初中数学奥林匹克竞赛解题方法大全(配PDF版)-第06章-几何基础知识
初中几何奥数题
![初中几何奥数题](https://img.taocdn.com/s3/m/bc69224fa517866fb84ae45c3b3567ec102ddc2f.png)
初中几何奥数题1. 引言初中几何奥数题是指在初中阶段学习几何学和奥林匹克数学的过程中遇到的难题。
这些题目旨在培养学生的逻辑思维能力、分析问题和解决问题的能力,以及培养学生对数学的兴趣和热爱。
2. 几何基础知识回顾在解答初中几何奥数题之前,我们需要回顾一些几何基础知识。
2.1 直线和线段直线是由无限多个点组成的,在两个方向上都没有端点。
而线段是直线上的两个端点及其之间的部分。
2.2 角角是由两条射线共享一个端点形成的。
常见的角有直角(90度)、钝角(大于90度)和锐角(小于90度)。
2.3 三角形三角形是由三条边和三个内角组成的图形。
根据边长关系,可以将三角形分为等边三角形、等腰三角形和普通三角形。
2.4 平行与垂直平行指两条直线永远不会相交。
垂直指两条直线相交成直角。
2.5 相似三角形相似三角形指具有相同形状但大小不同的三角形。
它们的对应角度相等,而对应边长之间成比例关系。
3. 解题方法解答初中几何奥数题需要掌握一些解题方法和技巧。
下面介绍几种常用的解题方法。
3.1 图形分析法图形分析法是通过观察图形的特点来得出结论的方法。
在解答初中几何奥数题时,我们可以通过观察图形的对称性、平行关系、垂直关系等特点来推导出一些结论,进而解决问题。
3.2 利用已知条件在解答初中几何奥数题时,通常会给出一些已知条件。
我们可以利用这些已知条件来推导出其他结论,从而解决问题。
例如,如果已知两条直线平行,则可以推断它们之间的夹角为0度或180度。
3.3 运用定理和公式初中几何学涉及许多定理和公式,例如勾股定理、正弦定理、余弦定理等。
在解答初中几何奥数题时,我们可以根据题目给出的条件和要求,运用相应的定理和公式进行推导和计算。
4. 案例分析为了更好地理解解题方法和技巧,我们来看几个典型的初中几何奥数题案例。
4.1 案例一:求三角形面积已知三角形ABC的底边AB长为8cm,高为6cm,求其面积。
解析:根据三角形面积公式S=1/2 * 底边 * 高,代入已知数据得到S=1/2 * 8cm * 6cm = 24cm²。
【精品】奥林匹克题解几何篇
![【精品】奥林匹克题解几何篇](https://img.taocdn.com/s3/m/01be70bc561252d381eb6e2b.png)
【关键字】精品第三章、几何第一节平面几何证明(上)C1-001 已知线段MN的两个端点在一个等腰三角形的两腰上,MN的中点S作等腰三角形的底边的平行线,交两腰于点K 和L.证明:线段MN在三角形底边上的正投影等于线段KL.【题说】 1956年~1957年波兰数学奥林匹克三试题2.【证】设M、N在直线KL上的射影分别为D、E,由于MS=SN,所以MD=NE.由于AB=AC,KL∥BC,所以∠DKM=∠AKL=∠ALK,又∠MDK=∠NEL=90°,所以△MDK≌△NEL,DK=EL,从而DE=KL,即MN在BC上的正投影等于KL.C1-002 设四边形ABCD内接于圆O,其对边AD与BC的延长线交于圆O外一点E,自E引一直线平行于AC,交BD延长线于点M,自M引MT切圆O于T点,则MT=ME.【题说】 1957年南京市赛初赛5.利用切割线定理和相似三角形.【证】四边形ABCD内接于圆O,故∠1=∠2.由ME∥AC,得∠2=∠4,又∠1=∠3,所以∠3=∠4,又∠EMB=∠DME,所以△EMB∽△DME.从而有即ME2=MB·MD所以MT2=MB·MD=ME2即 MT=MEC1-003 若一直角三角形的外接圆半径为R,其内切圆半径为r,与斜边相切的旁切圆半径为t,若R为r及t的比例中项,证明这直角三角形为等腰直角三角形.【题说】 1957年北京市赛高二题4.【证】设直角△ABC的斜边长为c,两直角边长为a、b.易知R=c/2所以a=b.C1-004 任意四边形ABCD的对角线AC与BD相交于P,而BD与AC的中点是M与N,设Q是P关于直线MN的对称点,过P 作MN的平行线,分别交AB、CD于X、Y,又过Q作MN的平行线,顺次交AB、BD、AC、CD于E、F、G、H.试证:1.EF=GH;【题说】 1963年成都市赛高二二试题4.同本届高三二试题4.【证】 1.P、Q关于MN对称,所以MN平分PQ,又FG∥MN,所以MP=MF,从而BF=PD,BP=FD.同理,有AP=CG,AG=PC.比较(1)、(2)得EF=GH.C1-005 在内角都相等的凸n边形中,设a1,a2,…,an 依次为边的长度,而且满足不等式a1≥a2≥…≥an.证明:必有a1=a2=…=an.【题说】第五届(1963年)国际数学奥林匹克题3.本题由匈牙利提供.【证】当n为奇数时,设n=2k+1(k为正整数),∠A2A1An 的平分线A1B交Ak+1Ak+2于点B(如图).由于已知n边形的各角都相等,所以A1B⊥Ak+1Ak+2,因此折线A1A2…Ak+1与折线A1An…Ak+2在这条角平分线上的射影都等于A1B.另一方面,A1A2≥A1An,并且它们与A1B的交角相等,所以A1A2的射影≥A1An的射影.同理A2A3的射影≥AnAn-1的射影….所以上述各式中等号均应成立,即a1=a2=…=an.当n为偶数时,作A1A2的中垂线L.考虑各边在L上的射影,同样可得a1=a2=…=an.C1-006 在平面上取四点A、B、C、D,已知对任何点P都满足不等式PA+PD≥PB+PC.证明;点B和C在线段AD上,并且AB=CD.【题说】 1966年全俄数学奥林匹克九年级题2.【证】由于点P是任意的.可以取P=D,则应有AD≥BD+DC;若取P=A,则有AD≥AB+AC.将二式相加,得2AD≥AB+AC+BD+CD(1)然而另一方面,总有AD≤AC+CD及AD≤AB+BD.因此又得2AD≤AB+AC+BD+CD(2)由(1)、(2)知2AD=AB+AC+BD+CD从而其他4个不等式中皆取等号,亦即B、C两点一定在线段AD上,而且AB=CD.C1-007 凸多边形内一点O同每两个顶点都组成等腰三角形,证明:该点到多边形的各顶点等距.【题说】第六届(1972年)全苏数学奥林匹克九年级题6.【证】(1)如果凸多边形是△ABC,则结论显然成立.(2)对n(n>3)边形,设A、B、C为多边形的任意三个顶点,则C或在AO、BO的反向延长线组成的夹角内(图a),或C 在该角外,即该角与多边形的边DE相交(图b).在图a中,点O在△ABC内,由(1),AO=BO=CO.在图b中,点O在△BDE和△ADE内,故有AO=DO=EO=BO.C1-008 设有一圆,它与∠O两边相切,切点为A、B.从点A引OB的平行线,交圆于点C,线段OC与圆交于E,直线AE与OB 交于K.证明:OK=KB.【题说】第七届(1973年)全苏数学奥林匹克九年级题2.【证】设圆在点C的切线与∠O两边分别相交于P、Q.因为AP=PC,所以△APC和△OPQ皆为等腰三角形,从而AO=CQ=OB=BQ.又∠OAE=∠OCA=∠COQ,且∠AOB=∠CQB,从而△OAK∽△QOC.所以亦即 OK=KBC1-009 圆的内接四边形两条对角线互相笔直,则从对角线交点到一边中点的线段等于圆心到这一边的对边的距离.【题说】 1978年上海市赛二试题6.【证】如图,已知ABCD为⊙O的内接四边形,AC⊥BD于E,F为AB中点,OG⊥DC,G为垂足.因为 AF=FB=EF∠EAB=∠AEF又∠EAB=90°-∠EBA=90°-∠GCH=∠GHC所以∠AEF=∠GHC , EF∥GO同理可证,EG∥FO.所以EGOF是一个平行四边形,从而FE=OG.C1-010四边形两组对边延长后分别相交,且交点的连线与四边形的一条对角线平行,证明:另一条对角线的延长线平分对边交点连成的线段.【题说】 1978年全国联赛二试题1.【证】设四边形ABCD的对边交点为E、F,并且BD∥EF,AC交BD 于H,交EF于G.由于BD∥EF,所以GF=EGC1-011在平面上已知两相交圆O1和O2,点A为交点之一,有两动点M1和M2,从点A同时出发,分别以常速沿O1和O2同向运动,各绕行一周后恰好同时回到点A.证明:在平面上存在一定点P,P到点M1和M2的距离在每一时刻都相等.【题说】第二十一届(1979年)国际数学奥林匹克题3.本题由原苏联提供.【证】设O1和O2为已知圆的圆心,r1和r2分别为它们的半径.作线段O1O2的垂直平分线l及点A关于l的对称点P,则O1P=r2,O2P=r1(如图).由已知,∠AO1M1=∠AO2M2,由对称性,∠AO1P=∠AO2P.于是,∠M1O1P=∠M2O2P.又因为O1M1=O2P=r1,O2M2=O1P=r2,故△O1M1P≌O2M2P,M1P=M2P.[别证] 可以用复数来作.以O1为原点,O1O2为实轴建立复平面.C1-012二圆彼此外切于D,一直线切一圆于A,交另一圆于B、C两点.证明:A点到直线BD、CD的距离相等.【题说】第十三届(1987年)全俄数学奥林匹克十年级题3.【证】过切点D作二圆的公切线l,交AB于F.设E在CD的延长线上,则∠BDA=∠BDF+∠FDA=∠ACD+∠FAD=∠ADE,即DA平分∠BDE,所以,A到BD、CD的距离相等.C1-013在“筝形”ABCD中,AB=AD,BC=CD.经AC、BD的交点O任作两条直线,分别交AD于 E,交BC于F,交AB于G,交CD于H.GF、EH 分别交BD于I、J.求证:IO=OJ.【题说】 1990年全国冬令营选拔赛题3.本题宜用解析几何来证.本题是蝴蝶定理的一个推广.【证】易证AC⊥BD.如图,以O为原点,BD为x轴,CA为y轴,建立直角坐标系.设各点坐标为A(0,b),B(-a,0),C(0,c),D(a,0),EF 的方程为y=kx,GH的方程为y=lx,则AD的方程是EH的方程是比较常数项与y的系数有J的横坐标x满足及(1′)·l-(2′)·k得利用(3)得同样可得I的横坐标x应满足(将(4)中的k与l互换,a换成-a).由(4)、(5)立即看出I、J的横坐标互为相反数,即IO=OJ.C1-014如图,设△ABC的外接圆O的半径为R,内心为I,∠B=60°,∠A<∠C,∠A的外角平分线交⊙O于E.证明:(1)IO=AE;【题说】 1994年全国联赛二试题3.【证】(1)连AI,延交⊙O于F,则易知EF为⊙O直径.过E作ED∥IO交AF于D,则IO是△FDE的中位线,从而IO=因∠AOC=2∠ABC=120°故A、O、I、C共圆.从而(2)连CF,则∠IFC=∠AFC=∠B=60°∠ICF=∠ICB+∠BCF故IF=IC,又由(1)知IO=AE,从而IO+IA+IC=EA+AI+IF=EA+AF≥EF=2R令α=∠OAI,则(因∠A<∠C)又 AE+AF=2Rsinα+2Rcosα当α∈(0,45°)时,sin(45°+α)为增函数,故AE+AF<2R(sin30°+cos30°)C1-015设△ABC是锐角三角形,在△ABC外分别作等腰Rt△BCD、△ABE、△CAF.在这三个三角形中,∠BDC、∠BAE、∠CFA是直角.又在四边形BCFE外作等腰Rt△EFG,∠EFG是直角.求证:(2)∠GAD=135°.【题说】 1994年上海市赛高三二试题2.【证】以点A为原点建立直角坐标系,与B相应的复数记为Z B,等等.C1-016设M、N为三角形ABC的边BC上的两点,且满足BM=MN=NC.一平行AC的直线分别交AB、AM、AN于D,E和F,求证:EF=3DE.【题说】 1994年澳大利亚数学奥林匹克一试题1.【证】如图,过N、M分别作AC的平行线交AB于H、G点.NH交AM于K点.则BG=GH=HA.HK∶KN=1∶3又由于DF∥HN,于是DE∶EF=HK∶KN=1∶3故EF=3DE.C1-017 ABCD是一个平行四边形,E是AB上的一点,F为CD上一点.AF 交ED于G,EC交FB于H.连接G,H并延长交AD于L,交BC于M,求证:DL=BM【题说】 1994年澳大利亚数学奥林匹克二试题4.【证】如图,过E、F分别作EK∥AD,FQ∥AD,则所以AL·DL=QF·EK.同理,CM·MB=QF·EK.故AL·DL=CM·MB又由于 AL+DL=CM+MB,所以DL=BMC1-018 在梯形ABCD(AB∥DC)中,两腰AD、BC上分别有点P、Q 满足∠APB=∠CPD,∠AQB=∠CQD.证明:点P和Q到梯形对角线交点O的距离相等.【题说】第二十届(1994年)全俄数学奥林匹克九年级(决赛)题7.【证】如图,设B′是B点关于AD的对称点,则P点就是B′C与AD的交点.在△APB和△DPC中,∠APB=∠DPC,∠PAB=180°-∠PDC,由正弦定理知△COP∽△CAB′C1-019从△ABC的顶点A引3条线段,∠A的平分线AM,∠A的外角平分线AN,三角形外接圆的切线AK,点M、N、K依次排列在直线BC上.证明:MK=KN.【题说】 1995年城市数学联赛低年级普通水平题4.【证】由于∠KAM=∠KAB+∠BAM=∠ACB+∠CAM=∠AMK所以,KA=KM.另一方面,∠NAM=90°,且∠ANM=90°-∠AMN=90°-∠KAM=∠NAK故KN=AK=KM.C1-020△ABC具有下面性质:存在一个内部的点P使∠PAB=10°,∠PBA=20°,∠PCA=30°,∠PAC=40°.证明:△ABC是等腰三角形.【题说】第25届(1996年)美国数学奥林匹克题5.[解] 作AC边上的高BD,又作AQ使∠QAD=30°,AQ交BD于Q,连PQ.设直线PQ交AC于C′.因为∠BAD=10°+40°=50°,所以∠ABD=90°-50°=40°,∠PBQ=40°-∠PBA=20°=∠PBA,∠PAQ=∠PAC-∠QAD=10°=∠PAB,从而P是△ABQ的内心,∠PQA=∠PQB=而∠PCA=30°,所以C′与C重合.从而QA=QC,QD平分AC,BA=BC.C1-021半径相等的三个互不相交的圆的圆心O1、O2、O3位于三角形的顶点处.分别从点O1、O2、O3引已知圆的切线,如图所示,已知这些切线相交成凸六边形,而六边形相邻的边分别涂成红色和蓝色.证明:红色线段长度之和等于蓝色线段长度之和.【题说】第二十二届(1996年)全俄数学奥林匹克九年级题2.【证】如图所示,X1、X2、Y1、Y2、Z1、Z2分别为切点.切线围成的六边形为ABCDEF.因⊙O1,⊙O2,⊙O3的半径相等,易得X1O2=O1Y2,Y1O3=O2Z2,Z1O1=O3X2.即X1A+AB+BO2=O1B+BC+CY2Y1C+CD+DO3=O2D+DE+EZ2Z1E+EF+FO1=O3F+FA+AX2以上三式两边相加,并利用X1A=AX2,Y1C=CY2,Z1E=EZ2,及BO2=O1B,DO3=O2D,FO1=O3F,得AB+CD+EF=BC+DE+FAC1-022 在等腰△ABC中(AB=BC),CD是角平分线.过△ABC的外心作直线垂直于CD,交BC于E点,再过E点作CD的平行线交AB于F,证明:BE=FD.【题说】第二十二届(1996年)全俄数学奥林匹克十一年级题6.【证】设O是△ABC的外心,K是直线BO和CD的交点.先设O在B、K之间(图a),∠BOE=90°-∠DKO=∠DCA,所以,点K、O、E、C四点共圆.∠OKE=∠OCE因为OB=OC,所以∠OCE=∠OBE.于是∠BKE=∠OCE=∠KBE所以BE=KE又∠BKE=∠KBE=∠KBA所以KE∥AB.从而KEFD为平行四边形,则DF=KE=BEK在O、B之间(图b)或K、O重合的情况可用类似方法证明.C1-023直角三角形ABC中,C为直角,证明:在△ABC中至少有一点P,使∠PAB=∠PBC=∠PCA.【题说】 1963年合肥市赛高二二试题2.【证】我们证明结论对任意△ABC成立.不妨设∠A、∠B为锐角,过A作AB的垂线,与边AC的中垂线相交于点O B.过B作BC的垂线交AB的中垂线于点O C,分别以O B、O C为心,过A点作圆.设P为这两个圆的另一个公共点,则AP⊥O B O C.连PB、PC.设O为△ABC的外心,则OO C∥AO B,四边形OO B AO C为梯形,对角线O B O C 在梯形内,∠AO B O C<∠AO B O,所以∠PAO B=90°-∠AO B O C>90°-∠AO B O=∠CAO B.同样∠PAO C>∠BAO C,所以射线AP在∠CAB内,P是AP与的交点,与A在BC的同侧,所以P在△ABC内.由于BC与⊙O C相切,所以∠PBC=∠PAB.同理∠PAB=∠PCA.因此,P合乎要求.C1-024在矩形ABCD内,M是AD的中点,N是BC的中点,在线段CD的延长线上取一点P,用Q表示直线PM和AC的交点.证明:∠QNM=∠MNP.【题说】第六届(1972年)全苏数学奥林匹克八年级题1.【证】设R是直线QN和CD的交点,O是矩形ABCD的中心,由OM=ON 得:PC=CR.因此三角形PNR是等腰三角形(NC是该三角形的中线和高,也就是△PQN的外角∠PNR的平分线,又NC⊥MN),问题的结论由此即得.C1-025已知正方形ABCD,点P和Q分别在AB和BC上,且BP=BQ,BH⊥PC于H.证明:∠DHQ是直角.【题说】第八届(1974年)全苏数学奥林匹克十年级题2.【证】延长BH交AD于E,则Rt△ABE≌Rt△BCP,于是AE=BP=BQ,因此,QC=ED,从而得矩形CDEQ.这个矩形的外接圆直径就是其对角线CE与DQ,而∠CHE=90°,所以H点在矩形的外接圆上,即C、D、E、H、Q五点共圆.对着直径DQ的圆周角:∠DHQ=∠DCQ=90°即∠DHQ是直角.C1-026设ABCD是矩形,BC=3AB,证明:如果P、Q是BC边上的点,BP=PQ=QC,那么∠DBC+∠DPC=∠DQC.【题说】第六届(1974年)加拿大数学奥林匹克题2.【证】如图所示,即证β+γ=α或tan(β+γ)=tanα=1△BRD∽△PQD.于是∠RBD=∠DPC=β,从而有β+γ=∠RBC=α.C1-027在任一△ABC的边上,向外作△BPC、△CQA和△ARB,使得2.QR=RP.【题说】第十七届(1975年)国际数学奥林匹克题3.本题由荷兰提供.【证】建立一个复平面,令A和B的坐标分别为-1和1,C的因而,于是RQ⊥RP,RQ=RP.C1-028如图,两圆O1、O2相交于A、B,圆O1的弦BC交圆O2于E,圆O2的弦BD交圆O1于F,证明:1.若∠DBA=∠CBA,则DF=CE;2.若DF=CE,则∠DBA=∠CBA.【题说】 1979年全国联赛二试题6.【证】 1.连AD、AE、AF、AC,则∠DFA=∠ECA.又∠DBA=∠CBA以AD=AE,AC=AF所以△DAF≌△EACDF=CE2.由于∠DFA=∠ACE,∠AEC=∠ADF,DF=CE,所以△DAF≌△EAC,AD=AE.从而∠DBA=∠EBA.C1-029两圆相切(内切或外切)于P点,一条直线切一个圆于A,交另一圆于B、C.证明:直线PA是∠BPC的平分线(如果两圆内切)或∠BPC的补角的平分线(如果两圆外切).【题说】 1980年五国国际数学竞赛题4.本题由比利时提供.【证】设两圆外切(图a),作公切线PT,则∠APB=∠APT+∠TPB=∠BAP+∠BCP=∠BPC的补角-∠APB即AP是∠BPC的补角的平分线.若两圆内切(图b),设公切线与BC相交于T.因为∠CPT、∠APT、∠TAP都是弦切角,故∠BPA=∠APC,因此,PA是∠BPC的平分线.C1-030已知A为平面上两条半径不等的圆O1和O2的一个交点,两外公切线P1P2、Q1Q2分别切两圆于P1、P2、Q1、Q2,M1、M2分别为P1Q1、P2Q2的中点,求证:∠O1AO2=∠M1AM2.【题说】第二十四届(1983年)国际数学奥林匹克题2.本题由原苏联提供.【证】设B是两圆的另一交点,T、M分别是P1P2、O1O2与AB的交点.又P1M1∥TM∥P2M2所以MM1=MM2为AB⊥O1O2所以TM是M1M2的中垂线.在O1O2上,取MO3=MO2,则∠O3AM1=∠O2AM2.因为O1P1∥O2P2,O1M1∥O2M2,P1M1∥P2M2△O1P1M1∽△O2P2M2由此可知,AM1是∠O1AO3的角平分线.所以∠O1AM1=∠O3AM1=∠O2AM2故有∠O1AO2=∠O1AM1+∠M1AO2=∠O2AM2+∠M1AO2=∠M1AM2C1-031 如图,延长线段AB至D,以AD为直径作半圆,圆心为H.G 是半圆上一点,∠ABG为锐角.E在线段BH上,Z在半圆【题说】 1992年澳大利亚数学奥林匹克题5.【证】由EH·ED=EZ2知△HEZ∽△ZED,所以∠EZH=∠EDZ=∠DZH.于是∠AEZ=3∠EZHC1-032 在正方形ABCD的AB、AD边各取点K、N,使得AK·AN=2BK·DN.线段CK、CN各交对角线BD于L、M.试证:∠BLK=∠DNC=∠BAM.【题说】第三届(1993年)澳门数学奥林匹克第二轮题4.【证】令AB=a,BK=b,DN=c,则(a-b)(a-c)=2bc即a2-bc=a(b+c)所以∠BCK+∠DCN=45°∠BLK=∠BCK+45°=90°-∠DCN=∠DNC再由△ABM≌△CBM,得∠BAM=∠BCM=∠BCK+∠LCM=∠BCK+(90°-45°)=∠BLKC1-033如图,⊙O1与⊙O2外切于点P,Q是过P的公切线上任一点,QAB和QDC分别是⊙O1与⊙O2的割线,P在AB、AD和DC上的射影分别为E、F、G.求证:(1)∠BPC=∠EFG;(2)△EFG∽△PBC.【题说】 1994年四川省赛题3.【证】(1)因PQ切⊙O1与⊙O2于P,所以∠QPA=∠PBA (1)因为∠AEP=∠AFP=90°所以A、E、P、F四点共圆.故有∠FEP=∠FAP=∠DAP (2)同理,F、D、G、P四点共圆.且∠BPC=∠BAP+∠PDC=∠EFP+∠PFG=∠EFG(3)(2)因为∠PEQ=∠PGQ=90°所以Q、E、P、G四点共圆,于是∠GEP=∠GQP=∠DQP (4)由(2)、(4)与∠DAP+∠QPA=∠QDA+∠DQP得∠FEG=∠FEP-∠GEP=∠DAP-∠DQP=∠QDA-∠QPA(5)又A、B、C、D四点共圆,有∠QDA=∠QBC.于是由(1)、(5)得∠FEG=∠QBC-∠PBA=∠PBC(6)由(3)、(6)得△EFG∽△PBC.C1-034 D、E、F分别为△ABC的边BC、CA、AB上的点,且∠FDE=∠A,∠DEF=∠B,又设△AFE、△BDF、△CED均为锐角三角形,它们的垂心依次为H1、H2、H3,求证:(1)∠H2DH3=∠FH1E;(2)△H1H2H3≌△DEF.【题说】 1994年江苏省赛题5.【证】如图,(1)∠H2DB=90°-∠B,∠H3DC=90°-∠C,所以∠H2DH3=180°-∠H2DB-∠H3DC=∠B+∠C.而∠EH1F=180°-∠H1EF-∠H1FE=180°-(90°-∠AFE)-(90°-∠AEF)=180°-∠A=∠B+∠C.所以∠H2DH3=∠FH1E(2)由(1)知∠FH1E+∠EDF=180°,所以,H1在△DEF的外接圆上.同理H2、H3也在此圆上,因此D、E、F、H1、H2、H3六点共圆.又由(1)知∠EH1F=∠H2DH3,所以EF=H2H3.同理DF=H1H3,DE=H1H2,故△DEF≌△H1H2H3.C1-035 △ABC为锐角三角形.AD为BC边的高,H为AD内一点.直线BH、CH分别交AC、AB于E、F.证明:∠EDH=∠FDH.【题说】第26届(1994年)加拿大数学奥林匹克题5.又见第3届(1993年)澳门数学奥林匹克题3.[解] 过A作直线l平行于BC.延长DE、EF,分别交l于Q、P.由相似三角形,AP=AQ于是△DPQ的高DA平分PQ,所以△DPQ是等腰三角形,并且∠EDH=∠FDH.C1-036 在直角KLM内取一点P.以O1点为圆心的圆ω1分别切∠KLP 的两边LK和LP于A、D两点;以O2点为圆心半径与圆ω1半径相等的圆ω2分别切∠MLP的两边LP、LM于B、E两点.点O1在线段AB上.设O2D的延长线与KL交于C点.证明:BC是∠ABD的平分线.【题说】第二十届(1994年)全俄数学奥林匹克九年级题6.【证】连结O1D及O2B,则O1D=BO2.因为O1D⊥LP,O2B⊥LP,所以O1D∥BO2,O1BO2D为平行四边形,从而CO2∥AB,∠LDC=∠O1BD.∠LCD=∠LAB=90°(1)因为O2E⊥LM,所以O2ELC是矩形.因此CL=O2E=O2B=DO1(2)由(1)、(2)得Rt△LCD≌Rt△O1DB,所以CD=DB.于是∠ABC=∠BCD=∠CBD,即BC是∠ABD的平分线.C1-037设AK、BL、CM是△ABC的角平分线,K在BC上,令P、Q 分别是BL,CM上的点,使得AP=PK,AQ=QK.证明:【题说】 1995年城市数学联赛低年级较高水平题3.【证】如图,设BL交△ABK的外接圆于点D.则∠DAK=∠DBK=∠DBA=∠DKA所以,DA=DK,从而D与P重合.即有C1-038设△ABC是锐角三角形,且BC>CA,O是它的外心,H是它的垂心,F是高CH的垂足,过F作OF的垂线交边CA于P.证明:∠FHP=∠BAC.【题说】第三十七届(1996年)IMO预选题.【证】延长CF交⊙O于D点,连BD、BH.由于∠BHF=∠CAF=∠D且BF⊥HD,所以F为HD的中点.设FP所在直线交⊙O于M、N两点,交BD于T点.由OF⊥MN知F为MN的中点.由蝴蝶定理即得F为PT的中点.又因F 为HD的中点,故HP∥TD,所以,∠FHP=∠D=∠BAC.C1-039在凸凹边形ABCD的BC边上取E和F(点E比F更靠近点B).已知∠BAE=∠CDF及∠EAF=∠FDE.证明:∠FAC=∠EDB.【题说】第二十二届(1996年)全俄数学奥林匹克十年级题1.【证】因为∠EAF=∠FDE,所以A、E、F、D共圆,∠AEF+∠FDA=180°,又∠BAE=∠CDF,所以∠ADC+∠ABC=∠FDA+∠CDF+∠AEF-∠BAE=180°因此A、B、C、D共圆,∠BAC=∠BDC,由此得∠FAC=∠EDB.C1-040 在平行四边形ABCD中有一点O,使得∠AOB+∠COD=180°.证明:∠OBC=∠ODC.【题说】第二十九届(1997年)加拿大数学奥林匹克题4.[解] 过O作OE BA,连EC、ED,则四边形EOAD、EOBC都是平行四边形,所以CE∥BO,ED∥OA,∠CED+∠COD=∠AOB+∠COD=180°O、C、E、D四点共圆,从而∠ODC=∠OEC=∠OBCC1-041已知一个等腰三角形,外接圆半径为R,内切圆半径为r.证明:外接圆和内切圆的圆心距离d为【题说】第四届(1962年)国际数学奥林匹克题6.本题由原东德提供.【证】本题结论(即欧拉公式)对任意三角形(不限于等腰三角形)均成立.设M为BC的中点,O与I分别为外接圆和内切圆的圆心,外接圆直径MN交BC于D.连IB、BM、AM必过I.又设IE⊥BCIK⊥MNE、K为垂足.=∠IBM所以MI=MB又 IO2=MI2+MO2-2MO·MK而MB2=MD·MN=2R·MD所以d2=2R·MD+R2-2R·MK=R2-2R×DK=R2-2RrC1-042设过三角形的内心和重心的直线平行于一边.求证:其它二边长的和等于这一边长的两倍.【题说】 1963年西安市赛高二题3.【证】设△ABC的三边为a、b、c、M为BC之中点,G、I分别为△ABC的重心和内心,且IG∥BC.因为IG∥BC所以G到BC的距离GE=r(内切圆半径)BC边上的高h=3GE=3r,而ha=r(a+b+c)(=2S△ABC)所以3a=a+b+c即b+c=2aC1-043 1.在凸六边形ABCDEF中,所有角都相等.证明:AB-DE=EF-BC=CD-FA2.反之,若六条边a1,a2,a3,a4,a5,a6满足等式a1-a4=a5-a2=a3-a6.证明:它们可以组成各内角相等的凸六边形.【题说】 1964年全俄数学奥林匹克八年级题5(1)、十年级题3(2).【证】 1.直线AB、CD、EF构成△GHI.由已知六边形各角相等知,每个角都是120°,从而△GHI的每个角都是60°,因此它是正三角形.并且AF、BC、DE分别与边GI、GH、HI平行.AB+AC=AB+BI=AI=GF=GE+EF=DE+EF所以 AB-DE=EF=BC同理 EF-BC=CD-FA2.以a1+a2+a6为边作正三角形GHI,然后在各边取A、B、C、D、E、F,使BI=IC=a2,DG=GE=a4,FH=HA=a6,则BC∥GH,DE∥HI,AF∥GI,所以六边形ABCDEF各角相等,并且AB=a1,BC=BI=a2,AF=AH=a6,DE=DG=a4,CD=(a1+a2+a6)-a2-a4=a3.EF=(a1+a2+a6)-a4-a6=a5.C1-044 已知ABCD为一圆外切梯形,E是对角线AC和BD的交点,r1、r2、r3、r4分别是△ABE、△BCE、△CDE和△DAE的内切圆半径.证明:【题说】 1964年全俄数学奥林匹克十一年级题2.【证】设△ABE、△BCE、△CDE、△DAE的面积和周长分别为S1、S2、S3、S4;l1、l2、l3、l4.由于 AB+C D=AD+BC所以 l1+l3 =l2+l4(2)因为 AB∥CD所以 S2=S4记之为S.则从而相加并利用(2)得即(1)成立.C1-045 设点M是△ABC的AB边上的任一内点,r1、r2、r分别是△AMC、△BMC、△ABC的内切圆半径;q1、q2、q分别是这些三角形在∠ACM、∠BCM、∠ACB内的旁切圆半径.试证:【题说】第十二届(1970年)国际数学奥林匹克题1.本题由波兰提供.【证】设∠CAB=α,∠ABC=β,∠BCA=γ,∠AMC=δ;又设△ABC的内切圆的圆心为R,且与AB切于P(如图).于是从而有由于三角形的角的内、外分角线互相垂直,因而类似地有由(1)和(2)可得类似的结论对于△AMC和△BMC也成立,故有将(4)、(5)相乘,并利用(3)得C1-046 考虑如图a、图b所示的△ABC和△PQR.在△ABC中,∠ADB=∠BDC=∠CDA=∠120°.试证:x=u+v+w.【题说】第三届(1974年)美国数学奥林匹克题5.【证】△BCD绕B逆时针方向旋转60°,至△BEF,如图c.这时易知A、D、F、E在一直线上,且AE=u+v+w.再将△EAC绕E顺时针方向旋转60°,至△EGB.则△AEG为正三角形且易证它与△PQR全等,其中B相当于O点.得证.【别证】(1)△PQR绕R逆时针旋转60°,至△SPR,如图d.这时作正△ROT外接圆,设交RP于D′.易证∠OD′T=∠TD′P=∠PD′O=120°.由△ABC中D点的唯一性及△ABC≌△TOP知PD′=w,OD′=v,TD′=u.又由托勒密定理,知RD′=u+v,故x=u+v+w.(2)过O作△PQR三边平行线,如图e,也可以得结论.C1-047 直径A0A5把圆O分成两个半圆,其中一个半圆分成五段等点M、N.证明:线段A2A3与MN之和等于圆的半径.【题说】第十九届(1985年)全苏数学奥林匹克八年级题6.【证】在圆上分别标出点A1、A2、A3、A4关于直径A0A5的对称点B1、B2、B3、B4,得圆的内接正十边形A0A1…A5B4B3…B1(如图).则A2B1∥A3B2,A2B1∥A1A0,OA2∥B2A1,A0A5∥A1A4∥A2A3.由对称性知A2B1和B2A1的交点K在A0A5上.又设A2B1和A1A4相交于点L.于是KA2A3O、A0A1LK、A1MOK、LNOK都是平行四边形.所以A2A3=KO=A1M=LN,从而MN=A1L=A0K.因此,A2A3+MN=A0O.C1-048 四边形ABCD内接于圆,另一圆的圆心O在边AB上且与其余三边相切.求证:AD+BC=AB.【题说】第二十六届(1985年)国际数学奥林匹克题1.本题由英国提供.【证】在AB上取点M,使MB=BC.连结OD、OC、MD和MC.所以C、D、M、O四点共圆.所以∠AMD=∠ADM,故AM=AD.从而AB=AM+MB=AD+BC【别证】设半圆半径为1,∠OAE=α,则AE=cotα.同理可证 BG+ED=BO故 AD+BC=ABC1-049 已知两圆相交于M和K,引两圆的公切线,切点为A和B.证明:∠AMB+∠AKB=180°.【题说】第十四届(1988年)全俄数学奥林匹克八年级题2.【证】如图,连结MK,则∠AMK=∠KAB∠BMK=∠KBA两式相加得∠AMB=∠KAB+∠KBA因此∠AMB+∠AKB=∠KAB+∠KBA+∠AKB=180°C1-050 在一个三角形中,以h a、h b、h c表示它的三条高,以r表示它的内切圆半径.证明:当且仅当三角形为等边三角形时,h a+h b+h c=9r.【题说】 1988年原联邦德国数学奥林匹克(第一轮)题2.【证】设三角形三边为a、b、c,周长为p,面积为S,则2S=rp=ah a=bh b=ch c当且仅当a=b=c,即三角形为等边三角形时取等号,即h a+h b+h c=9rC1-051 设点D、E、F分别在△ABC的三边BC、CA、AB上,且△AEF、△BFD、△CDE的内切圆有相等的半径r,又以r0和R分别表示△DEF和△ABC 的内切圆半径.求证:r+r0=R【题说】第四届(1989年)全国冬令营赛题4.【证】设p为△ABC的半周长,q为△DEF的半周长.因为S△ABC=S△AEF=S△BFD+S△CDE+S△DEF所以R·p=r·p+(r0+r)·q(1)所以 R(p-q)=Pr(4)由(1)、(4)得Rq=(r0+r)q,即R=r0+r.C1-052 在圆内引弦AB和AC,∠BAC平分线交圆于D点.过D【题说】第十六届(1990年第三阶段)全俄数学奥林匹克九年级题8.【证】作DM⊥AC于M(如图).因为ABDC内接于圆,所以∠MCD=∠B若B与E重合,则∠B=90°=∠ACDRt△ABD≌Rt△ACD,结论显然成立.若B与E不重合,则∠B为锐角或钝角.不妨设∠B为锐角(钝角情形同样讨论),则∠ACD为钝角,M在AC延长线上,而E点在AB线段内.由于AD平分∠BAC,所以DE=DM,AE=AM.从而△BDE≌△CDM,则C1-053 四边形ABCD内接于半径为r的圆,对角线AC、BD相交于E.证明:若AC⊥BD,则EA2+EB2+EC2+ED2=4r2(1)若(1)成立,是否必有AC⊥BD?说明你的理由.【题说】 1991年英国数学奥林匹克题3.【解】若AC⊥BD,则EA2+EB2+EC2+ED2=AB2+CD2.由正弦定理AB2=4r2sin2∠ACBCD2=4r2sin2∠CBD=4r2cos2∠ACB所以EA2+EB2+EC2+ED2=4r2sin2∠ACB+4r2cos2∠ACB=4r2反之,若(1)成立,未必有AC⊥BD.例如AC、BD为任两条直径,则交点E即为圆心.(1)式显然成立.C1-054 设∠A是三角形ABC中最小的内角.点B和C将这个三角形的外接圆分成两段弧.设U是落在不含A的那段弧上且不等于B与C的一个点.线段AB和AC的垂直平分线分别交线段AU于V和W.直线BV和CW相交于T.证明:AU=TB+TC.【题说】第三十八届(1997年)国际数学奥林匹克题2.本题由英国提供.【证】如图所示,因为点V在线段AB的垂直平分线上,所以∠VAB=∠VBA.又因∠A是△ABC的最小内角,且∠VAB=∠UAB<∠CAB故∠VBA=∠VAB<∠CAB≤∠CBA即V在∠ABC内.同理W在∠ACB内.BV与CW的交点T在△ABC内.延长BT交外接圆于S.由于AU与BS关于弦AB的中垂线对称,所以AU=BS.因为∠TCS=∠TCA+∠ACS=∠WAC+∠ABS=∠WAC+∠VAB=∠BAC=∠BSC,所以TS=TC,从而AU=BT+TS=BT+TCC1-055 在圆上取六个点A、B、C、D、E、F,使弦AB与DE平行,弦DC与AF平行.证明:弦BC与弦EF平行.【题说】 1959年~1960年波兰数学奥林匹克三试题5.【证】圆上六点的顺序有种种情况.以图a、图b所示的两种为例,其他情况可仿此证明.在图a中,因AB∥DE,DC∥AF,故有所以BC∥EF所以,BC∥EF.C1-056 在平行四边形ABCD的两边AB、AD上,向外作两个正方形ABMX、ADNY.求证:CA⊥XY.【题说】 1963年武汉市赛高三一试题4.【证】如图,延长CA交XY于E,因∠ABC=180°-∠BAD=180°-(360°-∠BAX-∠XAY-∠YAD)=∠XAY又AY=AD=BC及AX=BA所以△XAY≌△ABC,从而∠XYA=∠ACB=∠CAD所以∠AEY=180°-∠EAY-∠EYA=180°-∠EAY-∠CAD=∠DAY=90°.亦即AC⊥XY.C1-057 作△ABC外接圆,连接AC中点与AB、BC中点的弦,分别交AB 于D,交BC于E.证明:DE∥AC且通过三角形的内心.【题说】 1965年全俄数学奥林匹克八年级题3.△ABC的内心,则AM、BN过O.又设LN与AC交于K,连结OK.LN⊥AM在△AON中,易知∠AON=∠NAO.从而ND平分AO.又AO平分∠A.从而AO平分DK.因此在四边形AKOD中二对角线AO、DK互相垂直平分,故AKOD 是菱形.于是DO∥AK.同理,四边形CEOJ是菱形,从而OE∥CJ,从而D、O、E在一条直线上,即DE∥AC,而且DE过△ABC内心O.C1-058 某个平面四边形,各边之长顺次为a,b,c,d,对角线互相垂直.试证:任何其它四边形,若其各边长顺次为a,b,c,d,则其对角线也互相垂直.【题说】 1975年~1976年波兰数学奥林匹克三试题4.【证】设四边形ABCD、A′B′C′D′的边长顺次为a,b,c,d,AC 与BD相交于O,并且AC⊥BD(如图).显然a2-b2=AO2-OC2=d2-c2设B′在A′C′上的射影为P,D′在A′C′上的射影为Q,则A′P2-PC′2=a2-b2=d2-c2=A′Q2-QC′2即 A′C′×(A′P-PC′)=A′C′×(A′Q-QC′)从而A′P-PC′=A′Q-QC′,又A′P+PC′=A′C′=A′Q+QC′,所以A′P=A′Q,P与Q重合,并且均在B′D′上.于是B′D′⊥A′C′.C1-059 已知平面上的三个正方形ABCD、A1B1C1D1和A2B2C2D2(正方形的顶点是沿逆时针方向标写的).并且顶点A1与A重合,而C2与C重合,试证:线段D1D2与BM(其中M为线段B1B2的中点)互相垂直并且|D1D2|=2|BM|.【题说】第六届(1981年)全俄数学奥林匹克十年级题5.【证】设B为原点,其它各点的复数表示仍用同样的字母,则由于M 是线段B1B2中点,2·M=B1+B2=(B1-A)+(B2-C)+A+C=(D1-A)·(-i)+(D2-C)·i+A+C=(D2-D1)i+A·(1+i)+C·(1-i)=(D2-D1)i+C·i(1+i)+C·(1-i)=(D2-D1)i因此线段D1D2⊥BM,并且|D1D2|=2|BM|.C1-060 如图,在凸四边形ABCD中,AB与CD不平行.圆O1过A、B且与边CD相切于P,圆O2过C、D且与边AB相切于Q,圆O1与圆O2相交于E、F.求证:EF平分线段PQ的充分必要条件是BC∥AD.【题说】第五届(1990年)全国冬令营赛题1.【证】首先证明:如图,分别延长CD与BA,记它们的交点为S.并记SC,SD,SP,SA,SB,SQ为c,d,p,a,b,q,则p2=ab,q2=cd.于是延长PQ分别交圆O1、O2于J、I,则由相交弦定理可知PD·PC=PI·PQ,QA·QB=QJ·PQ弦定理可知KP·KJ=KE·KF=KQ·KI即KP(KQ+QJ)=KQ(KP=PI)于是KP·QJ=KQ·PI综上所述,命题得证.C1-061 △ABC是直角三角形,以直角边AC和BC为边分别向外作两个菱形ACDE和CBFG,其中心分别为P和Q,且∠EAC=∠GCB<90°,如果M和N分别为AB和DG的中点.证明:PQ⊥MN.【题说】 1992年友谊杯国际数学竞赛八年级题2.【证】容易证明,△ACG≌△BCD,所以AG=BD.从而以四边形ADGB各边中点为顶点的四边形P,N,Q,M是菱形,故PQ⊥MN.C1-062 ABCDE是凸五边形,AB=BC,∠BCD=∠EAB=90°.X为此五边形内一点,使得AX⊥BE且CX⊥BD.证明:BX⊥DE.【题说】 1992年澳大利亚数学奥林匹克题3.【证】设AX交BE于Y,CX交BD于Z,BX交DE于F.则AB2=BY·BE=BZ·BD所以D,E,Y,Z四点共圆.又由于B,Y,X,Z四点共圆,所以∠BXZ=∠BYZ=∠ZDF故D,F,X,Z四点共圆,从而∠BFD=∠DZX=90°,即BX⊥DE.C1-063 已知△ABC以O1、O2、O3为旁切圆圆心.证明:△O1O2O3是锐角三角形.【题说】第三届(1993年)澳门数学奥林匹克第一轮题3.【证】易知△O1O2O3包含△ABC,△ABC三内角平分线是△O1O2O3三高,△ABC内心O是△O1O2O3垂心.O在△ABC内,更在△O1O2O3内,故△O1O2O3为锐角三角形.C1-064 在△ABC中,∠A的平分线交AB边中垂线于A′,∠B的平分线交BC边中垂线于B′,∠C的平分线交CA边中垂线于C′.求证:(1)若A′与B′重合,则△ABC为正三角形;【题说】 1993年德国数学奥林匹克(第二轮)题3.【证】(1)若A′与B′重合,则△ABC的内心与外心重合,从而△ABC为正三角形.(2)将△A′AC′绕A旋转,使A与B重合.设这时C′转到∠ABC-∠BAC+∠ACB)=∠B′CC′.所以△B′BK≌△B′CC′,B′K=B′C′.从而△B′A′K≌△B′A′C′,∠【注】设I为内心,AB的垂直平分线交BB′于J,则可以证明△A′C′I∽△A′B′J,从而导出结论,但需要稍多的计算.C1-065 ABC是一个等腰三角形,AB=AC,假如(i)M是BC的中点,O是直线AM上的点,使得OB垂直于AB;(ii)Q是线段BC上不同于B和C的一个任意点;(iii)E在直线AB上,F在直线AC上,使得E,Q,F是不同的和共线的.求证:OQ⊥EF当且仅当QE=QF.【题说】第三十五届(1994年)国际数学奥林匹克题2.本题由亚美尼亚-澳大利亚提供.【证】连线段OE、OF、OC.由对称性,OC⊥AC,∠OBQ=∠OCQ.若OQ ⊥EF,则O、Q、B、E四点共圆,O、Q、C、F四点共圆,故∠OEQ=∠OBQ,∠OFQ=∠OCQ (1)于是∠OEQ=∠OFQ,OE=OF又OQ⊥EF,故QE=QF.反之,若QE=QF,过E作EG∥BC交AC于G,则易知EB=GC=CF.又OB=OC,∠OBE=∠OCF=90°,所以△OBE≌△OCF,OE=OF.从而OQ⊥EF.C1-066 如图,菱形ABCD的内切圆O与各边分别切于E、F、G、CD于P,交DA于Q.求证:MQ∥NP.【题说】 1995年全国联赛二试题3.【证】连结AC,则O为AC中点,再连结MO、NO.则∠MON=180°-(∠OMN+∠MNO)因此△AMO∽△OMN∽△CON。
初中数学奥林匹克竞赛教程
![初中数学奥林匹克竞赛教程](https://img.taocdn.com/s3/m/5451c5df76eeaeaad1f330bd.png)
初中数学奥林匹克竞赛教程初中数学竞赛大纲(修订稿)数学竞赛对于开发学生智力,开拓视野,促进教学改革,提高教学水平,发现和培养数学人才都有着积极的作用。
目前我国中学生数学竞赛日趋规范化和正规化,为了使全国数学竞赛活动健康、持久地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《初中数学竞赛大纲(修订稿)》以适应当前形势的需要。
本大纲是在国家教委制定的九年义务教育制“初中数学教学大纲”精神的基础上制定的。
《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性。
”具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养……,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。
同时,要重视培养学生的独立思考和自学的能力”。
《教学大纲》中所列出的内容,是教学的要求,也是竞赛的要求。
除教学大纲所列内容外,本大纲补充列出以下内容。
这些课外讲授的内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,处理好普及与提高的关系,这样才能加强基础,不断提高。
1、实数十进制整数及表示方法。
整除性,被2、3、4、5、8、9、11等数整除的判定。
素数和合数,最大公约数与最小公倍数。
奇数和偶数,奇偶性分析。
带余除法和利用余数分类。
完全平方数。
因数分解的表示法,约数个数的计算。
有理数的表示法,有理数四则运算的封闭性。
2、代数式综合除法、余式定理。
拆项、添项、配方、待定系数法。
部分分式。
对称式和轮换对称式。
3、恒等式与恒等变形恒等式,恒等变形。
整式、分式、根式的恒等变形。
恒等式的证明。
4、方程和不等式含字母系数的一元一次、二次方程的解法。
一元二次方程根的分布。
含绝对值的一元一次、二次方程的解法。
含字母系数的一元一次不等式的解法,一元一次不等式的解法。
初中数学奥林匹克竞赛解题方法大全(配PDF版)一元一次方程及汇总
![初中数学奥林匹克竞赛解题方法大全(配PDF版)一元一次方程及汇总](https://img.taocdn.com/s3/m/abb25e50f46527d3240ce081.png)
第四章一元一次方程及其应用第一节一元一次方程例1、在解方程的过程中,为了使得到的方程和原方程同解,可在原方程的两边()A、乘以同一个数B、乘以同一个整式C、加上同一个代数式D、都加上同一个数例2、方程甲3(x-4)=3x与方程乙x-4=4x同解,其根据是() 4A、甲方程两边都加上了同一个整式B、甲方程两边都乘以了4/3xC、甲方程两两边都乘以了4/3D、甲方程两边都乘以了3/4例3、方程1⎧1⎡1⎛1⎫⎤⎫x-1⎪-1⎥-1⎬-1=2001的根x=__________。
⎨⎢2⎩2⎣2⎝2⎭⎦⎭例4、1992+1994+1996+1998=5000- 成立,则中应当填的数是()A、5B、-900C、-1900D、-2980例5、若P、Q都是质数,以X为未知数的方程PX+5Q=97的根是1。
则P2-Q=____。
例6、有理数111xz、、8恰是下列三个方程的根,则-=________。
25yx(1)2x-110x+12x+1-=-1 (2)3(2y+1)=2(1+y)+3(y+3) 3124(3)1⎡1⎤2z-(z-1)=(z-1) ⎥2⎢2⎣⎦327例7、解方程:x-=1990的去处时,某同学误将3.57 错写成3.57,结果与正确答案例8、在计算一个正数乘以3.57相差1.4,求正确的乘积应是多少? 2829第二节列方程解应用题例1、海滩上有一堆核桃,第一天猴子吃了这堆核桃的2/5,又将4个扔到大海里;第二天猴子吃掉的核桃数加上3个就是第一天所剩核桃数的5/8。
若第二天剩下6个核桃。
问海滩上原有多少个核桃?(20个)例2、古希腊数学家丢番图的墓志铭上记载:“坟中安葬着丢番图,多幺令人惊讶,它忠实地记录了所经历的道路。
上帝给予的童年占六分之一,又过十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛。
五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓。
悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途。
数学奥赛培训北大教授代数 数论 几何 组合的解题技巧
![数学奥赛培训北大教授代数 数论 几何 组合的解题技巧](https://img.taocdn.com/s3/m/4ea3626925c52cc58bd6beda.png)
f
md
m
m Hale Waihona Puke 1
1
m
,
m
1,
2,
3,
f m,2 m m 1 m , m 1, 2,3,
记x=1,y=1 1 ,则x,y为无理数且 1 1 =1。则
xy
xm | m=1,2,3, ,ym | m=1,2,3, 合起来恰好组成正整数列,
由于 pn pn 1 1 = pn
pq pq pq pq
pn 1
p
q
pn pq
pn pq
m 1
pn 1
p
q
1
pn pq
pn 1
p
q
an
b1=1。
p
任取正整数s,则bs=
j=1
a sj
p
,bs+1=
j=1
a
s+1
j
。设a
s=m
k,a
s+1=n
。
l
由1的定义可知mk和nl之间不存在M中的数,即不存在正整数q和
j{1,2, ,p}使得
mk q j nl
即
,p}使得a
n=m
。显然
k
n=#sl | sl mk , s 1, 2, , l {1,2, ,p},
其中# 表示集合 中元素的个数。由于
初中数学奥林匹克竞赛解题方法大全(配PDF版)-第01章-代数基础知识
![初中数学奥林匹克竞赛解题方法大全(配PDF版)-第01章-代数基础知识](https://img.taocdn.com/s3/m/7e80454569eae009581bec8a.png)
第一章 代数式基础知识第一节 用字母表示数1、什么是代数式?用运算符号将数或者表示数的字母连接起来的式子,叫代数式。
单独一个数或字母也叫代数式。
代数式总能表达一个意思。
2、什么是单项式?任意个字母和数字的积的形式的代数式。
一个单独的数或字母也叫单项式。
单项式中的数字因数叫做这个单项式的系数。
所有字母的指数和叫做这个单项式的次数。
任何一个非零数的零次方等于“1”。
单项式分母中不含字母(单项式是整式,而不是分式)。
3、什么是多项式?若干个单项式的和组成的式子叫做多项式。
多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。
不含字母的项叫做常数项。
4、循环小数化为分数纯循环小数:小数中除了循环节外没有其它小数。
如3.0 、82.0 、283.0 等。
混循环小数:小数中除了循环节外还有其它小数。
如1032.0 、1032.5 等。
例、纯循环小数化为分数。
(1)3.0(2)82.0 (3)283.0 解:3.33.010 =⨯(1) 82.2882.0100 =⨯ 283.382283.01000 =⨯ 3.03.0 = (2) 82.082.0 =283.0283.0 = (1)-(2)得:(1)-(2)得:(1)-(2)得:33.0)110(=⨯- 2882.0)1100(=⨯- 382283.0)11000(=⨯- 9311033.0=-=∴992811002882.0=-=999382283.0= 例、混循环小数化为分数。
将(1)1032.0 、(2)1032.5 化为分数。
解:(1)设x =1032.0 , 那么:103.210 =x ;103.230110000 =x ; 2230199901010000-==-x x x 99902299=x 。
∴ 999022991032.0=解:(2)设x =1032.0 ,则1032.5 =5+x +=51032.0 那么:103.210 =x ;103.230110000 =x ; 2230199901010000-==-x x x 99902299=x∴ 9990229951032.5= 。
初二数学奥林匹克竞赛题
![初二数学奥林匹克竞赛题](https://img.taocdn.com/s3/m/ee3192809fc3d5bbfd0a79563c1ec5da50e2d62b.png)
初二数学奥林匹克竞赛题摘要:一、引言1.介绍初二数学奥林匹克竞赛2.分析竞赛对学生的意义和价值3.强调数学竞赛在培养学生思维能力方面的作用二、初二数学奥林匹克竞赛题型及难度1.选择题2.填空题3.解答题4.难度分级三、初二数学奥林匹克竞赛知识点1.几何部分2.代数部分3.数论部分4.组合部分四、如何准备初二数学奥林匹克竞赛1.扎实掌握课程知识点2.提高解题技巧与策略3.大量练习模拟试题4.参加培训课程与交流活动五、竞赛对学生的帮助与启示1.提升学术能力2.增强逻辑思维3.培养毅力和抗压能力4.对未来发展的积极影响六、结论1.总结初二数学奥林匹克竞赛的重要性2.鼓励学生积极参与并努力提高正文:一、引言初二数学奥林匹克竞赛是针对初中二年级学生的数学竞赛,旨在选拔和培养具有数学天赋和兴趣的学生,激发他们学习数学的热情,提高学生的数学素养和思维能力。
对于学生来说,参加数学竞赛不仅有助于提升自己的学术水平,还能为将来的发展打下坚实基础。
二、初二数学奥林匹克竞赛题型及难度初二数学奥林匹克竞赛题目分为选择题、填空题、解答题,难度逐级递增。
选择题主要测试学生对基础知识的掌握,填空题要求学生具备一定的分析和推理能力,解答题则需要学生具备扎实的数学功底和灵活的解题技巧。
竞赛题目在各个知识点上的分布具有一定的比例,学生需要全面掌握知识点,提高自己的解题能力。
三、初二数学奥林匹克竞赛知识点初二数学奥林匹克竞赛涉及的知识点主要有几何部分、代数部分、数论部分和组合部分。
学生需要掌握各个部分的知识点,形成完整的知识体系,才能在竞赛中取得好成绩。
四、如何准备初二数学奥林匹克竞赛要想在初二数学奥林匹克竞赛中取得好成绩,学生需要做好以下几点准备:首先,要扎实掌握课程知识点,形成自己的知识体系;其次,要提高解题技巧与策略,学会灵活运用所学知识解决问题;再者,要大量练习模拟试题,提高自己的实战能力;最后,可以参加培训课程与交流活动,拓宽自己的视野,与其他学生分享学习经验。
奥林匹克数学的解题方法
![奥林匹克数学的解题方法](https://img.taocdn.com/s3/m/a13289c658f5f61fb73666dc.png)
奥林匹克数学的解题方法(上篇)有固定求解模式的问题不属于奥林匹克数学,通常的情况是,在一般思维规律的指导下,灵活运用数学基础知识去进行探索与尝试、选择与组合。
这当中,经常使用一些方法和原理(如探索法,构造法,反证法,数学归纳法,以及抽屉原理,极端原理,容斥原理……),同时,也积累了一批生气勃勃、饶有趣味的奥林匹克技巧。
在2-1曾经说过:“竞赛的技巧不是低层次的一招一式或妙手偶得的雕虫小技,它既是使用数学技巧的技巧,又是创造数学技巧的技巧,更确切点说,这是一种数学创造力,一种高思维层次,高智力水平的艺术,一种独立于史诗、音乐、绘画的数学美。
”奥林匹克技巧是竞赛数学中一个生动而又活跃的组成部分。
2-7-1 构造它的基本形式是:以已知条件为原料、以所求结论为方向,构造出一种新的数学形式,使得问题在这种形式下简捷解决。
常见的有构造图形,构造方程,构造恒等式,构造函数,构造反例,构造抽屉,构造算法等。
例2-127 一位棋手参加11周(77天)的集训,每天至少下一盘棋,每周至多下12盘棋,证明这棋手必在连续几天内恰好下了21盘棋。
证明:用n a 表示这位棋手在第1天至第n 天(包括第n 天在内)所下的总盘数(1,2,77n =…),依题意 127711211132a a a ≤<<≤⨯=…考虑154个数:12771277,,,21,21,21a a a a a a +++…,又由772113221153154a +≤+=<,即154个数中,每一个取值是从1到153的自然数,因而必有两个数取值相等,由于i j ≠时,i i a a ≠ 2121i j a a +≠+故只能是,21(771)i j a a i j +≥>≥满足 21i j a a =+ 这表明,从1i +天到j 天共下了21盘棋。
这个题目构造了一个抽屉原理的解题程序,并具体构造了154个“苹果”与153个“抽屉”,其困难、同时也是精妙之处就在于想到用抽屉原理。
福州市数学奥林匹克竞赛解题方法大全
![福州市数学奥林匹克竞赛解题方法大全](https://img.taocdn.com/s3/m/aa19935c6ad97f192279168884868762caaebb09.png)
福州市数学奥林匹克竞赛解题方法大全数学奥林匹克竞赛是一项针对中小学生的竞赛活动,旨在培养学生的数学思维能力、发展数学创造力和解决问题的能力。
在福州市的数学奥林匹克竞赛中,学生们需要展示他们的数学才能,并在一系列复杂的问题中找到解题的方法。
下面将介绍一些在福州市数学奥林匹克竞赛中常用的解题方法:1.简化问题:在解决问题之前,要先理解问题的关键,确定所给条件、所求或者要证明的结论,并对问题进行逐步简化。
可以通过等价转化或者引入适当的变量等方式将问题转化为更简单的形式,从而降低解题难度。
2.利用数学工具:在解题过程中,充分运用各种数学知识和工具。
例如,可以使用代数、几何、组合数学等相关知识,结合计数原理、概率、不等式等方法,来解决具体的问题。
3.创造性思维:数学奥林匹克竞赛注重培养学生的创造性思维能力。
要善于发现规律、找到问题的特殊性质,从而使用一些独特的方法解决问题。
有时候,需要一些灵感和直觉,以及一定的数学洞察力。
4.构造反证法:反证法是一种常用的证明方法,也可以用来解决问题。
设想所要解决的问题不成立,从而推导出一个矛盾的结论,进而排除这种情况。
通过反证法,可以推断出满足条件的唯一解或者结论的正确性。
5.分析条件和限制:解决数学竞赛问题时,不能仅仅是按照题目的要求机械地套用公式或方法。
学生们应该深入分析问题的条件和限制,理解其背后的数学原理,并根据这些限制条件提出解题思路。
6.逆向思维:有时候,在解决数学竞赛问题时,很难直接从已知信息出发找到解题方案,这时可以考虑逆向思维。
即从所求结果出发,逆向推导出一些可能的条件或者结论,从而找到解题的线索。
7.综合运用:在解决问题时,往往需要综合运用多个不同的数学知识点和解题技巧,或者将不同的方法进行组合,以达到解决问题的目的。
在福州市的数学奥林匹克竞赛中,能够灵活地综合运用各种方法是非常重要的。
总之,福州市数学奥林匹克竞赛解题方法包括简化问题、利用数学工具、创造性思维、构造反证法、分析条件和限制、逆向思维以及综合运用等。
初中数学奥林匹克竞赛解题方法大全-第02章-有理数及其运算
![初中数学奥林匹克竞赛解题方法大全-第02章-有理数及其运算](https://img.taocdn.com/s3/m/a56f324e7ed5360cba1aa8114431b90d6d85895f.png)
初中数学奥林匹克竞赛解题方法大全-第02章-有理数及其运算1.整数和分数的大小比较:-方法一:通分。
将整数转换为分数,然后通分进行比较。
-方法二:化为相同的分数形式。
将分数化为相同的分母,然后比较分子的大小。
-方法三:换算成小数进行比较。
将分数转换为小数形式,然后比较大小。
2.有理数的加法和减法运算:-方法一:同分母相加(减)。
-方法二:通分后相加(减)。
3.有理数的乘法运算:-方法一:分子乘分子,分母乘分母。
-方法二:化为最简形式。
-方法三:化为小数进行计算。
4.有理数的除法运算:-方法一:分子乘除分子,分母乘除分母。
-方法二:化为最简形式。
-方法三:化为小数进行计算。
5.有理数的混合运算:-方法一:先按运算顺序完成个别运算,然后进行总体运算。
-方法二:化为分数形式进行运算。
6.有理数的平方运算:-方法一:整数的平方是整数,分数的平方是分数。
-方法二:先化为最简形式,再进行平方运算。
7.有理数的相反数和绝对值:-方法一:相反数是原数的负数。
-方法二:绝对值是原数的去掉符号的值。
8.有理数的乘方运算:-方法一:整数次幂,底数不变,指数相乘。
-方法二:0的正整数次幂为0。
-方法三:0的非正整数次幂无意义。
-方法四:1的任何整数次幂都为1-方法五:负数的奇数次幂为负数,偶数次幂为正数。
-方法六:分数的乘方运算,将底数与指数分别进行乘方运算。
9.有理数的开方运算:-方法一:将开方式化为最简形式。
-方法二:将开方数化为分数形式。
-方法三:化为小数进行计算。
10.展示解题过程和解题思路。
解答有理数的运算问题时,尽量展示解题过程和解题思路,不仅仅写出答案,可以加深对有理数运算规则的理解,并且能体现出解题的逻辑性和连贯性。
11.理解运算规则。
熟练掌握有理数的运算规则,不仅能快速解答题目,还能够在解题过程中发现和运用运算规则,更好地理解数学概念和思维方法。
初中奥林匹克数学竞赛知识点总结及训练题目-解直角三角形
![初中奥林匹克数学竞赛知识点总结及训练题目-解直角三角形](https://img.taocdn.com/s3/m/9555fda10722192e4536f6cc.png)
初中数学竞赛辅导讲义---解直角三角形利用直角三角形中的已知元素(至少有一条是边)求得其余元素的过程叫做解直角三角形,解直角三角形有以下两方面的应用:1.为线段、角的计算提供新的途径.解直角三角形的基础是三角函数的概念,三角函数使直角三角形的边与角得以转化,突破纯粹几何关系的局限.2.解实际问题.测量、航行、工程技术等生活生产的实际问题,许多问题可转化为解直角三角形获解,解决问题的关键是在理解有关名词的意义的基础上,准确把实际问题抽象为几何图形,进而转化为解直角三角形.【例题求解】【例1】如图,已知电线杆AB直立于地面上,它的影子恰好照在土坡的坡面CD和地面BC上,如果CD与地面成45°,∠A=60°,CD=4m,BC=(24-)m,则电线杆AB62的长为.思路点拨延长AD交BC于E,作DF⊥BC于F,为解直角三角形创造条件.【例2】如图,在四边形ABCD中,AB=24-,BC-1,CD=3,∠B=135°,∠C=90°,则∠D等于( )A.60°B.67.5°C.75°D.无法确定思路点拨通过对内分割或向外补形,构造直角三角形.注:因直角三角形元素之间有很多关系,故用已知元素与未知元素的途径常不惟一,选择怎样的途径最有效、最合理呢?请记住:有斜用弦,无斜用切,宁乘勿除.在没有直角的条件下,常通过作垂线构造直角三角形;在解由多个直角三角形组合而成的问题时,往往先解已具备条件的直角三角形,使得求解的直角三角形最终可解.【例3】如图,在△ABC中,∠=90°,∠BAC=30°,BC=l,D为BC边上一点,tan∠ADC 是方程2)1(5)1(322=+-+x x x x 的一个较大的根?求CD 的长. 思路点拨 解方程求出 tan ∠ADC 的值,解Rt △ABC 求出AC 值,为解Rt △ADC 创造条件.【例4】 如图,自卸车车厢的一个侧面是矩形ABCD ,AB=3米,BC=0.5米 ,车厢底部距离地面1.2米,卸货时,车厢倾斜的角度θ=60°.问此时车厢的最高点A 距离地面多少米?(精确到1米)思路点拨 作辅助线将问题转化为解直角三角形,怎样作辅助线构造基本图形,展开空间想象,就能得到不同的解题寻路【例5】 如图,甲楼楼高16米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求:(1)如果两楼相距20米,那么甲楼的影子落在乙楼上有多高?(2)如果甲楼的影子刚好不落在乙楼上,那么两楼的距离应当是多少米?思路点拨 (1)设甲楼最高处A 点的影子落在乙楼的C 处,则图中CD 的长度就是甲楼的影子在乙楼上的高;(2)设点A 的影子落在地面上某一点C ,求BC 即可.注:在解决一个数学问题后,不能只满足求出问题的答案,同时还应对解题过程进行多方面分析和考察,思考一下有没有多种解题途径,每种途径各有什么优点与缺陷,哪一条途径更合理、更简捷,从中又能给我们带来怎样的启迪等. 若能养成这种良好的思考问题的习惯,则可逐步培养和提高我们分析探索能力.学历训练1.如图,在△ABC 中,∠A=30°,tanB=31,BC=10,则AB 的长为 .2.如图,在矩形ABCD 中.E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若tan ∠AEH =34,四边形EFGH 的周长为40cm ,则矩形ABCD 的面积为 .3.如图,旗杆AB ,在C 处测得旗杆顶A 的仰角为30°,向旗杆前北进10m ,达到D ,在D 处测得A 的仰角为45°,则旗杆的高为 .4.上午9时,一条船从A 处出发,以每小时40海里的速度向正东方向航行,9时30分到达B 处,从A 、B 两处分别测得小岛M 在北偏东45°和北偏东15°方向,那么B 处船与小岛M 的距离为( )A .20海里B .20海里C .315海里D .3205.已知a 、b 、c 分别为△ABC 中∠A 、∠B 、∠C 的对边,若关于x 的方程02)(2=-+-+b c ax x c b 有两个相等的实根,且sinB ·cosA —cosB ·sinA =0,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形6.如图,在四边形ABCD 中,∠A =135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C . 4D .67.如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=1,已知AD 、BD 的长是关于x 的方程02=++q px x 的两根,且tanA —tanB=2,求p 、q 的值.8.如图,某电信部门计划修建一条连结B 、C 两地的电缆,测量人员在山脚A 点测得B 、C 两地的仰角分别为30°、45°,在B 地测得C 地的仰角为60°.已知C 地比A 地高200米,则电缆BC 至少长多少米?(精确到0.1米)9.如图,在等腰Rt △ABC 中,∠C=90°,∠CBD =30,则DC AD = .10.如图,正方形ABCD 中,N 是DC 的中点.M 是AD 上异于D 的点,且∠NMB=∠MBC ,则tan ∠ABM = .11.在△ABC 中,AB=26-,BC=2,△ABC 的面积为l ,若∠B 是锐角,则∠C 的度数是 .12.已知等腰三角形的三边长为 a 、b 、c ,且c a =,若关于x 的一元二次方程022=+-c bx x 的两根之差为2,则等腰三角形的一个底角是( )A . 15°B .30°C .45°D .60°13.如图,△ABC 为等腰直角三角形,若AD=31AC ,CE=31BC ,则∠1和∠2的大小关系是( )A .∠1>∠2B .∠1<∠2C .∠1=∠2D .无法确定14.如图,在正方形ABCD 中,F 是CD 上一点,AE ⊥AF ,点E 在CB 的延长线上,EF 交AB 于点G .(1)求证:DF ×FC =BG ×EC ;(2)当tan ∠DAF=31时,△AEF 的面积为10,问当tan ∠DAF=32时,△AEF 的面积是多少?15.在一个三角形中,有一边边长为16,这条边上的中线和高线长度分别为10和9,求三角形中此边所对的角的正切值.16.台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正在以15千米/时的速度沿北偏东30°方向往C处移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响.(1)该城市是否会受到这次台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?17.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H.可供使用的测量工具有皮尺、测角器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用α、β、γ等表示.测角器高度不计).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示).参考答案。
初中奥数几何
![初中奥数几何](https://img.taocdn.com/s3/m/610e607d00f69e3143323968011ca300a6c3f647.png)
梅内劳斯定理于塞瓦定理及其应用
梅内劳斯定理
• 梅内劳斯定理:X,Y,Z分别是 △ABC三边所在的直线 BC,CA,AB上的点,则X,Y,Z共线的充分必要条件是
CX BZ AY 1
XB ZA YC
Y
A
aZ
Za
bA
b
Y
c
B
c
C
X
B
C
X
由定理可得以上两种图形:
1.X,Y,Z三点之中只有一点在三角形的延长线上,而其它两点在三 角形的边上
M
A
C
N
O
B
解:因为OM是∠AOB的平分线,
所以∠AOM= ∠BOM(角平分线的定义) 又ON是∠BOC的平分线所以∠BON=∠CON 所以∠BOC=2∠NOC……………(*) 由图可知∠AOM+∠COM=∠AOC=80° 所以∠BOM+∠COM=80°(等量代换) 但∠BOM =∠BOC+∠COM(全量等于各部分的和) 所以∠BOC+∠COM +∠COM =80° 即∠BOC+2∠COM =80° 将(*)代入得2∠NOC+2∠COM =80° 即∠NOC+∠COM =40° 所以∠MON=40°
DE= DH 2 EH 2 ,BD= DH BH 2 ∴DE>BD,即AC>BD
4. 已知:△ABC中,AB=AC,点P在中位线MN 上,BP,CP的延长线分别交AC,AB于E,F.
1
求证:
+
1
有定值。
BF CE
A
F
E
Mt
N
c
FP
B
a
C
证明:设MP为t, 则NP= 1 a-t.
初中数学奥林匹克竞赛解题方法大全(配PDF版)-第06章-几何基础知识
![初中数学奥林匹克竞赛解题方法大全(配PDF版)-第06章-几何基础知识](https://img.taocdn.com/s3/m/1943517301f69e3143329442.png)
第六章几何基础知识第一节线段与角的推理计算【知识点拨】掌握七条等量公理:1、同时等于第三个量的两个量相等。
2、等量加等量,和相等。
3、等量减等量,差相等。
4、等量乘等量,积相等。
5、等量除以等量(0除外),商相等。
6、全量等于它的各部分量的和。
7、在等式中,一个量可以用它的等量来代替(等量代换)。
【赛题精选】例1、如图,∠AOB=∠COD,求证:∠AOC=∠BOD。
例2、C、D为线段AB上的两点,AD=CB,求证:AC=DB。
例3、AOB是一条直线,∠AOC=600,OD、OE分别是∠AOC和∠BOC的平分线。
问图中互为补角关系的角共有多少对?例4、已知B、C是线段AD上的任意两点,M是AB的中点,N是CD的中点,若MN=a,BC=b,求CD的长。
例5、已知OM是∠AOB的平分线,射线OC在∠BOM内部,ON是∠BOC的平分线,且∠AOC=800。
求∠MON的度数。
例6、已知A、O、B是一条直线上的三个点,∠BOC比∠AOC 大240,求∠BOC、∠AOC的度数。
例7、如图,AE=8.9CM,BD=3CM。
求以A、B、C、D、E这5个点为端点的所有线段长度的和是多少?例8、线段AB上的P、Q两点,已知AB=26CM,AP=14CM,PQ=11CM。
求线段BQ的长。
例9、已知∠AOC=∠BOD=1500,∠AOD=3∠BOC。
求∠BOC的度数。
例10、已知C是AB上的一点,D是CB的中点。
若图中线段的长度之和为23CM,线段AC的长度与线段CB 的长度都是正整数。
求线段AC的长度是多少厘米?【针对训练】第二节相交线与平行线【知识点拨】平行公理:经过直线外一点,有且只有一条直线和已知直线平行。
相交线性质:两直线相交,对顶角相等。
平行线性质定理平行线的判定定理两直线平行,同位角相等。
同位角相等,则两直线平行。
两直线平行,内错角相等。
内错角相等,则两直线平行。
两直线平行,内旁内角互补。
同旁内角互补,则两直线平行。
初中奥数常用的解题方法
![初中奥数常用的解题方法](https://img.taocdn.com/s3/m/d425c64226d3240c844769eae009581b6bd9bd29.png)
初中奥数常用的解题方法初中奥数常用的解题方法【配方法】所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
【因式分解法】因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
【换元法】换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
【判别式法与韦达定理】一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的.应用。
【待定系数法】在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
【构造法】在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
奥林匹克数学竞赛因式分解
![奥林匹克数学竞赛因式分解](https://img.taocdn.com/s3/m/fba79c36a200a6c30c22590102020740be1ecdab.png)
奥林匹克数学竞赛因式分解因式分解是多项式乘法的逆向运算,是代数恒等变形的基础,体现了一种化归的思想.提取公因式法、公式法、二次三项式的十字相乘法、分组分解法是因式分解的基本方法,下面是店铺为你整理的奥林匹克数学竞赛因式分解,一起来看看吧。
奥林匹克数学竞赛因式分解十二种方法1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式x-2x-x(2003淮安市中考题)x-2x-x=x(x-2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a+4ab+4b(2003南通市中考题)解:a+4ab+4b=(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m+5n-mn-5m解:m+5n-mn-5m=m-5m-mn+5n=(m-5m)+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x-19x-6分析:1-3722-21=-19解:7x-19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x+3x-40解x+3x-40=x+3x+()-()-40=(x+)-()=(x++)(x+-)=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章几何基础知识
第一节线段与角的推理计算
【知识点拨】
掌握七条等量公理:
1、同时等于第三个量的两个量相等。
2、等量加等量,和相等。
3、等量减等量,差相等。
4、等量乘等量,积相等。
5、等量除以等量(0除外),商相等。
6、全量等于它的各部分量的和。
7、在等式中,一个量可以用它的等量来代替(等量代换)。
【赛题精选】
例1、如图,∠AOB=∠COD,求证:∠AOC=∠BOD。
例2、C、D为线段AB上的两点,AD=CB,求证:AC=DB。
例3、AOB是一条直线,∠AOC=600,OD、OE分别是∠
AOC和∠BOC的平分线。
问图中互为补角关系的角共有多少对?
例4、已知B、C是线段AD上的任意两点,M是AB的中
点,N是CD的中点,若MN=a,BC=b,求CD的长。
例5、已知OM是∠AOB的平分线,射线OC在∠BOM内部,ON是∠BOC的平分线,且∠AOC=800。
求∠MON的度数。
例6、已知A、O、B是一条直线上的三个点,∠BOC比∠AOC 大240,求∠BOC、∠AOC的度数。
例7、如图,AE=8.9CM,BD=3CM。
求以A、B、C、D、
E这5个点为端点的所有线段长度的和是多少?
例8、线段AB上的P、Q两点,已知AB=26CM,AP=14CM,
PQ=11CM。
求线段BQ的长。
例9、已知∠AOC=∠BOD=1500,∠AOD=3∠BOC。
求∠BOC的度数。
例10、已知C是AB上的一点,D是CB的中点。
若图中线段的长度之和为23CM,线段AC的长度与线段CB 的长度都是正整数。
求线段AC的长度是多少厘米?
【针对训练】
第二节相交线与平行线
【知识点拨】
平行公理:经过直线外一点,有且只有一条直线和已知直线平行。
相交线性质:两直线相交,对顶角相等。
平行线性质定理平行线的判定定理
两直线平行,同位角相等。
同位角相等,则两直线平行。
两直线平行,内错角相等。
内错角相等,则两直线平行。
两直线平行,内旁内角互补。
同旁内角互补,则两直线平行。
【赛题精选】
例1、已知AK∥OL,OM∥BN,∠KAB=1000,∠ABN=1100。
求∠x的度数。
例2、已知节AB∥CD,EF∥CD,∠ABC=500,∠CEF=1500。
求∠x的度数。
例3、已知AE平分∠CAD,AE∥BC。
求证∠B=∠C。
例4、证明:同一平面内,若一直线与二平行线中的一条相交,则必与另一条相交。
例5、∠CAB、∠C1A1B1都是锐角,AC∥A1C1,AB∥A1B1。
求证∠CAB=C1A1B1。
例6、已知直线AB、CD相交于O点,∠ACO=2∠1,∠BOD=2∠2。
求证:AC∥BD。
例7、已知AB∥CD,求证:∠ABE+∠BED+∠EDC=3600。
例8、已知∠C=1050,∠ABC=750,P为CD上的一点,∠DAP=∠BAP。
求证:AP平分∠BAP。
例9、已知∠B=∠C,∠1=∠2。
求证:AE∥DF。
例10、试证明:平面上两两相交的七条直线相交所得的角中至少有一个角小于260。
第三节通过面积割补练习推理
【知识点拨】
定理:等底等高的两个三角形的面积相等
重要推论:三角形一边的中线平分这个三角形的面积。
【赛题精选】
例1、在四边形ABCD中,AB∥DC,AC、BD相交于O。
求证:S△AOD=S△BOC。
例2、在四边形ABCD中,AC、BD相交于O,若△AOD与△BOC面积相等。
求证AB∥DC。
例3、在四边形ABCD中,M是AD的中点,N是BC的中点。
已知S ABNM=S DCNM。
求证:AD∥BC。
例4、在五边形A1A2A3A4A5中,A1A3∥A5A4,A2A4∥A1A5,A3A5∥A2A1,A4A1∥A3A2。
求证:A5A2∥A4A3。
练习:在图示边形中,若S△ABC>S△ABD,则高CC1>高DD1。
例5、已知A1A2A3A4A5A6是凸六边形,在以六边形任意三个
顶点组成的三角形中,一定存在某个三角形的面积不超过这个六
边形面积的1/6。
例6、四边形ABCD面积为S,E、F为AB的三等分点,M、N为DC的三等分点。
求证:四边形EFNM的面积等于S/3。
例7、若△ABC的面积为1,D、E为BC的三等分点,
F、G为CA的三等分点。
求四边形PECF的面积。
64。