤-,()()330x x ∴+-≤,且3x ≠,33x ∴-≤<,[)33A =-,,又{}3,1,0,3,4B =--,则{}3,1,0A B ⋂=--,A B ⋂的元素个数为3个.故选:B.2.设i(,)z a b a b =+∈R 在复平面内对应的点为M ,则“点M 在第四象限”是“0ab <”的()A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件【答案】A【解析】由题知,i(,)z a b a b =+∈R 在复平面内对应的点为(,)M a b ,因为点M 在第四象限,即0,0a b ><,ab <,即00a b >⎧⎨<⎩,或00a b <⎧⎨>⎩,所以“点M 在第四象限”是“0ab <”的充分不必要条件,故选:A3.已知{}n a 是各项不相等的等差数列,若14a =,且248,,a a a 成等比数列,则数列{}n a 的前6项和6S =()A .84B .144C .288D .110【答案】A【解析】设等差数列{}n a 的公差为d ,由248,,a a a 成等比数列,则2428a a a =,即()()()211137a d a d a d +=++,整理可得240d d -=,由数列{}n a 各项不相等,解得4d =,即4n a n =,()()44212n n n S n n+==+,故()6261684S =⨯⨯+=.故选:A.4.已知向量a ,b 满足2a = ,(1,1)= b ,a b += a 在向量b 上的投影向量的坐标为()A .22⎛ ⎝⎭,B .()11,C .()1,1--D .22⎛- ⎝⎭,【答案】B【解析】由(1,1)=b ,得b ==a b + 即42210a b ++= ,则2a b =,所以向量a 在向量b上的投影向量的坐标为()(1,1)a b b b b b==.故选:B .5.函数()1e πcos 1e 2x x f x x ⎛⎫-⎛⎫=- ⎪ ⎪+⎝⎭⎝⎭的部分图象大致形状是()A .B .C .D .【答案】C【解析】因为()1e π1e cos sin 1e 21e x x x x f x x x ⎛⎫⎛⎫--⎛⎫=-= ⎪ ⎪⎪++⎝⎭⎝⎭⎝⎭的定义域为R .定义域关于原点对称,()()()111e 1e e sin sin sin 11e 1e 1exx x x x xf x x x x f x --⎛⎫- ⎪⎛⎫⎛⎫---=-=-== ⎪ ⎪ ⎪++⎝⎭⎝⎭ ⎪+⎝⎭,所以()f x 是偶函数,图象关于y 轴对称,故排除选项B 、D ,当0x >时,令()0f x =可得0x =或()πx k k =∈Z ,所以0x >时,两个相邻的零点为0x =和πx =,当0πx <<时,1e 01e xx-<+,sin 0x >,()1e sin 01e x x f x x ⎛⎫-=< ⎪+⎝⎭,故排除选项A ,故选:C.6.立德学校于三月份开展学雷锋主题活动,某班级5名女生和2名男生,分成两个小组去两地参加志愿者活动,每小组均要求既要有女生又要有男生,则不同的分配方案有()种.A .20B .4C .60D .80【答案】C【解析】先安排2名男生,保证每个小组都有男生,共有2种分配方案;再安排5名女生,若将每个女生随机安排,共有5232=种分配方案,若女生都在同一小组,共有2种分配方案,故保证每个小组都有女生,共有52230-=种分配方案;所以共有23060⨯=种分配方案.故选:C.7.刍(chú)甍(méng )是中国古代算数中的一种几何体,其结构特征是:底面为长方形,上棱和底面平行,且长度不等于底面平行的棱长的五面体,是一个对称的楔形体.已知一个刍甍底边长为6,底边宽为4,上棱长为2,高为2,则它的表面积是()A .B .24+C .24+D .24++【答案】B【解析】设几何体为EFABCD-,如下图所示:矩形ABCD 的面积为2446=⨯,ABE 、CDF ,两个全等的等腰梯形ADFE 、BCFE,设点E 、F 在底面ABCD 内的射影点分别为G 、H ,过点G 在平面ABCD 内作GM BC ⊥,连接EM ,过点H 在平面ABCD 内作HNCD⊥,连接F N ,FH ⊥ 平面ABCD ,H N、CD ⊂平面ABCD ,FHCD ∴⊥,FH HN⊥,HN CD ⊥ ,FH HN H = ,CD \^平面FHN ,FN ⊂平面FHN ,FN CD ∴⊥,易知2FH =,2HN =,则在CDF 中,斜高为FN===所以,12ABE CDF S S CD FN ==⋅=△△同理可知,梯形BCFE 的高为EM ===,所以,()12ADFEBCFE S S EF BC EM ==+⋅=梯形梯形因此,该几何体的表面积为(24224+⨯=+故选:B.8.如图,椭圆()2222:10x y C a b a b+=>>的左焦点为1F ,右顶点为A ,点Q 在y 轴上,点P 在椭圆上,且满足PQ y ⊥轴,四边形1F APQ 是等腰梯形,直线1FP 与y 轴交于点N ⎛⎫⎪ ⎪⎝⎭,则椭圆的离心率为().A .14B C D .12【答案】D【解析】由题意,做PMx ⊥轴于点M,因为四边形1F APQ 是等腰梯形,则1FO AM c ==,OM a c=-则点P 的横坐标为P x a c =-,代入椭圆方程()2222:10x y C a b a b+=>>,可得py =,即PM=因为4N ⎛⎫ ⎪ ⎪⎝⎭,则4ON =,由11F NO F PM,则114b FO ONc b F M PM a =⇒=,化简可得,434332160a ac c -+=,同时除4a 可得,43163230e e -+=即()()3221812630e e e e ----=,对于()3281263f e e e e =---当1e =时,()1130f =-<,当2e =时,()210f =>,在()1,2e ∈时,方程()()3221812630e e e e ----=有根,且()0,1e ∈,故应舍,所以12e =.故选:D二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图为国家统计局于2022年12月27日发布的有关数据,则()A .营业收入增速的中位数为9.1%B .营业收入增速极差为13.6%C .利润总额增速越来越小D .利润总额增速的平均数大于6%【答案】ABD【解析】由表中数据易知营业收入增速的中位数为9.1%,故选项A 正确;营业收入增速的极差为20.3% 6.7%13.6%-=,故选项B 正确;利润总额增速2022年1-3月累计比2022年1-2月累计上升,故选项C 错误;利润总额增速的平均数(38.0%34.3%5.0%8.5%3.5%1.0%1.0%1.1%++++++-2.1% 2.3% 3.0% 3.6%)12 6.6%----÷=,故选项D 正确;故选:ABD .10.甲袋中装有4个白球,2个红球和2个黑球,乙袋中装有3个白球,3个红球和2个黑球.先从甲袋中随机取出一球放入乙袋,再从乙袋中随机取出一球.用1A ,2A ,3A 分别表示甲袋取出的球是白球、红球和黑球,用B 表示乙袋取出的球是白球,则()A .1A ,2A ,3A 两两互斥B .()213P BA =C .3A 与B 是相互独立事件D .()13P B =【答案】AB【解析】对于A ,由题意可知1A ,2A ,3A 不可能同时发生,所以1A ,2A ,3A 两两互斥,所以A 正确,对于B ,由题意可得2221131(),()844912P A P A B ===⨯=,所以()2221()1121()34P A B P B A P A ===,所以B 正确,对于C ,因为321()84P A ==,3131()4912P A B =⨯=1234413137()()()()89494918P B P A B P A B P A B =++=⨯+⨯+⨯=,所以33()()()P A B P A P B ≠,所以3A 与B 不是相互独立事件,所以C 错误,对于D ,由C 选项可知D 是错误的,故选:AB11.已知12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点,12A ⎫⎪⎪⎝⎭是C 上一点,若C的离心率为3,连结2AF 交C 于点B ,则()A .C 的方程为2213x y -=B .1290F AF ︒∠=C .12F AF的周长为2+D .1ABF【答案】ABD【解析】对A ,将点A 的坐标代入双曲线方程,并由222,c e c a b a==+得下列方程组:22222151441a b c a c a b⎧⎪-=⎪⎪⎪⎨⎪=+⎪⎪⎪⎩,解得2a b c ⎧⎪⎨⎪=⎩,∴双曲线2213xy -=,A 正确;对B ,12(2,0),(2,0)F F -,112,22F A ⎫=+⎪⎪⎝⎭,212,22F A ⎛⎫=- ⎪ ⎪⎝⎭,121514044F A F A ⋅=-+= ,∴12F A F A ⊥,B正确;对C,1AF ===,2AF ==,1224F F c ==,周长4=,C 错误;对D ,令2BF m=,则1BF m =,225AB AF BF m =+,在1Rt ABF 中,22211BF AF AB=+,∴11m =,设1ABF 的周长为l ,内切圆半径为r ,11l AF AB BF =++,由三角形面积公式知:1111·22ABFS AF AB lr == ,∴1112ABF S r AF AB BF =++ ,D 正确;故选:ABD .12.已知函数()f x 及其导函数()f x '的定义域均为R ,若23f x ⎛⎫+ ⎪⎝⎭为奇函数,123f x ⎛⎫- ⎪⎝⎭的图象关于y 轴对称,则下列结论中一定正确的是()A .203f ⎛⎫= ⎪⎝⎭B .()203f f ⎛⎫=- ⎪⎝⎭C .()203f f ⎛⎫=- ⎪⎝'⎭'D .103f ⎛⎫-= ⎪⎝⎭'【答案】ABD 【解析】因为2()3+f x 为奇函数,定义域为R ,所以22((33f x f x -+=-+,故4()(3f x f x -=-+,等式两边同时取导数,得4()()3f x f x ''--=-+,即4()()3f x f x ''-=+①,因为1(23f x -的图象关于y 轴对称,则11(2(233f x f x -=--,故2()()3f x f x =--,等式两边同时取导数,得2()()3f x f x ''=---②.由4()(3f x f x -=-+,令23x =-,得22()(33f f =-,解得2()03f =,由2()()3f x f x =--,令0x =,得2(0)(3f f =-,由②,令0x =,得2(0)(3f f ''=--,令13x =-,得11(()33f f ''-=--,解得1()03f '-=,故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.13.若()()()()82801281111x a a x a x a x -=+++++++ ,则5a =_____.【答案】448-【解析】令1x t +=可得1x t =-,则()1112x t t -=--=-,所以,()82801282t a a t a t a t -=++++ ,所以,5a 为展开式中5t 的系数,()82t -的展开式通项为()()()88188C 2C 210,1,2,,8kkkk kk k k T t t k --+=⋅-=⋅⋅-= ,所以,()()55358C 215681448a =⋅⋅-=⨯⨯-=-.故答案为:448-.14y 轴交于点A ,与圆221x y +=相切于点B ,则AB =______.【解析】设直线AB 的方程为y b =+0y b -+=则点()0,A b ,由于直线AB 与圆221x y +=相切,且圆心为()0,0O ,半径为1,则12b =,解得2b =±,所以2AO =,因为1BO =,故AB ==15.某市统计高中生身体素质的状况,规定身体素质指标值不小于60就认为身体素质合格.现从全市随机抽取100名高中生的身体素质指标值(1,2,3,,100)i x i = ,经计算10017200i i x ==∑,()1002211007236i i x ==⨯+∑.若该市高中生的身体素质指标值服从正态分布()2,N μσ,则估计该市高中生身体素质的合格率为______.(用百分数作答,精确到0.1%)参考数据:若随机变量X 服从正态分布()2,N μσ,则0().6827P X μσμσ≤≤+≈-,(22)0.9545P X μσμσ-≤≤+≈,3309().973P X μσμσ-≤≤+≈.【答案】97.7%【解析】因为100个数据1x ,2x ,3x ,…,100x 的平均值1001172100i i x x ===∑,方差()()1122222210010011110010072361007236100100100i i i i s x x x x ==⎛⎫⎡⎤=-=-=⨯⨯+-⨯= ⎪⎦⎣⎝⎭∑∑,所以μ的估计值为72μ=,σ的估计值为6σ=.设该市高中生的身体素质指标值为X ,由(22)0.9545P X μσμσ-≤≤+≈,得(72127212)(6084)0.9545P X P X -≤≤+=≤≤≈,()()()()12210.9545842222P X P X P X P X μσμσμσμσ--<<+->=>+=<-=≈所以1(60)(6084)(84)0.9545(10.9545)0.9772597.7%2P X P X P X ≥=≤≤+>≈+⨯-=≈.故答案为:97.7%.16.已知函数()()2e 1,01ln 1,02x x f x x x -⎧-≤⎪=⎨+>⎪⎩.若()()0x f x a x -≤,则a 的取值范围是___________.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】当0x =时,()()00x f x a x -=≤恒成立;当0x <时,此时应有()()0f x a x f x ax -=+≥,即2e 10x ax --+≥.令()2e1xg x ax -=-+,0x <,则()22exg x a-'=-+.设()22e xh x a -=-+,则()24e 0x x -'=>恒成立,所以()h x ,即()g x '单调递增.又()00e10g =-=,则要使()0g x ≥在(),0∞-上恒成立,应有()22e 0xg x a -'=-+≤在(),0∞-上恒成立,即22e x a -≤在(),0∞-上恒成立.又0x <时,22e 2x ->,所以2a ≤;当0x >时,此时应有()()0f x a x f x ax -=-≤,即()1ln 102x ax +-≤.令()()1ln 12x ax k x +=-,则()()121a k x x =-+'.令()()121a x m x =-+,则()()21021m x x '-=<+恒成立,所以()m x ,即()k x '单调递减.又()00k =,则要使()0k x ≤在()0,∞+上恒成立,应有()()1021a x k x =-≤+'在()0,∞+上恒成立,即()121a x ≥+在()0,∞+上恒成立.因为,()121y x =+在()0,∞+上单调递减,所以()11212x <+,所以12a ≥.综上所述,a 的取值范围是1,22⎡⎤⎢⎥⎣⎦.故答案为:1,22⎡⎤⎢⎥⎣⎦四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.如图,在四边形ABCD 中,已知2π3ABC∠=,π3BDC ∠=,AB BC ==.(1)若BD =AD 的长;(2)求A B D △面积的最大值.【答案】(1)AD ;(2)【解析】(1)在B C D △中,由余弦定理,得2222cos BC BD DC BD DC BDC =+-⋅⋅∠,∴222π2cos3CD CD =+-⨯⋅,整理得2720CD --=,解得CD =CD =-.∴2222221c os 27BD BC CD DBC BD BC +-∠===⋅,而2π(0,)3DBC ∠∈,故sin 7DBC ∠=,∴2π111cos cos cos 3214ABD DBC DBC DBC ⎛⎫∠=-∠=-∠+∠=⎪⎝⎭,故在ABD △中,2222cos AD AB BD AB BD ABD=+-⋅⋅∠221125714=+-⨯=,∴AD ;(2)设,2π(0,)3CBD θθ∠=∈,则在BCD △中,sin sin BC BD BDC BCD=∠∠,则2π)π314sin()2π3sin 3BD θθ-=+,所以π2π11sin sin 2214sin(()33ABD S AB BD ABD θθ=+=⨯⨯∠-⋅△2π34(θ=+,当2πsin ()13θ+=,即π6θ=时,ABD △面积取到最大值18.记n S 为数列{}n a 的前n 项和,已知11a =,223a =,且数列(){}423n n nS n a ++是等差数列.(1)证明:n a n ⎧⎫⎨⎬⎩⎭是等比数列,并求{}n a 的通项公式;(2)设13,,n n n na nb n n a -⎧⋅⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .【答案】(1)证明见解析;13n n n a -=;(2)2122338n n T n +-=+.【解析】(1)∵11a =,223a =,∴11S =,253S =,设()423n n n c nS n a =++,则19c =,218c =,又∵数列{}n c 为等差数列,∴9n c n =,∴()4239n n nS n a n ++=,∴()2349nn n a S n++=,当2n ≥时,()1121491n n n a S n --++=-,∴()()12321401n n n n a n a a nn -+++-=-,∴()()1632101n n n a n a nn -++-=-,又∵210n +≠,∴1301n n a a n n --=-,即:1131n n a an n -=⋅-,又∵1101a =≠,∴n a n ⎧⎫⎨⎩⎭是以1为首项,13为公比的等比数列,∴113n n a n -⎛⎫ ⎪⎝⎭=,即13n n n a -=;(2)∵13,,n n n na nb n n a -⎧⋅⎪=⎨⎪⎩为奇数为偶数,且13n n na -=,∴1,3,n n n n b n -⎧=⎨⎩为奇数为偶数,∴()()132121321333n n T n -=++⋅⋅⋅+-+++⋅⋅⋅+⎡⎤⎣⎦()()()221223193311213321988n n n n n n n +--+-⎡⎤-⎣⎦=+=+=+-,∴2122338n n T n +-=+.19.如图,已知斜四棱柱1111ABCD A B C D -,底面ABCD 为等腰梯形,AB CD ∥,点1A 在底面ABCD 的射影为O ,且11AD BC CD AA ====,2AB =,112A O =,1AA BC ⊥.(1)求证:平面ABCD ⊥平面11ACC A ;(2)若M 为线段11B D 且平面MBC 与平面ABCD 夹角的余弦值为7,求直线1A M 与平面MBC 所成角的正弦值.【答案】(1)证明见解析;(2)7【解析】(1)证明:等腰梯形ABCD 中,2AB =,1BC CD AD ===,作//CE AD 交AB 于E ,如图,则ADCE 是菱形,AE CD EB CE BC ====,BCE 是等边三角形,则60ABC ∠=︒,60DCE ECB ∠=∠=︒,30ACD ACE ∠=∠=︒,所以90ACB ∠=︒,即AC BC ⊥,又1BC AA ⊥,1AA AB A = ,1,AA AB ⊂平面11AAC C ,所以BC ⊥平面11A ACC ,又BC ⊂平面ABCD ,所以平面ABCD ⊥平面11A ACC ;(2)点1A 在底面ABCD 的射影为O ,由(1),得O 在AC 上,且1A O AC ⊥,又111,12A O AA ==,所以AO ,而由(1)知AC =因此2CO =,建立如图所示空间直角坐标系C xyz -,则)A,()0,1,0B,O ⎫⎪⎪⎝⎭,112A ⎫⎪⎪⎝⎭,1,02D ⎫-⎪⎝⎭,则11,022CD BA ⎫==-⎪⎪⎝⎭,又113,022B D BD ⎛⎫==- ⎪ ⎪⎝⎭,111,0,22DD AA ⎛⎫==- ⎪ ⎪⎝⎭ ,所以1110,,22D ⎛⎫- ⎪⎝⎭,设1113,,022D M D B λ⎛⎫==- ⎪ ⎪⎝⎭ (01λ≤≤),131,,2222M λ⎛⎫--+ ⎝⎭,(0,1,0)CB =,131,,2222CM λλ⎛⎫=--+ ⎪ ⎪⎝⎭ ,设平面MBC 的法向量为(),,n x y z =,则131********n CM x y z n CB y λλ⎧⎛⎫⎧⋅=-+-++=⎪⎪ ⎪⇒⎨⎨⎝⎭⋅=⎪⎪⎩=⎩ ,取1x =,则()n = ,取平面ABCD 的法向量()0,0,1m = ,2cos ,417m n m n m n λ⋅===⇒=,则12λ=(负值舍去),即11,044A M ⎛⎫=- ⎪ ⎪⎝⎭,2n ⎛⎫= ⎪ ⎪⎝⎭,设直线1A M 与平面MBC 所成的角为θ,则111sin cos ,A M n A M n A M n θ⋅===⋅ ,所以,直线1A M 与平面MBC20.第22届亚运会将于2023年9月23日至10月8日在我国杭州举行,这是我国继北京后第二次举办亚运会.为迎接这场体育盛会,浙江某市决定举办一次亚运会知识竞赛,该市A 社区举办了一场选拔赛,选拔赛分为初赛和决赛,初赛通过后才能参加决赛,决赛通过后将代表A 社区参加市亚运知识竞赛.已知A 社区甲、乙、丙3位选手都参加了初赛且通过初赛的概率依次为12、12、13,通过初赛后再通过决赛的概率均为13,假设他们之间通过与否互不影响.(1)求这3人中至多有2人通过初赛的概率;(2)求这3人中至少有1人参加市知识竞赛的概率;(3)某品牌商赞助了A 社区的这次知识竞赛,给参加选拔赛的选手提供了两种奖励方案:方案一:参加了选拔赛的选手都可参与抽奖,每人抽奖1次,每次中奖的概率均为12,且每次抽奖互不影响,中奖一次奖励600元;方案二:只参加了初赛的选手奖励200元,参加了决赛的选手奖励500元.若品牌商希望给予选手更多的奖励,试从三人奖金总额的数学期望的角度分析,品牌商选择哪种方案更好.【答案】(1)1112;(2)3181;(3)方案二更好,理由见解析【解析】(1)3人全通过初赛的概率为21112312⎛⎫⨯= ⎪⎝⎭,所以,这3人中至多有2人通过初赛的概率为11111212-=.(2)甲参加市知识竞赛的概率为111236⨯=,乙参加市知识竞赛的概率为111236⨯=,丙参加市知识竞赛的概率为131139⨯=,所以,这3人中至少有1人参加市知识竞赛的概率为211311116981⎛⎫⎛⎫--⨯-= ⎪ ⎪⎝⎭⎝⎭.(3)方案一:设三人中奖人数为X ,所获奖金总额为Y 元,则600Y X =,且13,2X B ⎛⎫⎪⎝⎭,所以()()160060039002E Y E X ==⨯⨯=元,方案二:记甲、乙、丙三人获得奖金之和为Z 元,则Z 的所有可能取值为600、900、1200、1500,则()211160011236P Z ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭,()212111115900C 1112233212P Z ⎛⎫⎛⎫⎛⎫==⋅--+-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,()21211111112001C 1232233P Z ⎛⎫⎛⎫⎛⎫==⨯-+⋅-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()211115002312P Z ⎛⎫==⋅= ⎪⎝⎭,所以,()1511600900120015001000612312E Z =⨯+⨯+⨯+⨯=.所以,()()E Y E Z <,所以从三人奖金总额的数学期望的角度分析,品牌商选择方案二更好.21.已知抛物线()220C x py p =>:的焦点为F ,准线l 与抛物线C 的对称轴的交点为K ,点()2D t ,在抛物线C上,且DK =.(1)求抛物线C 的方程;(2)若直线()1200l kx y k k --=>:交抛物线C 于()()()112212A x y B x y x x >,,,两点,点A 在y 轴上的投影为E ,直线AE 分别与直线OB (O 为坐标原点)交于点Q ,与直线2l y x =:交于点P ,记OAP △的面积为1S ,OPQ △的面积为2S ,求证:12S S =.【答案】(1)24x y =;(2)证明见解析【解析】(1)作DH l ⊥,垂足为H ,则DFDH=.因为DK =,所以45DKH ∠= ,2DHHK ==.因为点()2D t ,在抛物线C 上,所以2422pt pt =⎧⎪⎨+=⎪⎩,消去t 得:2440p p -+=,解得21p t ==,.所以抛物线C 的方程为24x y =.(2)设()()1122A x y B x y ,,,,由2204kx y k x y--=⎧⎨=⎩,消去y 得2480x kx k -+=.则216320k k =->∆,因为0k >,所以2k >,则121248x x k x x k +==,.依题意知直线AE 的方程为1y y =,直线OB 的方程为22yy x x =.由1y y y x =⎧⎨=⎩,得P 点的坐标为()11y y ,.由122y y y y x x =⎧⎪⎨=⎪⎩得Q 的坐标为1212y x y y ⎛⎫ ⎪⎝⎭,.要证12S S =,即证111122AP y PQ y ⋅=⋅,即证AP PQ =.即证121112y x y x y y -=-,即证12211220y x y x y y +-=.因为()112y k x =-,()222y k x =-,所以1221122y x y x y y +-=()()()()212211222222k x x k x x k x x -+----()()()222121222428k k x x k k x x k =-+-+-()()222222284248880k k k k k k k k k =-⨯+-⨯-=-=.即12211220y x y x y y +-=,所以12S S =.22.已知函数()ln a f x ax x x=--.(1)若1x >,()0f x >,求实数a 的取值范围;(2)设12,x x 是函数()f x的两个极值点,证明:12()()f x f x a-<.【答案】(1)1,2∞⎡⎫+⎪⎢⎣⎭;(2)证明见解析【解析】(1)依题意,2221()(0)a ax x a f x a x x x x-+'=-+=>.①当0a ≤时,在(1,)x ∈+∞上()0f x '<,所以()f x 在()1,+∞上单调递减,所以()(1)0f x f <=,所以0a ≤不符合题设.②当102a <<时,令()0f x '=,得20ax x a -+=,解得()10,1x =()21,x ∞=∈+,所以当()21,x x ∈时()0f x '<,所以()f x 在()21,x 上单调递减,所以()(1)0f x f <=,所以102a <<不符合题设.③当12a ≥时,判别式2140a ∆=-≤,所以()0f x '≥,所以()f x 在()1,+∞上单调递增,所以()(1)0f x f >=.综上,实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.(2)由(1)知,当102a <<时,()f x 在()10,x 上单调递增,在()12,x x 上单调递减,在()2,x +∞上单调递增,所以1x 是()f x 的极大值点,2x 是()f x 的极小值点.由(1)知,121=x x ,121x x a +=,则21x x a-.综上,要证()()12f x f x -<,只需证()()1221f x f x x x -<-,因为()()()()2212112211121ln x x x x x f x f x a x x a x x x ---+=+--+⋅()()()21222121112122lnln x x x x a x x x x x x x x -=-+--=+()21221121ln 1x x xx x x -=+,设211xt x =>,()21()ln 1t g t t t -=+.所以()()2221414()011g t t t t '=+=+++,所以()g t 在()1,+∞上单调递增,所以()()10g t g >=.所以()()21120x x f x f x --+>,即得()()1221f x f x x x -<-成立.所以原不等式成立.。
2024年上海市高考高三数学模拟试卷试题及答案详解
2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。
2025年新高考数学模拟试题一带解析
2025年新高考数学模拟试题(卷一)第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.某车间有两条生产线分别生产5号和7号两种型号的电池,总产量为8000个.质检人员采用分层抽样的方法随机抽取了一个样本容量为60的样本进行质量检测,已知样本中5号电池有45个,则估计7号电池的产量为()A .6000个B .5000个C .3000个D .2000个2.如图所示,四边形ABCD 是正方形,,M N 分别BC ,DC 的中点,若,,AB AM AN λμλμ=+∈R,则2λμ-的值为()A .43B .52C .23-D .1033.已知n S 为等差数列{}n a 的前n 项和,4920224a a a ++=,则20S =()A .60B .120C .180D .2404.设,αβ是两个不同的平面,,m n 是两条不同的直线,下列命题为假命题的是()A .若,m m n α⊥⊥,则n α或n ⊂αB .若,,⊥⊥⊥m n αβαβ,则m n ⊥C .若,,m l n αββγαγ⋂=⋂=⋂=,且n β,则//l mD .若,,m n m n αβ⊥⊂⊂,则αβ⊥5.第19届亚运会于2023年9月28日至10月8日在杭州举行,本届亚运会的吉祥物是一组名为“江南忆”的机器人:“琮琮”“莲莲”和“宸宸”,分别代表世界遗产良渚古城遗址、西湖和京杭大运河.某同学买了6个不同的吉祥物,其中“琮琮”“莲莲”和“宸宸”各2个,现将这6个吉祥物排成一排,且名称相同的两个吉祥物相邻,则排法种数共为()A .48B .24C .12D .66.已知函数1()e 2x f x x a x ⎛⎫=-+ ⎪⎝⎭恰有2个不同的零点,则实数a 的取值范围为()A .1,ee ⎛⎫⎪⎝⎭B .(4e,)⎛∞ ⎝U C .2e ⎫⎪⎭D .(2e,)⎛∞ ⎝U7.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,过点()3,4A -的直线l 的一个法向量为()1,2-,则直线l 的点法式方程为:()()()13240x y ⨯++-⨯-=,化简得2110x y -+=.类比以上做法,在空间直角坐标系中,经过点()1,2,3M 的平面的一个法向量为()1,4,2m =-,则该平面的方程为()A .4210x y z -++=B .4210x y z --+=C .4210x y z +-+=D .4210x y z +--=8.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点分别为12,F F ,过1F 的直线与双曲线C 分别在第一、二象限交于,A B 两点,2ABF △内切圆的半径为r ,若1||2BF a =,r =,则双曲线C 的离心率为()AB.2CD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()()sin 0,0,22f x A x A ππωϕωϕ⎛⎫=+>>-<< ⎪⎝⎭的部分图象如图所示,则()A .()f x 的最小正周期为πB .当π0,2⎡⎤∈⎢⎥⎣⎦x 时,()f x 的值域为11,22⎡⎤-⎢⎥⎣⎦C .将函数()f x 的图象向右平移π6个单位长度可得函数()sin 2g x x =的图象D .将函数()f x 的图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到的函数图象关于点5π,06⎛⎫⎪⎝⎭对称10.已知12,z z 是两个虚数,则下列结论中正确的是()A .若12z z =,则12z z +与12z z 均为实数B .若12z z +与12z z 均为实数,则12z z =C .若12,z z 均为纯虚数,则12z z 为实数D .若12z z 为实数,则12,z z 均为纯虚数11.已知函数()y f x =在R 上可导且(0)2f =-,其导函数()f x '满足:22()21()exf x f x x -=-',则下列结论正确的是()A .函数()f x 有且仅有两个零点B .函数2()()2e g x f x =+有且仅有三个零点C .当02x ≤≤时,不等式4()3e (2)f x x ≥-恒成立D .()f x 在[1,2]上的值域为22e ,0⎡⎤-⎣⎦第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}{}2,0,2,4,3A B x x m =-=-≤,若A B A = ,则m 的最小值为.13.已知M ,N 是抛物线()2:20C x py p =>上两点,焦点为F ,抛物线上一点(),1P t 到焦点F 的距离为32,下列说法正确的是.(把所有正确结论的编号都填上)①1p =;②若OM ON ⊥,则直线MN 恒过定点()0,1;③若MOF △的外接圆与抛物线C 的准线相切,则该圆的半径为12;④若2MF FN = ,则直线MN 的斜率为4.14.如图,在正方体1111ABCD A B C D -,中,M ,N 分别为线段11A D ,1BC 上的动点.给出下列四个结论:①存在点M ,存在点N ,满足MN ∥平面11ABB A ;②任意点M ,存在点N ,满足MN ∥平面11ABB A ;③任意点M ,存在点N ,满足1MN BC ⊥;④任意点N ,存在点M ,满足1MN BC ⊥.其中所有正确结论的序号是.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数31()ln 222f x ax x x x=--+.(1)当1a =时,求()f x 的单调区间;(2)对[1,)x ∀∈+∞,()0f x ≥恒成立,求a 的取值范围.16.(15分)我国老龄化时代已经到来,老龄人口比例越来越大,出现很多社会问题.2015年10月,中国共产党第十八届中央委员会第五次全体会议公报指出:坚持计划生育基本国策,积极开展应对人口老龄化行动,实施全面二孩政策.随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线一线总计愿生40y60不愿生x2240总计5842100(1)求x和y的值.(2)分析调查数据,是否有95%以上的把握认为“生育意愿与城市级别有关”?(3)在以上二孩生育意愿中按分层抽样的方法,抽取6名育龄妇女,再选取两名参加育儿知识讲座,求至少有一名来自一线城市的概率.参考公式:22()()()()()n ad bca b c d a c b dχ-=++++,()2P kχ≥0.0500.0100.001k 3.841 6.63510.82817.(15分)在直角梯形ABCD 中,//AD BC ,22BC AD AB ===90ABC ∠=︒,如图(1).把ABD △沿BD 翻折,使得平面ABD ⊥平面BCD .(1)求证:CD AB ⊥;(2)在线段BC 上是否存在点N ,使得AN 与平面ACD 所成角为60°?若存在,求出BNBC的值;若不存在,说明理由.18.(17分)已知椭圆22:143x y C +=的左右焦点分别为12,F F ,点()00,P x y 为椭圆C 上异于顶点的一动点,12F PF ∠的角平分线分别交x 轴、y 轴于点M N 、.(1)若012x =,求1PF ;(2)求证:PM PN为定值;(3)当1F N P 面积取到最大值时,求点P 的横坐标0x .19.(17分)已知数列12:,,,n A a a a L 为有穷正整数数列.若数列A 满足如下两个性质,则称数列A 为m 的k 减数列:①12n a a a m +++= ;②对于1i j n ≤<≤,使得i j a a >的正整数对(,)i j 有k 个.(1)写出所有4的1减数列;(2)若存在m 的6减数列,证明:6m >;(3)若存在2024的k 减数列,求k 的最大值.2025年新高考数学模拟试题(卷一)(解析版)第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
全国卷Ⅰ新高考理科数学仿真模拟试卷含答案解析 (3)
全国卷Ⅰ新高考理科数学仿真模拟试卷一、选择题(共12题,每题5分,共60分)1.如图,已知R是实数集,集合A={x|lo g12(x-1)>0},B={x|2x-3x<0},则阴影部分表示的集合是A.[0,1]B.[0,1)C.(0,1)D.(0,1] 2.已知复数z满足1+iz=(1-i)2,则复数z的虚部是A.-12B.12C.12i D.-12i3.设a=log32,b=log52,c=log23,则A.a>c>bB.b>c>aC.c>b>aD.c>a>b4.已知向量a和向量b的夹角为30°,|a|=2,|b|=√3,则向量a和向量b的数量积a·b= A.1 B.2 C.3 D.45.函数f(x)=x 2|x|e x的大致图象是A. B.C.D.6.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为A.35B.710C.45D.9107.若l 1,l 2,l 3表示三条不同的直线,则下列命题正确的是A.l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3B.l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3C.l 1∥l 2∥l 3⇒l 1,l 2,l 3共面D.l 1,l 2,l 3共点⇒l 1,l 2,l 3共面8.若执行如图的程序框图,则输出i 的值等于A.2B.3C.4D.59.已知各项均为正数的数列{a n }的前n 项和为S n ,且a n 2-9=4(S n -n ),数列{1a n ·a n+1}的前n 项和为T n ,则T 10=A.13B.17C.235D.22510.已知椭圆C :x 2m+y 2m -4=1(m >4)的右焦点为F ,点A (-2,2)为椭圆C 内一点.若椭圆C 上存在一点P ,使得|PA |+|PF |=8,则m 的取值范围是A.(6+2√5,25]B.[9,25]C.(6+2√5,20]D.[3,5]11.已知定义在[0,π4]上的函数f (x )=sin(ωx -π6)(ω>0)的最大值为ω3,则正实数ω的取值个数最多为A.4B.3C.2D.112.已知三棱锥S-ABC 中,AB ⊥BC ,AB =BC =2,SA =SC =2√2,二面角B-AC-S 的大小为2π3,则三棱锥S-ABC 的外接球的表面积为A.124π9B.105π4C.105π9D.104π9第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(共4题,每题5分,共20分)13.过点M(2,0)作函数f(x)=e x(x-6)的图象的切线,则切线的方程为. 14.已知在等比数列{a n}中,a n>0且a3+a4=a1+a2+3,记数列{a n}的前n项和为S n,则S6-S4的最小值为.15.某统计调查组从A,B两市各随机抽取了6个大型商品房小区调查空置房情况,并记录他们的调查结果,得到如图所示的茎叶图.已知A市被调查的商品房小区中空置房套数的平均数为82,B市被调查的商品房小区中空置房套数的中位数为77,则x-y=.16.已知抛物线y2=2px(p>0)的焦点为F,准线与x轴的交点为Q,双曲线x 2a2−y2b2=1(a>0,b>0)的一条渐近线被抛物线截得的弦为OP,O为坐标原点.若△PQF为直角三角形,则该双曲线的离心率等于.三、解答题(共7题,共70分)17.(本题12分)在△ABC中,a=7,b=8,cos B=-17.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.18.(本题12分)如图,在直三棱柱ABC-A1B1C1中,D为BC的中点,AB=AC,BC1⊥B1D.求证:(1)A1C∥平面ADB1;(2)平面A1BC1⊥平面ADB1.19.(本题12分)2018年11月27日~28日,2018“未来信息通信技术国际研讨会”在北京召开,本届大会以“5G应用生态与技术演进”为主题,全球5G大咖齐聚一堂,进行了深入探讨.为了给5G手机的用户提供更好的服务,我国的移动、联通、电信三大运营商想通过调查了解现有4G手机用户对传输速度的满意度,随机抽取了100名手机用户进行调查评分(满分100分,单位:分),其频数分布表如下所示.(1)作出频率分布直方图,并求这100名4G 手机用户评分的平均数(同一组中的评分用该组区间的中点值作代表);(2)以样本的频率作为概率,认为评分“不低于80分”为“满意度高”,现从所有4G 手机用户中随机抽取5名用户进行进一步访谈,用X 表示抽出的5名用户中“满意度高”的人数,求X 的分布列和数学期望.20.(本题12分)已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的离心率为√32, 且过点A (2,1).(1)求椭圆C 的方程;(2) 若P ,Q 是椭圆C 上的两个动点,且使∠PAQ 的角平分线总垂直于x 轴, 试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,请说明理由.21.(本题12分)已知函数f (x )=e x -a ln(x -1).(其中常数e=2.718 28…是自然对数的底数) (1)若a ∈R ,求函数f (x )的极值点个数;(2)若函数f (x )在区间(1,1+e -a )上不单调,证明:1a +1a+1>a .请考生在第 22、23 三题中任选二道做答,注意:只能做所选定的题目。
2024届湖北省新高考协作体高三下学期一模数学试题及答案
绝密★启用前2024年普通高等学校招生全国统一考试模拟试题(一)数学本试卷共4页,19题.全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,若复数z 满足()1i 2z +=,则||i z -=()A .1BCD .22.已知集合{},A =太平洋太平洋,集合{}B x x A =⊆,则集合A 与集合B 的关系为()A .A B∈B .A B ⊆C .A B ⊇D .A B =3.一个容量为10的样本,6,7,8,9,10,13,14,15,17,18,则该组数据的上四分位数为( )A .8B .7.5C .14.5D .154.已知直线:20l ax y +-=与22:(1)(1)4C x y -+-= 交于A B 、两点,2BCA π∠=,则a =( )A .1B .12C .1-D .12-5.考虑以Ω为样本空间的古典概型.设X 和Y 定义在Ω上,取值于{}0,1的成对分类变量,则“{}0X =与{}0Y =独立”是“{}1X =与{}1Y =独立”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件6.120,0,1a b a b >>+=,则1312a b +--的最小值为( )A B .C D .67.已知数列{}{},n n a b 通项公式为21,32n n a n b n =-=-,将数列{}{}n n a b 的公共项从小到大排列得到数列{}n c ,设数列{}n c 的阅n 项和为n S ,则n S =()A .23n B .23n n -C .222n n -D .232n n-8.一个半径为1的小球在一个内壁棱长为的正四面体封闭容器内可向各个方向自由运动,则该小球表面永远不可能接触到的容器内壁的面积是()A .B .C .D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.四个实数1,4,,a b -按照一定的顺应构成一个等比数列,则ab 的可能取值有( )A .164-B .4-C .128D .1024-10.已知函数()()32122312,,,f x x x x x x m n =--∈且满足()()()()12,f x f n f x f m ==,对任意的[],x m n ∈恒有()()()f m f x f n ≤≤,且0x 为()0y f x ='的极值点,则下列等式成立的是( )A .1202x x x +=B .()212x x n m -=-C .1232x x m =+D .2132x x n-=11.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点2F 的直线与双曲线的右支交于,A B两点,记12AF F △的内切圆1O 112,r BF F △的内切圆2O 的半径为2r .若双曲线的离心率e =下列说法正确的是( )A .双曲线的渐近线方程:2y x =±B .以12O O 为直径的圆与直线AB 相切C .1ABF △D .12r r -的范围是()-三、填空题:本题共3小题,每小题5分,共15分.12.函数()2321x x f x -=+的对称中心为_________.13.抛物线2:4E y x =的焦点为F ,直线,AB CD 过F 分别交抛物线E 于点,,,A B C D ,且直线,AD BC 父x 轴于,N M ,其中()2,0N ,则M 点坐标为_________.14.对于任意的实数ϕ,函数()()2sin 1(0)f x x ωϕω=+->在2,33ππ⎡⎤⎢⎥⎣⎦上至少3个零点,至多4个零点,则ω的取值范围为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)发展新能源汽车是我国从汽车大国迈向汽车强国的必由之路,是应对气候变化推动绿色发展的战路举措.随着国务院《新能源汽车产业发展规划(2021—2035)》的发布,我国自主品牌汽车越来越具备竞争力,国产某品牌汽车对市场进行调研,统计了该品牌新能源汽车在某城市2023年前几个月的销售量(单位:辆),用y 表示第x 月份该市汽车的销售量,得到如下统计表格:ix 1234567i y 28323745475260(1)经研究,x y 、满足线性相关关系,求y 关于x 的线性回归方程ˆˆˆybx a =+(ˆˆa b 、按四舍五入精确到整数);(2)该市某4S 店为感谢客户,决定针对该品牌的汽车成交客户开展抽奖活动,设“一等奖”、“二等奖”和“祝您平安”三种奖项,“一等奖”奖励5千元;“二等奖”奖励3千元;“祝您平安”奖励纪念品一份.在一次抽奖活动中获得“二等奖”的概率为15,获得一份纪念品的概率为710,现有甲、乙两个客户参与抽奖活动,假设他们是否中奖相互独立,求此二人所获奖金总额X (千元)的分布列及数学期望.参考数据及公式:()()()()()71211ˆˆˆ146,,n i i i i i n i i i x x y y xx y y b ay bx xx ===----===--∑∑∑.16.(本小题满分15分)在ABC △中,角,,A B C 的对边分别为,,a b c ,若()()()sin sin sin sin sin sin sin A B A B C B C +-=+.(1)求角A 的大小;(2)若D 为BC 上一点,且AD 为A ∠的角平分线,427b c +=,求AD 的最大值.17.(本小题满分15分)如图,在直三棱柱111ABC A B C -中,12,AB BB BC AB ==⊥.(1)求证:1BC BA ⊥;(2)若E 为1A B 的中点,三棱锥1A CEA -的体积为1,线段CE 上是否存在点P ,使得二面角P AB E --的大小为45︒,若存在,求EP EC 的值,若不存在,请说明理由.18.(本小题满分17分)已知sin cos k αα+=.(1)若()10,,3k απ∈=,求tan α;(2)设*sin cos ,N n n n S n αα=+∈,证明:()212132n n n k S kS S n ---=-≥(3)在(2)的条件下,若15k =,(ⅰ)证明:数列145n n S S -⎧⎫-⎨⎬⎩⎭和数列135n n S S -⎧⎫+⎨⎬⎩⎭均为等比数列;(ⅱ)求n S 的通项公式.19.(本小题满分17分)如图,已知圆锥PO 的轴PO 与母线所成的角为α,过1A 的平面与圆锥的轴所成的角为β,该平面截这个圆锥所得的截面为椭圆C ,椭圆C 的长轴为12A A ,短轴为12B B ,长半轴长为3,C 的中心为N ,再以12B B 为弦且垂直于PO 的圆截面,记该圆与直线1PA 交于1C ,与直线2PA 交于2C ,设cos 3cos αβ=.(1)求椭圆C 的焦距;(2)椭圆C 左右焦点分别为12,,F F C 上不同两点,A B ,满足12(0)F A F B λλ=> ,设直线12,F B F A 交于点,1QAB Q S =△,求四边形21ABF F 的面积.。
2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案
2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案一、单选题(20分)请从每题的选项中选择一个最符合题意的答案,并在答题卡上将相应的字母涂黑。
1.若函数f(x)在区间[-1,3]上连续,则其必定是 A. 递减函数 B. 倒U型函数 C. 奇函数 D. 偶函数2.已知三角形ABC,AB=AC,角A=40°,则角B的度数等于 A. 40° B. 70° C. 80° D. 100°3.设a,b都是正数,且logₐ1/3=log₃b/2,则a/b的值等于 A. 1/4 B. 1/3 C. 1/2 D. 24.若a,b>0,且a+b=1,则a²+b²的最小值是 A. 1/2 B.1/√2 C. 1/4 D. 15.若直线y=mx+2与曲线y=4x²-3x-1有两个公共点,则m的取值范围是 A. (-∞,1/8) B. (-∞,0)∪(0,1/8) C. (-∞,1/8]∪[0,+∞) D. (-∞,0)二、多选题(20分)请从每题的选项中选择一个或多个最符合题意的答案,并在答题卡上将相应的字母涂黑。
6.设实数x满足条件|x-3| < 2,下列等式成立的是 A.x > 5 B. x < 1 C. x ≠ 3 D. x > 17.在直角坐标系中,下列函数中具有对称中心为(2,-1)的是 A. y=x-1 B. y=-(x-2)²-1 C. y=√(x²-4x+4) D. y=1/x-38.设集合A={a, a², a³},则以下命题成立的是 A. 若a>1,则a>1/a² B. 若a<0,则a³<0 C. 若a=1, 则A={1} D. 若a=0,则A={0}9.已知函数f(x)=x³+ax²+bx+c,若它与y=x+3有恰有一个交点,并且这个交点横纵坐标都是正数,则以下命题成立的是 A. a+b = -1 B. a+c = -3 C. a+c > 0 D. a+b+c > 010.设集合A={x | x=x²-2x-3, x∈R},B={x | x²+x-6=0,x∈R},则以下命题成立的是A. A⊂B B. A∩B=∅ C. B⊆A D.B∪A=∅三、填空题(20分)请根据题目要求填写空缺,并在答题卡上写出完整的答案。
2024年高考数学模拟试题及答案
2024年高考数学模拟试题及答案2024年高考数学模拟试题及答案一、选择题1、下列函数中,既是偶函数又在区间(0, ∞)上单调递增的是()。
A. y = |x|B. y = x^3C. y = log2xD. y = sinx2、已知平面向量a,b满足|a|=1,|b|=2,且a与b的夹角为120°,则(2a-b)·(a+3b)=()。
A. -7 B. -5 C. 1 D. 93、已知函数f(x)=ax^7+bx^5+cx^3+dx+5,且f(-5)=3,则f(5)=()。
A. -7 B. -3 C. 3 D. 7二、填空题1、若等差数列{an}的前n项和为Sn,且a1=4,S4=28,则{an}的通项公式为。
2、已知球O的半径为4,则球O的内接正方体的棱长为。
3、若函数f(x)=log2x,则f(4)的值是。
三、解答题1、已知向量a=(1,2),b=(cosθ,sinθ),设向量ma+b与向量a-mb平行,求tanθ的值。
2、已知函数f(x)=|x-1|+|x-2|+|x-3|+…+|x-9|,当且仅当x=5时取得最小值,求最小的m和最大的n,使得当x∈[m, n]时,函数f(x)取得最小值。
3、已知正四棱柱ABCD-A1B1C1D1的侧棱长为3,底面边长为2,E为BC中点。
求点B1到平面BDE的距离。
四、选做题1、选修4-1:几何证明选讲在△ABC中,D是BC的中点,E是AD上一点。
求证:EB=EC。
2、选修4-4:坐标系与参数方程在平面直角坐标系xOy中,以原点O为圆心、半径为r的圆与直线x=π/2相切。
求圆上点到直线x=π的距离的最大值和最小值。
3、选修4-5:不等式选讲已知a、b、c均为正数,且a+b+c=1。
求证:(1/a)+(1/b)+(1/c)≥9。
五、附加题1、某中学共有学生2000人,其中高一年级共有学生900人,男生500人,女生400人。
高二年级共有学生1100人,男生600人,女生500人。
高考数学模拟试题含答案
高考数学模拟试题 (一)一、选择题(本题共12个小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求一项的字母代号填在题后括号内.)1.已知集合M={x∣-3x -28 ≤0},N = {x|-x-6>0},则M∩N 为()A.{x| 4≤x<-2或3<x≤7}B. {x|-4<x≤-2或3≤x<7 }C.{x|x≤-2或x>3 }D. {x|x<-2或x≥3}2.在映射f的作用下对应为,求-1+2i的原象()A.2-iB.-2+iC.iD.23.若,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.要得到函数y=sin2x的图像,可以把函数的图像()A.向左平移个单位B. 向右平移个单位C.向左平移个单位D. 向右平移个单位5. 如图,是一程序框图,则输出结果中()A. B.C. D.6.平面的一个充分不必要条件是()A.存在一条直线B.存在一个平面C.存在一个平面D.存在一条直线7.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为()A. B. C. D.8.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,则p的轨迹一定通过△ABC的()A.外心B. 重心C.内心D. 垂心9.设{a n}是等差数列,从{a1,a2,a3,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列最多有()A.90个 B.120个C.180个 D.200个10.下列说法正确的是 ( )A.“x2=1”是“x=1”的充分不必要条件B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“使得”的否定是:“均有”D.命题“若α=β,则sinα=sinβ”的逆否命题为真命题11.设等比数列的公比q=2,前n项和为,则()A. 2B. 4C.D.12.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.-2 C. D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案直接填在题中的横线上.)13. 已知,,则的最小值.14. 如图是一个几何体的三视图,根据图中数据可得几何体的表面积为.15. 已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x+…+a n x n,若a1+a2+…+a n-1=29-n,则自然数n等于.16.有以下几个命题:①曲线x2-(y+1)2=1按a=(-1,2)平移可得曲线(x+1)2-(y+3)2=1②与直线相交,所得弦长为2③设A、B为两个定点,m为常数,,则动点P的轨迹为椭圆④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线的对称点M的轨迹是圆其中真命题的序号为(写出所有真命题的序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.18.(本小题满分12分)同时抛掷3个正方体骰子,各个面上分别标以数(1,2,3,4,5,6),出现向上的三个数的积被4整除的事件记为A.(1)求事件A发生的概率P(A);(2)这个试验重复做3次,求事件A至少发生2次的概率;(3)这个试验反复做6次,求事件A发生次数ξ的数学期望.19.(本小题满分12分)如图所示,已知四棱锥P-ABCD的底面是直角梯形, ∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求证:平面PAD⊥平面PAB;(3)求二面角P-DC-B.20. (本小题满分12分)如图,M是抛物线y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.21.(本小题满分12分)已知函数的图象与直线相切,切点的横坐标为1.(1)求函数f(x)的表达式和直线的方程;(2)求函数f(x)的单调区间;(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)[几何证明选讲]如图,E是圆内两弦AB和CD的交点,直线EF//CB,交AD的延长线于F,FG切圆于G,求证:(1)∽;(2)EF=FG.23.[选修4-4:坐标系与参数方程]已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求PQ中点M到直线(t为参数)距离的最小值.24.【不等式选讲】解不等式:参考答案1.A2.D3.A4.A5.D6.D7.C8.B9.C 10.D 11.C 12.B13. 3 14. 12π15.4 16.④17.解:y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6.由于函数z=(u-1)2+6在[-1,1]中的最大值为z max=(-1-1)2+6=10,最小值为z min=(1-1)2+6=6,故当sin2x=-1时y取得最大值10,当sin2x=1时y取得最小值6.18.解:(1)解法1先考虑事件A的对立事件,共两种情况:①3个都是奇数;②只有一个是2或6,另两个都是奇数,.解法2 事件的发生有以下五种情况:三个整数都是4:;有两个整数是4,另一个不是4:;只有一个数是4,另两个不是4:;三个数都是2或6:;有两个数是2或6,另一个数是奇数:故得.(2).(3).19.解法一:(1)证明:∵PB=PC,∴PO⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,∴PO⊥平面ABCD.在梯形ABCD中,可得Rt△ABO≌Rt△BCD,∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90°,即AO⊥BD.∵PA在平面ABCD内的射影为AO,∴PA⊥BD.(2)证明:取PB的中点N,连接CN.∵PC=BC, ∴CN⊥PB.①∴AB⊥BC,且平面PBC⊥平面ABCD.∴AB⊥平面PBC.∵AB平面PAB,∴平面PBC⊥平面PAB.②由①、②知CN⊥平面PAB,连接DM、MN,则由MN∥AB∥CD,得四边形MNCD为平行四边形,∴DM⊥平面PAB.∵DC⊥BC,且平面PBC⊥平面ABCD,∴DC⊥平面PBC,∵PC平面PBC.∴DC⊥PC.∴∠PCB为二面角P-DC-B的平面角.∵三角形PBC是等边三角形,∴∠PCB=60°,即二面角P-DC-B的大小为60°.∵DM平面PAD,∴平面PAD⊥平面PAB.解法二:取BC的中点O,因为三角形PBC是等边三角形,由侧面PBC⊥底面ABCD,得PO⊥底面ABCD.以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立空间直角坐标系O-xyz.(1)证明:∵CD=1,则在直角梯形中,AB=BC=2,在等边三角形PBC中,.(2)证明:,(3)显然所夹角等于所示二面角的平面角.20. 解:(1)设M(y02,y0),直线ME的斜率为k(k>0),则直线MF的斜率为-k,所以直线ME的方程为y-y0=k(x-y02).....所以直线EF的斜率为定值.(2)当∠EMF=90°时,∠MAB=45°,所以k=1.∴直线ME的方程为:y-y0=x-y02..同理可得.设重心消去得21.解:(1). ∴f(1)=1.∴节点为(1,1).∴1=-2×1+c.∴c=3.∴直线l的方程为y=-2x+3.(2).(3)令,由得,在上是减函数,在上是增函数...22.解: EF//CB,∽.FG是圆的切线.故FG=EF.23.解:(Ⅰ).为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线.精品文档. M到的距离 .从而当时,d取得最小值.24.解:(1)时,得,解得,所以,;(2)时,得,解得,所以,;(3)时,得,解得,所以,无解.综上,不等式的解集为.。
高考数学重难点全真模拟试卷01(新高考专用)(答案及评分标准)
新高考数学重难点全真模拟试卷01数学·答案及评分标准一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.12345678ADBACBDC二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.CD10.ABD11.BC12.BCD三、填空题:本题共4小题,每小题5分,共20分.13.28-14.315.116.3四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)【答案】(1)12n n b -=;(2)()12326n n S n +=-⋅+【分析】(1)由题设求得等差数列{}n a 的公差d 与等比数列{}n b 的公比q ,即可求得n a 和n b .(2)先由(1)求得n c ,再利用错位相减法求得其前n 项和即可.【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q (0q >),由题设可得:()()214316233b q q a d d b q⎧+=⎪⎨+++=⎪⎩,即()2463233q q d d q ⎧+=⎪⎨+++=⎪⎩,解得21q d =⎧⎨=⎩,所以()33n a a n d n =+-=,1112n n n b b q --==.(2)由(1)可得:()212nn n c -=,()123123252212n n S n ∴=⨯+⨯+⨯++-⋅ ,又()()23121232232212n n n S n n +=⨯+⨯++-⋅+-⋅ ,两式相减得:()()23122222212nn n S n +-=++++--⋅ ()()2112122221212n n n -+-=+⨯-⋅-,整理得:()12326n n S n +=-⋅+.18.(12分)【答案】(1)2π3B =;(2)【分析】(1)利用正弦定理和三角公式得到1cos 2B =-,即可求出2π3B =;(2)利用正弦定理表示出2sin ,2sin c C a A ==,利用三角函数求出最值.【解析】(1)在ABC 中,,,A B C 的对边分别为(),,,2sin 2tan a b c c B a c C =+,由正弦定理得()sin 2sin sin 2sin sin cos CC B A C C=+.因为()0,πC ∈,所以sin 0C ≠,()()2sin cos 2sin sin 2sin sin 2sin cos 2cos sin sin B C A C B C C B C B C C∴=+=++=++2cos sin sin 0B C C ∴+=.∵sin 0C ≠,∴()π1cos ,0,2B B =-∈.2π3B ∴=.(2)由题意2sin sin sin a b cA B C===,则2sin ,2sin c C a A ==,则π22sin 4sin 23a c A A A ⎛⎫+=+= ⎪⎝⎭,由2π3B =,得π0,3A ⎛⎫∈ ⎪⎝⎭,则2a c +∈,故2a c +的取值范围为19.(12分)【答案】(1)6;(2)【分析】(1)取CE 的中点F ,连接PF ,证明出PF 为四棱锥P AECD -的高,即可求出四棱锥P AECD -的体积;(2)过E 作//Ez PF ,以,,EC EA Ez 分别为,,x y z 轴正方向,建立空间坐标系,用向量法求解.【解析】(1)因为四边形ABCD 为边长为4的菱形,60ABC ∠=︒,所以,60AB CB ABC =∠=︒,所以ABC 为等边三角形.因为E 为BC 的中点,所以AE BC ⊥.将ABE 沿AE 翻折至PAE △位置(如图2),所以,,AE PE AE CE ⊥⊥所以PEC ∠即为二面角P AE D --的平面角,所以60PEC ∠=︒.因为E 为BC 的中点,所以PE CE =,所以PEC 为等边三角形.取CE 的中点F ,连接PF ,则PF CE ⊥.因为,,AE PE AE CE ⊥⊥PE ⊂面PCE ,CE ⊂面PCE ,所以⊥AE 面PCE .因为AE ⊂面AECD ,所以面AECD ⊥面PCE .因为PF CE ⊥,所以PF ⊥面AECD .即PF 为四棱锥P AECD -的高.因为菱形ABCD 的边长为4,所以4AD AB BC ===.在等边ABC 中,3sin 604232AE AB =︒=⨯=2BE CE ==.在等边PEC 中,3sin 60232PF PE =︒=⨯在四棱锥P AECD -中,底面积()()1142236322AECD S AD EC AE =+⋅=+⨯=,高3PF =663133V =⨯=.(2)过E 作//Ez PF ,则⊥Ez 面AECD .可以以,,EC EA Ez分别为,,x y z 轴正方向,建立空间坐标系,则()0,0,0,E ()1,0,0,F ()2,0,0,C ()0,3,0,A ()4,3,0,D (3,P ()(0,,0,03M m m ≤≤,所以()0,23,0EA =,(3,3,3PD = ,()4,23,0MD m =因为面AECD ⊥面PCE ,面AECD ⋂面PCE EC =,AE EC ⊥,所以⊥AE 面PCE ,所以()0,23,0EA =为面PCE 的一个法向量.不妨设(),,n x y z = 为面PDM 的一个法向量,则()3233042300PD n x MD n x m y ⎧⋅=+=⎪⎨⋅=+-+=⎪⎩.设1y =,则2332m m n -+=⎝⎭.由图知:平面PDM 与平面PEC 所成的角为α为锐角,所以22220230cos 8233223144EA nEA nm m m α++⋅==⨯+⎛⎫⎛⎫-+⨯++ ⎪ ⎪⎝⎭⎝⎭因为余弦函数在π0,2⎛⎫ ⎪⎝⎭上为减函数,所以只需α取得最小值,只需cos α最大,只需28m +最小.因为023m ≤≤0m =时,28m +最小.此时,,E M 重合,所以23AM AE ==.20.(12分)【答案】(1)列联表见解析,能;(2)分布列见解析,23【分析】(1)根据题意和表中数据补全列联表,再结合独立性检验公式,即可求解.(2)根据已知条件,可分别求出7、8月份不合格率以及7、8月份首次参加考试的学员概率,从而可列出X 的分布列,并求出数学期望.【解析】(1)由题得合格不合格合计2022年7月205252022年8月101525合计3020502250(2015510)18 3.841252530203K ⋅-⋅==>⋅⋅⋅,∴可以在犯错的概率不超过0.05的前提下认为“驾考新规的实施”对该驾校学员首次参加科目一考试的合格率有影响.(2)由题可知,该地7月份不合格率为51255=,8月份不合格率为153255=,抽取7月份首次参加考试的学员概率为23,抽取8月份首次参加考试的学员概率为13X 可能的取值为0,1,2()2222122421421240C 353355359P X ⎛⎫⎛⎫⎛⎫⎛⎫==+⋅⋅⋅⋅+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()2222122121131312C 353355359P X ⎛⎫⎛⎫⎛⎫⎛⎫==+⋅⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭4(1)1(2)(0)9P X P X P X ==-=-==X 012P494919()44120129993E X =⋅+⋅+⋅=.21.(12分)【答案】(1)2214x y +=;(2)【分析】(1)根据焦距及椭圆过点列出方程求解即可;(2)设直线AB 方程为(4)y k x =-,联立方程,由根与系数的关系求出12x x +,12x x ,再由斜率公式直接计算12k k +即可得解.【解析】(1)2c =c ∴=223a b ∴=+,1,2P ⎛⎫ ⎪ ⎪⎝⎭ 在椭圆上,221314a b ∴+=,解得21b =,24a =,故椭圆的方程为2214x y +=.(2)因为过点()4,0Q 的直线与C 交于A 、B 两点,所以直线AB 斜率存在,设直线AB 方程为(4)y k x =-,11(,)A x y ,22(,)B x y ,联立22(4)14y k x x y =-⎧⎪⎨+=⎪⎩得22286)(114x k x x +-+=,即2222(14)326440k x k x k +-+-=,当2222(32)4(14)(644)0k k k ∆=--+->,即2112k <时,21223214k x x k +=+,212264414k x x k-=+,1212121212(4)(4)22221111y y k x k x k k x x x x --+=+=+----121233332211kx k k kx k k x x -----=+--12213333311222(3)()11211k k k k k k x x x x +=-+-=-++----,2221222*********3222112422146443211()13633+11414k x x k k k k x x x x x x k k k -+--++====----++--++,1222(32(23k k k k k k +=-+⋅=-+=-∴12k k ∴+为定值3.22.(12分)【答案】(1)证明见解析;(2)(]1,2【分析】(1)首先求函数的导数()21x g x x -'=,利用导数讨论函数的单调性,并求函数的最小值;即可证明;(2)分三种情况讨论,利用导数讨论函数的最值,求a 的取值范围.【解析】(1)证明:()g x 的定义域为()0,∞+,且()21x g x x -'=,当()0g x '>时,1x >,()0g x '<时,01x <<,所以()g x 在区间(0,1)内单调递减,在区间()1,+∞内单调递增.故()g x 的最小值为()10g =,因此()0g x ≥恒成立.(2)①当01a <<时,取2log ax a <,则()2xf x a a>>,即01a <<不符合题意;②当2a >时,取2log 0ax a <<,则()2x f x a a>>,即2a >不符合题意;③当12a <≤时,由12xxa a a≤+,所以1112x x a a ++≤-,即()111log 2x a a x++≤-对(),0x ∀∈-∞恒成立.令1x t a +=,0t a <<,且log 1a x t =-,所以()()log log 2log log 20a a a a t t t t +---≥对()0,t a ∀∈恒成立.设()()()log log 2log log 2a a a a h t t t t t =+---,0t a <<,则()()()1log 2log 1ln 2ln a a t t h t t a t a ---'=+-,设()()()1log 2log 1ln 2ln a a t t m t t at a---=+-,则()()()()()22222ln 2ln ln ln 2ln 2ln t t t a t a t t t a t t a m -+--+'=--+-,由(1)知2ln ln 202t tg t t -⎛⎫=+-≥ ⎪⎝⎭,所以2ln ln ln 2ln 0tt a a t-+-≥-≥,同理,由202t g -⎛⎫≥ ⎪⎝⎭可推出()ln 2ln 02t t a t +--≥-,所以()0m t '≥,即()h t '在()0,t a ∈上单调递增,又()10h '=,所以()h t 在(0,1)内单调递减,在()1,a 内单调递增,故()()10h t h ≥=成立.综上a 的取值范围为(]1,2.。
2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(六)答案
2023年普通高等学校招生全国统一考试·仿真模拟卷数学(六)注意事项:1.本卷满分150分,考试时间120分钟.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}210A x x =-≤,{}20B x x a =-≥,若A B B ⋃=,则实数a 的取值范围是()A.(],2-∞- B.[)2,-+∞C.1,2⎡⎫-+∞⎪⎢⎣⎭D.1,2⎛⎤-∞-⎥⎝⎦【答案】C 【解析】【分析】求出{}11A x x =-≤≤,{}2B x x a =≥,根据A B B ⋃=,得到A B ⊆,从而得到不等式,求出实数a 的取值范围.【详解】{}{}21011A x x x x =-≤=-≤≤,{}{}202B x x a x x a =-≥=≥,因为A B B ⋃=,所以A B ⊆,故21a ≤-,解得:12a ≤-,故选:C2.如果一个复数的实部和虚部相等,则称这个复数为“等部复数”,若复数()i 3i z a =-为“等部复数”,则实数a 的值为()A.-1B.0C.3D.-3【答案】C【解析】【分析】利用复数的乘法法则得到3i z a =+,从而得到3a =.【详解】()2i 3i i 3i 3i z a a a =-=-+=+,故3a =.故选:C3.双曲线()222210,0x y a b a b-=>>,且过点()2,2A ,则双曲线方程为()A.2212y x -= B.22124x y -=C.22142x y -= D.22136x y -=【答案】B 【解析】【分析】通过已知得出a 与b 的两个关系式,即可联立求解,代入双曲线方程即可得出答案.【详解】 双曲线()222210,0x ya b a b-=>>ca∴=,222a b c += ,2223a b a+∴=,即222a b =, 双曲线()222210,0x y a b a b-=>>过点()2,2A ,22441a b∴-=,则由222a b =与22441a b -=联立解得:a =,2b =,∴双曲线的方程为:22124x y -=,故选:B.4.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,设x ∈R ,用[]x 表示不超过x 的最大整数,[]y x =也被称为“高斯函数”,例如[]2.12=,[]33=,[]1.52-=-,设0x 为函数()33log 1f x x x =-+的零点,则[]0x =()A.2B.3C.4D.5【答案】A 【解析】【分析】首先判断函数的单调性,再根据零点存在性定理判断0x 所在区间,最后根据高斯函数的定义计算可得.【详解】解:因为3log y x =与31y x =-+在()0,∞+上单调递增,所以()33log 1f x x x =-+在()0,∞+上单调递增,又()33313log 3103144f =-=-=>+,()3332log 2log 21021f =-=-<+,所以()f x 在()2,3上存在唯一零点0x ,即()02,3x ∈,所以[]02x =.故选:A5.已知点P 是圆(()22:34C x y -+-=上一点,若点P 到直线2y =-的距离为1,则满足条件的点P 的个数为()A.1B.2C.3D.4【答案】C 【解析】【分析】根据圆心到直线的距离即可求解.【详解】由题意可知圆心为)C,所以)C到2y =-的距离为1d ==,故与直线2y =-平行且过圆心的直线与圆相交的两个交点即为满足条件的点P ,此时有两个,又圆的半径为2,故当过圆心且与2y =-垂直的直线与圆的下半部分相交的一个点也符合,故共有3个.故选:C6.已知ππ,42α⎛⎫∈⎪⎝⎭,且25cos 10sin 29αα+=,则tan α=()A.29B.2C.12D.92【答案】B 【解析】【分析】由已知利用二倍角公式,平方关系22sin cos 1αα+=代换,可得25209t ta an 1n αα+=+,根据α的范围即可求解.【详解】由25cos 10sin 29αα+=,得25cos 20sin cos 9ααα+=,则2225cos 20sin cos 9sin cos ααααα+=+,即25209t ta an 1n αα+=+,得29tan 20tan 40αα-+=,则()()9tan 2tan 20αα--=,得2tan 9α=或tan 2α=,又ππ42α⎛⎫∈ ⎪⎝⎭,,所以tan 1α>,故tan 2α=.故选:B7.随着北京冬奥会的开幕,吉祥物“冰墩墩”火遍国内外,现有甲、乙、丙、丁4名运动员要与1个“冰墩墩”站成一排拍照留恋,已知“冰墩墩”在最中间,甲、乙、丙、丁4名运动员随机站于两侧,则甲、乙2名运动员站“冰墩墩”同一侧的概率为()A.14B.12C.13 D.16【答案】C 【解析】【分析】先求出甲、乙、丙、丁4名运动员与1个“冰墩墩”排成一排,且“冰墩墩”在最中间的所有排法的所有排法,再求甲、乙2名运动员站“冰墩墩”同一侧的排法,根据古典概型概率公式求概率.【详解】甲、乙、丙、丁4名运动员与1个“冰墩墩”排成一排,且“冰墩墩”在最中间的所有排法有44A =24种,甲、乙2名运动员站“冰墩墩”同一侧的排法有22222A A =8种,由古典概型的概率公式可得甲、乙2名运动员站“冰墩墩”同一侧的概率:81243P ==,故选:C .8.如图,在正方体1111ABCD A B C D -中,点P 在线段1BD 上运动(包含端点),则直线1B P 与1C D 所成角的取值范围是()A.ππ,32⎡⎤⎢⎥⎣⎦ B.ππ,63⎡⎤⎢⎥⎣⎦C.ππ,43⎡⎤⎢⎥⎣⎦ D.ππ,62⎡⎤⎢⎥⎣⎦【答案】B 【解析】【分析】要求直线所成角,转化为方向向量所成角,建立如图所示空间直角坐标系,所以1111B P B B BP B B BD λ=+=+ (,,1)λλλ=---+(01λ≤≤),又1(0,1,1)DC =,设则直线1B P 与1C D 所成角为θ,则11cos cos ,B P DC θ=,结合λ的范围即可得解.【详解】以1,,DA DC DD 为,,x y z 建立如图所示空间直角坐标系,设正方体的棱长为1,则(1,1,0)B ,1(0,0,1)D ,1(0,1,1)C ,1(1,1,1)B ,所以1111B P B B BP B B BD λ=+=+(0,0,1)(1,1,1)(,,1)λλλλ=-+--=---+(01λ≤≤)1(0,1,1)DC =,则设直线1B P 与1C D 所成角为π20θθ⎛⎫≤≤⎪⎝⎭,则111111cos cos ,B P DC B P DC B P DC θ⋅===⋅ ,由01λ≤≤,所以221223213,2333λλλ⎛⎫⎡⎤-+=-+∈ ⎪⎢⎥⎝⎭⎣⎦,13cos ,22θ⎡∈⎢⎣⎦,所以ππ,63θ⎡⎤∈⎢⎥⎣⎦,故选:B二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.圆柱的侧面展开图是长4cm ,宽2cm 的矩形,则这个圆柱的体积可能是()A.38πcmB.38cm πC.316cm πD.34cm π【答案】BD 【解析】【分析】由已知中圆柱的侧面展开图是长4cm ,宽2cm 的矩形,我们可以分圆柱的底面周长为4cm ,高为2cm 的和圆柱的底面周长为2cm ,高为4cm ,两种情况分别由体积公式即可求解.【详解】 侧面展开图是长4cm ,宽2cm 的矩形,若圆柱的底面周长为4cm ,则底面半径2cm πR =,2cm h =,此时圆柱的体积238πcm πV R h ==若圆柱的底面周长为2cm ,则底面半径1cm πR =,4cm h =,此时圆柱的体积23πcm π4V R h ==故选:BD10.已知随机变量X 服从二项分布()4,B p ,其方差()1D X =,随机变量Y 服从正态分布(),4N p ,且()()21P X P Y a =+<=,则()A.12p =B.()328P X ==C .()38P Y a <=D.()118P Y a >-=【答案】AB 【解析】【分析】根据二项分布的方差公式得到方程求出p ,再根据独立重复试验的概率公式求出()2P X =,即可判断A 、B 、C ,最后根据正态分布的性质判断D.【详解】解:因为随机变量X 服从二项分布()4,B p ,且其方差()1D X =,所以()()411D X p p =-=,解得12p =,故A 正确;所以()22241132C 1228P X ⎛⎫⎛⎫==⋅-= ⎪ ⎪⎝⎭⎝⎭,又()()21P X P Y a =+<=,所以()58P Y a <=,所以B 正确,C 错误;所以1,42Y N ⎛⎫⎪⎝⎭,则正态曲线关于12x =对称,因为()11122a a -=--,所以()()518P Y a P Y a >-=<=,故D 错误.故选:AB11.已知直线1y x =+交椭圆22:163x yC +=于A ,B 两点,P 是直线AB 上一点,O 为坐标原点,则()A.椭圆C 的离心率为22B.423AB =C.2OA OB ⋅=-D.若1F ,2F 是椭圆C 的左,右焦点,则21PF PF -≤【答案】AD 【解析】【分析】根据椭圆方程求出a 、b 、c ,即可求出离心率,即可判断A ,设()11,A x y ,()22,B x y ,联立直线与椭圆方程,消元、列出韦达定理,根据弦长公式判断B ,求出()()121211y y x x =++,根据数量积的坐标表示判断C,设()1F 关于直线AB 的对称点为(,)E e f ,求出对称点的坐标,再根据221P P F F F E -≤,即可判断D.【详解】解:因为椭圆22:163x y C +=,所以26a =,23b =,则a =,c ==所以离心率22c e a ===,故A 正确;设()11,A x y ,()22,B x y ,由221163y x x y =+⎧⎪⎨+=⎪⎩,消去y 得23440+-=x x ,显然0∆>,所以1243x x +=-,1243x x =-,所以12823AB x =-==,故B 错误;又()()1212121251113y y x x x x x x =++=+++=-,所以12123OA OB x x y y ⋅=+=-,故C 错误;设()1F 关于直线AB 的对称点为(,)E e f ,则13122f e =-+⎪=+⎪⎩,解得11e f =-⎧⎪⎨=-⎪⎩,即(1,1E --,则1PF PE =,2221PF P P F E F E P F =--≤,当且仅当P ,E ,2F 三点共线时取等号,所以21PF PF -的最大值为2EF =,即21PF PF -≤,故D 正确,故选:AD12.已知函数()()3e xf x x =-,若经过点()0,a 且与曲线()y f x =相切的直线有两条,则实数a 的值为()A.3-B.2- C.e- D.2e -【答案】AC【解析】【分析】设出切点并根据导函数性质设出过切点的切线方程,参变分离构建新函数,求导画出草图即可根据条件得出答案.【详解】设切点为()(),3e tt t -,由()()3e xf x x =-,得()()()e 3e 2e xxxf x x x ='+-=-,则过切点的切线方程为:()()()3e 2etty t t x t --=--,把()0,a 代入,得()()()3e 2e 0tta t t t --=--,即()2e 33ta t t -=-+,令()()2e33xg x x x =-+,则()()2e xg x x x ='-,则当()(),01,x ∞∞∈-⋃+时,()0g x '>,当()0,1x ∈时,()0g x '<,()g x ∴的增区间为(),0∞-与()1,+∞,减区间为()0,1,做出草图如下:因为过点()0,a 且与曲线()y f x =相切的直线有两条,则e a -=或3a -=,则3a =-或e a =-,故选:AC.三、填空题:本题共4小题,每小题5分,共20分.13.已知向量(a = ,(b =-,则a b b ⋅-= ______.【答案】0【解析】【分析】根据向量的数量积和向量的模长公式,直接进行计算即可.【详解】((4,1,4620a b b ⋅-=⋅---+-=,故答案为:014.写出一个同时满足下列条件的非常数函数______.①在[)0,∞+单调递增②值域[)1,+∞③()()=f x f x -【答案】()21f x x =+(不唯一)【解析】【分析】结合函数的性质选择合适函数即可.【详解】由()()=f x f x -得函数为偶函数,关于y 轴对称,结合单调性及值域,可以为()21f x x =+.故答案为:()21f x x =+(不唯一).15.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2022这2022个数中,能被3除余1且被4除余1的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为______.【答案】169【解析】【分析】根据题意可知所求数为能被12除余1,得出数列{}n a 的通项公式,然后再求解项数即可.【详解】解:因为能被3除余1且被4除余1的数即为能被12除余1的数,故1211,(N )n a n n *=-∈,又2022n a ≤,即12112022n -≤,解得203312n ≤,又*N n ∈,所以1169n ≤≤且*N n ∈.故答案为:169.16.函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图中实线所示,A ,C 为()f x 的图象与x 轴交点,且1,06A ⎛⎫- ⎪⎝⎭,M ,N 是()f x 的图象与圆心为C 的圆(虚线所示)的交点,且点M 在y 轴上,N 点的横坐标为23,则圆C 的半径为______.【答案】3【解析】【分析】根据函数()2sin()f x x ωϕ=+的图象以及圆C 的对称性可得函数的周期,结合1,06A ⎛⎫- ⎪⎝⎭可得π()2sin(2π3f x x =+,进而求解M 的坐标,由勾股定理即可求解半径.【详解】根据函数()2sin()f x x ωϕ=+的图象以及圆C 的对称性,可得M ,N 两点关于圆心(,0)C c 对称,所以13c =,于是11π12π2622T c ωω=+=⇒=⇒=,由2πω=及1,06A ⎛⎫- ⎪⎝⎭,得ππ0π,Z π,Z 33k k k k ϕϕ-+=+∈⇒=+∈,由于π2ϕ<,所以π3ϕ=,所以π()2sin(2π)3f x x =+,(0)f =,从而M ,故半径为3CM ==,故答案为:273四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 满足11a =,()()1102n n n a na n ---=≥.(1)求数列{}n a 的通项公式;(2)若2n nn b a =⋅,求数列{}n b 的前n 项和n S .【答案】(1)n a n =(2)()1122n n S n +=-⋅+【解析】【分析】(1)由题意得数列n a n ⎧⎫⎨⎬⎩⎭为常数列,可数列{}n a 的通项公式;(2)利用错位相减法求数列前n 项和.【小问1详解】由()()1102n n n a na n ---=≥,得()121n n a a n n n -=≥-,所以数列n a n ⎧⎫⎨⎬⎩⎭为常数列,有111n a a n ==,∴n a n =【小问2详解】22n n n n b a n =⋅=⋅,()123122232122n n n S n n -=+⨯+⨯++-+⋅ ,()2341222232122n n n S n n +=+⨯+⨯++-+⋅ ,两式相减,()()12311121222222212212n n n n n n S n n n +++--=++++-⋅=-⋅=-⋅-- ,所以()1122n n S n +=-⋅+18.如图,在ABC 中,4AB =,2AC =,π6B =,点D 在边BC 上,且cos 7ADB ∠=-.(1)求BD ;(2)求ABC 的面积.【答案】(1(2)【解析】【分析】(1)由cos 7ADB ∠=-求出sin ADB ∠,再由正弦定理即可求出BD(2)根据余弦定理可求出BC ,进而求出ABC 的面积.【小问1详解】在ADB中,cos 7ADB ∠=-,则sin 7ADB ∠=,π6B =,所以1sin sin 6272714BAD ADB π⎛⎫⎛⎫∠=+∠=⨯-+⨯= ⎪⎪ ⎪⎝⎭⎝⎭,由正弦定理可得:sin sin BD ABBAD ADB=∠∠2127147BD =⇒=.【小问2详解】在ABC 中,由余弦定理可得:23164cos30224BC BC +-︒==⋅,解得:BC =.所以ABC的面积11422S =⨯⨯=.19.近年来,师范专业是高考考生填报志愿的热门专业.某高中随机调查了本校2022年参加高考的100位文科考生首选志愿(第一个院校专业组的第一个专业)填报情况,经统计,首选志愿填报与性别情况如下表:(单位:人)首选志愿为师范专业首选志愿为非师范专业女性4515男性2020假设考生选择每个科目的可能性相等,且他们的选择互不影响.(1)根据表中数据,能否有99%的把握认为首选志愿为师范专业与性别有关?(2)若以上表中的频率代替概率,从该校考生中随机选择8位女生,试估计选择师范专业作为首选志愿的人数.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:()20P K k ≥0.100.050.0100.0010k 2.7063.8416.63510.828【答案】(1)没有99%的把握认为首选志愿为师范专业与性别有关;(2)6.【解析】【分析】(1)首先利用数据求得()2210045201520 6.593 6.63560406535K ⨯-⨯=≈<⨯⨯⨯,对照表格数据即可得解;(2)根据人数可得女生中首选志愿为师范专业的概率0.75P =,设该校考生中随机选择8位女生中选择师范专业作为首选志愿的人数为x ,所以(8,0.75)x B ,利用二项分布即可得解.【小问1详解】根据所给数据求得()2210045201520 6.593 6.63560406535K ⨯-⨯=≈<⨯⨯⨯,所以没有99%的把握认为首选志愿为师范专业与性别有关.【小问2详解】100名高考考生中有60名女生,首选志愿为师范专业有45人,故首选志愿为师范专业的概率0.75P =,设该校考生中随机选择8位女生,选择师范专业作为首选志愿的人数为x ,所以(8,0.75)x B ,所以()80.756E x =⨯=,所以随机选择8位女生计选择师范专业作为首选志愿的人数为6.20.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,AB CD ∥,AB AD ⊥,1PA =,2BC CD ==,3AB =,点E 在棱PC 上.(1)证明:平面AED ⊥平面PAB ;(2)已知点E 是棱PC 上靠近点P 的三等分点,求二面角C AE D --的余弦值.【答案】(1)见解析(2)14【解析】【分析】(1)由题意可证得PA AD ⊥,又AB AD ⊥,由线面垂直的判定定理可得AD ⊥平面PAB ,再由面面垂直的判定定理即可得证;(2)以A 为原点,AD ,AB ,AP 分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,分别求出平面CAE 和平面AED 的法向量,再由二面角公式即可得出答案.【小问1详解】因为PA ⊥平面ABCD ,AD ⊂平面ABCD ,所以PA AD ⊥,又AB AD ⊥,PA AB A = ,PA AB Ì,平面PAB ,所以AD ⊥平面PAB ,又AD ⊂平面ADE ,所以平面AED ⊥平面PAB .【小问2详解】以A 为原点,AD ,AB ,AP 分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,过C 作//CG AD ,交AB 于点G ,则易知四边形ADCG 是矩形,所以AD CG ===,则(0,0,0)A ,(3,0,0)B ,(0,0,1)P,(2C,D ,E 是棱PC 上靠近点P 的三等分点,所以设(),,E x y z ,则13PE PC = ,所以()()1,,113x y z -=-,则232,,333x y z ===,则232,,333E ⎛⎫ ⎪ ⎪⎝⎭,232,,333AE AD ⎛⎫== ⎪ ⎪⎝⎭,设平面ADE 的法向量为(,,)n x y z = ,则0n AD ⋅= 且0n AE ⋅= ,0=且2320333x y z ++=,∴0y =,令1x =,则1z =-,∴平面ADE 的一个法向量()1,0,1n =-,设平面ACE 的法向量为111(,,)m x y z =,()()0,0,1,AP AC == 则0m AC ⋅= 且0m AP ⋅=,∴10z =且1120x =,∴令x ==2y -,∴平面ACE的一个法向量)2,0m =-,∴cos ,14m n m n m n⋅===,二面角C AE D --的余弦值为14.21.已知直线220x y +-=过抛物线()2:20C x py p =>的焦点.(1)求抛物线C 的方程;(2)动点A 在抛物线C 的准线上,过点A 作抛物线C 的两条切线分别交x 轴于M ,N 两点,当AMN 的面积是时,求点A 的坐标.【答案】(1)24x y =(2)()1,1A -或()1,1--【解析】【分析】(1)求出焦点坐标为()0,1,从而得到2p =,求出抛物线方程;(2)设出(),1A m -,过点A 的抛物线的切线方程设为()1y k x m =-+-,与抛物线方程联立,根据Δ0=得到21616160k mk --=,设过点A 的抛物线的两条切线方程的斜率分别为12,k k ,求出1212,1k k m k k +==-,表达出1221MN x x k k =-=-,AMN S =52=,求出1m =±,得到点A 的坐标.【小问1详解】220x y +-=中令0x =得:1y =,故焦点坐标为()0,1,故12p=,解得:2p =,故抛物线方程为24x y =;【小问2详解】抛物线准线方程为:1y =-,设(),1A m -,过点A 的抛物线的切线方程设为()1y k x m =-+-,联立24x y =得:24440x kx km -++=,由21616160k mk ∆=--=,设过点A 的抛物线的两条切线方程的斜率分别为12,k k ,故1212,1k k m k k +==-,令()1y k x m =-+-中,令0y =得:1x m k=+,不妨设121211,x m x m k k =+=+,故211221121211k k MN x x k k k k k k -=-=-==-,则211151222AMN S MN k k =⨯=-===,解得:1m =±,故点A 的坐标为()1,1A -或()1,1--.【点睛】已知抛物线方程22y px =,点()00,A x y 为抛物线上一点,则过点()00,A x y 的抛物线切线方程为()00y y p x x =+,若点()00,A x y 在抛物线外一点,过点()00,A x y 作抛物线的两条切线,切点弦方程为()00y y p x x =+.22.已知函数()e xf x x =,()2ln22xg x =+.(1)求函数()f x 的最值;(2)若关于x 的不等式()()f x g x kx -≥恒成立,求实数k 的取值范围.【答案】(1)最小值为1(1)f e-=-,无最大值.(2)2k ≤【解析】【分析】(1)利用导函数讨论函数的单调性即可求最值;(2)分离参变量,构造函数22()e ln 2x x g x x x=--,利用导数结合单调性讨论其最小值即可求解.【小问1详解】因为()e xf x x =,所以()e e (1)e xxxf x x x '=+=+,令()(1)e 0xf x x '=+>解得1x >-,令()(1)e 0xf x x '=+<解得1x <-,所以()e xf x x =在(),1-∞-单调递减,在()1,-+∞单调递增,所以当=1x -时,()f x 有最小值为1(1)f e-=-,无最大值.【小问2详解】由()2ln22xg x =+的定义域可得()0,x ∈+∞,()()f x g x kx -≥即e 2ln 22x xx kx --≥,等价于22e ln (0)2xx k x x x≤-->恒成立,令22()e ln 2x x h x x x=--,所以222222e 2ln22222()e ln e ln 22x x x x x x xh x x x xx x +⎡⎤⎛⎫'=--++=+=⎪⎢⎝⎭⎣⎦,令2()e 2ln,02xxF x x x =+>,所以()2()2e 02xxF x x x '=++>在()0,x ∈+∞恒成立,所以2()e 2ln,2xxF x x =+单调递增,1e(1)e ln 40,()ln16024F F =->=->,所以存在唯一01,12x ⎛⎫∈⎪⎝⎭,使得0()0F x =,即0200e 2ln 02x x x +=,所以当()000,x x ∈时,()0<F x ,即()0h x '<,()h x 单调递减,()00,x x ∈+∞时,()0F x >,即()0h x '>,()h x 单调递增,所以00min 00022()()e ln ,2x x h x h x x x ==--由0200e 2ln 02x x x +=得00002e ln02x x x x +=,也即002ln 002e ln e x x x x =,即002()(ln )f x f x =,由(1)知()f x 在()1,-+∞单调递增,所以002lnx x =,00002e ,ln 2x x x x =-=,所以000min 00000022222()()e ln ln 222xx x g x g x x x x x x ==--=-=,所以2k ≤.【点睛】方法点睛:分离参变量是求参数取值范围常用的方法,本题第二问对不等式等价变形为22e ln (0)2xx k x x x ≤-->,从而min 22e ln 2x x k x x ⎛⎫≤-- ⎪⎝⎭,构造函数讨论单调性及最值是常用的方法,解决的关键在于利用零点的存在性定理得0200e 2ln02xx x +=,再根据(1)得()e xf x x =的单调性,进一步得到002lnx x =,00002e ,ln 2x x x x =-=,等量代换求出最小值.。
河北省衡水市第二中学2024届高三高考模拟一数学试题(含答案解析)
河北省衡水市第二中学2024届高三高考模拟一数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}2120,{23},P xx x Q x m x m P Q =--≤=≤≤-=∅ ∣∣,则实数m 的取值范围是().A .{0m m <∣或4}m >B .{04}m m <<∣C .{3mm <∣或4}m >D .{34}mm <<∣2.某同学统计最近5次考试成绩,发现分数恰好组成一个公差不为0的等差数列,设5次成绩的平均分数为x ,第60百分位数为m ,当去掉某一次的成绩后,4次成绩的平均分数为y ,第60百分位数为n .若y x =,则()A .m n >B .m n=C .m n<D .m 与n 大小无法判断3.吹气球时,气球的体积V (单位:L )与半径r (单位:dm )之间的关系是343V r π=.当4L 3V π=时,气球的瞬时膨胀率为()A .1dm /L 4πB .1dm /L3C .3L /dmD .4L /dmπ4.设实数x ,y 满足22154x y +=)A .B .2-C .D .前三个答案都不对5.记数列{}n a 的前n 项和为n S ,设甲:{}n a 是公比不为1的等比数列;乙:存在一个非零常数t ,使1n S t ⎧⎫+⎨⎬⎩⎭是等比数列,则()A .甲是乙的充要条件B .甲是乙的充分不必要条件C .甲是乙的必要不充分条件D .甲是乙的既不充分也不必要条件6.六氟化硫,化学式为6SF ,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫分子结构为正八面体结构(正八面体每个面都是正三角形,可以看作是将两个棱长均相等的正四棱锥将底面粘接在一起的几何体).如图所示,正八面体E ABCD F --的棱长为a ,下列说法中正确的个数有()①此八面体的表面积为2;②异面直线AE 与BF 所成的角为45 ;③此八面体的外接球与内切球的体积之比为④若点P 为棱EB 上的动点,则AP CP +的最小值为.A .1个B .2个C .3个D .4个7.在ABC V 中,2AB AC =,AD 是A ∠的平分线,交BC 于点D ,且AC tAD =,则t 的取值范围是A .3,4⎛⎫+∞ ⎪⎝⎭B .3,14⎛⎫⎪⎝⎭C .1,2⎛⎫+∞ ⎪⎝⎭D .1,12⎛⎫⎪⎝⎭8.已知,,(1,)a b c ∈+∞,且e 9ln11,e 10ln10,e 11ln 9a b c a b c ===,则,,a b c 的大小关系为()A .a b c >>B .c a b >>C .b c a>>D .c b a>>二、多选题9.下列四个命题正确的是()A .若1i 1z +-=,则1i z --的最大值为3B .若复数12,z z满足12122,2,1z z z z ==+=,则12z z -=C .若()sin sin C A AB A AB B AC C P λλ⎛⎫ ⎪=+∈ ⎪⎝⎭R,则点P 的轨迹经过ABC V 的重心D .在ABC V 中,D 为ABC V 所在平面内一点,且1132+= AD AB AC ,则16BCD ABDS S =△△10.由倍角公式2cos 22cos 1x x =-可知,cos 2x 可以表示为cos x 的二次多项式.一般地,存在一个()*n n ∈N 次多项式()110n n n n n P t a t a t a --=+++ (0a ,1a ,…,n a ∈R ),使得()cos cos n nx P x =,这些多项式()n P t 称为切比雪夫(P .L .Tschebyscheff )多项式.运用探究切比雪夫多项式的方法可得()A .()3343P t t t=-+B .()424881P t t t =-+C.1sin 544+︒=D.1cos546︒=11.已知n S 是数列{}n a 的前n 项和,且21n n S S n +=-+,则下列选项中正确的是().A .121n n a a n ++=-(2n ≥)B .22n n a a +-=C .若10a =,则1004950S =D .若数列{}n a 单调递增,则1a 的取值范围是11,43⎛⎫- ⎪⎝⎭三、填空题12.已知:平面l αβ= ,A l ∈,B l ∈,4AB =,C β∈,CA l ⊥,3AC =,D α∈,DB l ⊥,3.DB =直线AC 与BD 的夹角是60︒,则线段CD 的长为.13.数列{}满足()2*114,13n n n a a a a n N +==-+∈,则122017111a a a +++ 的整数部分是.14.极线是高等几何中的重要概念,它是圆锥曲线的一种基本特征.对于圆222x y r +=,与点()00,x y 对应的极线方程为200x x y y r +=,我们还知道如果点()00,x y 在圆上,极线方程即为切线方程;如果点()00,x y 在圆外,极线方程即为切点弦所在直线方程.同样,对于椭圆22221x y a b +=,与点()00,x y 对应的极线方程为00221x x y y a b +=.如上图,已知椭圆C :22143x y +=,()4,P t -,过点P 作椭圆C 的两条切线PA ,PB ,切点分别为A ,B ,则直线AB 的方程为;直线AB 与OP 交于点M ,则sin PMB ∠的最小值是.四、解答题15.在数列{}n a 中,已知321212222n n a a a a n -++++= .(1)求数列{}n a 的通项公式;(2)在数列{}n a 中的1a 和2a 之间插入1个数11x ,使1112,,a x a 成等差数列;在2a 和3a 之间插入2个数2122,x x ,使221223,,,a x x a 成等差数列;…;在n a 和1n a +之间插入n 个数12,,,n n nn x x x ,使121,,,,,n n n nn n a x x x a + 成等差数列,这样可以得到新数列{}1112212233132334:,,,,,,,,,,,n n b a x a x x a x x x a a ,设数列{}n b 的前n 项和为n S ,求55S (用数字作答).16.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,左顶点为A ,短轴长为点31,2⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程;(2)过点F 的直线l (不与x 轴重合)与C 交于,P Q 两点,直线,AP AQ 与直线4x =的交点分别为,M N ,记直线,MF NF 的斜率分别为12,k k ,证明:12k k ⋅为定值.17.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,E 是BC 的中点,点F 在棱AD 上,且PA AD ⊥,2cos5PAE ∠=-,PA =(1)若平面PAB ⋂平面PCD l =,证明://l 平面ABCD ;(2)求平面PEF 与平面PCD 的夹角的余弦值的最大值.18.近年来,购买盲盒成为当下年轻人的潮流之一,为了引导青少年正确消费,国家市场监管总局提出,盲盒经营行为应规范指引,经营者不能变相诱导消费.盲盒最吸引人的地方,是因为盒子上没有标注,只有打开才会知道自己买到了什么,这种不确定性的背后就是概率.几何分布是概率论中非常重要的一个概率模型,可描述如下:在独立的伯努利(Bernoulli )试验中,若所考虑事件首次出现,则试验停止,此时所进行的试验次数X 服从几何分布,事件发生的概率p 即为几何分布的参数,记作()~X G p .几何分布有如下性质:分布列为()()11k P X k p p -==-,1,2,,,k n =⋅⋅⋅⋅⋅⋅,期望()()1111k k E X k p p p+∞-==-⋅=∑.现有甲文具店推出四种款式不同、单价相同的文具盲盒,数量足够多,购买规则及概率规定如下:每次购买一个,且买到任意一种款式的文具盲盒是等可能的.(1)现小嘉欲到甲文具店购买文具盲盒.①求他第二次购买的文具盲盒的款式与第一次购买的不同的概率;②设他首次买到两种不同款式的文具盲盒时所需要的购买次数为Y ,求Y 的期望;(2)若甲文具店的文具盲盒的单价为12元,乙文具店出售与甲文具店款式相同的非盲盒文具且单价为18元.小兴为了买齐这四种款式的文具,他应选择去哪家文具店购买更省钱,并说明理由.19.牛顿在《流数法》一书中,给出了代数方程的一种数值解法——牛顿法.具体做法如下:如图,设r 是()0f x =的根,首先选取0x 作为r 的初始近似值,若()f x 在点00(,())x f x 处的切线与x 轴相交于点1(,0)x ,称1x 是r 的一次近似值;用1x 替代0x 重复上面的过程,得到2x ,称2x 是r 的二次近似值;一直重复,可得到一列数:012,,,,,n x x x x .在一定精确度下,用四舍五入法取值,当()*1,N n n x x n -∈近似值相等时,该值即作为函数()f x 的一个零点r .(1)若32()33f x x x x =++-,当00x =时,求方程()0f x =的二次近似值(保留到小数点后两位);(2)牛顿法中蕴含了“以直代曲”的数学思想,直线常常取为曲线的切线或割线,求函数()e 3x g x =-在点(2,(2))g 处的切线,并证明:23ln31e <+;(3)若()(1ln )h x x x =-,若关于x 的方程()h x a =的两个根分别为1212,()x x x x <,证明:21e e x x a ->-.参考答案:题号12345678910答案C CACBBADABCBC题号11答案AC1.C【分析】化简集合A 后,根据P Q =∅ 分类讨论即可.【详解】由{}2120[3,4]P xx x =--≤=-∣,P Q =∅ ,当Q =∅时,需满足23m m >-,解得3m <;当Q ≠∅时,需满足34m m ≥⎧⎨>⎩,解得4m >,综上3m <或4m >.故选:C 2.C【分析】依题意不妨设这5次的分数从小到大分别为a 、a d +、2a d +、3a d +、4a d +()0,0a d >>,即可求出x 、m ,要使去掉一个数据之后平均数不变,则去掉的一定是2a d +,从而求出n ,即可判断.【详解】依题意不妨设这5次的分数从小到大分别为a 、a d +、2a d +、3a d +、4a d +()0,0a d >>,所以()123425x a a d a d a d a d a d =++++++++=+,又560%3⨯=,所以第60百分位数为23522a d a d m a d +++==+,要使4次成绩的平均分数为y 且y x =,则去掉的数据一定是2a d +,即还剩下a 、a d +、3a d +、4a d +()0,0a d >>,又460% 2.4⨯=,所以第60百分位数为3n a d =+,因为0d >,所以n m >.故选:C 3.A【分析】气球膨胀率指的是气球体积变化的值与半径变化值之间的比值,即rV∆∆,但此题所求的时瞬时变化率,故需要利用导数求解.【详解】因为343V r π=,所以r =,所以12333143r π-⎛⎫'=⨯ ⎪⎝⎭,所以,当43V π=时,12123333314313131433434344r ππππππ-⎛⎫⎛⎫⎛⎫⎛⎫'=⨯=⨯=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭dm /L .故选:A 4.C【分析】转化为动点到两定点之间距离和,再利用焦点三角形的性质可求最小值.,点(,)P x y 是椭圆22:154x y C +=上的点,设(1,0),(1,0),(0,1)E F A -,如图.记题中代数式为M ,则||||||||||M PA PF PA PE AE =+=+≥=等号当点E ,A ,P 依次共线时取得.因此所求最小值为故选:C.5.B【分析】利用等比数列前n 项和公式,结合充分条件、必要条件的定义判断即得.【详解】设数列{}n a 的首项和公比分别为1a ,(1)≠q q ,则111n n q S a q -=⋅-,取11a t q =-,得1n n S q t +=,显然数列{1}n S t +是等比数列;反之,取1t =,0n a =,此时11n S +=,数列{1}nS t+为等比数列,而{}n a 不是等比数列,所以甲是乙的充分不必要条件.故选:B 6.B【分析】对①:计算出一个三角形面积后乘8即可得;对②:借助等角定理,找到与AE 平行,与BF 相交的线段,计算即可得;对③:借助外接球与内切球的性质计算即可得;对④:空间中的距离和的最值问题可将其转化到同意平面中进行计算.【详解】对①:由题意可得2284S =⨯=表,故①正确;对②:连接AC ,取AC 中点O ,连接OE 、OF ,由题意可得OE 、OF 为同一直线,A 、E 、C 、F 四点共面,又AE EC CF FA ===,故四边形AECF 为菱形,故//AE CF ,故异面直线AE 与BF 所成的角等于直线CF 与BF 所成的角,即异面直线AE 与BF 所成的角等于60CFB ∠=,故②错误;对③:由四边形ABCD 为正方形,有2222222AC BC AB EC AE a =+=+=,故四边形AECF 亦为正方形,即点O 到各顶点距离相等,即此八面体的外接球球心为O,半径为2aR =,设此八面体的内切球半径为r ,则有2112233E ABCD F E ABCD V S r V a ---=⨯==⨯⨯⨯表r =,则此八面体的外接球与内切球的体积之比为33R r ⎛⎫⎪⎛⎫== ⎪⎝⎭对④:将AEB 延EB 折叠至平面EBC中,如图所示:则在新的平面中,A 、P 、C 三点共线时,AP CP +有最小值,则()min 22AP CP a +=⨯=,故④错误.故选:B.【点睛】关键点点睛:本题④中,关键点在于将不共面的问题转化为同一平面的问题.7.A【解析】在ABC V 中,2AB AC =,AD 是A ∠的平分线,由角平分线性质可得2BD ABCD AC==,利用cos cos BAD CAD ∠=∠结合余弦定理化简可得22212CD AC AD =-,再代入cos CAD ∠的式子中消去CD ,通过AC tAD =,化简整理得出3cos 4CAD t∠=,即可得到t 的取值范围.【详解】在ABC V 中,2AB AC =,AD 是A ∠的平分线,∴由角平分线的性质可得2BD ABCD AC==,BAD CAD ∠=∠,在ABD △中,由余弦定理得222cos 2AB AD BD BAD AB AD +-∠=⋅,在ACD 中,由余弦定理得222cos 2AC AD CD CAD AC AD +-∠=⋅,∴22222222AB AD BD AC AD CD AB AD AC AD+-+-=⋅⋅,化简得22222AD AC CD =-,即22212CD AC AD =-,∴22223332cos 2244AD AC AD CD AD CAD AC AD AC AD AC t+-∠===⋅⋅而0,2CAD π⎛⎫∠∈ ⎪⎝⎭,故()3cos 0,14CAD t ∠=∈,∴3,4t ⎛⎫∈+∞ ⎪⎝⎭.故选:A.【点睛】本题考查了三角形内角平分线的性质以及余弦定理在解三角形中的应用,考查了转化能力与计算能力,属于中档题.8.D【分析】构造函数()()e ,1,xf x x x∞=∈+,利用导数讨论其单调性,将问题转化为比较,,,再转化为比较9ln11,10ln10,11ln 9,构造函数()()20ln g x x x =-,利用导数讨论其单调性,利用单调性即可得答案.【详解】由题知,e e e 9ln11,10ln10,11ln 9a b ca b c ===,记()()e ,1,x f x x x ∞=∈+,则()()21e x x f x x-'=,当()1,x ∈+∞时,()0f x '>,()f x 单调递增,故比较,,a b c 的大小关系,只需比较,,的大小关系,即比较9ln11,10ln10,11ln 9的大小关系,记()()20ln ,1g x x x x =->,则()20ln 1g x x x=-+-',记()20ln 1h x x x =-+-,则()21200h x x x=--<',所以()h x 在()1,+∞上单调递减,又()220338ln 81ln 8ln e 0822h =-+-=-<-<,所以,当()8,x ∈+∞时,()0h x <,()g x 单调递减,所以()()()11109g g g <<,即9ln1110ln1011ln 9<<,所以()()()f a f b f c <<,所以a b c <<.故选:D【点睛】本题难点在于构造函数()()e ,1,xf x x x∞=∈+,将问题转化成比较,,的大小关系后,需要再次构造函数()()20ln ,1g x x x x =->,对学生观察问题和分析问题的能力有很高的要求,属于难题.9.ABC【分析】A 根据复数模的几何意义及圆的性质判断;B 利用复数的运算和模的运算求解即可;C 结合重心的性质进行判断;D 利用平面向量基本定理,判断出D 点位置,进而可求.【详解】对A ,由1i 1z +-=的几何意义,知复数z 对应的动点Z 到定点(1,1)-的距离为1,即动点Z 的轨迹以(1,1)-为圆心,1为半径的圆,1i z --表示动点点Z 的轨迹以(1,1)的距离,由圆的性质知:max |i |z --==113,A 正确;对B ,设i,i,(,,,R)z m n z c d m n c d =+=+∈12,因为12122,2,1z z z z ==+=,所以,m n c d +=+=222244,,m c n d +=+=1,所以mc nd +=-2,所以12()()i z z m c n d -=-+-====,B 正确;对C ,由正弦定理的sin sin AC C AB B ⋅=⋅,即||sin ||sin AC C AB B =,()sin sin sin AB AC AP AB AC AB B AC C AB B λλ⎛⎫ ⎪∴==+ ⎪⎝⎭,设BC 中点为E ,如图:则AB +AC =2AE,则||sin AP AE AB Bλ=2 ,由平面向量的共线定理得,,A P E 三点共线,即点P 在边BC 的中线上,故点P 的轨迹经过ABC V 的重心,C 正确;对D ,如图由已知点D 在ABC V 中与AB 平行的中位线上,且靠近BC 的三等分点处,故有,,ABD ABC ACD ABC BCD S S S S S ===1123 1111236ABC ABC S S ⎛⎫--= ⎪⎝⎭ ,所以13BCD ABDS S =△△,D 错误.故选:ABC 10.BC【分析】根据两角和的余弦公式,以及二倍角的正余弦公式化简可得3cos34cos 3cos x x x =-,根据定义即可判断A 项;根据二倍角公式可推得()424cos 8cos 8cos 1P x x x =-+,即可得出B 项;根据诱导公式以及A 的结论可知,3cos544cos 183cos18︒=︒-︒,2sin 54cos 362cos 181︒=︒=︒-.平方相加,即可得出25cos 188︒+=,进而求出C 项;假设D 项成立,结合C 项,检验即可判断.【详解】对于A 项,()cos3cos 2cos 2cos sin 2sin =+=-x x x x x x x ()222cos 1cos 2cos sin x x x x=--()()222cos 1cos 2cos 1cos x x x x =---34cos 3cos x x =-.由切比雪夫多项式可知,()3cos3cos x P x =,即()33cos 4cos 3cos P x x x =-.令cos t x =,可知()3343P t t t =-,故A 项错误;对于B 项,()cos 4cos 22x x =⨯()2222cos 2122cos 11x x =-=⨯--428cos 8cos 1x x =-+.由切比雪夫多项式可知,()4cos 4cos x P x =,即()424cos 8cos 8cos 1P x x x =-+.令cos t x =,可知()424881P t t t =-+,故B 项正确;对于C 项,因为36218︒=⨯︒,54318︒=⨯︒,根据A 项3cos34cos 3cos x x x =-,可得3cos 544cos 183cos18︒=︒-︒,2cos 362cos 181︒=︒-.又cos 36sin 54︒=︒,所以2222cos 36cos 54sin 54cos 541︒+︒=︒+︒=,所以,()()22324cos 183cos182cos 1811︒-︒+︒-=.令cos180t =︒>,可知()()223243211t tt -+-=,展开即可得出642162050t t t -+=,所以42162050t t -+=,解方程可得258t ±=.因为cos18cos320t =︒>︒,所以258t =,所以,2cos 362cos 181︒=︒-512184=⨯=,所以,sin 54cos36︒=︒=C 项正确;对于D 项,假设1cos546︒=,因为1sin 544︒=,则22221si c s n o 5445⎫︒=+≠⎪⎪⎝⎭⎝⎭︒+,显然不正确,故假设不正确,故D 项错误.故选:BC.【点睛】方法点睛:根据题意多项式的定义,结合两角和以及二倍角的余弦公式,化简可求出()()34cos ,cos P x P x ,换元即可得出()()34,P t P t .11.AC【分析】对于A ,由21n n S S n +=-+,多写一项,两式相减即可得出答案.对于B ,由121n n a a n ++=-(2n ≥),多递推一项,两式相减即可得出答案少了条件2n ≥.对于C ,由分析知22n n a a +-=,所以{}n a 奇数项是以10a =为首项,2为公差的等差数列,偶数项是以21a =为首项,2为公差的等差数列,由等差数列得前n 项和公式即可得出答案.对于D ,因为数列{}n a 单调递增,根据1234n a a a a a <<<<< ,即可求出1a 的取值范围.【详解】对于A ,因为21n n S S n +=-+,当()2121n n n S S n -≥=-+-,,两式相减得:121n n a a n ++=-(2n ≥),所以A 正确.对于B ,因为121n n a a n ++=-(2n ≥),所以()+122+11=21n n a a n n ++=-+,两式相减得:22n n a a +-=(2n ≥),所以B 不正确.对于C ,21n n S S n +=-+ ,令1n =,则211S S =-+,1211a a a +=-+,因为10a =,所以21a =.令2n =,则324S S =-+,112324a a a a a ++=--+,所以32a =.因为22n n a a +-=(2n ≥),而312a a -=,所以22n n a a +-=.所以{}n a 奇数项是以10a =为首项,2为公差的等差数列.偶数项是以21a =为首项,2为公差的等差数列.则:()()10012399100139924100=+++S a a a a a a a a a a a =+++++++++ 5049504950025012=495022⨯⨯⎛⎫⎛⎫=⨯+⨯+⨯+⨯ ⎪ ⎪⎝⎭⎝⎭,所以C 正确.对于D ,21n n S S n +=-+,令1n =,则211S S =-+,1211a a a +=-+,则2121a a =-+又因为+12=21n n a a n +++,令1n =则23=3a a +,所以()3211=332122a a a a -=--+=+,同理:()4311=552223a a a a -=-+=-+,()5411=772324a a a a -=--+=+,因为数列{}n a 单调递增,所以1234n a a a a a <<<<< ,解12a a <得:113a <,解23a a <得:114a >-,解34a a <得:114a <,解45a a <得:114a >-,解56a a <得:114a <,所以1a 的取值范围是11,44⎛⎫- ⎪⎝⎭,所以D 不正确.故选:AC.【点睛】本题考查的是等差数列的知识,解题的关键是利用121n n a a n ++=-,得出{}n a 的奇数项、偶数项分别成等差数列,考查学生的逻辑推理能力和运算求解能力,属于难题.12.5【分析】作//AE BD 且AE BD =,连接,ED EC ,则CAE ∠(或其补角)为异面直线,AC BD 所成的角,所以60CAE ∠=︒或120CAE ∠=︒,证明DE EC ⊥,先求出EC ,再得CD .【详解】如图,作//AE BD 且AE BD =,连接,ED EC ,则CAE ∠(或其补角)为异面直线,AC BD 所成的角,所以60CAE ∠=︒或120CAE ∠=︒,因为//AE BD 且AE BD =,所以ABDE 是平行四边形,所以//DE AB ,4DE AB ==,因为,AB AC AB BD ⊥⊥,所以,ED AC ED AE ⊥⊥,AC AE A ⋂=,所以BD ⊥平面AEC ,CE ⊂平面AEC ,所以ED CE ⊥,3AC AE ==,若60CAE ∠=︒,则3CE =,5CD ==,若120CAE ∠=︒,则23sin 60CE =⨯︒=,CD =故答案为:5【点睛】本题考查异面直线所成角的应用,都可空间两点间的距离.解题关键是作出异面直线所成的角.构造三角形,在三角形中求线段长.13.2【详解】因为()2*114,13n n n a a a a n N +==-+∈,所以211(1)0n n n n n a a a a a ++-=->⇒>,数列{}单调递增,所以1(11)0n n n a a a +-=->,所以111(1)1111n n n n na a a a a +--=--=,所以121122111111111111()()()11111n n n n n S a a a a a a a a a a a =+++=-+-++-=------ ,所以20172017131m S a ==--,因为143a =,所以22223444131313133133133()1,()1,()12,33999818181a a a =-+==-+==-+> ,所以20172016201542a a a a >>>>> ,所以201711a ->,所以20171011a <<-,所以201512331a <-<-,因此m 的整数部分是2.点睛:本题考查了数列的综合应用问题,其中解答中涉及到数列的通项公式,数列的裂项求和,数列的单调性的应用等知识点的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定的难度,属于难题,本题的借助数列递推关系,化简数列为111111n n na a a +=---,再借助数列的单调性是解答的关键.14.103tyx -+-=(或330x ty -+=);【分析】(1)根据已知直接写出直线AB 的方程;(2)求出cos ,OP n →→〈〉=sin PMB ∠利用基本不等式求解.【详解】解:(1)由题得AB :4143x ty-+=,即103ty x -+-=,(2)()4,OP t →=-,3k AB t→=,∴AB →的方向向量(),3n t = ,所以cos ,OP nOP n OP n→→→→→→⋅〈〉==sin PMB ∠==,即()min sin PMB ∠=.故答案为:103tyx -+-=.15.(1)2n n a =(2)14337【分析】(1)根据数列的前n 项和求数列的通项公式,一定要分1n =和2n ≥讨论.(2)首先弄清楚新数列前55项的构成,再转化为错位相减法求和.【详解】(1)当1n =时,12a =;当2n ≥时,3312211121222222222n n n n n n a a a a a a a a a ----⎛⎫⎛⎫=++++-++++ ⎪ ⎪⎝⎭⎝⎭()2212n n =--=,所以122nn a -=⇒2n n a =,2n ≥.当1n =时,上式亦成立,所以:2n n a =.(2)由()123155n n ⎡⎤+++++-=⎣⎦ ⇒10n =.所以新数列前55项中包含数列的前10项,还包含,11x ,21x ,22x ,31x ,32x ,L ,98x ,99x .且12112a a x +=,()23212222a a x x ++=,()3431323332a a x x x +++=,()91091929992a a x x x ++++=.所以()()()239101255121029222a a a a a a S a a a +++=+++++++123910357191122a a a a a ++++=+ .设123935719T a a a a =++++ 1239325272192=⨯+⨯+⨯++⨯ 则234102325272192T =⨯+⨯+⨯++⨯ ,所以()1239102322222192T T T -=-=⨯+⨯+++-⨯ 101722=-⨯-.故:101722T =⨯+.所以1010955172211228211433722S ⨯+=+⨯=⨯+=.【点睛】关键点点睛:本题的关键是要弄清楚新数列前55项的构成.可先通过列举数列的前几项进行观察得到规律.16.(1)22143x y +=;(2)证明见解析.【分析】(1)由题意得b =,将点3(1,)2代入椭圆的方程可求得2a 的值,进而可得椭圆的方程;(2)设:1l x ty =+,1(P x ,1)y ,2(Q x ,2)y ,联立直线l 和椭圆的方程,可得122634ty y t +=-+,122934y y t =-+,直线PA 的方程为11(2)2y y x x =++,令4x =,得116(4,2y M x +,同理226(4,)2y N x +,由斜率公式计算即可.【详解】(1)因为2b =b =,再将点31,2⎛⎫ ⎪⎝⎭代入22213x y a +=得21314a +=,解得24a =,故椭圆C 的方程为22143x y +=;(2)由题意可设()()1122:1,,,,l x ty P x y Q x y =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩可得()2234690t y ty ++-=,易知0∆>恒成立,所以12122269,3434t y y y y t t +=-=-++,又因为−2,0,所以直线PA 的方程为=+2,令4x =,则1162=+y y x ,故1164,2y M x ⎛⎫⎪+⎝⎭,同理2264,2y N x ⎛⎫⎪+⎝⎭,从而()()111212126266,413333y x y y k k ty ty +===-++,故()()()212121222212121222363643419189333993434y y y y t k k t t ty ty t y y t y y t t -+====-+++++--+++为定值.17.(1)证明见解析(2)14【分析】(1)证明出//CD 平面PAB ,利用线面平行的性质可得出//CD l ,再利用线面平行的判定定理可证得结论成立;(2)计算出cos PAB ∠的值,以A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴,建立空间直角坐标系,设()0,,0F a ()02a ≤≤,利用空间向量法结合二次函数的基本性质可求得平面PEF 与平面PCD 的夹角的余弦值的最大值.【详解】(1)证明:因为四边形ABCD 正方形,所以//AB CD .因为CD ⊂/平面PAB ,AB ⊂平面PAB ,所以//CD 平面PAB .又因为CD ⊂平面PCD ,平面PAB ⋂平面PCD l =,所以//CD l .因为l ⊂/平面ABCD ,CD ⊂平面ABCD ,所以//l 平面ABCD .(2)解:由题意可得AE ==,PE =因为四边形ABCD 是正方形,所以AB AD ⊥.又因为PA AD ⊥,PA AB A = ,PA 、AB ⊂平面PAB ,所以AD ⊥平面PAB .因为//AD BC ,所以⊥BC 平面PAB ,因为PB ⊂平面PAB ,所以,BC PB⊥.则PB ===.所以,222cos 2PA AB PB PAB PA AB +-∠==⋅以A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴,建立如图所示的空间直角坐标系.点P 到平面yAz的距离为()cos π1AP PAB -∠=,点P 到平面xAy2==.则()1,0,2P -,()2,2,0C ,()0,2,0D ,()2,1,0E ,设()0,,0F a ()02a ≤≤,则()3,2,2PC =-,()2,0,0CD =- ,设平面PCD 的法向量为()111,,x n y z = ,则1111322020PC n x y z CD n x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,取11y =,可得()0,1,1n = .设平面PEF 的法向量为()222,,m x y z = ,()3,1,2PE =-,()1,,2PF a =- ,则22222232020PE m x y z PF m x ay z ⎧⋅=+-=⎪⎨⋅=+-=⎪⎩,取24y =,可得()22,4,31m a a =-- .设平面PEF 与平面PCD 的夹角为α,则cos m n m nα⋅==⋅ 令[]11,3a t +=∈,则cosα==.当1512t =时,211484013t t ⎛⎫-⨯+⎪⎝⎭取得最小值,最小值为143,所以cos α75a =.故平面PEF 与平面PCD 的夹角的余弦值的最大值为14.18.(1)①34;②73(2)应该去乙店购买非盲盒文具,理由见解析【分析】(1)①明确第二次只需买到其余的三种文具盲盒的任意一款即可求解;②结合已知由几何分布的性质即可求解.(2)由随机变量以及相应的均值结合几何分布的性质即可求解.【详解】(1)①由题意可知,当第一次购买的文具盲盒已经确定时,第二次只需买到其余的三种文具盲盒的任意一款即可,所以34p =;②设从第一次购买文具后直到购买到两种不同款式的文具盲盒所需要的购买次数为X ,则由题意可知3~4X G ⎛⎫ ⎪⎝⎭,又1Y X =+,所以()()()4711133E Y E X E X =+=+=+=.(2)由题意,在乙店买齐全部文具盲盒所花费的费用为18472⨯=元,设从甲店买齐四种文具盲盒所需要的购买次数为Z ,从第一次购买到1i -种不同款式的文具开始,到第一次购买到i 种不同款式的文具盲盒所需要的购买次数为随机变量i Z ,则5~4i i Z G -⎛⎫ ⎪⎝⎭,其中1,2,3,4i =,而1234Z Z Z Z Z =+++,所以()()()441234114425124533i i i E Z E Z Z Z Z E Z i===+++===+++=-∑∑,所以在甲店买齐全部文具盲盒所需费用的期望为()1210072E Z =>,所以应该去乙店购买非盲盒文具.19.(1)1.83(2)22e e 30x y ---=,证明见解析(3)证明见解析【分析】(1)根据题意分别计算出12,x x ,取2x 得近似值即为方程()0f x =的二次近似值;(2)分别求出(2)g ,(2)g ',即可写出函数()g x 在点(2,(2))g 处的切线方程;设2()ln 1,1ex m x x x =-->,证明出2()(e )m x m ≤,得出2(3)(e )m m <,即可证明;(3)先判断出1201e x x <<<<,然后辅助证明两个不等式()()()1e 1e 1e h x x x ≥-≤≤-和()(01)h x x x ≥<≤即可.【详解】(1)2()361f x x x '=++,当00x =时,(0)1f '=,()f x 在点(0,3)-处的切线方程为3y x +=,与x 轴的交点横坐标为(3,0),所以13x =,(3)46f '=,()f x 在点(3,54)处的切线方程为5446(3)y x -=-,与x 轴的交点为42(,0)23,所以方程()0f x =的二次近似值为1.83.(2)由题可知,2(2)e 3g =-,()e x g x '=,2(2)e g '=,所以()g x 在(2,(2))g 处的切线为22(e 3)e (2)y x --=-,即22e e 30x y ---=;设2()ln 1,1e x m x x x =-->,则211()em x x '=-,显然()m x '单调递减,令()0m x '=,解得2e x =,所以当2(1,e )x ∈时,()0m x '>,则()m x 在2(1,e )单调递增,当2(e ,)x ∈+∞时,()0m x '<,则()m x 在2(e ,)+∞单调递减,所以2222e ()(e )ln e 10em x m ≤=--=,所以2(3)(e )m m <,即2233ln 310ln 31e e --<⇔<+.(3)由()ln h x x x x =-,得()ln h x x '=-,当01x <<时,ℎ′>0;当1x >时,ℎ′<0,所以ℎ在0,1上单调递增,在1,+∞上单调递减,所以1x =是ℎ的极大值点,也是ℎ的最大值点,即()max ()11h x h ==,又0e x <<时,()0h x >,e x >时,()0h x <,所以当方程()h x a =有两个根时,必满足1201e x x <<<<;曲线()y h x =过点()1,1和点()e,0的割线方程为1(e)1e y x =--,下面证明()()()1:e 1e 1e h x x x ≥-≤≤-,设()()()()1e 1e 1eu x h x x x =--≤≤-,则()1e 11ln ln lne e 1u x x x -⎛⎫=-+=-'- ⎪-⎝⎭,所以当1e 11e x -<<时,()0u x '>;当1e 1e e x -<<时,()0u x '<,所以()u x 在1e 11,e -⎛⎫ ⎪⎝⎭上单调递增,()()10u x u ≥=;在1e 1e ,e -⎛⎫ ⎪⎝⎭上()u x 单调递减,()()e 0u x u ≥=,所以当1e x ≤≤时,()0u x ≥,即()1()e (1e)1ef x x x ≥-≤≤-(当且仅当1x =或e x =时取等号),由于21e x <<,所以()()221e 1e a f x x =>--,解得2e e x a a >-+;①下面证明当01x <≤时,()h x x ≥,设()()ln ,01n x h x x x x x =--<≤=,因为ln 0x ≤,所以当01x <≤时,()f x x ≥(当且仅当1x =时取等号),由于101x <<所以()11a h x x =>,解得1x a ->-,②①+②,得21e e x x a ->-.【点睛】关键点睛:第三问的难点在于辅助构造出两个函数不等式,这样再利用函数单调性,得到相关不等式,然后进行估计21x x -的范围.。
2023-2024学年河北省部分学校高三下学期高考演练数学模拟试题(一模)含解析
2023-2024学年河北省部分学校高三下学期高考演练数学模拟试题(一模)一、单选题1.已知集合{}220|A x x x =-<,集合{}210|2x B x -=-≤,则A B ⋃=()A .{}|02x x <<B .{}2|0x x <≤C .{}|2x x <D .{}2|x x ≤【正确答案】D【分析】根据一元二次不等式以及指数不等式化简集合,A B ,由集合的并运算即可求解.【详解】由于22021022202x x x x ---≤⇒≤⇒-≤⇒≤所以{}|02A x x =<<,{}|2B x x =≤,所以{}|2A B x x ⋃=≤.故选:D.2.已知复数1z ,2z ,“21z z >”是“211z z >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】D【分析】根据充分条件和必要条件的定义求解.【详解】若21z z >,可得复数1z ,2z 都为实数,当120z z <<时,211z z <,充分性不成立;反之,若211z z >取复数11i z =+,222i z =+,满足2121z z =>,但此时复数1z ,2z 均为虚数,不能比较大小,必要性不成立,所以“21z z >”是“211z z >”的既不充分也不必要条件;故选:D.3.若函数923log ,14()1,123x x f x x x x ⎧->⎪⎪=⎨⎪≤⎪++⎩,则523f f ⎡⎤=⎪⎢⎥⎢⎣⎛ ⎝⎦⎭⎥⎫()A .517B .175C .417D .174【正确答案】C【分析】根据自变量的取值,即可代入到分段函数中,计算即可.【详解】由于5231>,所以5522935313log 34442f ⎛⎫=-=-= ⎪⎝⎭,故5211431217134f f f ⎡⎤⎛⎫==⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+⎪⎭+⎛⎫ ⎝=,故选C.4.2021年5月22日上午10点40分,祝融号火星车安全驶离着陆平台,到达火星表面,开始巡视探测.为了帮助同学们深入了解祝融号的相关知识,某学校进行了一次航天知识讲座,讲座结束之后,学校进行了一次相关知识测试(满分100分),学生得分都在[]50,100内,其频率分布直方图如下,若各组分数用该组的中间值代替,估计这些学生得分的平均数为()A .70.2B .72.6C .75.4D .82.2【正确答案】C【分析】根据题意,由频率之和为1,可得m 的值,然后结合平均数的计算公式,代入计算,即可得到结果.【详解】由条件可得()0.0040.0540.0120.010101m ++++⨯=,则0.020m =,故得分的平均数为.()0.004550.020650.054750.012850.010951075.4⨯+⨯+⨯+⨯+⨯⨯=故选:C5.中国国家大剧院的外观被设计成了半椭球面的形状.如图,若以椭球的中心为原点建立空间直角坐标系,半椭球面的方程为2222221x y z a b c++=(0,z ≥,,,0a b c >,且a ,b ,c 不全相等).若该建筑的室内地面是面积为2(0)m m π>的圆,给出下列结论:①a b =;②c m =;③2ac m =;④若ac m >,则1c >,其中正确命题的个数为()A .1B .2C .3D .4【正确答案】B【分析】根据已知得a b m ==,结合题设判断各项正误即可.【详解】在2222221x y z a b c ++=中,令0z =可得该建筑室内地面对应的曲线方程为22221x y a b+=,由室内地面是面积为2πm (0)m >的圆,故a b =,①对;且22ππa m =,则a b m ==,又,,a b c 不全相等,故c m ≠,②错;若2ac m =,则2mc m =,可得c m =,与,,a b c 不全相等矛盾,③错;若ac m >,则0mc m >>,故1c >,④对.故选:B.6.已知α是第三象限角,3cos 2sin 2αα+=,则tan α=()A .24B 33C 3D .22【正确答案】A【分析】根据α是第三象限角,3cos 2sin 2αα+=,利用二倍角公式整理得26sin sin 10αα--=,求得sin α,再利用基本关系求解.【详解】∵α是第三象限角,3cos 2sin 2αα+=,∴()2312sin sin 2αα-+=,∴26sin sin 10αα--=,解得1sin 3α=-或1sin 2α=(舍去),∴22cos 1sin 3αα=--=-,∴2tan 4α=,故选:A.7.直线:40l ax by +-=与圆22:4O x y +=相切,则22(3)(4)a b -+-的最大值为()A .16B .25C .49D .81【正确答案】C【分析】利用圆与直线的位置关系得出,a b 的方程,根据方程分析利用22(3)(4)a b -+-表示的几何意义求解即可.【详解】由直线l 与圆O 相切可得:圆心()0,0O 到直线l 的距离等于圆的半径,2=,故224a b +=,即点(,)a b 在圆O 上,22(3)(4)a b -+-的几何意义为圆上的点(,)a b 与点(3,4)之间距离的平方,由224a b +=圆心为()0,0,因为22344+>,所以点(3,4)在圆224a b +=外,所以点(,)a b 到点(3,4)的距离的最大值为圆心到(3,4)的距离与圆半径之和,即27d r +=,所以22(3)(4)a b -+-的最大值为2749=.故选:C.8.为了提高同学们对数学的学习兴趣,某高中数学老师把《周髀算经》、《九章算术》、《孙子算经》、《海岛算经》这4本数学著作推荐给学生进行课外阅读,若该班A ,B ,C 三名同学有2名同学阅读其中的2本,另外一名同学阅读其中的1本,若4本图书都有同学阅读(不同的同学可以阅读相同的图书),则这三名同学选取图书的不同情况有()A .144种B .162种C .216种D .288种【正确答案】A【分析】利用排列组合公式进行合理分类讨论即可.【详解】分两种情况:第一种情况,先从4本里选其中2本,作为一组,有24C 种,第二组从第一组所选书籍中选1本,再从另外2本中选取1本作为一组,剩余一本作为一组,再分给3名同学,共有211342231C C C A 2方法;第二种情况:从4本里任选2本作为一组,剩余的两本作为一组,有224222C C A 种分法,分给3名同学中的2名同学,有23A 种分法,剩余1名同学,从这4本中任选一本阅读,有14C 种分法,共有2221423422C C A C A ⋅种方法.故这三名同学选取图书的不同情况有222113214242233422C C 1C C C A A C 1442A +⋅=种.故选:A.二、多选题9.已知函数()sin cos (0)f x x x ωωω=+>的最小正周期为π2,若12()()2f x f x =-,则()A .()f x 关于直线1x x =对称B .()f x 关于点2(,0)x 对称C .12x x +的最大值为π2D .12x x +的最小值为π8【正确答案】AD【分析】根据辅助角公式化简()f x ,利用周期的公式求解4ω=,进而根据12()()2f x f x =-可判断12,x x x x ==为()f x 的对称轴,即可判断AB,利用对称中心可求解DC.【详解】由π()sin cos cos )4f x x x x ω=+=+的最小正周期为π2可得2ππ2ω=,即4ω=,故π())4f x x =+,由12()()2f x f x =-可得1()f x ,2()f x 分别为()f x 的最大值和最小值,故()f x 关于直线1x x =对称,不关于点2(,0)x 对称,故A 正确,B 错误;由()π4πZ 4x k k +=∈可得()1πZ 416x kx k =-∈,故()f x 的对称中心()1ππ,0Z 416k k ⎛⎫-∈ ⎪⎝⎭,则121π1π2ππ,Z 41628x x n n n +=-=-∈,当0n =时,12x x +取得最小值π8,没有最大值,故C 错误,D 正确.故选:AD10.已知双曲线2222:1(0,0)x y C a b a b-=>>的虚轴长为2,过C 上点P 的直线l 与C 的渐近线分别交于点A ,B ,且点P 为AB 的中点,则下列正确的是()A .若(,)P m n 且直线l 的斜率存在,直线l 的方程为21mynx a -=B .若(2,1)P ,直线l 的斜率为1C.若离心率e =2OAB S=△D .若直线l 的斜率不存在,2AB =【正确答案】BCD【分析】根据点差法可得直线的斜率,进而可判断A ,利用A 选项的求解可判断B ,利用离心率可得渐近线方程,进而联立直线AB 与渐近线方程得交点坐标,利用三角形面积公式以及双曲线方程可判断C ,根据顶点和渐近线方程可求解D.【详解】由题意1b =,双曲线222:1x C y a-=.对于A ,若(,)P m n ,则2221m n a-=,即2222m a n a -=.设11(,)A x y ,22(,)B x y ,则221120x y a -=,222220x y a -=,利用点差法可得121222212122()2ABy y x x m m k x x a y y a n a n-+===-+=,所以直线l 的方程为y n -=2()mx m a n-,即2222a ny a n mx m -=-,所以22222mx a ny m a n a -=-=,即21mxny a -=,故A 错误;对于B ,若(2,1)P ,可得222211a -=,则a =l 的斜率为22121m a n ==⨯,即B 正确;对于C,若离心率222,2c e c a b a==+,可得2a =.则双曲线22:14x C y -=,其渐近线方程为2xy =±,设11(,)2x A x ,22(,2xB x -,直线()()121112:22x x x AB y x x x x +=-+-,令121220,x xy x x x ==+,则121221122212221OAB x x x x x x S x x +=+=△,由A 知AB 方程为14mxny -=,联立方程142mxny x y ⎧-=⎪⎪⎨⎪=⎪⎩可得142x m n =-,同理可得242x m n =+,所以1211442222OAB S x x m n m n ==⨯-+△2288244m n ===-,故C 正确;对于D ,若直线l 的斜率不存在,则直线l 过双曲线的顶点,所以(,0)P a ±,双曲线的渐近线方程为1y x a=±,当x a =±时,代入渐近线方程易得A ,B 两点的纵坐标为1±,所以2AB =,故D 正确;故选:BCD.11.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是菱形,点P ,Q ,M 分别为11A D ,11C D ,BC 的中点,下列结论正确的有()A .//AC 平面PQMB .该四棱柱有外接球,则四边形ABCD 为正方形C .BC 与平面PQM 不可能垂直D .BD QM⊥【正确答案】ABC【分析】根据线线平行即可判断A ,利用外接圆的对角互补,则可判断B ,利用反证法,结合线面垂直的性质定理可判断C,D.【详解】对A ,连接11AC ,由点P ,Q ,分别为11A D ,11C D 可得11//ACPQ ,11111////.AA BB CC AA BB CC == ,所以四边形11A ACC 为平行四边形,则11//AC AC ,故//AC PQ ,AC ⊄平面PQM ,PQ ⊂平面PQM ,则//AC 平面PQM ,即A 正确;对B ,若四棱柱有外接球,则四边形ABCD 有外接圆,则ABCD 对角互补,则ABCD 为正方形,即B 正确;对C ,若BC ⊥平面PQM ,PQ ⊂平面PQM ,则BC PQ ⊥,由//PQ AC 可得BC AC ⊥,与条件矛盾,故BC 与平面PQM 不可能垂直,即C 正确;对D ,取CD 的中点N ,连接MN ,QN ,则//MN BD ,1//QN CC ,1CC ⊥ 平面ABCD ,QN ∴⊥平面ABCD ,MN ⊂ 平面ABCD ,QN MN ∴⊥,90QNM ∴∠=︒,则90QMN ∠<︒,故BD 与QM 不垂直,即D 错误.故选:ABC.12.设()f x 是定义在R 上的偶函数,其图象关于直线2x =对称,当[0,2]x ∈时,2()f x x =,若方程()4log (5)(0,1)a f x x a a >=+≠在[]4,6-上恰有5个实数解,则()A .()f x 的周期为4B .()f x 在[]8,10上单调递减C .()f x 的值域为[]0,2D .711a <<【正确答案】AD【分析】由对称性与奇偶性得到函数的周期性,即可判断A 、B ,结合所给函数解析式求出函数的值域,即可判断C ,画出函数()y f x =与4log (5)(1)a y x a =+>的图象,数形结合,即可判断D.【详解】由()f x 的图象关于2x =对称可得(4)()f x f x +=-,再由()f x 为偶函数可得()()f x f x -=,故()(4)f x f x =+,即()f x 的周期为4,即A 正确;当[0,2]x ∈时,由2()f x x =,可得()f x 在[0,2]上单调递增,故()f x 在[]8,10上单调递增,即B 错误;又(0)0f =,(2)4f =,故()f x 的值域为[]0,4,即C 错误;在同一坐标系下画出函数()y f x =与4log (5)(1)a y x a =+>的图象如图所示.由图可知,要使()y f x =与()4log (5)b g x x =+在[]4,6-上恰有5个不同交点,只需()()24641g g a ⎧<⎪>⎨⎪>⎩,即log 71log 1111a a a <⎧⎪<⎨⎪>⎩,解得711a <<,即a 的取值范围为()7,11,故D 正确.故选:AD三、填空题13.已知O 为ABC 的外心,若2OA =,且75BAC ∠=︒,则OB OC ⋅=__________.【正确答案】23-【分析】由平面向量数量积公式进行求解.【详解】由圆的性质可得2150BOC BAC ∠=∠=︒,2OA OB OC ===,故cos 22cos15023OB OC OB OC BAC ⋅=⋅∠=⨯⨯︒= 故23-14.若函数4()ln 42mxf x x-=-的图象关于原点对称,则实数m 的值为__________.【正确答案】2-【分析】根据奇函数的性质根据()()f x f x -=-,即可求解.【详解】依题意,()()f x f x -=-,即44ln ln 4242mx mxx x-+=-+,所以442424mx x x mx +-=+-,解得2m =±,当2m =时,42()ln42xf x x-=-,定义域{}2x x ≠不关于原点对称,故舍去,当2m =-时,42()ln 42xf x x+=-,定义域为{}22x x -<<,符合要求,故2m =-,故2-15.函数33()sincos sin cos 2222x x x xf x =-的最小值为__________.【正确答案】14-/0.25-【分析】根据二倍角公式化简()1sin 24f x x =-,即可求解最值.【详解】因为33()sin cos sin cos 2222x x x x f x =-22sin cos sin cos 2222x x x x ⎛⎫=-= ⎪⎝⎭1sin cos 2x x -1sin 24x =-,所以当π22π,Z 2x k k =+∈时,sin 21x =,此时()f x 的最小值为14-.故14-四、双空题16.如图,在三棱锥A BCD -中,AB CD ⊥,AD BC ⊥,且3BD AC =,点E ,F 分别为AD ,BC 的中点,则异面直线AC 与BD 所成角的大小为__________,AC 与EF 所成角的余弦值为__________.【正确答案】90︒10【分析】根据异面直线夹角的定义作辅助线,构造三角形.【详解】取AB 的中点G ,连接EG ,FG ,则//FG AC ,//EG BD ,故EFG ∠或其补角为异面直线AC 与EF 所成的角,过A 作AO ⊥平面BCD 于点O ,连接BO ,CO ,DO ,则AO CD ⊥,又AB CD ⊥,且AB AO A = ,故CD ⊥平面AOB ,故BO CD ⊥,同理可得DO BC ⊥,即O 为BCD △的垂心,故BD CO ⊥,又AO BD ⊥,AO CO O = ,AO ⊂平面AOC ,CO ⊂平面AOC ,故BD ⊥平面AOC ,故AC BD ⊥,即AC 与BD 所成角为90︒;所以90EGF ∠=︒,由3BD AC =可得3EG FG =,故cos FG EFG EF ∠==即异面直线AC 与EF故①90︒,②10.五、解答题17.已知n S 是公差不为0的等差数列{}n a 的前n 项和,2a 是1a ,4a 的等比中项,1278S =.(1)求数列{}n a 的通项公式;(2)已知1213n a n n b a --=⋅,求数列{}n b 的前n 项和n T .【正确答案】(1)n a n=(2)(1)31nn T n =-⨯+【分析】(1)根据题意列式求解1,a d ,即可得结果;(2)由(1)可得:1(21)3n n b n -=-⨯,利用错位相减法求和.【详解】(1)设数列{}n a 的公差为d ,因为2a 是1a ,4a 的等比中项,则2214a a a =,即2111()(3)a d a a d +=+,且0d ≠,整理得1d a =①,又因为121121211782dS a =+⨯⨯=,整理得163339a d +=②由①②解得,11a =,1d =,所以()11n a n n =+-=.(2)由(1)知,()11213213n n n n b a n ---=⨯=-⨯,则021133353(21)3n n T n -=⨯+⨯+⨯+⋅⋅⋅+-⨯,可得12313133353(23)3(21)3n nn T n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯,两式相减得0123121323232323(21)3n nn T n --=⨯+⨯+⨯+⨯+⋅⋅⋅+⨯--⨯16(13)1(21)313n n n --=+--⨯-(22)32n n =-⨯-,所以(1)31nn T n =-⨯+.18.为了了解大家对养宠物的看法,某单位对本单位450名员工(其中女职工有150人)进行了调查,发现女职工中支持养宠物的职工占13,若从男职工与女职工中各随机选取一名,至少有1名职工支持养宠物的概率为12.(1)求该单位男职工支持养宠物的人数,并填写下列22⨯列联表;支持养宠物不支持养宠物合计男职工女职工合计450(2)依据小概率值0.05α=的独立性检验,能否认为该单位职工是否支持养宠物与性别有关?附:()()()()()22n ad bc a b c d a c b d χ-=++++,n a b c d =+++.α0.100.050.0100.001x α2.7063.8416.63510.828【正确答案】(1)表格见解析(2)不能认为该单位职工是否支持养宠物与性别有关【分析】(1)运用对立事件列方程求出男职工支持养宠物的概率p ,再求出男职工中支持养宠物的人数;(2)根据卡方公式求解.【详解】(1)从男职工中随机选取1人,设支持养宠物的概率为p ,则2人中至少有一名支持养宠物是都不支持养宠物的对立事件,∴111(1)(1)32p ---=,解得14p =,则男职工中支持养宠物的人数为1300745⨯=,22⨯列联表如下:支持养宠物不支持养宠物合计男职工75225300女职工50100150合计125325450(2)零假设为:0H :性别与态度无关联;由于22450(7510022550) 3.462 3.841125325300150χ<⨯-⨯=≈⨯⨯⨯,∴不能认为该单位职工是否支持养宠物与性别有关;综上,男职工中支持养宠物的人数为75;不能认为该单位职工是否支持养宠物与性别有关.19.在ABC 中,4AB =,AC =点D 为BC 的中点,连接AD 并延长到点E ,使3AE DE =.(1)若1DE =,求BAC ∠的余弦值;(2)若π4ABC ∠=,求线段BE 的长.【正确答案】(1)4-2【分析】(1)设BD DC x ==,由cos cos 0ADB ADC ∠+∠=结合余弦定理求解即可求出x =ABC 中,由余弦定理即可求出答案.(2)在ABC 中,由余弦定理求出BC =ABD △中,由余弦定理求出AD =,连接BE ,在ABE 中,由余弦定理即可求出线段BE 的长.【详解】(1)因为1DE =,3AE DE =,所以2AD =,因为πADB ADC ∠+∠=,所以cos cos 0ADB ADC ∠+∠=,设BD DC x ==,则222222022BD AD AB CD AD AC BD AD CD AD+-+-+=⋅⋅,即224164802222x x x x +-+-+=⋅⋅⋅⋅,解得x =2BC BD ==在ABC 中,由余弦定理知,222cos2AB AC BC BAC AB AC +-∠==-⋅(2)在ABC 中,由余弦定理知,2222cos AC AB BC AB BC ABC =+-⋅⋅∠,所以2816242BC BC =+-⋅⋅⋅,化简得280BC -+=,解得BC =因为D 是BC 的中点,所以12BD BC ==在ABD △中,由余弦定理知,2222cos AD AB BD AB BD ABC =+-⋅⋅∠16224102=+-⨯=,所以AD =,因为3AE DE =,所以32AE AD ==在ABD △中,由余弦定理知,222cos2AB AD BD BAE AB AD +-∠=⋅连接BE ,在ABE 中,由余弦定理知,2222cos BE AB AE AB AE BAE =+-⋅⋅∠=351624222⎛⎫+-⨯⨯= ⎪ ⎪⎝⎭,所以BE =20.如图,在三棱锥-P ABC 中,平面PAC ⊥平面ABC ,若PAC △为等边三角形,ABC 为等腰直角三角形,且AC BC =,点E 为AC 的中点,点D 在线段AB 上,且4AB AD =.(1)证明:AB ⊥平面PDE ;(2)求平面PDE 与平面PBC 所成锐二面角的余弦值.【正确答案】(1)证明见解析4【分析】(1)作出辅助线,得到DE AB ⊥,由三线合一得到PE AC ⊥,从而得到线面垂直,面面垂直,从而证明出结论;(2)建立空间直角坐标线,利用空间向量求解二面角的余弦值.【详解】(1)如图,取AB 的中点G ,由AC BC =可得CG AB ⊥,由4AB AD =可得D 为AG 的中点,由E 为AC 的中点可得DE 为ACG 的中位线,∴DE CG ∥,∴DE AB ⊥,∵E 为AC 的中点,PA PC =,∴PE AC ⊥,∵平面PAC ⊥平面ABC ,且平面PAC 平面ABC AC =,PE 在面PAC 内,∴PE ⊥平面ABC ,而AB ⊂平面ABC ,∴PE AB ⊥,又PE DE E = ,且PE DE ⊂,平面PDE ,∴AB ⊥平面PDE .(2)以C 为原点,CA 、CB 为x 、y 轴,过C 垂直于面ABC 的直线为z 轴,设4PA =.则(4,0,0)A ,(0,4,0)B ,(0,0,0)C,P ,则(2,0,PA =- ,()4,4,0AB =-,∴1(1,1,4PD PA AD PA AB =+=+=-,(2,4,PB =--,(2,0,PC =--,设平面PBC 的一个法向量为(,,)n x y z =,由24020n PB x y z n PC x ⎧⋅=-+-=⎪⎨⋅=--=⎪⎩,解得0y =,令x =1z =-,故1)n =-,由(1)可知(4,4,0)AB =-为平面PDE 的一个法向量,∴cos,4ABAB nA nBn=⋅=-⋅,又平面PDE与平面PBC21.已知抛物线2:2(0)C x py p=>的焦点为F,直线:(1)2(0)l y k x k=>--与C交于A,B 两点,当3k=时,28AF BF+=.(1)求抛物线C的方程;(2)若直线:(1)2m y k x=---与抛物线C交于M,N两点,证明:由直线AM,直线BN及y 轴围成的三角形为等腰三角形.【正确答案】(1)24x y=(2)证明见解析【分析】(1)根据直线抛物线方程的联立以及抛物线的定义即可求解;(2)根据直线与抛物线方程的联立以及坐标关系即可求解.【详解】(1)当3k=时,直线:3(1)235l y x x=--=-,与22x py=联立消去y,整理可得26100x px p-+=,由0∆>得236400p p->,即109p>.设11(,)A x y,22(,)B x y,可得126x x p+=,所以()12123101810y y x x p +=+-=-,由题意可得0,2p F ⎛⎫ ⎪⎝⎭,准线方程为2py =-,根据抛物线的定义可得12p AF y =+,22p BF y =+,所以121810191028AF BF y y p p p p +=++=-+=-=,解得2p =,满足0∆>,所以抛物线C 的方程为24x y =.(2)直线():12(0)l y k x k =-->与24x y =联立可得24480x kx k -++=,由0∆>得21616320k k -->,即2k >或1k <-(舍)设11(,)A x y ,22(,)B x y ,则124x x k +=;直线:(1)2m y k x =---与24x y =联立消去y ,整理可得24480x kx k +-+=,由0∆>得21616320k k +->,即1k >或2k <-(舍),故2k >,设33(,)M x y ,44(,)N x y ,则344x x k +=-;因为2231313131314()4AMy y x x x xk x x x x --+===--,同理424BN x x k +=,所以123404AMBN x x x xk k ++++==,所以由直线AM ,直线BN 及y 轴围成的三角形为等腰三角形.22.已知函数()()2ln 2R f x ax x x x a =--∈.(1)若4a =,求()f x '的极值;(2)若函数()2y f x x =+有两个零点1x ,2x ,且21x ex >,求证.12ln ln 3a x x +>【正确答案】(1)极大值为4ln 22-,无极小值(2)证明见解析【分析】(1)对()f x 求导,判断()f x '的单调性,即可求出()f x '的极值;(2)根据极值点的概念整理原不等式可得12211221ln ln ln ln x x x x x x x x +-=+-即112122111ln()ln 1x x xx x x x x +=-,构建新函数1()ln (e)1t t t t t ϕ+=>-,求导,利用导数证明()2t ϕ>即可.【详解】(1)2()ln 2f x ax x x x =--的定义域为(0,)+∞,当4a =时,()4ln 22f x x x '=-+,设()4ln 22g x x x =-+,则442()2xg x x x-'=-=,由()0g x =可得2x =,当02x <<时,()0g x '>,当2x >时,()0g x '<,∴()f x '在(0,2)上单调递增,在(2,)+∞上单调递减,∴()f x '的极大值为(2)4ln 22f '=-,无极小值;(2)由()20f x x +=可得2 ln 0ax x x -=,即1ln xa x=.设ln ()(0)xh x x x=>,则21ln ()x h x x -'=.由()0h x '=可得e x =,当(0,e)x ∈时,()0h x '>,函数()h x 单调递增,当(e,)x ∈+∞时,()0h x '<,函数()h x 单调递减.∴()h x 有极大值1(e)eh =,当01x <<时,()0h x <,当1x >时,()0h x >.要使()2y f x x =+有两个零点1x ,2x ,需有110ea <<,即e a >.∵1212ln ln 1x x a x x ==,由比例的性质可得12211221ln ln ln ln x x x x x x x x +-=+-,即()21211221ln ln x x x x x x x x =+-,故121212122211111ln()ln ln 1x x x x x x x x x x x x x x ++==--,设21x t x =,由21e 0x x >>可得t e >,设函数1()ln (e)1t t t t t ϕ+=>-,则212ln ()(1)t t t t t ϕ--'=-,设1()2ln s t t t t =--,则22211()110s t t t t ⎛⎫'=-+=-> ⎪⎝⎭,∴()s t 在(e,)+∞上单调递增,故1()(e)e 20es t s >=-->,故()0t ϕ'>,∴()t ϕ在(e,)+∞上单调递增,故e 12()(e)12e 1e 1t ϕϕ+>==+>--,∴212e x x >,故312e ax x >,故312ln()ln e ax x >,即12ln ln 3a x x +>.关键点点睛:本题(2)的关键点在于由题意得出1212ln ln 1x x a x x ==,建立关系112122111ln()ln 1x x xx x x x x +=-,再结合题意化简整理,再利用导数证明不等式.。
四川省新高考教研联盟2025届高三上学期八省适应性联考模拟演练(一模)考试数学试题(含答案)
八省适应性联考模拟演练考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在木试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单选题:本大题共8小题,每小题5分,共40分,每小题给出的4个选项中只有一个答案符合要求。
1.若随机变量,且,,则)等于( )A.B.C.D.2.底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为1,高为1的正四棱锥,所得棱台的体积为( )A.18B.21C.54D.633.设圆与圆,点A ,B 分别是,上的动点,M 为直线上的动点,则的最小值为( )A. B. C.D.4.已知直线和直线,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.某单位春节共有四天假期,但每天都需要留一名员工值班,现从甲、乙、丙、丁、戊、己六人选出四人值班,每名员工最多值班一天,已知甲在第一天不值班,乙在第四天不值班,则值班安排共有( )A.192种B.252种C.268种D.360种6.设的三个顶点为复平面上的三点,,,满足,,,则内心的复数坐标z 的虚部所在区间是( ).A. B. C. D.前三个选项都不对7.的内角A ,B ,C 的对边分别为a ,b ,c ,已知,,M 和N 分别是的重心和内心,且,则( )A.2B.3C.4D.6()~6,1X N 7(5)P X a <≤=8(4)P X b <≤=7(4P X <≤2b a-2b a +12b -12a -221:104250C x y x y +-++=222:680C x y x +-+=1C 2C 1y x =+MA MB +3+3-3-3+1:30l mx y ++=()2:320l mx m y m +-+=5m =12//l l ABC △1z 2z 3z 1230z z z =12382i z z z ++=+1223131510i z z z z z z ++=+ABC △()0.5,1()0,0.5()1,2ABC △2c =sin sin cos 2cos C AC A=-ABC △//MN BC a =8.正整数a ,b ,,且,,满足这样条件的(a ,b ,c )的组数为( )A.60B.90C.75D.86二、多选题:本大题共3小题,每小题6分,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新高考数学模拟试题及答案一、选择题1.设集合(){}2log 10M x x =-<,集合{}2N x x =≥-,则M N ⋃=( )A .{}22x x -≤<B .{}2x x ≥-C .{}2x x <D .{}12x x ≤<2.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥ B .若a αβ∥,b ∥,αβ∥,则a b ∥ C .若a b a b αβ⊂⊂,,,则αβ∥ D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥3.从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( ) A .110B .310C .35D .254.给出下列说法:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确说法的个数是( ) A .0B .1C .2D .35.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( )A .14B .15C .16D .176.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±7.已知非零向量a b ,满足2a b =,且b a b ⊥(–),则a 与b 的夹角为 A .π6B .π3C .2π3D .5π68.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .49.甲、乙、丙、丁四名同学组成一个4100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是( ) A .甲B .乙C .丙D .丁10.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .108cm 3B .100cm 3C .92cm 3D .84cm 311.把红、黄、蓝、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是 A .对立事件 B .互斥但不对立事件 C .不可能事件D .以上都不对12.已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭且12AB AC AB AC ⋅=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形D .以上均有可能二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ .14.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.15.设正数,a b 满足21a b +=,则11a b+的最小值为__________. 16.已知(13)n x + 的展开式中含有2x 项的系数是54,则n=_____________. 17.设a R ∈,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为____.18.已知复数z=1+2i (i 是虚数单位),则|z|= _________ . 19.设函数21()ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 取值范围为_______________.20.三个数成等差数列,其比为3:4:5,又最小数加上1后,三个数成等比数列,那么原三个数是三、解答题21.设函数()15,f x x x x R =++-∈. (1)求不等式()10f x ≤的解集;(2)如果关于x 的不等式2()(7)f x a x ≥--在R 上恒成立,求实数a 的取值范围.22.已知函数()2f x m x =--,m R ∈,且()20f x +≥的解集为[]1,1- (1)求m 的值; (2)若,,a b c ∈R ,且11123m a b c++=,求证239a b c ++≥ 23.已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.24.已知函数()32f x x ax bx c =+++,过曲线()y f x =上的点()()1,1P f 处的切线方程为31y x =+.(1)若函数()f x 在2x =-处有极值,求()f x 的解析式; (2)在(1)的条件下,求函数()y f x =在区间[]3,1-上的最大值.25.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。
某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了40个用户,得到用户的满意度评分如下:用系统抽样法从40名用户中抽取容量为10的样本,且在第一分段里随机抽到的评分数据为92.(1)请你列出抽到的10个样本的评分数据; (2)计算所抽到的10个样本的均值x 和方差2s ;(3)在(2)条件下,若用户的满意度评分在(),x s x s -+之间,则满意度等级为“A 级”。
试应用样本估计总体的思想,根据所抽到的10个样本,估计该地区满意度等级为“A 级”的用户所占的百分比是多少?5.92≈≈≈)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】求解出集合M ,根据并集的定义求得结果. 【详解】(){}{}{}2log 1001112M x x x x x x =-<=<-<=<< {}2M N x x ∴⋃=≥-本题正确选项:B 【点睛】本题考查集合运算中的并集运算,属于基础题.2.D解析:D 【解析】 【分析】 【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误; B 项中两直线a b ,还可能相交或异面,错误; C 项两平面αβ,还可能是相交平面,错误; 故选D.3.C解析:C 【解析】 【分析】设第一张卡片上的数字为x ,第二张卡片的数字为y ,问题求的是()P x y ≤, 首先考虑分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,有多少种可能,再求出x y ≤的可能性有多少种,然后求出()P x y ≤. 【详解】设第一张卡片上的数字为x ,第二张卡片的数字为y , 分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,共有5525⨯=种情况, 当x y ≤时,可能的情况如下表:()255P x y ≤==,故本题选C .【点睛】本题考查用列举法求概率,本问题可以看成有放回取球问题.4.A解析:A 【解析】 【分析】①②③根据定义得结论不一定正确.④画图举出反例说明题目是错误的. 【详解】解:①不一定,只有这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图(1)所示;③不一定.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图(2)所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等. 故答案为:A【点睛】(1)要想真正把握几何体的结构特征,必须多角度、全面地去分析,多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定; (3)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.5.B解析:B 【解析】 【分析】计算出样本在[)2060,的数据个数,再减去样本在[)20,40的数据个数即可得出结果. 【详解】由题意可知,样本在[)2060,的数据个数为300.824⨯=, 样本在[)20,40的数据个数为459+=,因此,样本在[)40,50、[)50,60内的数据个数为24915. 故选:B. 【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.6.A解析:A 【解析】【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =,所以12||F F ==c ⇒=因为2521a x a =-=⇒=,所以b =所以双曲线的渐近线方程为by x a=±=±. 【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.7.B解析:B 【解析】 【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥得出向量,a b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角. 【详解】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||122||a bb b a b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.8.C解析:C 【解析】 【分析】 由4παβ+=,得到1tanαβ+=(),利用两角和的正切函数公式化简1tan αβ+=(),即可得到所求式子的值. 【详解】由由4παβ+=,得到1tanαβ+=(), 所以11tan tan tantan tan αβαβαβ++==-() ,即1tan tan tan tan αβαβ+=-,则1112tan tan tan tan tan tan αβαβαβ++=+++=()() . 故选C . 【点睛】本题考查学生灵活运用两角和与差的正切函数公式及特殊角的三角函数值化简求值,是一道基础题.9.C解析:C 【解析】 【分析】跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 【详解】由题意得乙、丙均不跑第一棒和第四棒, ∴跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意; 当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 故跑第三棒的是丙. 故选:C . 【点睛】本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能力,是基础题.10.B解析:B 【解析】试题分析:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角). ∴该几何体的体积V=6×6×3﹣=100.故选B .考点:由三视图求面积、体积.11.B解析:B 【解析】 【分析】本题首先可以根据两个事件能否同时发生来判断出它们是不是互斥事件,然后通过两个事件是否包含了所有的可能事件来判断它们是不是对立事件,最后通过两个事件是否可能出现来判断两个事件是否是不可能事件,最后即可得出结果., 【详解】因为事件“甲分得红牌”与事件“乙分得红牌”不可能同时发生,所以它们是互斥事件, 因为事件“甲分得红牌”与事件“乙分得红牌”不包含所有的可能事件,所以它们不是对立事件,所以它们是互斥但不对立事件,故选B . 【点睛】本题考查了事件的关系,互斥事件是指不可能同时发生的事件,而对立事件是指概率之和为1的互斥事件,不可能事件是指不可能发生的事件,考查推理能力,是简单题.12.C解析:C 【解析】 【分析】ABAB 和ACAC 分别表示向量AB 和向量AC 方向上的单位向量,0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭表示A ∠平分线所在的直线与BC 垂直,可知ABC 为等腰三角形,再由12AB AC ABAC⋅=可求出A ∠,即得三角形形状。