钢结构焊接变形与控制矫正

合集下载

大型H型钢焊接变形的控制与矫正

大型H型钢焊接变形的控制与矫正

大型H型钢焊接变形的控制与矫正摘要用二氧化碳气体保护焊现场组焊大型异形H钢结构件,配以合理的焊接工艺和焊接顺序, 减少焊接变形,并采用反变形施焊的方法;以及对焊接H型钢的矫正方法的探讨。

关键词异形焊接H型钢控制矫正1前言2010年,我单位承接克拉玛依石化总厂物料大棚施工工程,现场自制物料大棚柱梁, 异形柱结构形式如图 1 所示, 截面尺寸单根长度为8200mm,腹板宽度250-490mm,翼缘板宽度250mm。

对于物料大棚立柱的制造质量要求, 焊缝为一级焊缝, 构件长度制造允许偏差为±10mm, 高度的允许偏差为±2.0mm, 宽度的允许偏差为±3.0mm 弯曲矢高的允许偏差为1/1000, 且不大于10mm, 扭曲偏差不大于h/250且不大于5mm, 翼缘板垂直度的允许偏差为 2.5mm, 腹板局部平面度的允许偏差为 3.0mm。

H 型钢因具有优越的结构型式和良好的力学性能而成为钢结构的主要结构模式。

下面以焊接物料大棚立柱为例, 探讨焊接H 型钢焊接变形的控制与矫正方法。

图1 物料大棚立柱2 焊接变形分析2.1变形产生的原因该结构按整体组装焊接的方式, 必然会造成较大的变形:一是腹板的拼接焊缝焊后收缩, 有可能使腹板产生波浪变形;二是上、下翼缘板与腹板的连接焊缝截面尺寸较大, 焊接过程中输入的热能量大, 上、下翼缘板必然会产生角变形并引起较大的纵向收缩变形, 使立柱在长度方向形成弯曲变形和扭曲变形;三是如果焊接顺序不合理, 还会造成扭曲变形。

2.2变形的控制方法影响焊接变形的主要因素与焊缝在结构构件中的位置、焊接结构的刚性的大小、装配顺序、焊接顺序、焊接规范的选择与应用等有关。

一旦焊接变形超过标准要求, 矫正将会非常困难,以至于不得不用气割割开重焊或不得已而使整根立柱报废。

因此, 必须采取合理的组装焊接顺序和行之有效的工艺措施, 控制立柱的焊接变形, 确保制造质量达到设计和技术规范的要求。

钢结构焊接变形控制措施

钢结构焊接变形控制措施

钢结构焊接变形控制措施摘要:本文将从钢结构焊接变形的原因入手,介绍钢结构焊接变形的特点和影响,然后探讨钢结构焊接变形的控制措施,包括预制件的设计、焊接工艺的优化、焊接变形的补偿和控制等方面。

通过对这些控制措施的分析和总结,可以为钢结构焊接变形的控制提供一些有益的参考和借鉴,为钢结构的质量和安全性提供保障。

关键词:钢结构;焊接;变形控制;措施焊接过程中由于存在着很多不确定因素,如焊接位置、焊接工艺、焊接顺序以及各种外力的作用等,这些因素会使工件的变形受到抑制和限制,但也会使工件产生变形。

在整个过程中,任何一个环节出了问题,都会使最终的结果偏离设计的要求。

因此,在焊接过程中要采取各种措施来控制焊接变形。

1.反变形法反变形法是利用焊接热过程中工件的局部收缩来抵消或减小焊接件的变形。

这种方法能有效地控制焊接件的变形,是目前最常用的一种控制焊接变形的方法。

(1)反变形法在生产中应用广泛,一般是在钢结构构件上预先留有加工余量,焊接时尽量采用与留有加工余量相同的焊接顺序和焊后反变形的方法来补偿焊后构件的变形。

(2)在结构设计时,充分考虑到结构尺寸与受力情况,尽可能减少结构中过大的不合理尺寸。

例如:为控制梁侧弯,应尽量少设梁高;为控制焊缝收缩变形,应尽量减少焊缝长度和数量;为控制板厚方向产生挠曲,应尽量减少板厚尺寸;为减少角焊缝对整体应力的影响,应尽量缩短角焊缝长度等。

(3)在构件拼装前,用机械方法进行反变形或人工反变形。

例如:在装配前将构件通过调整使其发生一定程度的弯曲或扭转变形,待安装完毕后再恢复到原来的形状。

这种方法适用于尺寸精度要求不高且焊缝数量不多的构件。

(4)采用多道焊接方法。

此法适用于在大厚度上对称焊接要求较高的结构。

2.刚性固定法刚性固定法是指通过合理地安排钢结构构件的焊接顺序和焊接方向,使构件在焊缝上产生的拉应力、压应力和焊后残余变形的方向相反,并通过各种约束措施限制变形的一种方法。

在焊接过程中,我们应该把钢结构构件分为两部分:第一部分是纵向焊缝,第二部分是横向焊缝。

钢结构焊接变形的工艺控制措施

钢结构焊接变形的工艺控制措施

建筑科学2016年12期︱75︱钢结构焊接变形的工艺控制措施马 宁贵州省贵阳市白云区七冶压力容器制造有限责任公司,贵州 贵阳 550014摘要:近些年来,我国各类建筑对钢结构的需求量不断提高,焊接技术也就在钢结构制作中应用十分广泛,但是在进行钢结构焊接时,焊接区域往往会出现不同程度的局部收缩变形,影响钢结构成品具体尺寸和装配质量,同时还有可能产生不同的应力作用,会对焊接接头韧性强弱、抗疲劳的强度以及抗腐蚀的能力产生重要影响,因此,减少钢结构焊接变形和应力就成了相关工艺研究和控制的焦点。

本文将从钢结构焊接变形的原因着手,分别从变形控制和应力控制两个方面采取相关工艺控制措施,以期能够有效减小钢结构产生焊接变形,降低焊接过程中的焊接应力,从而进一步提高钢结构焊接水平。

关键词:钢结构;焊接变形;焊接应力;工艺控制措施中图分类号:TU391 文献标识码:B 文章编号:1006-8465(2016)12-0075-021 钢结构焊接变形产生的原因 在对钢结构进行焊接时,往往因为局部温度不高均匀,并且受到外力的刚性约束作用,进而使得焊接区域产生不规律的横纵向收缩现象。

笔者结合自身长期钢结构焊接工作经验,分析出导致钢结构焊接变形主要基于以下原因:首先,钢结构刚度的主要表现是抗拉伸和抗弯曲的能力,这些能力又会受到钢结构截面和尺寸大小因素的影响和制约,比如说桁架的横截面面积与相关质量规范不符,进行焊接时,就容易导致纵向变形,再比如丁字形横截面,在焊接过程中就会因为抗弯刚度缺乏而引发弯曲变形。

其次,钢结构加工件刚度缺乏,焊接过程中焊缝分布不够均匀,往往很容易造成钢结构产生严重收缩,焊缝分布较多变形加剧,焊缝较少部位变形就不是很明显。

通常情况,在进行钢结构焊接操作时,焊缝分布往往比较对称,这就要求焊接时必须采用合理的焊接程序,严格按照对称性的要求减少线性缩短,但是如果焊缝分布不对称,就容易导致其弯曲变形。

最后,钢结构焊接变形除了钢结构本身问题会导致外,焊接工艺也有可能导致焊接变形,比如说在焊接过程中,对电流未能进行合理有效控制,导致粗焊条在进行缓慢焊接时受热不够均匀,这样确实会导致焊接变形的发生。

钢结构焊接变形的控制及矫正

钢结构焊接变形的控制及矫正

钢结构焊接变形的控制及矫正标签:钢结构;矫正技术;焊接变形随着我国市场式经济制度逐渐成熟和完善,钢结构的焊接技术有了很大的进步和发展。

在实际的推广应用上,钢结构的焊接工作得到了更加广泛的应用。

同时,在焊接钢结构的过程中受外在因素和环境的影响过于的敏感,使得整个钢结构控制和矫正工作的推进有着一定的困难。

为了更好地解决这一类的问题,将钢结构焊接、矫正和变形深入的结合先进技术是当今社会提出的新要求。

一、钢结构焊接概述钢结构的施工主要的类型包括钢柱、钢梁、钢材等,施工过程中需要各个工作人员和部门进行密切的配合。

一旦发现问题或者是异常情况及时的沟通、解决。

在钢结构的施工中主要的特点分为三个方面:第一种,施工测量的精度。

在施工建设的过程中,前期的规划设计是整个工程建设的核心思想。

一旦钢结构在前期造成偏差就会影响钢结构整体的施工效果,进而造成施工偏差的出现。

第二种,和施工条件相符。

在实际的钢结构安装和矫正控制的过程中极易受到各种外在环境影响,如:空气、温度、湿度等等。

种种的外在因素都会对整个钢结构的矫正、控制造成影响,进而延误工程和项目的工期。

第三种,器械性能标准高。

钢结构的焊接和安装对器械、设备的要求有着很高的标准。

正是由于其本身的形状和重量都是非常庞大的,使得钢结构的安装、运输很难满足钢材承载力的要求和标准。

二、钢结构焊接变形的控制方法(一)设计合理的焊接技术钢结构中,各个结构组成之间进行合理、科学的焊接是非常重要的。

焊接技术在结构之间的缝接处理就是考验连载力和承重力的关键,焊接缝隙的强度直接影响整个钢结构的重力承受力。

在对钢结构进行焊缝处理时,规划设计的焊缝尺寸和长度应该控制在一定的范围内,不应过长。

过长的焊接缝操作可能对后期的强度承受力有着极大的考验,无形中增加了焊缝技术的实际工作量和难度。

在焊接的过程中,焊接人员应该根据实际的钢结构的情况进行着重分析,就以T型接头为例。

针对这种钢结构的焊接技术时,首先要采取的就是设计开坡口双面焊的模式,从基本结构中保障其内在的构造强度。

钢结构焊接变形的成因与措施

钢结构焊接变形的成因与措施

钢结构焊接变形的成因与措施摘要:钢结构是由型钢和钢板等钢材经焊、铆或螺栓连接而形成的一种结构。

与其他结构相比,这种结构具有载重大、架设简便等优点,再加上工期短、工艺简单,因此被广泛应用于高度和跨度较大的结构,以及可拆卸的结构等等。

但是,由于固体具有在外力作用下改变形状的基本性质,钢结构普遍存在着变形问题。

这些变形问题可分为两种基本形式:不同轴向的弯曲和一些扭转变形。

在施工过程中,很多外界因素都会造成钢结构变形,其中,焊接变形最为常见,而且可以通过优化工艺来减少和避免。

关键词:钢结构;焊接变形;成因;措施1焊接变形的基本形式(1)纵横变形。

这种焊接变形是指当温度降低金属收缩时,以焊缝为坐标原点,钢结构在它的纵横轴上产生的变形。

(2)横向变形。

受热不均是板材产生横向变形的主要原因,由于板材在焊接过程中,每个部分承受的热量均不相同,且焊接的过程也各不相同,所以,在焊接结束后,板材进行冷却收缩时,其在横向的收缩力并非均匀分布,这样横向变形便产生了。

(3)错边变形。

当施工人员对钢结构的加热不均匀时,构件收缩程度就会不相同,从而使焊缝处的构件在长度和宽度方面也就不能完全相同,形成错边变形。

(4)挠曲变形。

两个焊缝处不能产生相同的焊接变形结果,就会给人感官上的扭曲感觉,即形成挠曲变形。

(5)波浪式的变形。

焊缝处有自己的内应力,这种内应力可以在焊接处产生一种波浪式的外在表现形式,即波浪式的变形。

2钢结构焊接变形成因2.1温度控制不当温度是引起钢结构焊接变形的一个重要因素。

当温度达到金属熔点甚至高于金属熔点时,不一样的金属就会产生不同程度的膨胀。

此时,整个钢结构看起来就会有一种不协调的感觉,即产生了变形。

同时,一种金属达到熔点膨胀之后,这种金属本身也具有了一定的高温,会使周围的金属产生不同程度的膨胀,造成焊接变形。

2.2钢结构的焊接顺序和方法不当对钢结构的不同部位进行不同顺序的焊接,可能会引起钢结构的焊接变形。

因为钢结构焊缝处的承载力不同,当优先焊接承载力较小的钢结构时,较大的重量可能会使钢结构产生扭曲,形成钢结构的焊接变形。

H型钢焊接变形的控制与矫正

H型钢焊接变形的控制与矫正

H型钢焊接变形的控制与矫正H型钢是一种常用的结构钢材,广泛应用于工业建筑、桥梁和船舶等领域。

焊接是H 型钢加工中的重要工艺,但焊接过程中容易产生变形,影响结构的几何尺寸和力学性能。

控制和矫正H型钢焊接变形是非常重要的。

H型钢焊接变形主要包括热变形和残余变形。

热变形是指在焊接过程中,由于焊缝区域受到高温热源的加热,导致材料膨胀或收缩引起的变形。

残余变形是指焊接完成后,由于焊接温度梯度和残余应力的存在,导致材料产生持久性的变形。

1. 优化焊接参数:通过调整焊接电流、电压和焊接速度等参数,控制焊接时的热输入量,减小热变形。

合理选择焊接顺序和焊接方向,避免在同一位置多次焊接,减少焊接热源对材料的影响。

2. 预热和后热处理:在焊接前进行预热,可以提高焊接接头的刚度和抗变形性能。

在焊接完成后,进行后热处理,通过控制材料的冷却速度,减小残余应力和变形。

预热和后热处理的温度和时间需要根据具体材料和焊接情况进行合理选择。

3. 使用焊接夹具和支撑装置:焊接夹具和支撑装置可以固定H型钢焊接件,并提供额外的支撑力,减小热变形和残余变形。

夹具和支撑装置的设计和使用需要考虑到焊接的位置和角度,确保焊接接头的稳定性和正确性。

4. 控制焊接顺序:对于多点焊接或多道焊接的H型钢结构,合理控制焊接顺序,避免同一位置多次焊接,减少残余应力的积累,并控制热输入和冷却速度,减小变形。

1. 机械矫正:通过施加机械力或采用液压系统,对焊接变形进行压缩或拉伸,恢复原始的几何尺寸。

机械矫正需要根据变形的类型和程度确定矫正的力和方向。

2. 加热矫正:对焊接变形区域进行局部加热,使其超过回复弹性变形的临界温度,然后迅速冷却,使材料发生形状记忆效应,恢复原始的几何形状。

3. 切割和重焊:对于焊接变形严重的H型钢结构,可以考虑采用切割和重焊的方法,重新调整焊接接头的几何尺寸和形状。

需要强调的是,控制和矫正H型钢焊接变形是一项复杂且技术性较高的工作。

在实际操作中,需要根据具体情况制定相应的方案,并通过试验验证其有效性。

钢结构焊接变形控制

钢结构焊接变形控制

浅谈钢结构焊接变形控制[摘要]为解决建筑钢结构焊接变形所引起的钢结构变形,对常见的焊接变形进行了分析,归纳出线形、角形、弯曲形、扭转形及波浪形五种变形方式,并对这种五种变形产生的原因进行了探讨。

对如何减少和预防焊接变形作了较详尽的介绍,重要的是采取有效措施时已变形的焊接构件进行矫正,以此将焊接变形带来的危害降到最低程度,增大经济效益。

[关键词]钢结构焊接变形变形防止变形矫正一、焊接应力和变形焊接过程是是一种局部高温加热的工艺过程,即焊缝熔池金属熔点处温度最高,而熔池周围金属温度由熔点递减,直到到达室温。

过程中高温金属受热膨胀,且受到周围金属的阻碍而无法自由膨胀,形成塑性变形。

焊后冷却过程中,金属塑性收缩,又受到周围金属的阻碍无法自由收缩,从而产生整体结构收缩,产生焊接变形和应力。

焊接应力和变形在一定条件下还影响焊接结构的性能,如强度、刚度、尺寸精度和稳定性、受压时的稳定性和抗腐蚀性等。

不仅如此,过大的焊接应力与变形,还会大大增加制造工艺中的困难和经济消耗,而且往往因焊接裂纹或变形过大无法矫正而导致产品的报废。

二、变形种类和影响因素焊接过程中焊件产生的变形称为焊接变形。

焊后,焊件残留的变形称为焊接残余变形。

焊接残余变形有纵向收缩变形、横向收缩变形、角变形、弯曲变形、扭曲变形和波浪变形等共六种,其中焊缝的纵向收缩变形和横向收缩变形是基本的变形形式,在不同的焊件上,由于焊缝的数量和位置分布不同,这两种变形又可表现为其它几种不同形式的变形。

在实际焊接过程中,不同条件下的焊接所产生的焊接变形量各不相同,在诸多工艺因素中焊接线能量与焊接变形成正比,焊接线能量越大则焊接时产生的塑性变形区面积越大,焊后的焊接变形越大,反之则越小。

决定焊接线能量的因素主要有:1.焊缝截面尺寸的大小:在板厚尺寸相同时,焊缝截面尺寸即破口尺寸越大则焊接所需线能量也越大,收缩变形越大。

2.焊接的分层方式:焊缝施焊时,分层焊的层数越多,每层所需的线能量越小,变形就越小。

焊接变形的原因及控制方法

焊接变形的原因及控制方法

焊接变形的原因及控制方法在焊接过程中由于急剧的非平衡加热及冷却,结构将不可避免地产生不可忽视的焊接残余变形。

焊接残余变形是影响结构设计完整性、制造工艺合理性和结构使用可靠性的关键因素。

针对钢结构工程焊接技术的重点和难点,根据多年的工程实践经验,本文主要阐述实用焊接变形的影响因素及控制措施和方法。

钢材的焊接通常采用熔化焊方法,是在接头处局部加热,使被焊接材料与添加的焊接材料熔化成液体金属,形成熔池,随后冷却凝固成固态金属,使原来分开的钢材连接成整体。

由于焊接加热,融合线以外的母材产生膨胀,接着冷却,熔池金属和熔合线附近母材产生收缩,因加热、冷却这种热变化在局部范围急速地进行,膨胀和收缩变形均受到拘束而产生塑性变形。

这样,在焊接完成并冷却至常温后该塑性变形残留下来。

一、焊接变形的影响因素焊接变形可以分为在焊接热过程中发生的瞬态热变形和在室温条件下的残余变形。

影响焊接变形的因素很多,但归纳起来主要有材料、结构和工艺3个方面。

1.1材料因素的影响材料对于焊接变形的影响不仅和焊接材料有关,而且和母材也有关系,材料的热物理性能参数和力学性能参数都对焊接变形的产生过程有重要的影响。

其中热物理性能参数的影响主要体现在热传导系数上,一般热传导系数越小,温度梯度越大,焊接变形越显著。

力学性能对焊接变形的影响比较复杂,热膨胀系数的影响最为明显,随着热膨胀系数的增加焊接变形相应增加。

同时材料在高温区的屈服极限和弹性模量及其随温度的变化率也起着十分重要的作用,一般情况下,随着弹性模量的增大,焊接变形随之减少而较高的屈服极限会引起较高的残余应力,焊接结构存储的变形能量也会因此而增大,从而可能促使脆性断裂,此外,由于塑性应变较小且塑性区范围不大,因而焊接变形得以减少。

1.2结构因素的影响焊接结构的设计对焊接变形的影响最关键,也是最复杂的因素。

其总体原则是随拘束度的增加,焊接残余应力增加,而焊接变形则相应减少。

结构在焊接变形过程中,工件本身的拘束度是不断变化着的,因此自身为变拘束结构,同时还受到外加拘束的影响。

建筑工程钢结构焊接变形的控制措施

建筑工程钢结构焊接变形的控制措施

04
工程实例
奥运会体育馆钢结构焊接变形控制
工程概述
总结词
奥运会体育馆是一个大型的公共建筑 ,采用钢结构设计,其特点是跨度大 、高度高、结构复杂。钢结构的焊接 变形控制是该工程的关键技术之一。
奥运会体育馆钢结构焊接变形的控制 是一个具有挑战性的工程实例。通过 科学合理的施工工艺和严格的质量控 制措施,可以实现焊接变形的有效控 制,确保工程的质量和稳定性。
焊接变形的影响因素
焊接过程中的温度、材料性质、焊接工艺等都会对焊接变形产生 影响。
控制措施的有效性
通过对焊接变形的控制措施进行研究,可以显著提高钢结构的施 工质量,降低焊接变形的发生概率。
研究不足与展望
研究不足之处
目前对于建筑工程钢结构焊接变形控制的研究仍存在不足之 处,如缺乏系统性的研究、缺乏对焊接变形控制的深入探讨 等。
02
焊接变形控制的基本原则
合理选择焊接材料和焊接方法
总结词
重要性、适用性、成本效益
详细描述
选择合适的焊接材料和焊接方法能够有效地控制焊接变形,同时考虑材料成 本和适用性,以实现最佳的成本效益。
优化焊接工艺和焊接参数
总结词
工艺优化、参数调整、减少变形
详细描述
优化焊接工艺和调整焊接参数可以减少焊接过程中产生的热量输入,从而减少焊 接变形。
详细描述
该工程中,采用了多种方法来控制焊 接变形。首先,对钢结构进行了科学 的整体设计和详细的节点设计,考虑 了各种因素对焊接变形的影响。其次 ,采用了先进的焊接设备和工艺,包 括自动焊接技术、脉冲弧焊技术等, 以减少焊接过程中的热输入和变形
上海中心大厦钢结构焊接变形控制
工程概述
总结词
详细描述

H型钢焊接变形的控制与矫正

H型钢焊接变形的控制与矫正

H型钢焊接变形的控制与矫正H型钢是一种常见的结构钢材,其在建筑、桥梁、机械制造等领域得到广泛应用。

在H 型钢的生产和加工过程中,焊接是必不可少的步骤。

焊接过程中会产生焊接变形,对于H型钢结构的强度和稳定性会产生不利影响。

控制和矫正焊接变形是重要的研究课题。

焊接变形主要有两个方面的原因:焊接热输入引起的温度变形和焊接残余应力引起的力学变形。

焊接热输入引起的温度变形是由于焊接过程中产生的高温热源直接作用于工件,使得工件局部受热膨胀。

而焊接残余应力引起的力学变形则是由于焊接过程中产生的应力不平衡,导致工件发生形变。

控制焊接变形的方法有以下几种:合理选择焊接顺序、采用预应力和反向变形等技术、加工前进行预热和热处理等。

合理选择焊接顺序是比较简单且有效的方法。

通过优化焊接顺序,可以减少焊接过程中的温度梯度和温度差,从而减小变形的产生。

预应力和反向变形技术也可以用来控制焊接变形。

通过在焊接过程中施加适当的预应力或反向变形,可以部分或全面抵消焊接变形,达到控制变形的目的。

加工前进行预热和热处理也是一种常用的焊接变形控制方法。

通过在焊接前对工件进行适当的预热处理,可以减少焊接时的温度梯度和应力集中,从而减小变形的产生。

除了控制焊接变形,当变形已经产生时,需要进行矫正操作。

焊接变形的矫正包括机械矫正、热处理矫正和软弯矫正等方法。

机械矫正是通过机械手段对焊接变形进行修正,如采用液压或机械力进行拉伸、压制等。

热处理矫正是通过对变形区域进行再加热或再冷却来改变材料的组织结构和性能,从而使变形得以矫正。

软弯矫正是将变形部位加热至一定温度,然后通过外力使其发生塑性变形,以纠正变形的方法。

焊接变形的控制与矫正是H型钢焊接工艺中不可忽视的一环。

通过合理选择焊接顺序、采用预应力和反向变形技术、加工前进行预热和热处理等方法,可以有效地控制焊接变形的产生。

当焊接变形已经产生时,可以采用机械矫正、热处理矫正和软弯矫正等方法进行矫正。

通过对焊接变形的控制与矫正,可以保证H型钢结构的强度和稳定性,提高其使用寿命和安全性。

钢结构焊接变形火焰矫正控制技术

钢结构焊接变形火焰矫正控制技术

照塑苎凰钢结构焊接变形火焰矫正控制技术杨光(大庆油田建设集团化建公司特种设备安装工程处,黑龙江大庆163159)∥。

÷j。

…。

j…j。

|。

“’|…?。

‘j;??2。

’一一一∥’…j?’、%;睛要】目前,钢结构已在厂房建筑中得到广泛的应用。

而钢结构厂房的主-Jt-构件是焊接H型钢柱、粱、撑。

这些构件在制作过程中都五;存在焊接变形问题,如果焊接变形不予以矫正,则不仅影响结构整体安装,还会降低工程的安全可靠性。

4 1’法-键翊焊接变形;火烙矫正;控制一,,,。

,。

:^}.一j?j....-。

|?j:…!。

???j j|t j?r|}i i,j…/』【i7.j i汕t?i j t j。

?I,r.?i_.,!一j?I t f t?t i。

t-_|i?i l j j j:{?//,j,j j??I.?4i¨_』/I j j j【j?__4j l dI 焊接钢结构产生的变形超过技术设计允许变形范围,应设法进行矫可采取低温矫正或中温矫正法。

这种方法有利于减少焊接内应力,但这正,使其达到符合产品质量要求。

实践证明,多数变形的构件是可以矫种方法在纵向收缩的同时有较大的横向收缩,较难掌握。

2)翼缘板上正的。

矫正的方法都是设法造成新的变形来达到抵消已经发生的变形。

作线状加热,在腹板E作三角形加热。

用这种方法矫正柱、梁、撑的弯1矫正方法曲变形,效果显著,横向线状加热宽度一般取20—90m m,板厚小时,在生产过程中普遍应用的矫正方法,主要有胡械矫正、火焰矫正加热宽度要窄一些,加热过程应由宽度中间向两边扩展。

线状加热最好和综合矫正。

但火焰矫正是一门较难操作的工作,,方法掌握、温度控制由两人同时操作进行,再分别加热三角形三角形的宽度不应超过板厚的不当还会造成构件新的更大变形。

因此,火焰矫正要有丰富的实践经2倍,三角形的底与对应的翼板上线状加热宽度相等。

加热三角形从顶验。

本文对钢结构焊接变形的种类、矫正方法作了—个相略的分析j部开始,然后从中心向两侧扩展,一层层加热直到三角形的底为止。

钢结构制造中焊接变形的控制方法

钢结构制造中焊接变形的控制方法

钢结构制造中焊接变形的控制方法
钢结构制造中焊接变形的控制方法主要包括以下几个方面:
1. 设计合理的焊接接头:在设计焊接结构时,尽量采用简化接头、减小接头长度、采用对称结构等措施,以减少焊接变形的可能性。

2. 控制焊接工艺参数:在焊接过程中,控制焊接电流、焊接速度、预热温度等焊接工艺参数,避免产生过大的热影响区,以减小焊接变形的发生。

3. 采用预应力或预拉伸技术:在焊接前对工件进行预应力或预拉伸处理,可以提前消除部分应力,减小焊接变形。

4. 采用适当的焊接顺序:根据焊接结构的形状和尺寸,合理安排焊接顺序,从而控制焊接变形的产生。

5. 使用焊接辅助物:在焊接过程中,使用一些焊接辅助物,如支撑物、夹具等,来固定和支撑工件,减少焊接变形的发生。

6. 焊后热处理:对已焊接的结构进行合适的热处理,如回火、正火等,可以进一步消除残余应力,控制焊接变形。

以上是钢结构制造中控制焊接变形的一些常用方法,通过合理的设计、控制焊接工艺参数和采用适当的辅助措施,可以有效地减小焊接变形的发生。

钢结构焊接变形的控制及矫正

钢结构焊接变形的控制及矫正

由大到小 的顺序 是: 氩弧焊 、 埋弧焊 、 手工 电弧焊和气 焊, 因此 我们都知 道 同一构件用气焊变形大, 用氩弧焊变形小就是这个道理。 ③缩小温差法, 这是指焊件焊后与空气温度的差。温差 大散热快 , 变 形就大 , 这是 因为金相组织转变 的产物 的性能与冷却 速度有关 , 如我们 在进行铸铁焊接时易产生裂纹。对此我们通常采用的方法就是焊接前进 行预热, 焊后进行缓冷 , 使之温度 差减 小, 从而达到防变形的 目的。 在实际生产 中, 虽然采取措施进行控制 , 但变形在所难免 , 当变形超 过设计允许的范围时, 则应设法进行矫正 。使其造成新 的变形来达到抵 消 已经发 生 的变 形 。
③在夹具上固定焊接 比没有夹具固定焊接收缩量 小。 掌握 了以上几种收缩规律 ,再通过合理 的备料和 正确 的焊接方法 , 在 一定程度上是可 以减小焊接后 的应力变形 ( 3 ) 采取合理的减小应力变形的技术措施 。生产 中常用 的主要措施
有:
豳2
②三角形加热法用于上拱与下挠 的弯 曲变形矫正 , 在翼缘板 上着 横 除发生肉眼所 见的形状变化外 , 一般都在发生着 以下几 种规律性的收缩变化: ①焊缝的纵 向收缩 和横 向l 收缩, 纵 向收缩量随着焊缝长度 的增加而 增加 。 横 向收缩则 由接头形式和焊 肉多少而定 , 焊 肉越多, 焊缝 的横 向收
缩越大 。 ②分断焊缝 比连续焊缝的收缩量小
行控制和 矫正 , 从而满足钢 结构施 工盼 精度要求 。
关键词 : 钢结构 : 焊接变 形分析; 控制 ; 矫 正
随着现代工业 的不断发展 , 钢结构工程 已在 生产生活 中得 到极为广 泛 的应用 。而钢构件主要是采用焊接成 型, 但在焊接过程 中由于热量 的 分 布不均匀 , 以及焊缝的收缩等 , 导致焊接成型后 的钢构 件存在不 同存 度 的变形 , 这些变形如不进行矫正将影 响到下道工序 的安装和整 体的使 用性能。因此对变形的钢构件必 须采取 效的技术措施进行矫 正, 使其 达 到产 品的质量要求 。

H型钢焊接变形的控制与矫正

H型钢焊接变形的控制与矫正

H型钢焊接变形的控制与矫正H型钢焊接变形是钢结构焊接过程中不可避免的问题,如果不加以控制和矫正,将会影响钢结构的质量和稳定性。

对H型钢焊接变形进行有效的控制和矫正是非常重要的。

在H型钢焊接过程中,主要存在的变形问题有翘曲变形、收缩变形和焊接应力变形等。

这些变形的产生主要受到内应力、温度变化和材料性能等因素的影响。

为了有效地控制和矫正这些变形,下面将分别从焊接工艺优化、预热控制和焊后矫正方面进行探讨。

焊接工艺的优化对于控制H型钢焊接变形至关重要。

在确定焊接工艺参数时,应该尽量选择对变形影响较小的工艺,比如采用适度的预压焊接和反向焊接等方法。

还要合理设置焊接顺序,尽量减小焊道温度梯度,避免产生过大的应力和变形。

预热控制也是控制H型钢焊接变形的关键措施之一。

通过适当的预热,可以有效减小焊接温度梯度和内应力,从而降低变形的发生。

预热温度和保温时间的选择应根据具体材料和焊接结构来确定,一般预热温度为200-300摄氏度,保温时间为30-60分钟。

焊后矫正可以进一步减小H型钢焊接变形。

常用的矫正方法有机械矫直、热处理矫正和剪切矫正等。

机械矫直是通过施加力或采用机械装置进行变形的控制和修复,通常适用于较小的变形。

热处理矫正则是通过对焊接接头进行再加热和冷却处理,改变材料的组织结构和应力分布,从而实现变形的矫正。

剪切矫正则是通过剪切和修剪来修复和调整变形的形状和尺寸。

针对H型钢焊接变形的控制与矫正,应综合考虑焊接工艺优化、预热控制和焊后矫正等方面的措施。

通过科学合理地设计和操作,可以有效地减小和修复H型钢焊接变形,提高钢结构的质量和稳定性。

浅谈钢结构工程施工中钢梁变形控制和矫正

浅谈钢结构工程施工中钢梁变形控制和矫正

浅谈钢结构工程施工中钢梁变形控制和矫正结合实例工程青龙坞流云展演大厅施工中主钢梁过大变形问题,具体从设计、下料、施工等各个环节对其问题进行了探讨,并提出相应的防变形和矫正技术措施,希望对今后类似项目的设计具有一定的指导意义。

标签:钢结构施工方案;钢梁变形;分析原因;加固方案近几年来,随着科学技术的迅速发展,钢结构由于较混凝土结构具有自重轻、施工周期短、整体刚度好、强度高等良好的性能,在工业及民用建筑中的实际应用越来越广泛。

然而钢结构带来的许多实际问题也随之产生,同时对钢结构施工单位技术人员也是一种挑战。

1、工程概况浙江省杭州市桐庐县流云项目---青龙坞展演大厅为钢结构框架结构,屋面分为多块区域且高度不一,斜屋面与平屋面交替连接,柱顶平均高度为6m,柱距宽度平均为10m,跨度为20m。

设计时钢屋架均采用普通焊接工字钢梁与钢柱刚接,局部按照平面井字型排布,工字钢梁之间均刚性连接。

设计中按最不利受力工况计算,最长钢梁长度为15米,跨中扰度为27m(包含上人屋面荷载)。

而设计人员在考察施工现场时发现,施工单位人员仅在安装完工字钢梁和次梁之后,跨中扰度变形就已经达到30mm,如果再加载上人屋面荷载,钢梁变形将大大超过设计要求,所以设计人员,马上对其变形过大问题进行原因分析和矫正控制,使其达到安装范围误差内,方可进行下一部工序。

2、原因分析钢结构施工中造成大跨度钢梁扰度过大的原因很多,设计人员通过对施工现场的实际调查,发现导致钢梁变形异常原因如下:2.1施工过程中未做好设置临时支撑等设施的搭建临时支柱不仅仅是大跨度钢结构施工过程中的有效应用的主要设施,也是实现基于结构承载力为主的相应的受力性能的有效分析,进而将结构的受力状态及相应的临时支承点问题进行分析,从而实现基于构件完整性与安全性的有效分析。

在钢结构未形成空间整体受力体系时,结构在其平面外的稳定性很差,若没有设置临时支撑设施,将会导致结构平面外的整体倾覆和变形;或者平面内由于钢梁跨度过大,平面内也会出现过大变形。

钢结构焊接工艺常见质量通病及控制措施

钢结构焊接工艺常见质量通病及控制措施

钢结构焊接工艺常见质量通病及控制措施在钢结构的制作过程中,焊接是其中一个关键的工艺。

尽管焊接是一个普遍采用的工艺,但仍然存在许多质量通病,例如裂纹、气孔、结构变形等。

在一个钢结构项目中,如果焊接制造不合格,这将会导致安全问题以及质量问题。

因此,钢结构焊接必须保证质量。

本文将讨论钢结构焊接工艺中的常见质量通病及控制措施。

裂纹裂纹是钢结构焊接的一个常见质量通病。

裂纹的主要原因是其焊接热影响区(HAZ)处的钢材变形和塑性变形,这会导致 HA Z出现冷裂纹和热裂纹。

这些裂纹不仅会导致制造不合格,还会降低钢结构的强度和稳定性。

针对裂纹的控制措施如下:•采用低氢电极,以降低氢的含量;•加强热控制,特别是对于材料的前热和焊接后的加热和冷却过程;•合理的焊接顺序和技术参数,避免过度的热影响区;•采用预加热的方法。

气孔气孔是钢结构焊接的另一个常见质量通病。

气孔的主要原因是焊接时的不良金属熔融和氧化还原反应。

这些小气泡将会形成焊接孔,而且加强了通孔的形成。

正确的焊接控制和维护,可以有效地控制气孔的生成:•采用良好的流体力学和电极加料控制;•避免油脂、腐蚀物和表面水分的污染;•加强预热、后热和热处理;•采用自动化焊接方法,以降低人为因素对气孔的影响。

结构变形钢结构焊接时,由于热的影响,容易导致结构变形。

在钢结构焊接制造过程中,因为需要保证钢材的尺寸精度和方向性,因此要控制结构变形。

以下是针对钢结构焊接时结构变形的控制措施:•提供适当的支撑设备,保证焊接质量;•聚焦于焊接顺序和技术参数;•采用较低的焊接电流和速度,进行轮廓加热;•加强热处理。

焊接脆化焊接脆化是钢结构焊接的一个常见质量通病。

焊接脆化的主要原因是钢材的化学成分和焊接的工艺参数不稳定。

这种焊接脆化是不允许存在的,因为它在使用中会逐渐变得更脆弱而最终断裂。

所以,针对焊接脆化的控制措施如下:•采用标准的焊接工艺,以保证焊接质量;•自动焊接方法;•选择具有补偿效应的材料,以提高焊接质量;•注意加工和设备维护,防止钢材的表面氧化。

H型钢焊接变形的控制与矫正

H型钢焊接变形的控制与矫正

H型钢焊接变形的控制与矫正H型钢是一种常用的结构钢材,广泛应用于建筑工程、桥梁工程、机械制造等领域。

而H型钢的焊接变形是在焊接过程中常常面临的难题之一。

焊接变形对H型钢的整体性能和使用效果都会产生影响,因此控制和矫正焊接变形是非常重要的。

本文将从H型钢焊接变形的原因、特点和影响入手,结合相关案例和实践经验,探讨H型钢焊接变形的控制与矫正方法。

1. 焊接热量引起的热变形焊接是通过加热和冷却的过程将两个或更多的工件相连接。

在焊接过程中,热源集中在焊缝附近,导致焊缝处的局部温度升高,使焊缝处的材料发生膨胀,而临近区域的材料则受热变形。

当焊接热量作用于H型钢时,由于H型钢是厚板结构,在焊接过程中,焊缝附近的热变形会引起整个H型钢的变形,甚至产生塑性应力,导致焊接变形。

焊接完成后,焊接接头的冷却和收缩过程中会产生残余应力,这些残余应力会引起H型钢的变形。

残余应力是由于焊接材料热胀冷缩以及热循环引起的变形应力,这些应力将影响H型钢的整体性能,甚至产生裂缝和变形。

焊接工艺参数的选择会影响焊接过程中的热量输入和热量分布,从而影响焊接变形。

如果焊接工艺参数选择不当,如焊接电流、焊接速度、焊接层间温度等参数未进行有效的控制,就会导致焊接变形增加。

4. 材料刚度引起的变形H型钢是一种高强度、高刚度的结构钢材料,在焊接时,材料的刚度会影响焊接变形。

如果焊接接头附近的材料没有得到有效的支撑或约束,焊接过程中就会产生材料的塑性变形,从而导致焊接变形。

5. 焊接应力引起的微观组织改变焊接过程中产生的焊接残余应力不仅会影响H型钢的整体形状,还会引起H型钢的微观组织改变。

残余应力会改变材料的晶格结构和内部组织,使得材料的性能发生变化,从而影响焊接接头的力学性能。

1. 多种形式的变形H型钢在焊接过程中的变形形式多种多样,例如扭曲变形、翘曲变形、弯曲变形、挠曲变形等。

这些变形形式不仅会影响H型钢的外观和尺寸,还会影响其力学性能。

而且这些变形形式往往会相互影响,相互叠加,使得H型钢的变形更加复杂。

钢结构件的变形及矫正

钢结构件的变形及矫正

钢结构件的变形及矫正钢结构变形的缘由1、受外力作用引起的变形1)钢结构件长期承受载荷后而残存的变形。

2)钢结构不正常的外力作用后造成的变形。

这些变形都是外力作用后的永久变形,属于塑性变形。

导致产生这些变形的外力,包括弯曲力、扭力、冲击力、拉力、压力等多种。

2、由于内应力作用引起的变形在物体受到外力作用发生变形的同时,在其内部会消失一种反抗变形的力,这种力就叫做内力。

物体受外力作用,在单位截面积上消失的内力叫应力。

当没有外力作用时,物体内部所存在的应力叫做内应力。

内应力并不是由外力引起的,焊接过程对金属构件来说,是一种不匀称的加热和冷却,是简洁造成构件产生内应力而引起变形的主要缘由。

因此,不论何种形式的好焊接变形,都遵循同一规律,即焊缝冷却后,在焊缝区域内产生收缩,而使焊件产生内应力,当焊件本身的刚度不能克服焊缝的收缩作用时,便造成焊接件的变形。

二、影响钢结构焊接变形的因素影响钢结构焊接变形的因素较多,大致可以分为设计和工艺两方面因素。

1)设计方面主要指结构设计的合理性、焊缝的位置以及焊接坡口的形式等。

2)工艺方面主要指合理的焊接工艺规程、合理的装焊挨次、各种防变形和反变形的采纳以及设法消退焊接结构的应力等。

钢结构件都是将多种零件通过焊接、钾接或用螺栓连接等方式连成一体的,相互联系而又相互制约的一个有机的整体。

因此,对产生变形的钢结构件进行矫正前,必需首先了解变形产生的缘由,分析钢结构件的内在联系,找出冲突的主次关系,确定了正确的矫正部位和相应的矫正手段,才可着手进行矫正工作。

切不行孤立地看待问题而贸然下手。

三、钢结构变形的矫正和预防1、矫正原理矫正原理就是采用金属的塑性,通过外力或局部加热的作用,迫使钾焊结构件上钢材变形的紧缩区域内较短的“纤维”伸长,或使疏松区域内较长的“纤维”缩短,最终使钢材各层“纤维”的长度趋近相等而平直,其实质就是通过对钢材变形的反变形来达到矫正钾焊结构件的目的。

2、矫正方法的确定矫正的方法许多,依据矫正时钢材的温度不同分为冷矫正和热矫正两种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢结构焊接变形与控制矫正
焊工之家发帖交流拿赏钱回复【1】企业招聘请回复数字【4】微信全国群:1912006719钢结构连接普遍采用焊接,且对于一些重要焊缝一般都采用全熔透焊接。

金属焊接时在局部加热、熔化过程中,加热区的金属与周边的母材温度相差很大,产生焊接过程中的瞬时应力。

冷却至原始温度后,整个接头区焊缝及近缝区的拉应力区与母材在压应力区数
值达到平衡,这就产生了结构本身的焊接残余应力。

此时,在焊接应力的作用下焊接件结构发生多种形式的变形。

残余应力的存在与变形的产生是相互转化的,认清变形规律,就不难从中找到防止减少和纠正变形的方法。

一、焊接变形的形式与原因:钢结构焊接后发生的变形大致可分为两种情况:即整体结构的变形和结构局部的变形。

整体结构的变形包括结构的纵向和横向缩短和弯曲(即翘曲)。

局部变形表现为凸弯、波浪形、角变形等多种。

1.1
变形常见基本形式常见焊接变形基本形式有如下几种:板材坡口对焊后产生的长度缩短(纵向收缩)和宽度变窄(横向收缩)的变形;板材坡口对接焊接后产生的角变形;焊后构件的角变形沿构件纵轴方向数值不同及构件翼缘与腹板
的纵向收缩不一致形成的扭曲变形;薄板焊接后母材受压应力区由于失稳而使板面产生翘曲形成的波浪变形;由于焊缝
的纵向和横向收缩相对于构件的中和轴不对称引起构件的
整体弯曲,此种变形为弯曲变形。

这些变形都是基本的变形形式,各种复杂的结构变形都是这些基本变形的发展、转化和综合。

1.2焊接变形的原因:
在焊接过程中对焊件进行了局部的、不均匀的加热是产生焊接应力及变形的原因。

焊接时焊缝和焊缝附近受热区的金属发生膨胀,由于四周较冷的金属阻止这种膨胀,在焊接区域内就发生压缩应力和塑性收缩变形,产生了不同程度的横向和纵向收缩。

由于这两个方向的收缩,造成了焊接结构的各种变形。

二、影响焊接结构变形的因素:
影响焊接变形量的因素较多,有时同一因素对纵向变形、横向变形及角变形会有相反的影响。

全面分析各因素对各种变形的影响,掌握其影响规律是采取合理措施控制变形的基础。

否则难以达到预期的效果。

1)焊缝截面积的影响:焊缝截面积是指熔合线范围内的金属面积,焊缝面积越大,冷却时收缩引起的塑性变形量越大。

2)焊接热输入的影响:一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大,不论对纵向、横向或角变形都有变形增大的影响。

但在表面堆焊时,当热输入增大到一定程度时,由于整个板厚温度趋近,因而即使热输入继续增大,角变形不再增大,反而有所下降。

3)工件的预热、层间温度影响:预热温度和层间温度越高,相当于热输入增大,使冷却速度减慢,收缩变形增大。

4)焊接方法的影响:在建筑钢结构焊接常用的几种方法中,除电渣焊以外,埋弧焊热输入最大,在其他条件如焊缝面积等相同情况下,收缩变形最大。

手工电弧焊热输入居中,收缩变形比埋弧焊小。

CO2气体保护焊热输入最小,收缩变形响应也最小。

5)焊缝位置对变形的影响:由于焊缝位置在结构中不对称,焊缝位置不对称等将引起各种变形。

6)结构的刚性对焊接变形的影响:结构的刚性大小,主要取决于结构的形状和其截面大小,刚性较小的结构,焊接变形大;刚性大的结构,焊后变形较小。

7)装配和焊接规范对焊接变形的影响:由于采取的装配方法不同,对结构的变形也有影响。

整体装配完再进行焊接,其变形一般小于边装配边焊接。

在工程焊接时间中,由于各种条件、因素综合作用,焊接残余变形的规律比较复杂,了解各因素单独作用的影响便于对工程具体情况作具体的综合分析。

三、防止和减少结构变形的措施:1)减小焊缝截面积:在得到完好、无超标缺陷焊缝的前提下,尽可能采用较小的坡口尺寸(角度和间隙)。

2)对屈服强度345MPa以下,淬硬性不强的钢材采用较小
的热输入,尽可能不预热或适当降低预热、层间温度;优先采用热输入较小的焊接方法,如CO2气体保护焊。

3)厚板焊接尽可能采用多层焊代替单层焊。

4)双面均可焊接操作时,要采用双面对称坡口,并在多层焊时采用与构件中和轴对称的焊接顺序,如下图2:
图2:用双面坡口对称焊接顺序减小角变形5)T形接头板厚较大时采用开坡口角对接焊缝,见图3:
图3:T形接头板厚较大时采用开坡口角对接焊缝6)采用焊前反变形方法控制焊后的角变形,此法使生产中最常见的一种方法,而预先把焊件作出基本抵消(补偿)。

焊后弯曲的反变形,来达到防止焊后变形的目的。

表1、图4分别为箱形柱、H型钢焊接前反变形参考数值:
图4 H形钢焊接前翼缘的反变形量参考值
7)刚性固定法:又称为强制法。

在实际制作中,对于刚性大的构件焊后变形一般较少,对刚性小的构件可在焊前加强构件刚性,焊后变形也响应减小。

在采用这种方法时,必须等焊接冷却后再把夹具和支撑卸去,几种常见的方法有夹具法、支撑法、胎具法、临时固定法(如焊钉固定和压紧固定法)、定位焊接法。

8)锤击焊缝法:此法主要适用于薄板的焊接。

当薄板的焊缝及其热影响区还没有完全冷却时,立即对该区域进行锤击,对于厚板则用风枪敲击。

9)采用构件预留长度法补偿焊缝纵向收缩变形。

10)设计上要尽量减少焊缝的数量和尺寸;合理布置焊缝,除了要避免焊缝密集以外,还应使焊缝位置尽可能靠近构件的中和轴,并使焊缝的布置与构件中和轴相对称。

11)正确选择焊接顺序。

在钢结构中同时存在对焊缝和角焊缝时,原则上先焊对焊缝,反焊角焊缝。

对十字型焊缝和T字型焊缝,更应采取正确的顺序,避免焊接应力集中,保证接头焊接质量。

采取对称于整个钢结构的中和轴的焊接和采取从中间相两段焊接,对减少变形十分有利。

对钢结构中强度要求高的重要部位焊接,应尽量使接头能自由收缩,不受约束。

四、焊接变形的焊后矫正方法:为了达到设计、规范要求,发生了焊接变形的焊接结构构件必须矫正,从另外一个角度来解释,这种矫正实质上都是设法造成新的变形来补偿或抵消已发生的变形。

在施工生产中,最常用的焊后残余变形的矫正方法可以分为施力矫正和加热矫正以及两中方法的结
合运用。

4.1施力矫正法:施力矫正一般用千斤顶、螺旋加力器、辊压矫正机或在大型压力机上完成。

4.2加热矫正法:即利用不均匀的加热使结构获得反向的变形来补偿或抵消原来的焊接变形。

加热矫正法的加热方法可分为点状加热、线状加热、三角形加热。

加热矫正能消除很多施力矫正无法解决的变形,掌握火焰局部加热引起的变形的规律是做好矫正的关键,决定火焰矫正效果主要是加热的位置和加热温度。

低碳钢和普通合金的焊接结构通常采用
650~8000C的加热温度,一般不宜超过9000C。

参见表2各种颜色可判别温度范围在利用加热矫正的同时,为了提高矫正效果,也可在加热过程种施加外力矫正,火焰矫正时,加热点的冷却有两种方法:即自然冷却和水冷却。

采用水火矫正法能使结构矫正收效快,并可以使矫正量大于自然冷却的矫正量。

如矫正大截面的H型钢。

相关文档
最新文档