小学数学《常规应用题的解法——枚举法》练习题(含答案)
小学数学《常规应用题的解法——枚举法》练习题(含答案)
小学数学《常规应用题的解法——枚举法》练习题(含答案)小学数学《常规应用题的解法——枚举法》练习题(含答案)在小学数学中,常规应用题是我们在学习数学的过程中经常会遇到的一种题型。
而枚举法则是解决常规应用题的一种常见方法。
本文将通过一系列练习题,帮助小学生们更好地理解和掌握枚举法的解题技巧。
练习题一:小明买苹果小明从超市买了6个苹果,每个苹果的重量都不相同。
他想从中选择两个苹果,使得这两个苹果的重量之和恰好等于10克。
请问小明有多少种选择的可能性?解法:首先我们需要列举出所有的可能情况:(1, 9), (2, 8), (3, 7), (4, 6), (5, 5)共有5种选择的可能性。
练习题二:小华的生日礼物小华过生日了,他爸爸送给他3个盒子作为礼物,里面分别装着红、黄、蓝三种颜色的贴纸。
小华每次可以从一个或多个盒子中任意选择贴纸,但是每种颜色的贴纸只能拿一次,问小华一共有多少种选择的方式?解法:对于每个盒子,小华可以选择拿或不拿,所以对于三个盒子就有2^3种选择的方式。
但是,每个盒子至少要拿一个贴纸,所以我们需要减去只拿空盒子的情况,剩下的就是不同选择的方式。
2^3 - 1 = 7小华一共有7种选择的方式。
练习题三:买水果小明去水果店买水果,他买了6个苹果,4个橙子和3个香蕉。
他打算把这些水果分给他的两个朋友,每人至少分到一个水果,并且每个人分到的水果数目不能相同。
请问他有多少种分法?解法:首先,我们先找出所有可能的分法。
(1, 1, 6, 4, 3)(1, 2, 5, 4, 3)(1, 2, 6, 3, 4)(1, 3, 4, 2, 6)(1, 3, 4, 6, 2)(1, 3, 6, 2, 4)(1, 4, 3, 2, 6)(1, 4, 3, 6, 2)共有8种分法。
练习题四:座位安排现在有6个小朋友,他们要坐在一张圆桌周围,每个位置只能坐一个人。
其中小明和小华是好朋友,他们希望他们之间至少有一个空位。
四年级下册数学试题-奥数培优:用枚举法解应用题(含答案)全国通用
课题第十五讲:用枚举法解应用题教学内容养鸡场的工人,小心翼翼地把鸡蛋从筐里一个一个往外拿,边拿边数,筐里的鸡蛋拿光了,有多少个鸡蛋也就数清了.这种计数的方法就是枚举法.一般地,根据问题要求,一一列举问题的解答,或者为了解决问题的方便,把问题分为不重复、不遗漏的有限种情况,一一列举各种情况,并加以解决,最终达到解决整个问题的目的.这种分析问题、解决问题的方法,称之为枚举法。
运用枚举法解应用题时,必须注意无重复、无遗漏.为此必须力求有次序、有规律地进行枚举。
.用数字1,2,3可以组成多少个不同的三位数?分别是哪几个数?根据百位上数字的不同,我们可将它们分成三类:第1类:百位上的数字为1,有123,132;第2类:百位上的数字为2,有213,231;第3类:百位上的数字为3,有312,321.所以可以组成123,132,213,231,312,321,共6个三位数..小明有面值为5角、8角的邮票各两枚,他用这些邮票能付多少种不同的邮资(寄信时,所需邮票的钱数)?我们可根据小明寄信时所用邮票枚数的多少,把它们分成四类.解第1类:用l枚邮票时有5角、8角2种;第2类:用2枚邮票时有1元、1元3角、1元6角3种;第3类:用3枚邮票时有1元8角、2元l角2种;第4类:用4枚邮票时只有2元6角1种.共有2+3+2+l=8(种).答能付8种不同的邮资.(1)用3、4、7三张数字卡片,可以排成几个不同的三位数?其中最小的三位数是多少?最大的三位数是多少?(2)用3张10元和2张50元一共可以组成多少种币值(组成的钱数)?.用一台天平和重l克、3克、9克的砝码各一个(不再用其他物体当砝码),当砝码只能放在同一盘内时,可称出不同的重量有多少种?共有三个重量各不相同的砝码,可以取出其中的一个、两个或三个来称不同的重量,一一列举这三种情况.解取一个砝码可称l克、3克、9克的重量,有3种;取两个砝码可称;1+3= 4(克),1+9=10(克),3+9=12(克)的重量,有3种;取全部三个砝码可称:1+3+9 =13(克)的重量,有1种.注意到1,3,9,4,10,12,13各不相同,故可称出不同的重量有3+3+1=7(种).说明用树形图可以把解题过程显示出来..课外小组组织30人做游戏,按1~30号排队报数,第一次报数后,单号全部站出来;以后每次余下的人中第一个人开始站出来,隔一人站出来一人.到第几次这些人全部都站出来了?最后站出来的人应是第几号?根据题目的特点,先用排列法把题中的条件、问题排列出来,再用枚举法完成题目的要求.条件:(1)排队编号:1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30.(2)第一次报数后单号全部站出来.(3)以后每次:从余下的第一人站出来起,隔一人站出来一人.问题:到第几次这些人全部都站出来了?最后站出来的是第几号?解次数出队号码第一次1,3,5,7,9,11,13,15,17,19,21,23,25,27,29第二次2,6,10,14,18,22,26,30第三次4,12,20,28第四次8,24第五次16从上表的列举中,我们毫无遗漏地排列,得出到第五次这些人全都站出来了,最后一人是第16号.(1)把7支相同的铅笔分成3份,那么有多少种不同的分法?(2)有甲、乙、丙、丁、戊五个足球代表队进行比赛,每个队都要和其他队赛一场,总共要赛多少场?.A、B、C三个小朋友互相传球,先从A开始发球(作为第一次传球),这样经过了5次传球后,球恰巧又回到A手中,那么不同的传球方式共有种.解如图15 -1,A第一次传给B,到第五次传回A有5种不同方式,同理,A第一次传给C,也有5种不同方式,所以,不同的传球方式共有10种,.用长48厘米的铁丝围成各种长方形(长和宽都是整厘米数,且长和宽不相等),围成的最大一个长方形面积是多少平方厘米?各种长方形的长与宽之和都是48÷2=24(厘米).解由于各种长方形的长、宽都是整厘米数,且不相等,并且和为24厘米,可以列表如下:长23 22 21 20 19 18 17 16 15 14 13宽 1 2 3 4 5 6 7 8 9 10 11因为23×1< 22×2<…<14×10< 13×11,所以符合条件的最大长方形的面积是13×11=143(平方厘米)答围成的最大一个长方形的面积是143平方厘米.此题用列举法思维,达到了快速、简捷的解题目的.从以上各例可以看到,利用树形图或列表分析的方法解答应用题,往往是非常有效的,它能把抽象、复杂的事情清楚、直观地展现在我们面前,为解题提供思路,另外,我们还应体会到,用枚举法解应用题的关键是准确分类,为此,必须注意两点:l.分类要全,分类不全.就会造成遗漏.分类确定之后,要把每一类中每一个符合条件的对象都列举出来.2.分类要清,因为如果分不清,使第1类中有第2类、第2类中有第3类,互相包含,那么就会有重复.这样结果也就很难正确了.(1)从A城到B城可乘火车、汽车、轮船;从B城到C城可乘火车、汽车、轮船、飞机,某人从A城开始游览,经B城到C城共有多少种走法?(2)A、B、C三个自然数的乘积是6,求A、B、C三个自然数分别可能是几?(A、B、C可以是不同的数,也可以是相同的数)最有魅力的23个问题1900年8月8日,在巴黎第二届国际数学家大会上,有个年轻的科学家正在演讲,大家都被他讲的内容深深吸引,安静地听他演讲,每个人的眼睛里都闪烁着激动的光芒.当他结束演讲的时候,刚才还静悄悄的大厅里,顿时爆发出雷鸣般的掌声,这个轰动了全场的人是谁呢?他讲的是什么令人激动的内容呢?他就是德国的希尔伯特.他提出了今后一百年里数学家应当努力解决的23个问题.这就是著名的“希尔伯特23个问题”.这个时候,希尔伯特心里的石头才落了地.刚才,他还在担心自己演讲的内容听众会不会接受呢.和下面的听众一样,希尔伯特也非常激动,此时的他,心潮澎湃,看来,我选择这个伟大的演讲题目果然没有错!原来,在来参加这次会议之前,希尔伯特一直在犹豫演讲的题目:是讲我自己的数学研究成果呢?还是讲一讲我对今后数学发展的看法呢?他写了一封信给自己的好朋友——数学家闵可夫斯基,征求他的意见,闵可夫斯基回信写道:“最有吸引力的题材莫过于展望数学的未来……这样的题材,将会使你的演讲在今后几十年里成为人们议论的话题,”这样,希尔伯特就下定决心了,他整理了自己的看法,一共提出了23个问题.从那以后,全世界几乎所有的数学家,都被他的23个问题吸引,这23个问题成为20世纪数学学科发展的缩影.著名的“哥德巴赫猜想”就是第8个问题中的一部分,对这些问题的研究有力地推动了20世纪数学的发展,难怪有人说:“希尔伯特就像风笛手,他那甜蜜的笛声诱惑了如此众多的老鼠,跟着他跳进了数学的深河,”今天,我们似乎还能听到那甜蜜笛声的召唤呢!一、填空题1.从甲地到乙地有2条路可走,由乙地到丙地有3条路可走,那么由甲地经乙地到丙地共有____条路可走,2.有4个足球队参加“希望杯”足球比赛,每两个队都必须比赛一场,共比赛____场;如果进行淘汰赛,最后决出冠军共需比赛____场.3.甲、乙、丙、丁站成一排照相,但甲必须站在两头,共有____种不同的排法.4.从3,6,7,8这四张数字卡片中,任取3张,排成三位数,能排成____个不同的三位数,最大的三位数是____,最小的三位数是____.5.从两张5元币、五张2元币、十张1元币中,拿出10元钱买钢笔,一共有____种不同的拿法.6.用1,0,3,5这四个数可以组成____个四位数.二、选择题7.有7张卡片上写着数字2,3,4,5,6,7,8,从中抽出两张,组成的所有的两位数是奇数的个数是().(A) 21 (B) 42 (C) 24 (D) 188.两人见面要握一次手,照这样规定,6人见面共握手().(A) 24次(B) 15次(C) 30次(D) 12次9.有红、黄、蓝色的小旗各1面,从中选用l面、2面或3面升上旗杆,组合出各种不同信号,一共可以组合不同信号().(A)5种(B)6种(C) 10种(D) 15种10.已知三位数的各位数字之和等于8,那么这样的三位数共有().(A) 28个(B) 30个(C) 32个(D) 36个三、简答题11.有四张8角邮票与三张1元邮栗,用这些邮票中的一张或若干张能得出多少种不同的邮资?一.填空题(每题6分,共48分)1.如图,一条直线上有四个点,那么这条直线上有______条线段,有______条射线.2.甲、乙、丙、丁站成一排照相,但甲和乙必须站在两头,共有______种不同的站法.3.从分别写有2、3、4、5的四张卡片中任取两张,作两个一位数乘法,有______种不同的乘法算式,有______个不同的积,4.从7、4、2、O四张数字卡片中,挑选三张排成三位数,能排成______个不同的三位数,5.婷婷有3种不同颜色的上衣,5种不同颜色的裙子,那么她共有______种不同的穿法.6.由10元、50元、100元的人民币各一张,一共可以组成______种币值(组成的钱数).7.如图,数出图中所有的正方形的个数是______个,8.在上题4×4的方格图中放A、B两枚棋子(棋子放在空格中),要求两枚棋子不在同一行,也不在同一列,共有______种放法.二、选择题(每题8分,共24分)9.有4本不同的书,分别借给2名同学,每人借一本,不同的借法有( )种.(A)12 (B)6 (C) 10 (D)810.把5件相同的礼物分给3个小朋友,使每个小朋友都分到礼物,分礼物的不同方法一共有( )种.(A)2种 (B)3种 (C)5种 (D)6种11.如图,甲地到乙地有三条路可通,从乙地到丙地有两条路可通,从丙地到丁地有三条路可通,从甲地到丁地有两条路可通.从甲地到丁地共有( )种不同的走法.(A) 20 (B) 10 (C) 36 (D) 24三、解答题(每题12分,共48分)12.甲、乙、丙三人约好每人报名参加数学、英语、美术、音乐四个课外小组中的一个,那么,报名的结果会出现多少种不同的情形?13.有8张卡片,上面分别写着自然数1至8,见下图.从中取出3张,要使这3张卡片上的数字之和为9,问有多少种不同的取法?14.有正方体一个,它的六个面上分别标有数字1、2、3、4、5、6,将这个正方体投掷两次.问:两次向上的一面数字之和为偶数的情况有多少种?15.小王有10张1元的人民币.5张2元的人民币,2张5元的人民币,要拿出10元买一本书,可以有多少种拿法?你最对了吗?答案:1.6,8.2.4种,甲一丙一丁一乙,甲一丁一丙一乙,乙一丙一丁一甲,乙一丁一丙一甲.3.12,6.枚举:2×3、2×4、2×5、3×4、3×5、4×5共六个乘法算式,交换两因数位置,又得到六个乘法算式.因此,共有12个乘法算式,有6个不同的积.4.18个,百位上可排7、4、2三个数,先考虑7排在百位上,共有六种情况(如图),同理,2排在百位上,4排在百位上也各有六种情况,所以不同的三位数共有6×3 = 18(个).5.15.每种颜色的上衣可配5种不同颜色的裙子,则3种不同颜色的上衣配5种不同颜色的裙子,共有穿法为:5×3=15(种).6.7种.10元、50元、100元、(10+50)= 60元、(10+100)= 110元、(50+100)=150元、(10+ 50+100)=160元.7.30.分四种情况计数:(1)边长为1个单位的正方形有16个;(2)边长为2个单位的正方形有9个;(3)边长为3个单位的正方形有4个;(4)边长为4个单位的正方形有1个.共有:16+9+4+1= 30(个)正方形.8.144.由于两枚棋子要一枚一枚地放,所以可分两步完成这件事,第一步放棋子A,A可以放在16个方格中任意一个,有16种放法;第二步放棋子B,由于A棋子所在的行与列的方格中不能再放,故B只能放在剩下的9个方格中,有9种放法,根据乘法原理得:16×9=144(种).所以,共有144种放法.9.A. 4×3 = 12(种).10.D. 5件礼物分成三组,有两种不同的分组法:1,1,3或1,2,2.每种分组法有3种不同的排列,故有6种不同的分法.11.A.从甲到丁有以下路径:(1)甲→丁(有2种不同走法);(2)甲→乙→丙→丁(有3×2×3=18种不同走法).所以共有:2+18=20(种)不同的走法.12.64种,三人报名参加课外小组,彼此互不影响.甲报名,可报4个小组中的一个,有4种报名方法,同理,乙、。
【思维拓展】数学二年级思维拓展之枚举法题(附答案)
二年级奥数题-枚举法题1.一个长方形的周长是22米,如果它的长和宽都是整米数,问:①这个长方形的面积有多少可能值?②面积最大的长方形的长和宽是多少?2.有四种不同面值的硬币各一枚,它们的形状也不相同,用它们共能组成多少种不同钱数?3.三个自然数的乘积是24,问由这样的三个数所组成的数组有多少个?如(1,2,12)就是其中的一个,而且要注意数组中数字相同但顺序不同的算作同一数组,如(1,2,12)和(2,12,1)是同一数组.4.小虎给3个小朋友写信,由于粗心,把信装入信封时都给装错了,结果3个小朋友收到的都不是给自己的信,请问小虎错装的情况共有多少种可能?5.一个学生假期往A、B、C三个城市游览.他今天在这个城市,明天就到另一个城市.假如他第一天在A市,第五天又回到A市.问他的游览路线共有几种不同的方案?6.下图中有6个点,9条线段,一只甲虫从A点出发,要沿着某几条线段爬到F 点.行进中甲虫只能向右、向下或向右下方运动.问这只甲虫有多少种不同的走法?7.小明有一套黄色数字卡片、、,有一套蓝色数字卡片、、.一天他偶然用卡片做了下面的游戏:把不同色的卡片交叉配对,一次配成3对,然后把每对卡片上的黄蓝数字相乘之后再相加求和,你知道他共找到了多少种配对相乘求和的方式吗?比如说下面是其中一种:黄蓝黄蓝黄蓝8.五个学生友1,友2,友3,友4,友5一同去游玩,他们将各自的书包放在了一处.分手时友1带头开了个玩笑,他把友2小朋友的书包拿走了,后来其他的小朋友也都拿了别人的书包.试问在这次玩笑中故意错拿书包的情形有多少种不同方式?参考答案1.解:这个长方形的长和宽之和是22÷2=11(米),由长方形的面积=长×宽,可知:由上表可见面积最大的长方形的长是6米、宽是5米,面积是30平方米.猜想:由本讲的例1和习题1这两题来看,周长一定的所有长方形中,长和宽相等或相近那个长方形面积最大.这是有名的“等周问题”的特例.2.解:把各种不同的组合及其对应的钱数列表枚举如下:数一数可知,能组成15种不同的钱数.注意它们是从1到15的15个自然数:1,2,3,4,5,6,7,8,9,10,11,12,13,14,15.3.解:不计数组中数的顺序,所有乘积为24的三个数所组成的数组共有6组,枚举如下:(1,1,24),(1,2,12),(1,3,8),(1,4,6),(2,2,6),(2,3,4).4.解:把三封信编号为1号、2号、3号;把三个小朋友编号为友1、友2、友3;1号、2号、3号信应该分别发给友1、友2、友3。
3年级数学练习题-枚举法
3年级数学练习题-枚举法1、小东、小新和小芳三个人去游乐园玩,三人在藏宝屋中一共发现了5件宝物,三人找到的宝物数量共有多少种不同的可能?(可能有人没有发现宝物)答:共有21中不同的可能。
2、老师准备了6本笔记本奖励小东、小新和小芳三人,每人至少得到1本笔记本,请问老师一共有多少种不同的奖励方法?【答案】答:一共有10中不同的奖励方法。
3、老师要求每个同学写出3个自然数,并且要求这3个数的和是8。
如果两个同学写出的3个自然数相同,只是顺序不一样,则算是同一种写法。
试问:同学们最多能得出多少种不同的写法?【答案】答:最多能得出9中不同的写法。
4、三个大于0的整数之和(数与数可以相等)等于10,共有多少组这样的三个数?答:共有8组这样的三个数。
5、有7个按键,上面分别写着:1、2、3、4、5、6、7这七个数字。
请问:(1)从中选出2个按键,使它们上面的数字的差等于2,一共有多少种选法?(2)从中选出2个按键,使它们上面的数字的和大于9,一共有多少种选法?【答案】(1)3−1=4−2=5−3=6−4=7−5=2答:一共有5种。
(2)3+74+64+75+65+76+7答:一共有6种。
答:一共有12种。
7、现有足够多的1克、2克和5克的砝码,要称出10克的重量,一共有多少种称重方式?答:一共有10种称重方式。
8、现有1分、2分、5分得硬币各5枚,要用这些硬币凑出2角钱,一共有多少种不同的凑答:一共有8中不同的凑法。
9、用三种重量分别为1克、2克和5克的砝码各1个可以称出多少种不同的重量?用1种:1克、2克、5克,共3种;用2种:1+2=3克、1+5=6克、2+5=7克,共3种;用3种:1+2+5=8克,1种。
3+3+1=7(种)答:可以称出7种不同的重量。
10、妈妈买来7个鸡蛋,每天至少吃2个,吃完为止。
如果天数不限,可能的吃法一共有多少种?吃1天:7个,1种;吃2天:2+5=5+2=3+4=4+3=7个,共4种;吃3天:2+2+3=2+3+2=3+2+2=7个,共3种。
二年级奥数枚举法试题
二年级奥数枚举法试题一、枚举法试题。
1. 小明有3件不同的上衣,2条不同的裤子,小明一共有多少种不同的穿法?- 解析:我们可以用枚举法来解决这个问题。
上衣分别设为A、B、C,裤子设为1、2。
那么穿法有:A1、A2、B1、B2、C1、C2,一共3×2 = 6种不同的穿法。
2. 用1、2、3这三个数字可以组成多少个不同的三位数?- 解析:百位上是1时,有123和132;百位上是2时,有213和231;百位上是3时,有312和321。
所以一共可以组成6个不同的三位数。
3. 从1 - 5这五个数字中,每次取两个不同的数字相加,能得到多少个不同的和?- 解析:1 + 2=3,1+3 = 4,1+4 = 5,1+5 = 6,2 + 3=5(与前面重复舍去),2+4 = 6(与前面重复舍去),2+5 = 7,3+4 = 7(与前面重复舍去),3 + 5=8,4+5 = 9。
所以能得到3、4、5、6、7、8、9共7个不同的和。
4. 有5个小朋友,每两个人握一次手,一共要握多少次手?- 解析:设这5个小朋友为A、B、C、D、E。
A小朋友要和B、C、D、E握手,共4次;B小朋友已经和A握过了,所以B要和C、D、E握手,共3次;C小朋友已经和A、B握过了,所以C要和D、E握手,共2次;D小朋友已经和A、B、C握过了,所以D要和E握手,共1次。
所以一共握手4+3+2 + 1=10次。
5. 把7个相同的苹果放在3个不同的盘子里,每个盘子至少放1个,有多少种不同的放法?- 解析:可以这样枚举:(1,1,5)、(1,2,4)、(1,3,3)、(2,2,3),共4种不同的放法。
6. 用0、1、2、3能组成多少个没有重复数字的两位数?- 解析:当十位是1时,有10、12、13;当十位是2时,有20、21、23;当十位是3时,有30、31、32。
一共9个没有重复数字的两位数。
7. 有红、黄、蓝三种颜色的小旗各一面,从中选用1面或2面升上旗杆,分别用来表示一种信号。
小学五年级数学枚举法练习题
小学五年级数学枚举法练习题枚举法是一种解决数学问题的方法,通过列举可能的情况,排除不符合条件的答案,找到满足条件的答案。
在小学五年级数学学习中,枚举法被广泛用于解决各种问题。
本文将为大家提供一些小学五年级数学枚举法练习题,帮助同学们熟悉和掌握这一解题方法。
1. 鸡兔同笼问题一只笼子里有鸡和兔子,共有26只脚,共有10个头,请问鸡和兔子各有多少只?解:我们设鸡的数量为x,兔子的数量为y。
根据题意,我们可以列出以下方程:x + y = 10 (1)2x + 4y = 26 (2)通过枚举法,我们可以列举出可能的解:当x = 1时,方程(1)变为:1 + y = 10,解得y = 9。
由方程(2)可知此时总脚数为2 + 4 × 9 = 38,与题意不符。
当x = 2时,方程(1)变为:2 + y = 10,解得y = 8。
由方程(2)可知此时总脚数为2 × 2 + 4 × 8 = 36,与题意不符。
当x = 3时,方程(1)变为:3 + y = 10,解得y = 7。
此时总脚数为2 × 3 + 4 × 7 = 34,与题意不符。
当x = 4时,方程(1)变为:4 + y = 10,解得y = 6。
此时总脚数为2 × 4 + 4 × 6 = 32,与题意不符。
当x = 5时,方程(1)变为:5 + y = 10,解得y = 5。
此时总脚数为2 × 5 + 4 × 5 = 30,与题意符合。
因此,鸡的数量为5只,兔子的数量为5只。
2. 铅笔盒问题一个铅笔盒里有红、黄、蓝三种颜色的铅笔,共有12支铅笔。
其中红色铅笔的数量是黄色铅笔数量的两倍,而蓝色铅笔的数量又是红色和黄色铅笔数量之和的两倍。
请问各种颜色的铅笔分别有多少支?解:我们设红色铅笔的数量为x,黄色铅笔的数量为y,蓝色铅笔的数量为z。
根据题意,我们可以列出以下方程:x + y + z = 12 (1)x = 2y (2)z = 2(x + y) (3)通过枚举法,我们可以列举出可能的解:当x = 2时,方程(2)变为:2 = 2y,解得y = 1。
枚举法经典例题
一、选择题1.题目:一个骰子有六个面,每个面上的点数分别为1、2、3、4、5、6。
现在投掷这个骰子一次,问出现点数为偶数的概率是多少?A.1/6B.1/3C.1/2(正确答案)D.2/32.题目:一个密码箱有4个数字转盘,每个转盘上有0-9共10个数字。
若某人只记得密码是由不同的数字组成,但不记得具体顺序,问此人最多需尝试多少次才能确保打开密码箱?A.10000B.5040(正确答案)C.2400D.1203.题目:某班级有10名学生,需要选出3名学生参加学校的数学竞赛。
如果甲和乙两名学生不能同时被选上,那么一共有多少种不同的选法?A.108B.112C.120(正确答案)D.1404.题目:一个正方体有6个面,每个面上分别写有数字1、2、3、4、5、6。
现在将这个正方体任意投掷,问出现数字小于4的面的概率是多少?A.1/2(正确答案)B.1/3C.1/4D.2/35.题目:从1到100的自然数中,任取一个数,求取到的数是7的倍数或者含有7的数字的概率是多少?A.0.14B.0.19(正确答案)C.0.21D.0.266.题目:一个足球队有11名队员,其中包括队长和副队长。
现在要从这11名队员中选出3名队员参加一个访谈节目,要求队长和副队长不能同时被选上,问有多少种不同的选法?A.140B.150C.160D.165(正确答案)7.题目:一个口袋中有5个红球和3个白球,从中任意摸出一个球,记下颜色后放回,再摸出一个球。
问两次都摸到红球的概率是多少?A.1/4B.9/16C.25/64(正确答案)D.5/88.题目:某班级有8名学生,需要分成两组进行辩论,每组4人。
如果甲和乙两名学生必须分在同一组,那么一共有多少种不同的分组方法?A.30B.35(正确答案)C.40D.45。
小学奥数枚举法题及答案
小学奥数枚举法题及答案【三篇】【篇一】枚举法问题在一个圆周上放了1个红球和1994个黄球。
一个同学从红球开始,按顺时针方向,每隔一个球,取走一个球;每隔一个球,取走一个球;……他一直这样操作下去,当他取到红球时就停止。
你知道这时圆周上还剩下多少个黄球吗?答案与解析:根据题中所说的操作方法,他在第一圈的操作中,取走的是排在黄球中第2、4、6、……1994位置上的黄球,这时圆周上除了一个红球外,还剩下1994÷2=997个黄球。
在第二圈操作时,他取走了这997个黄球中,排在第1、3、5、7、……995、997位置上的黄球,这时圆周上除了一个红球外,还剩下997—(997+1)÷2=498个黄球。
他又要继续第三圈操作了,他隔过红球,又取走了这498个黄球中,排在第1、3、5、……495、497的位置上的黄球,这时圆周上除了一个红球外,还剩下498÷2=249个黄球。
因为在上一圈操作时,排在这498个黄球中最后一个位置上的黄球没有被取走,所以他再进行操作时,第一个被取走的就是那个红球,这时,他的操作停止,圆周上剩下249个黄球。
【篇二】在一个圆周上放了1个红球和1994个黄球。
一个同学从红球开始,按顺时针方向,每隔一个球,取走一个球;每隔一个球,取走一个球;……他一直这样操作下去,当他取到红球时就停止。
你知道这时圆周上还剩下多少个黄球吗?答案与解析:根据题中所说的操作方法,他在第一圈的操作中,取走的是排在黄球中第2、4、6、……1994位置上的黄球,这时圆周上除了一个红球外,还剩下1994÷2=997个黄球。
在第二圈操作时,他取走了这997个黄球中,排在第1、3、5、7、……995、997位置上的黄球,这时圆周上除了一个红球外,还剩下997—(997+1)÷2=498个黄球。
他又要继续第三圈操作了,他隔过红球,又取走了这498个黄球中,排在第1、3、5、……495、497的位置上的黄球,这时圆周上除了一个红球外,还剩下498÷2=249个黄球。
小学数学三年级 枚举法 PPT+作业+答案
练习6
有苹果、香蕉和橘子三种水果各若干个,从中任意取3个水果, 一共有多少种不同的情况?
【分析】3个水果中,可能有相同的,也可能有不同的,可以依此来分。
(1)当只有1种水果时,有3种情况
(2)当有2种水果时,2苹可以配2种,2蕉可以配2种,2橘可以配2种,有 6种情况
(3)当3 种水果都用上时,有1种情况
【分析】依题意,将16角拆分成几个5角+几个1角的形式。
1元6角=3个5角+1个1角 =2个5角+6个1角 =1个5角+11个1角 =0个5角+16个1角
练习3 小刘老师有若干张5 角和1 元的纸币,他用这些纸币坐地铁从烈士
陵园站到芳村站。已知从烈士陵园站到芳村站的票价是3 元,那么 小刘老师有多少种不同的买票方式?
共10种
练习4 现有足够多2 克、4 克和8 克的砝码,要称出20 克的重量,一共
有多少种称重方式?(砝码在左,物品在右)
【分析】砝码与物品是相等的关系 用几个2克、几个4克、几个8克来正好凑成20克呢?
(1)当0个8克时,最少0个4克,最多5个4克,有6种情况 (2)当1个8克时,最少0个4克,最多3个4克,有4种情况 (3)当2个8克时,最少0个4克,最多1个4克,有2种情况
3×6=18(种)
本节课总结: 枚举法 分类要全,不能遗漏;枚举要清,不重不漏
作业1
1、明明把4个芒果分成2堆 情况(1)如果拿出一个,还剩下( )个 情况(2)如果拿出2个,还剩下( )个 情况(3)如果拿出3个,还剩下( )个 思考一下,情况( )和情况( )其实是一样的。
【答案】3;2;1;情况 1 和情况 3 是一样的。
三年级简单枚举法解题
三年级简单枚举法解题一、简单枚举法题目及解析。
1. 题目:小明有3件不同的上衣,2条不同的裤子,他有多少种不同的穿法?- 解析:- 我们可以用枚举法来解决。
当选择第一件上衣时,可以搭配2条不同的裤子,这样就有2种穿法;当选择第二件上衣时,同样可以搭配2条不同的裤子,又有2种穿法;当选择第三件上衣时,还是可以搭配2条不同的裤子,再有2种穿法。
- 所以总的穿法有2 + 2+2=3×2 = 6种。
2. 题目:用1、2、3这三个数字能组成多少个不同的三位数?- 解析:- 百位上是1时,组成的数有123、132;百位上是2时,组成的数有213、231;百位上是3时,组成的数有312、321。
- 一共可以组成2 + 2+2 = 6个不同的三位数。
3. 题目:从甲地到乙地有2条路可走,从乙地到丙地有3条路可走,从甲地到丙地有多少种不同的走法?- 解析:- 从甲地到乙地的第一条路,到乙地后再去丙地有3种走法;从甲地到乙地的第二条路,到乙地后再去丙地又有3种走法。
- 所以从甲地到丙地不同的走法有3+3 = 2×3=6种。
4. 题目:有红、黄、蓝三种颜色的小旗各一面,从中选用1面或2面升上旗杆,分别用来表示一种信号。
一共可以表示多少种不同的信号?- 选1面小旗时,有红、黄、蓝3种信号;选2面小旗时,有红黄、红蓝、黄蓝3种信号。
- 总共可以表示3 + 3=6种不同的信号。
5. 题目:有3个小朋友,每两个人握一次手,一共握几次手?- 解析:- 设三个小朋友为A、B、C。
A和B握一次手,A和C握一次手,B和C握一次手。
- 一共握1+1 + 1=3次手。
6. 题目:用0、1、2这三个数字能组成多少个不同的两位数(数字不能重复)?- 解析:- 十位上是1时,组成的两位数有10、12;十位上是2时,组成的两位数有20、21。
- 一共能组成2+2 = 4个不同的两位数。
7. 题目:从1 - 9这9个数字中,每次取2个数字,这两个数字的和大于10,有多少种取法?- 解析:- 两个数为9和2、9和3、9和4、9和5、9和6、9和7、9和8;8和3、8和4、8和5、8和6、8和7;7和4、7和5、7和6;6和5。
小学奥数枚举法题及答案【三篇】
小学奥数枚举法题及答案【三篇】导读:本文小学奥数枚举法题及答案【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【篇一】枚举法问题在一个圆周上放了1个红球和1994个黄球。
一个同学从红球开始,按顺时针方向,每隔一个球,取走一个球;每隔一个球,取走一个球;……他一直这样操作下去,当他取到红球时就停止。
你知道这时圆周上还剩下多少个黄球吗?答案与解析:根据题中所说的操作方法,他在第一圈的操作中,取走的是排在黄球中第2、4、6、……1994位置上的黄球,这时圆周上除了一个红球外,还剩下1994÷2=997个黄球。
在第二圈操作时,他取走了这997个黄球中,排在第1、3、5、7、……995、997位置上的黄球,这时圆周上除了一个红球外,还剩下997—(997+1)÷2=498个黄球。
他又要继续第三圈操作了,他隔过红球,又取走了这498个黄球中,排在第1、3、5、……495、497的位置上的黄球,这时圆周上除了一个红球外,还剩下498÷2=249个黄球。
因为在上一圈操作时,排在这498个黄球中最后一个位置上的黄球没有被取走,所以他再进行操作时,第一个被取走的就是那个红球,这时,他的操作停止,圆周上剩下249个黄球。
【篇二】在一个圆周上放了1个红球和1994个黄球。
一个同学从红球开始,按顺时针方向,每隔一个球,取走一个球;每隔一个球,取走一个球;……他一直这样操作下去,当他取到红球时就停止。
你知道这时圆周上还剩下多少个黄球吗? 答案与解析:根据题中所说的操作方法,他在第一圈的操作中,取走的是排在黄球中第2、4、6、……1994位置上的黄球,这时圆周上除了一个红球外,还剩下1994÷2=997个黄球。
在第二圈操作时,他取走了这997个黄球中,排在第1、3、5、7、……995、997位置上的黄球,这时圆周上除了一个红球外,还剩下997—(997+1)÷2=498个黄球。
小学数学枚举法练习题
小学数学枚举法练习题一、填空题:1. 用1、2、3三个数字组成不能重复的三位数,一共有_____种可能。
2. 小明有5支彩色笔,他要用其中的2支笔组合成不同的颜色。
一共有_____种组合方式。
3. 一架飞机有3个旅客座位,共有_____种不同的乘客排列方式。
二、选择题:1. 用A、B、C三个字母组成的两位数中,满足以下条件的数是:A. 取出的字母不可重复B. 数字不能是奇数C. 数字不能大于50D. 都满足以上条件的数2. 一台音乐播放器有4首歌曲,小明想按照特定顺序播放其中的2首歌曲。
一共有多少种不同的播放方式?A. 4B. 6C. 8D. 12三、计算题:1. 某手机密码锁的密码是4位数,且每位数均为1、2、3、4四个数字中的一个,密码不可重复。
共有多少种可能的密码组合方式?2. 某班级有5个男生和4个女生,老师要选择3个同学参加学校的演讲比赛。
如果要求至少有一个男生参赛,一共有多少种不同的选择方式?四、解答题:1. 小明的学校每天上午举行升旗仪式,共有6个学生按摩运动,其中3名男生和3名女生。
老师要选择3位学生升旗。
请列出所有可能的组合方式。
2. 用A、B、C、D四个字母中的任意三个字母组成三位数,且数字不可重复。
请列出所有可能的数。
3. 一组合页有三个数字按钮,按钮的数字为1、2、3、4、5、6六个数字中的三个,数字不可重复。
请列出所有可能的组合。
以上是我为你准备的小学数学枚举法的练习题。
通过这些题目的练习,希望能够帮助你掌握数学枚举法的思维和方法,提高你的数学能力。
祝你学习进步!。
枚举法问题三年级奥数题及答案
枚举法问题三年级奥数题及答案
枚举法问题三年级奥数题及答案
【试题】
现在1元、2元和5元的.硬币各4枚,用其中的一些硬币支付23元钱,一共有多少种不同的支付方法?
【答案解析】
23=5×4+2×1+1×1, 23=5×4+1×3, 23=5×3+2×4, 23=5×3+2×3+1×2, 23=5×3+2×2+1×4。所以共有5不同的取法。 Nhomakorabea【小结】
对于简单的计数问题,可以用枚举法,列出满足条件的所有情况。但是对于种数比较多的计数问题常用到排列组合来解决,排列组合的知识我们将在四年级学习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学《常规应用题的解法——枚举法》练习题(含答案)知识要点我们在课堂上遇到的数学问题,有一些需要计算总数或种类的趣题,因其数量关系比较隐蔽,很难利用计算的方法解决。
我们可以抓住对象的特征,按照一定的顺序,选择恰当的标准,把问题分为不重复、不遗漏的有限种情形,通过一一列举或计数,最终达到解决目的。
这就是枚举法,也叫做列举法或穷举法。
解题指导11.枚举法在数字组合中的应用。
按照一定的组合规律,把所有组合的数一一列举出来。
【例1】用数字1,2,3组成不同的三位数,分别是哪几个数?【思路点拨】根据百位上的数字的不同分为3类。
第一类:百位上为1的有:123 132第二类:百位上为2的有:213 231第三类:百位上为3的有:312 321答:可以组成123,132,213 ,231,312 ,321六个数。
【变式题1】用0、6、7、8、9这五个数字组成各个数位上数字不相同的两位数共有多少个?解题指导22.骰子中的点数掷骰子是生活中常见的游戏玩法,既可以掷一个骰子,比较掷出的点数大小,也可以掷两个骰子,把两个骰子的点数相加,再比较点数的大小。
一个骰子只有6个点数,而两个骰子的点数经过组合最小是2,最大是12。
在解决有关掷两个骰子的问题时,要全面考虑所有出现的点数情况。
【例2】小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。
若两枚骰子的点数和为7,则小明胜;若点数和为8,则小红胜。
试判断他们两人谁获胜的可能性大。
【思路点拨】将两枚骰子的点数和分别为7与8的各种情况都列举出来,就可得到问题的结论。
用a+b表示第一枚骰子的点数为a,第二枚骰子的点数是b的情况。
出现7的情况共有6种,它们是:1+6,2+5,3+4,4+3,5+2,6+1。
出现8的情况共有5种,它们是:2+6,3+5,4+4,5+3,6+2。
所以,小明获胜的可能性大。
注意,本题中若认为出现7的情况有1+6,2+5,3+4三种,出现8的情况有2+6,3+5,4+4也是三种,从而得“两人获胜的可能性一样大”,那就错了。
答:小明获胜的可能性大。
【变式题2】用一台天平和重1克、3克、9克的砝码各一个(不再用其他物体当砝码),当砝码只能放在同一盘内时,可称出不同的质量有多少种?解题指导33.下面这道题比较直观的展示解决问题有多种方法和途径,通过本题的练习可以开阔我们的发散思维。
【例3】如图所示,数字1处只有一颗棋子,现移动这颗棋子到数字5处。
规定每次只能移动到邻近的一格,且总是向右移动。
例如1→2→4→5就是一条移动路线。
问:共有多少种不同的移动路线?【思路点拨】从1向右移动到邻近的一格有两种方法,1到2和1到3;从2 向右移动到邻近的一格也有两种移法,从2到3,从2到4;从3向右移动到邻近一格,也有两种移法,从3到5,从3到4,从4移动到邻近一格有1种移法。
画图表示:答:共有5种移动路线。
【变式题3】有红、黄、蓝色的小旗各1面,从中选用1面、2面或3面升上旗杆,组合出各种不同信号,一共可以组合不同信号多少种?解题指导4【例4】课外小组组织30人做游戏,按1~30号排队报数。
第一次报数后,单号全部站出来;以后每次余下的人中的第一个人开始站出来,隔一人站出来一人。
到第几次这些人全部都站出来了?最后站出来的人应是第几号?【思路点拨】我们把1~30号同学用编号列出。
进行第一次操作,单号全部站出来。
站出来的同学有:1,3,5,7,9,11,13,15,17,19,21,23,25,27,29。
然后进行第二次操作,从余下的人中的第一个人站出来,隔一人站出来一人。
第一个人是2号,往后分别是6,10,14,18,22,26,30.余下的人还有4,8,12,16,20,24,28.第三次站出来的人有4,12,20,28.第四次站出来的人是8,24。
第五次只有16号,也是最后一个。
答:到第5次这些人全部都站出来了,最后站出来的人应是第16号。
总结:本题应用了排除法,通过列举每次变化后的数,最后余下的数就是我们要找的数。
【变式题4】如右图所示,ABCD是一个正方形,边长为2厘米,沿着图中线段从A到D 的最短长度为4厘米。
这样的最短线段共有多少条?一一画出来。
规律小结一、用枚举法解题时要掌握一下三点:1.列举时应注意有条理地列举,不能杂乱无章地罗列。
2. 根据题意,按范围和各种情况分类考虑,做到既不重复又不遗漏。
3.排除不符合条件的情况,不断缩小列举的范围。
二、枚举的方法常用的有:1、列表枚举。
如我们第6讲中解决鸡兔同笼问题时采用的列表法,就是采用列表枚举的方法。
2、画图枚举,为了更清楚地表示出所有可能的情形。
用画树图枚举法,能做到形象直观,条理分明,简炼易懂。
特别适用于找出所有的情形或结果。
【基础巩固】1.用数字7,8,9可以组成多少个不同的三位数?分别是哪几个数?2.从甲地到乙地有2条路可走,由乙地到丙地有3条路可走,那么由甲地经乙地到丙地共有几条路可走?3.甲、乙、丙、丁站成一排照相,但甲必须站在两头,共有几种不同的排法?4.从3,6,7,8这四张数字卡片中,任取3张,排成三位数,能排成几个不同的三位数,最大的三位数是多少?最小的三位数是多少?5、现有1克、2克、3克重的砝码,要用10个砝码称出重20克的物体。
在取出的砝码中,1克重的有3个,那么3克重的砝码应该有多少个?6、小明有面值为5角、8角的邮票各两枚,他用这些邮票能付多少种不同的邮资(寄信时,所需邮票的钱数)?7.某餐厅的菜单如下:汤类:A.鸡蛋汤;B.三鲜汤。
菜类:C.炒肉丝;D.红烧猪肉;E.炒青菜。
饮料类:(1)高橙;(2)苹果可乐;(3)葡萄酒。
每顿饭若只能各类选一种,试问:可以有多少种不同的选购方法?请写出这些选购菜单。
【培训提优】1.用1,0,3,5这四个数可以组成几个四位数?2.有7张卡片上写着数字2,3,4,5,6,7,8,从中抽出两张,组成的所有的两位数是奇数的个数是多少?3.已知三位数的各位数字之和等于8,那么这样的三位数共有多少个?4、用长48厘米的铁丝围成各种长方形(长和宽都是整厘米数,且长和宽不相等),围成的最大一个长方形面积是多少平方厘米?5. 从两张5元币、五张2元币、十张1元币中,拿出10元钱买钢笔,一共有几种不同的拿法?6、数一数,右图中有多少个三角形。
1、一把钥匙只能开一把锁,现在有4把钥匙。
但不知哪把钥匙开哪把锁,最多要试多少次就能配好全部的钥匙和锁?(北京市第三届“迎春杯”数学竞赛试题)2.有红、黄、蓝色小旗各一面,它们的大小规格都相同,只是颜色不同。
如果把它们挂在一个高杆上,按所挂的面数及从上到下的颜色顺序表示不同信号,那么这些旗可表示种不同信号。
(陕西省凤翔县2008年小学数学竞赛试题(卷))3.用一根长38厘米的铁丝围长方形,使它们的长和宽都是整厘米数,可以有()种围法。
A、7B、8C、9D、104、果篮里有苹果、香蕉、梨、桔子、桃五种水果若干个,每个人可以从中任取两个,那么最少需要多少个人才能保证至少有2人选的水果是完全相同的?答案与提示【变式题1】【思路点拨】因为0不能作开头数字,所以开头数字只能有4种情况,余下的数字作为个位数各有4种情况。
列举每个数字开头的情况分别有:6开头的数有4种:60,67,68,697开头的数有4种:70,76,78,798开头的数有4种:80,86,87,899开头的数有4种:90,96,97,98一共有4×4=16(个)答:五个数字组成各个数位上数字不相同的两位数共有16个.【变式题2】【思路点拨】共有三个质量各不相同的砝码,可以取出其中的一个、两个或三个来称不同的质量,一一列举这三种情况:一个砝码的有3种:1克,3克,9克二个砝码的有3种:1+3=4克,1+9=10克,3+9=12克三个砝码的有1种:1+3+9=13克解:3+3+1=7(种)答:可称出7种不同的重量。
【变式题3】【思路点拨】(1)选用1面小旗有3种方法,可表示3种不同的信号。
(2)选用2面小旗可表示6种不同的信号;红黄;红蓝;黄蓝;黄红;蓝红;蓝黄。
(3)选用3面小旗可表示6种不同的信号:红黄蓝;红蓝黄;黄红蓝;黄蓝红;蓝红黄;蓝黄红。
一共可以组合出3+6+6=15种不同信号。
答:一共可以组合不同信号15种。
【变式题4】【思路点拨】画图分析。
从A到D可分为经过O和H两种路线,而每种路线又有3种,所以共有3+3=6种。
将各种路线一一列出,一共有6条,如下图。
解:(1)(2)(3)(4)(5)(6)答:这样的最短线段共有6条。
【基础巩固】1、【解答】7在百位上的数有:789,7988在百位上的数有:879,8979在百位上的数有:978,987共有2+2+2=6(个)2、解答:从甲地到乙地的2条路线,每条都有3条可以走到丙地,所以有2个3条,一共有2×3=6条。
答:由甲地经乙地到丙地共有6条路可走.3、解答:用枚举法可排列为:①甲乙丙丁②甲乙丁丙③甲丙乙丁④甲丙丁乙⑤甲丁乙丙⑥甲丁丙乙⑦乙丙丁甲⑧乙丁丙甲⑨丙乙丁甲⑩丙丁乙甲○11丁乙丙甲○12丁丙乙甲。
答:共12种不同的排法。
4、解答:从3、6、7、8四张数字卡片中,任取3张,排成不同的三位数,若百位数字有4种选法,十位数字就有3种选法,个位数字只有2种选法,共可排成4×3×2=24个不同的三位数。
最大的三位数是876,最小的三位数是367。
5、【思路点拨】1克重的有3个,20克的物体还需要17克砝码,一共用10个砝码,还需要7个。
一一枚举7个砝码使用情况:1、3克 3克 3克 3克 3克 3克 2克不符合条件2、3克 3克 3克 3克 3克 2克 2克不符合条件3、3克 3克 3克 3克 2克 2克 2克不符合条件4、3克 3克 3克 2克 2克 2克 2克符合条件5、3克 3克 2克 2克 2克 2克 2克不符合条件6、3克 2克 2克 2克 2克 2克 2克不符合条件7、2克 2克 2克 2克 2克 2克 2克不符合条件从枚举中可以看出只有第4种方法符合要求的条件。
答:那么3克重的砝码应该有3个.6、解答:有用1张、2张、3张、4张四种付费方法,分别是:1张的情况有:5角,8角共2种;2张的情况有:5角+5角,8角+8角,5角+8角共3种;3张的情况有:5角+5角+8角,8角+8角+5角共2种;4张的情况有:5角+5角+8角+8角共1种。
一共有2+3+2+1=8种。
答:用这些邮票能付8种不同的邮资。
7、解答:(1).鸡蛋汤炒肉丝高橙(2).鸡蛋汤炒肉丝苹果可乐(3)鸡蛋汤炒肉丝葡萄酒(4)鸡蛋汤红烧猪肉高橙(5)鸡蛋汤红烧猪肉苹果可乐(6)鸡蛋汤红烧猪肉葡萄酒(7)鸡蛋汤炒青菜高橙(8)鸡蛋汤炒青菜苹果可乐(9)鸡蛋汤炒青菜葡萄酒(10)三鲜汤炒肉丝高橙(11)三鲜汤炒肉丝苹果可乐(12)三鲜汤炒肉丝葡萄酒(13)三鲜汤红烧猪肉高橙(14)三鲜汤红烧猪肉苹果可乐(15)三鲜汤红烧猪肉葡萄酒(16)三鲜汤炒青菜高橙(17)三鲜汤炒青菜苹果可乐(18)三鲜汤炒青菜葡萄酒可以有18种不同的选购方法.【培优训练】1、解答:千位数字只能从1,3,5中选取一个,有3种选法;百位数字可从余下的3个数字中选取,也有3种选法;十位数字从余下的2个数字中选取,有2种选法;个位数字从余下的数字中选取,只有1种选法。