机械设计基础-螺栓联接实验要点
螺栓连接
实验一螺栓连接实验Ⅰ、单个螺栓连接实验一、实验目的现代各类机械中,广泛应用螺栓进行联接,如何计算和测量螺栓受力情况及静、动态特性参数,是工程技术人员的一个重要课题。
本实验通过对螺栓的受力进行测试和分析,要求达到下述目的。
1、了解螺栓联接在拧紧过程中各部分的受力情况。
2、计算螺栓相对刚度,并绘制螺栓联接的受力变形图。
3、验证受轴向工作载荷时,预紧螺栓联接的变形规律,及对螺栓总拉力的影响。
4、通过螺栓的动载实验,改变螺栓联接的相对刚度,观察螺栓动应力幅值的变化,以验证提高螺栓联接强度的各项措施。
二、实验项目LZS螺栓联接综合实验台可进行下列实验项目:1、(空心)螺栓联接静、动态实验。
(空心螺栓+ 刚性垫片+ 无锥塞)2、改变螺栓刚度的联接静、动态实验。
(空心螺栓、实心螺栓)3 、改变垫片刚度的静、动态实验。
(刚性垫片、弹性垫片)4、改变被连接件刚度的静、动态实验。
(有锥塞、无锥塞)三、实验设备及仪器该实验需LZS螺栓联接综合实验台一台,CQYDJ一4静动态测量仪一台,计算机及专用软件等实验设备及仪器。
1、螺栓联接实验台的结构与工作原理。
如图1-1所示。
(1)螺栓部分包括M16空心螺栓、大螺母、组合垫片和M8小螺杆组成。
空心螺栓贴有测拉力和扭矩的两组应变片,分别测量螺栓在拧紧时,所受预紧拉力和扭矩。
空心螺栓的内孔中装有M8小螺杆,拧紧或松开其上的手柄杆,即可改变空心螺栓的实际受载面积,以达到改变联接件刚度的目的。
组合垫片设汁成刚性和弹性两用的结构,用以改变被联接件系统的刚度。
(2)被联接件部分由上板、下板和八角环、锥塞组成,八角环上贴有应变片,测量被连接件受力的大小,中部有锥形孔,插入或拨出锥塞即可改变八角环的受力,以改变被连接件系统的刚度(3)加载部分由蜗杆、蜗轮、挺杆和弹簧组成,挺杆上贴有应变片,用以测最所加工作载荷的人小,蜗杆一端与电机相联,另一端装有手轮,启动电机或转动手轮使挺杆上升或下降,以达到加载、卸载(改变工作载荷)的目的。
螺栓连接
实验一螺栓连接实验Ⅰ、单个螺栓连接实验一、实验目的现代各类机械中,广泛应用螺栓进行联接,如何计算和测量螺栓受力情况及静、动态特性参数,是工程技术人员的一个重要课题。
本实验通过对螺栓的受力进行测试和分析,要求达到下述目的。
1、了解螺栓联接在拧紧过程中各部分的受力情况。
2、计算螺栓相对刚度,并绘制螺栓联接的受力变形图。
3、验证受轴向工作载荷时,预紧螺栓联接的变形规律,及对螺栓总拉力的影响。
4、通过螺栓的动载实验,改变螺栓联接的相对刚度,观察螺栓动应力幅值的变化,以验证提高螺栓联接强度的各项措施。
二、实验项目LZS螺栓联接综合实验台可进行下列实验项目:1、(空心)螺栓联接静、动态实验。
(空心螺栓+ 刚性垫片+ 无锥塞)2、改变螺栓刚度的联接静、动态实验。
(空心螺栓、实心螺栓)3 、改变垫片刚度的静、动态实验。
(刚性垫片、弹性垫片)4、改变被连接件刚度的静、动态实验。
(有锥塞、无锥塞)三、实验设备及仪器该实验需LZS螺栓联接综合实验台一台,CQYDJ一4静动态测量仪一台,计算机及专用软件等实验设备及仪器。
1、螺栓联接实验台的结构与工作原理。
如图1-1所示。
(1)螺栓部分包括M16空心螺栓、大螺母、组合垫片和M8小螺杆组成。
空心螺栓贴有测拉力和扭矩的两组应变片,分别测量螺栓在拧紧时,所受预紧拉力和扭矩。
空心螺栓的内孔中装有M8小螺杆,拧紧或松开其上的手柄杆,即可改变空心螺栓的实际受载面积,以达到改变联接件刚度的目的。
组合垫片设汁成刚性和弹性两用的结构,用以改变被联接件系统的刚度。
(2)被联接件部分由上板、下板和八角环、锥塞组成,八角环上贴有应变片,测量被连接件受力的大小,中部有锥形孔,插入或拨出锥塞即可改变八角环的受力,以改变被连接件系统的刚度(3)加载部分由蜗杆、蜗轮、挺杆和弹簧组成,挺杆上贴有应变片,用以测最所加工作载荷的人小,蜗杆一端与电机相联,另一端装有手轮,启动电机或转动手轮使挺杆上升或下降,以达到加载、卸载(改变工作载荷)的目的。
螺栓连接实验原理
螺栓连接实验原理
螺栓连接实验原理是通过使用螺栓将两个或多个零件紧密连接在一起的一种方法。
这种连接方式通常用于承受静态或动态负荷的结构中,以确保连接的强度和稳定性。
螺栓连接实验的目的是评估连接的可靠性和性能。
在实验中,通常会使用一对通过螺栓连接的零件,并施加一定的拉伸或剪切负荷来测试连接的强度。
重要的是保证实验的准确性和可重复性,以确保结果的可靠性。
在实验过程中,会测量应变、位移、力等参数来评估连接的性能。
这些数据将用于计算连接的应力、载荷能力和疲劳寿命等关键指标。
通过实验结果,可以判断螺栓连接的适用性和承载能力,并优化设计和使用。
螺栓连接实验需要注意以下几点:
1. 选择合适的螺栓材料和规格,以满足连接所需的强度和刚度要求。
2. 确保螺栓和螺纹孔的质量和几何形状符合标准要求,以确保连接的可靠性。
3. 在实验中使用适当的加载设备和测量仪器,以准确施加负荷并记录数据。
4. 进行多次实验,并对结果进行统计和分析,以获得可靠的结
论。
总之,螺栓连接实验是评估连接性能的重要方法,通过测量和分析螺栓连接的性能指标,可以优化设计和选择适当的连接方式,从而确保结构的安全和可靠性。
螺栓连接实验-2015.11.20
被联接件刚度: C2 F2 / 2
相对刚度: C1 /(C1 C2 )
系统刚度:
C C1 C2 O1
B
AD
F
F' E
α
Fβ F ''
G Δδ
O2
δ
Δδ
δ
δ
螺栓联接实验│二.实验原理
螺栓联接实验结构图 1.电动机 2.蜗杆 3.凸轮 4.蜗轮 5.下板 6.扭力插座 7.锥塞 8.拉力插座 9.弹簧 10.空心螺杆 11.千分表 12.螺母 13.刚性垫片 14.八角环压力插座 15.八角环 16.挺杆压力插座 17. M8螺杆 18.挺杆 19.手轮
6 生成并保存测量数据文件 7 螺栓卸载并完成其余3个项目 8 整理实验设备及附件等 9 整理实验数据,请指导老师签字 10 实验结束
螺栓联接实验│五.实验守则
⑴请严格按照实验要求操作实验设备。 ⑵请严格按照要求关闭实验设备。 ⑶请同学们注意安全。
螺栓联接实验│六.反馈建议
学无止境 教学 欢迎大家对实验室建设与
螺栓联接实验│二.实验原理
螺栓联接实验│二.实验原理
惠斯通电桥 之半桥测量
1
4
R4
R1
工作电阻 标准电阻 贴于试件
ΔR
2
上的应变片
R3
R2 ΔR
3
~
螺栓联接实验│三.实验要求
测试试件四种状态数据 生成四个DOC文件,用移
动存储设备备份。
螺栓联接实验│四.实验步骤
1 确认测试螺栓联接件状态 2 开启计算机并打开测试软件 3 仪器设备调零 4 螺栓预紧 5 螺栓加载
四.实验步骤(4)
之后弹出预紧信息 确认对话框,点击 【是(Y)】按钮。
机械设计基础-螺栓联接实验
螺栓联接静、动态特性实验报告专业班级 ___________ 姓名 ___________ 日期 2006-08-15 指导教师___________ 成绩 ___________一、实验条件:1、试验台型号及主要技术参数螺栓联接实验台型号:主要技术参数:①、螺栓材料为40Cr、弹性模量E=206000 N/mm2,螺栓杆外直径D1= 16mm,螺栓杆内直径D2=8mm,变形计算长度L=160mm。
②、八角环材料为40Cr,弹性模量E=206000 N/mm2。
L=105mm。
③、挺杆材料为40Cr、弹性模量E=206000 N/mm2,挺杆直径D=14mm,变形计算长度L=88mm。
2、测试仪器的型号及规格①、应变仪型号:CQYDJ-4 ②、电阻应变片:R=120Ω,灵敏系数K=2.2二、实验数据及计算结果1、螺栓联接实验台试验项目:空心螺杆2、螺栓组静态特性实验实测值理论值预紧形变值(μm) 预紧应变值(με) 预紧力(N) 预紧刚度(N/mm) 预紧标定值(με/N)加载形变值(μm) 加载应变值(με) 加载力(N) 加载刚度(N/mm) 加载标定值(με/N)螺栓拉力 40 167 5187.7 129692.5螺栓扭矩 113 177.1八角环 126 0 5219.4 41172.2挺杆 -2 -31.7螺栓拉力 40 250 7766 194150.4螺栓扭矩 342.8八角环 126 7766 61635.1挺杆 0 0 1463.9-0.0184430.0321915 0.1287509 0.0000000 0.0630915 0.0215039 0.3296382 0 45 182 5653.7 129692.5120 185.2118 0 6129.3 41172.2-30 -475.745 281.25 8736.8 194150364118 7272.9 61634.90.0321913 0.1287314 0.0000000 0.0630650 0.0209458 0.3296703 03、螺栓联接静、动特性应力分布曲线图 (空心螺杆)三、实验结果分析。
机械设计基础第第10章螺纹连接
特点:结构简单、连接可靠、装拆方便,且多
数螺纹连接件已标准化,生产率高,因而应用广泛。
聊城大学汽车学院 汽车工程系
10.2.1 螺纹
一.螺纹的主要参数 螺旋线---螺纹---螺纹
d2
聊城大学汽车学院 汽车工程系
(1) 大径d
(2) 小径 d1 (3) 中径d2 (4) 螺距P
d d d1 2
P/2 P/2
按螺旋的作用分
按母体形状分
聊城大学汽车学院 汽车工程系
螺 纹 的 分 类
矩形螺纹 三角形螺纹 按螺纹的牙型分 梯形螺纹 锯齿形螺纹 右旋螺纹 按螺纹的旋向分 左旋螺纹 单线螺纹 按螺旋线的根数分 多线螺纹 外螺纹 按回转体的内外表面分 内螺纹
螺纹副
按螺旋的作用分
按母体形状分
聊城大学汽车学院 汽车工程系
a. 利用附加摩擦力防松
弹簧垫圈
对顶螺母
尼龙圈锁紧螺母
聊城大学汽车学院 汽车工程系
b. 机械防松
潘存云教授研制
开口销与六 角开槽螺母
圆螺母用止动垫圈
止动垫圈
串联钢丝
聊城大学汽车学院 汽车工程系
c. 破坏螺旋副防松 用冲头冲2~3点 1~1.5P
涂粘合剂
冲点防松法
粘合法防松
聊城大学汽车学院 汽车工程系
紧定螺钉
5)其它特殊结构的螺纹连接
起吊螺钉
T 型螺栓
聊城大学汽车学院 汽车工程系
二.标准螺纹连接件 螺 纹 连 接 件 螺栓
L L0
螺栓的结构形式
d
六角头 L L0 d 小六角头
聊城大学汽车学院 汽车工程系
螺 纹 连 接 件
螺栓 双头螺柱
L L1 L0 d L1 -----座端长度 L0 -----螺母端长度
【机械基础实验-项目一】LSC-II螺栓组及单螺栓联接综合实验台实验指导书
LSC-II螺栓组及单螺栓联接综合实验台一、工程应用实例螺纹联接是机器中广泛采用的联接形式,常为可拆联接。
在机械设计中大量使用螺纹联接,例如流体传动中液压缸的法兰盘联接、汽车发动机中汽缸盖与缸体的联接等。
在日常生活中,螺栓组联接也有广泛应用,例如空调的室外机的托架等等。
二、实验问题的提出在螺栓承受变动外载荷时,粗螺栓的疲劳寿命比细长螺栓的寿命短,这是为什么呢?另一方面,在机器设计中可以通过哪些措施来提高螺栓的疲劳寿命,机械设计中介绍了三种措施:(1)提高被联接件的刚度;(2)减小螺栓的刚度;(3)提高螺栓联接的预紧力。
也可以同时采用上述三种措施。
第(1)(2)种措施将导致螺栓联接残余预紧力的减小,这对有密封要求的联接是必须考虑的;第(3)种措施会导致螺栓静强度的减弱。
上述结论正确吗?我们通过本实验来观察、分析螺栓的联接特性。
螺栓联接常成组使用。
在外界转矩或倾翻力矩载荷作用下,每只螺栓上承受的载荷一样吗?各螺栓上承受载荷间有什么关系呢?让我们用实验来研究这一问题。
三、实验目的现代各类机械工程中广泛应用螺栓组机构进行联接。
如何计算和测量螺栓受力情况及静、动态性能参数是工程技术人员面临的一个重要课题。
本实验通过对一螺栓组及单个螺栓的受力分析,要求达到下述目的:(一)螺栓组试验(1)了解托架螺栓组受翻转力矩引起的载荷对各螺栓拉力的分布情况。
(2)根据拉力分布情况确定托架底板旋转轴线的位置。
(3)将实验结果与螺栓组受力分布的理论计算结果相比较。
(二)单个螺栓静载试验了解受预紧轴向载荷螺栓联接中,零件相对刚度的变化对螺栓所受总拉力的影响。
(三)单个螺栓动载荷试验通过改变螺栓联接中零件的相对刚度,观察螺栓中动态应力幅值的变化。
2四、螺栓试验台结构及工作原理(一)螺栓组试验台结构与工作原理螺栓组试验台的结构如:图1所示。
图中1为托架,在实际使用中多为水平放置,为了避免由于自重产生力矩的影响,在本试验台上设计为垂直放置。
机械设计基础-5.6螺栓组联接的设计
第六节螺栓组联接的设计第五节讲的是单个螺栓联接中,螺栓的强度问题,主要是螺栓杆的强度。
其中载荷是单个螺栓受到的轴向力或横向力。
实际中,螺栓联接往往是成组使用,而成组使用的螺栓联接(螺栓组)中,各个螺栓的受力往往是不一样的。
这就需要进行受力分析。
主要任务是:分析找出其中受力最大的螺栓及其所受的工作载荷。
(即F),(最终按此最大载荷计算螺栓强度)。
螺纹联接设计包括结构设计和参数设计。
一、螺栓组联接的结构设计1、联接接合面的几何形状应与机器的结构形状相适应。
一般都设计成轴对称的简单几何形状(图所示),便于加工制造,且使联接的接合面受力比较均匀。
2、螺栓的数目应取为易于分度的数目(如3、4、6、8、12等),以利于划线钻孔。
同一组螺栓的材料直径和长度应尽量相同,以简化结构和便于装配。
3、应有合理的钉距、边距和足够的板手空间。
4、被联接件上的支承面应做成凸台或沉头座,以免引起偏心载荷而削弱螺栓的强度。
二、螺栓组联接的受力分析 注意:螺栓组设计中:⎪⎩⎪⎨⎧。
的个数应便于等分圆周例如:圆周上均布螺栓③各螺栓应均匀布置。
一样)。
样(②各螺栓的预紧力均一性能等级应均取一致。
①各螺栓的尺寸规格、‘F 分析中假设:⎪⎩⎪⎨⎧围之内③螺栓的变形在弹性范②各螺栓的刚度相同变形①被联接件是刚体,不 1、 受横向力的螺栓组当采用普通螺栓联接时(图a ),靠联接预紧后在接合面间产生的摩擦力来抵抗横向载荷;当采用铰制孔用螺栓联接(图b ),靠螺杆受剪切和挤压来抵抗横向载荷。
普通螺栓(受拉)按预紧后接合面间所产生的最大摩擦力必须大于或等于横向载荷假设:各螺栓联接接合面的摩擦力相等并集中在螺栓中心处,则根据板的平衡条件得: ∑⋅≥⋅⋅⋅F k Z i F f s 0 ⇒所需预紧力 Zi f F k F s ⋅⋅⋅≥∑式中:f ——接合面的摩擦系数,见教材。
i —-接合面的数目 Z —-螺栓数s k —-可靠性系数,考虑摩擦力不稳定性铰制孔用螺栓(受剪)靠螺栓受剪切和螺栓与孔壁相互挤压传递载荷。
螺栓组联接实验报告
螺栓组联接实验报告一、实验目的。
本实验旨在通过对螺栓组联接的实验研究,探讨螺栓在不同条件下的受力性能,为工程实践提供可靠的数据支持。
二、实验原理。
螺栓组联接是一种常见的机械连接方式,其受力性能直接影响着机械设备的安全稳定运行。
在螺栓组联接中,螺栓受拉力,而螺母受压力,通过螺纹的摩擦力来实现联接。
实验中将通过拉伸试验和剪切试验来分析螺栓组联接的受力性能。
三、实验材料和设备。
1. 实验材料,选用直径为M8的普通螺栓和相应的螺母;2. 实验设备,拉伸试验机、剪切试验机、螺纹测量仪、万能试验机等。
四、实验步骤。
1. 拉伸试验,将螺栓安装在拉伸试验机上,逐渐增加拉力,记录拉伸过程中的应力-应变曲线,分析螺栓的拉伸性能;2. 剪切试验,将螺栓安装在剪切试验机上,逐渐增加剪切力,记录剪切过程中的应力-应变曲线,分析螺栓的剪切性能;3. 螺纹测量,利用螺纹测量仪对螺栓和螺母的螺纹进行测量,分析其尺寸精度和表面质量;4. 其他,利用万能试验机对螺栓组联接进行综合性能测试,包括抗扭矩、抗压力等。
五、实验结果与分析。
1. 拉伸试验结果表明,螺栓在受力过程中表现出良好的弹性变形和塑性变形能力,具有较高的抗拉性能;2. 剪切试验结果表明,螺栓在受力过程中表现出较高的抗剪性能,未出现明显的断裂现象;3. 螺纹测量结果表明,螺栓和螺母的螺纹尺寸精度高,表面质量良好;4. 综合性能测试结果表明,螺栓组联接具有良好的抗扭矩和抗压力性能。
六、实验结论。
通过本实验的研究分析,得出螺栓组联接在受力过程中表现出良好的受力性能,具有较高的抗拉、抗剪、抗扭矩和抗压力性能。
因此,在工程实践中可以放心使用螺栓组联接,确保机械设备的安全稳定运行。
七、参考文献。
1. 钢结构螺栓连接设计手册。
2. 机械连接技术手册。
3. 螺纹连接设计与计算。
八、致谢。
感谢实验室的老师和同学们在实验过程中的帮助和支持,使本次实验取得了圆满成功。
以上就是本次螺栓组联接实验的报告内容,希望对相关领域的研究和实践工作有所帮助。
机械设计基础-螺纹连接
FS
Fs
F
F
T
*
机械设计基础
*
(3)、承受轴向静载荷的紧螺栓联接强度计算
*
机械设计基础
*
①工作特点:工作前拧紧,有F0;工作后加上工作载荷F 工作前、工作中载荷变化
②工作原理:靠螺杆抗拉强度传递外载F
③解决问题: a) 保证安全可靠的工作,F0=? b) 工作时螺栓总载荷, F=?
机械设计基础——联接
计算螺栓小径时采用试算法来选用
*
机械设计基础
*
螺栓组连接的结构设计 螺栓组连接的受力分析与计算
§1.4 螺栓组连接的设计
*
机械设计基础
*
1 、连接结合面的几何形状常设计成轴对称的简单几何形状
*
机械设计基础
*
2、 螺栓的布置应使各螺栓的受力合理
*
机械设计基础
*
3 、螺栓的排列应有合理的间距、边距
*
机械设计基础
*
定力矩扳手
测力矩扳手
机械设计基础——联接
4、装配时控制预紧力的方法
*
机械设计基础
*
定力矩扳手
*
机械设计基础
*
二、螺纹连接的防松
(一) 、摩擦防松
1 、双螺母 在螺母和螺栓之间形成内力,保证摩擦力。 结构简单、使用方便。 可靠性不高。 用于平稳、低速、重载。
*
机械设计基础
*
2 、弹簧垫圈 其反弹力使螺纹间保持一定压力,切口处的尖端也能阻止螺母转动脱落。 不十分可靠,用于不太重要的连接。
挤压强度: 剪切强度:
机械设计基础——联接
*
机械设计基础
*
螺栓组实验
《螺栓组连接》实验指导书一、实验目的1、测试螺栓组连接在倾覆力矩作用下各螺栓所受的载荷;2、深化课程学习中对螺栓组连接受力分析的认识;3、初步掌握电阻应变仪的工作原理和使用方法。
二、实验台结构及工作原理图1 多功能螺栓组连接实验台结构1. 机座2.测试螺栓3.测试梁4.托架5.测试齿块 6.杠杆系统7.砝码8.齿板接线柱 9. 螺栓1-5接线柱 10. 螺栓6-10接线柱 11. 垫片多功能螺栓组连接实验台结构如图1所示,被连接件机座1和托架4被双排共10个螺栓2连接,连接面间加入垫片11(硬橡胶板),砝码7的重力通过双级杠杆加载系统6(1:75)增力作用到托架4上,托架受到倾覆力矩的作用,螺栓组连接受横向载荷和倾覆力矩联合作用,各个螺栓所受轴向力不同,它们的轴向变形也就不同。
在各个螺栓上贴有电阻应变片,可在螺栓中段测试部位的任一侧贴一片,或在对称的两侧各贴一片,如图2所示.各个螺栓的受力可通过贴在其上的电阻应变片的变形,用电阻应变仪测得。
图2 螺栓安装及贴片图多功能螺栓组连接实验台的托架4上还安装有一测试齿块5,它是用来做齿根应力测试实验的;机座1上还固定有一测试梁3(等强度悬臂梁),它是用来做梁的应力测试实验的。
测试齿块5与测试梁2与本实验无关,在做本实验前应将测试齿块5固定螺钉拧松。
三、实验方法及步骤1. 实验方法:①螺栓初预紧方法抬起杠杆加载系统,不使加载系统的自重加到螺栓组连接件上。
先将图2中所示的右端各螺母I用手(不能用扳手)尽力拧紧,然后在把左端的各螺母也用手尽力拧紧(如果在实验前螺栓已经受力,则应将其拧松后再做初预紧) 。
②应变测量点预调平衡方法以各螺栓初预紧后的状态为初始状态,先将杠杆加载系统安装好,使加载杆的重力通过杠杆放大,加到托架上;然后再进行各螺栓应变测量的“调零”(预调平衡),即把应变仪上各测量点的应变量都调到“零”读数。
预调平衡砝码加载前,应松开测试齿块(即使载荷直接加在托架上,测试齿块不受力);加载后,加载杠杆一般呈向向左倾斜状态。
螺栓组联接实验报告
螺栓组联接实验报告螺栓组联接实验报告引言:螺栓组联接是一种常见的机械连接方式,广泛应用于工程结构、机械设备等领域。
本实验旨在通过对螺栓组联接的实验研究,探讨其性能和应用特点,为工程设计和实际应用提供参考依据。
实验目的:1. 研究螺栓组联接的承载能力和稳定性;2. 探究螺栓组联接的材料特性对其性能的影响;3. 分析螺栓组联接的失效原因和预防措施。
实验装置和方法:本实验采用了标准的螺栓组联接装置,包括螺栓、垫圈、螺母等。
实验过程中,我们首先选择了不同材料的螺栓进行测试,包括碳钢螺栓和不锈钢螺栓。
然后,通过施加不同的载荷,观察螺栓组联接的变形情况和承载能力。
最后,我们对实验结果进行了分析和总结。
实验结果:1. 材料特性对螺栓组联接的性能有明显影响。
碳钢螺栓在承载能力方面表现出较高的稳定性,适用于对强度要求较高的场合。
而不锈钢螺栓则具有抗腐蚀性能好的特点,适用于潮湿环境或需要防锈的场合。
2. 载荷的大小和施加方式对螺栓组联接的性能有重要影响。
适当的预紧力可以提高螺栓组联接的稳定性和承载能力,而过大或过小的预紧力都会导致螺栓组联接的失效。
3. 螺栓组联接的失效主要包括松动、断裂和腐蚀等。
松动是最常见的失效形式,可以通过增加预紧力或使用锁紧装置来预防。
断裂则可能与螺栓本身的质量有关,需要选择合适的材料和制造工艺。
腐蚀则需要加强防护措施,选择适合环境的材料或涂层。
讨论与分析:螺栓组联接作为一种常见的机械连接方式,具有许多优点,如可拆卸性、可重复使用性等。
然而,它也存在一些问题,如容易松动、失效风险较高等。
因此,在实际应用中,我们需要综合考虑各种因素,选择合适的螺栓材料、预紧力和防护措施,以确保螺栓组联接的性能和可靠性。
结论:通过本次实验,我们深入了解了螺栓组联接的性能和应用特点。
不同材料的螺栓具有不同的性能优势,可以根据具体需求进行选择。
适当的预紧力和防护措施可以提高螺栓组联接的稳定性和可靠性。
然而,螺栓组联接仍然存在一些问题,需要在实际应用中加以注意和解决。
螺栓联接综合实验实验原理
螺栓联接综合实验实验原理
螺栓联接综合实验的实验原理主要基于以下两点:
1.螺栓联接接合面的几何形状通常都设计成轴对称的简单几何形
状,如圆形、环形、矩形、框形、三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2.螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,
不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力。
如果同时承受轴向载荷和较大的横向载荷时,应采用销、套
筒、键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
螺栓连接实验报告
螺栓连接实验报告螺栓连接实验报告引言:螺栓连接是一种常见的机械连接方式,广泛应用于各个领域。
本次实验旨在研究螺栓连接的性能和可靠性,通过实验数据的收集和分析,探讨螺栓连接的力学特性以及对连接性能的影响因素。
实验设备和方法:实验设备包括螺栓、螺母、垫圈、扳手、力传感器、试验台等。
实验方法是通过施加力矩来拧紧螺栓,然后测量和记录连接的拉伸力和扭矩。
实验过程:首先,选择适当的螺栓和螺母进行连接。
然后,使用扳手施加力矩,逐渐拧紧螺栓。
在拧紧的过程中,使用力传感器测量并记录连接的拉伸力和扭矩。
每次拧紧后,检查连接是否牢固,以确保实验数据的准确性。
实验结果分析:通过对实验数据的分析,我们可以得出以下结论:1. 拧紧力矩与连接拉伸力成正比:随着拧紧力矩的增加,连接的拉伸力也增加。
这是因为螺栓连接的原理是通过螺纹的摩擦力将两个部件紧密连接在一起,而摩擦力与力矩成正比。
2. 螺栓预紧力对连接性能的影响:螺栓连接的可靠性与预紧力密切相关。
适当的预紧力可以保证连接的稳定性和可靠性,而过大或过小的预紧力都会导致连接失效。
3. 垫圈的作用:垫圈在螺栓连接中起到分散压力和缓冲振动的作用。
合理选择垫圈的材料和尺寸可以提高连接的可靠性。
4. 螺栓连接的松动与疲劳:长期使用后,螺栓连接可能会出现松动现象。
这是因为连接部件受到振动和外力的作用,导致螺纹间隙扩大。
定期检查和维护螺栓连接可以避免松动和疲劳。
实验结论:螺栓连接是一种常见且可靠的机械连接方式。
通过适当的拧紧力矩和预紧力,选择合适的垫圈材料和尺寸,可以保证连接的稳定性和可靠性。
然而,螺栓连接也需要定期检查和维护,以避免松动和疲劳现象的发生。
结语:本次实验通过对螺栓连接的研究,深入了解了螺栓连接的力学特性和影响因素。
螺栓连接作为一种常见的机械连接方式,在工程和制造领域具有广泛的应用前景。
通过进一步的研究和实验,可以进一步优化螺栓连接的设计和应用,提高连接的可靠性和性能。
螺栓联接综合实验心得与建议
螺栓联接综合实验心得与建议一、前言螺栓联接是机械工程中常见的一种连接方式,具有简单、可靠、易拆卸和重复使用等特点,广泛应用于各个领域。
为了更好地理解螺栓联接的原理和性能,我们进行了螺栓联接的综合实验。
在实验中,我们通过设计合理的实验方案,选择适当的试验设备和方法,深入研究了螺栓联接的力学性能、失效形式以及影响因素等内容。
在实验过程中,我们不断总结经验、排除故障,最终获得了一些宝贵的心得和建议。
二、实验过程2.1 实验准备在进行螺栓联接实验前,我们首先对实验的目的和要求进行了全面的了解,并进行了充分的准备工作。
具体包括实验设备和试样的准备、实验操作流程的设计、实验数据的处理和分析方法的选择等。
2.2 实验步骤在实验中,我们按照事先设计好的实验步骤进行了实验操作。
首先,我们将试样固定在试验平台上,然后通过加力装置施加不同大小的拉力。
在施加拉力的过程中,我们记录了试样的变形和载荷的变化,并及时调整实验条件,确保实验数据的准确性和可靠性。
2.3 实验数据采集与分析在实验过程中,我们采用了合适的数据采集装置,将试验过程中的数据实时记录下来。
随后,我们对实验数据进行了分析,得出了一些有价值的结论。
同时,我们还通过统计学方法对数据进行处理,计算了一些重要的参数,如拉伸强度、屈服强度等。
2.4 实验结果与讨论根据实验数据和分析结果,我们得出了一些关于螺栓联接的重要结论。
首先,螺栓联接的拉伸性能良好,可以承受较大的拉力。
其次,螺栓联接在较大的载荷作用下会出现塑性变形,同时伴随着载荷的增加,螺栓的失效形式逐渐为断裂。
最后,螺栓联接的力学性能受到许多因素的影响,如螺纹形状、材料性能、预紧力等。
这些结论对于螺栓联接的设计和使用具有重要的指导意义。
三、实验心得3.1 实验设计在实验中,我们设计了合理的实验方案,确定了试验设备和方法,使得实验过程更加顺利。
同时,我们还充分考虑了实验的安全性和可行性,确保了实验操作的简便性和可重复性。
机械设计基础-单个螺栓连接
参考资料或常用网址:韩玉成.机械设计基础.北京.电子工业出版社;庄宿涛.成都.西南交通大学出版社;徐刚涛.北京.高等教育出版社;http//
教学后记:
教研室主任意见:
许用应力计算公式:
总载荷计算公式:
预紧力计算公式:
残余预紧力计算公式:
2、受剪螺栓连接
σp≤〔σp〕τ≤〔τ〕
受横向载荷铰制孔螺栓连接的基本形式如图1所示:
图1受横向载荷铰制孔螺栓连接
受横向载荷铰制孔螺栓连接的基本计算公式:
按挤压强度校核计算:
按抗剪强度校核计算:
按挤压强度设计计算:
按抗剪强度设计计算:
图1受横向载荷紧螺栓连接
受横向载荷紧螺栓连接强度校核与设计的基本公式如下:
(1)预紧力计算公式:
(2)பைடு நூலகம்核计算公式:
(3)设计计算公式:
(3)承受轴向静载荷的紧螺栓连接
受轴向载荷紧螺栓连接的基本形式如图1所示:
图1受轴向载荷紧螺栓连接
受轴向载荷紧螺栓连接的基本公式:
强度校核计算公式:
螺栓设计计算公式:
式中: ――受横向载荷,N; ――受剪直径,(=螺纹小径),mm,查表获得; ――受挤压高度,取 、 中的较小值,mm;m――受剪面个数。
教学方法:多媒体教学,联系工程实例
课程作业或思考题:
1、单个螺栓连接的强度计算方法分几类?
2、松螺栓连接与紧螺栓连接的区别何在?
3、在进行紧螺栓连接强度计算时,为什么要将螺栓拉力增加30%?
受轴向载荷松螺栓连接强度校核与设计时,按下列公式进行计算:
校核计算公式:
设计计算公式:
2)紧螺栓连接
螺栓连接实验及报告
螺栓联接实验指导书机电学院机械基础实验室2011.9螺栓联接实验指导书一.实验目的1.掌握测试受轴向工作载荷的紧螺栓联接的受力和变形曲线(即变形协调图)。
2.掌握求联接件(螺栓)刚度C 1、被联接件刚度C 2、相对刚度C 1/C 1+C 2。
3.了解试验预紧力和相对刚度对应力幅的影响,以考察对螺栓疲劳的影响。
二.实验设备图4—1为LB-87型螺栓联接实验机结构组成示意图,手轮1相当于螺母,与螺栓杆2相连。
套筒3相当于被联接件,拧紧手轮1就可将联接副预紧,并且联接件受拉力作用,被联接件受压力作用。
在螺栓杆和套筒上均贴有电阻应变片,用电阻应变仪测量它们的应变来求受力和变形量。
测力环4是用来间接的指示轴向工作载荷的。
拧紧加载手轮(螺母)6使拉杆5产生轴向拉力,经过测力环4将轴向力作用到螺杆上。
测力环上的百分表读数正比于轴向载荷的大小。
1.LB-87型螺栓联接实验机的主要实验参数如下:1).螺栓材料为45号钢,弹性模量E 1=2.06×105N/mm 2,螺栓杆直径d=10mm ,有效变形计算长度L 1=130mm 。
2).套筒材料为45号钢,弹性模量E 2=2.06×105N/mm 2,两件套筒外径分别为D=31和32,内径为D 1=27.5mm ,有效变形计算长度L 2=130mm.。
2.仪器1)YJ-26型数字电阻应变仪。
2)YJ-18型数字电阻应变仪。
3)PR10-18型预调平衡箱。
三.实验原理1.力与变形协调关系在螺栓联接中,当联接副受轴向载荷后,螺栓受拉力,产生拉伸变形;被联接件受压力,产生压缩变形,根据螺栓(联接件)和被联接件预紧力相等,可把二者的力和变形图线画在一个坐标系中,如4-3所示。
当联接副受工作载荷后,螺栓因受轴向工作载荷F作用,其拉力由预紧力Qp 增加到总拉力Q,被联接件的压紧力Qp减少到剩余预紧力Q’p ,这时,螺栓伸长变形的增量Δλ1,等于被联接件压缩变形的恢复Δλ2,即Δλ1=Δλ2=λ,也就是说变形的关系是协调的。
机械设计基础螺栓连接性能测试实验指导书
螺栓连接性能测试实验指导书——(2) 螺栓组连接受力与相对刚度实验一、实验目的1、验证螺栓组连接受力分析理论;2、了解用电阻应变仪测定机器机构中应力的一般方法。
二、实验设备和工作原理螺栓组连接实验台由螺栓连接、加载装置及测试仪器三部分组成。
如图1所示螺栓组连接是由十个均布排列为二行的螺栓将支架11和机座12连接起来而构成。
加载装置是由具有1:100放大比的两极杠杆13和14组成,砝码力G经过杠杆放大而作用在支架上的载荷为P,因此,连接接触面将受有横向载荷P和翻转力矩M。
M⋅= (N·㎜)Pl= (N)P100G式中l—力臂(㎜)由于P和M的作用,在螺栓中引起的受力是通过贴在每个螺栓上的电阻应变片15的变形并借助电阻应变仪而测得。
电阻应变仪是通过载波电桥将机械量转换成电量实现测量的。
如图2所示,将贴在螺栓上的电阻应变片1作为电桥一个桥臂,温度补偿应变片2为另一个桥臂。
螺栓不受力时,使电桥呈现平衡状态。
当螺栓受力发生变形后,应变片电阻值发生变化,电桥失去平衡,输出一个电压讯号,经放大、检波等环节,便可在应变仪上直接读出应变值来。
经过适当的计算就可以得到各螺栓的受力大小。
图1 螺栓连接实验台结构简图1,2,……10—实验螺栓;11—支架;12—机座;13—第一杠杆;14—第二杠杆;15—电阻应变片;16—砝码(相关尺寸:l=200㎜;a=160㎜;b=105㎜;c=55㎜;G=22N)图2 电桥工作原理图本实验是针对不允许连接接合面分开的情况。
螺栓预紧时,连接在预紧力作用下,接合面间产生挤压应力。
当受载后,支架在翻转力矩M 作用下,有绕其对称轴线0-0翻转趋势,使连接右部挤压应力减小,左部挤压应力增加。
为保证连接最右端处不出现间隙,应满足以下条件:0≥-⋅WMAQ Z p(1) 式中 Qp —单个螺栓预紧力(N ); Z —螺栓个数 Z=10;A —接合面面积 A=a(b-c) (㎜2) M —翻转力矩 M=PlW —接合面抗弯剖面模量 6)(2c b a W -= (㎜3)化简(1)式得ZaPlQ P 6≥为保证一定安全性,取螺栓预紧力为 ZaPlQ p 6)5.1~25.1(= (2)螺栓工作拉力可根据支架静力平衡条件求得,由平衡条件有:M=Pl=F 1r 1+ F 2r 2+…+ F z r z (3) 式中F 1、F 2…F z —各螺栓所受工作力r 1、r 2 …r z —各螺栓中心到翻转轴线的距离根据螺栓变形协调条件有:zz r F r F r F =⋅⋅⋅==2211 (4)由式(3)和式(4)可得任一位置螺栓工作拉力 22221zii r r r Plr F +⋅⋅⋅++= (5)在翻转轴线0-0右边,F i 使螺栓被拉紧,轴向拉力增大,而在0-0线左边的螺栓被放松,预紧力减小。
机械设计基础-5.6螺栓组联接的设计
第六节螺栓组联接的设计第五节讲的是单个螺栓联接中,螺栓的强度问题,主要是螺栓杆的强度。
其中载荷是单个螺栓受到的轴向力或横向力。
实际中,螺栓联接往往是成组使用,而成组使用的螺栓联接(螺栓组)中,各个螺栓的受力往往是不一样的。
这就需要进行受力分析。
主要任务是:分析找出其中受力最大的螺栓及其所受的工作载荷。
(即F),(最终按此最大载荷计算螺栓强度)。
螺纹联接设计包括结构设计和参数设计。
一、螺栓组联接的结构设计1、联接接合面的几何形状应与机器的结构形状相适应。
一般都设计成轴对称的简单几何形状(图所示),便于加工制造,且使联接的接合面受力比较均匀。
2、螺栓的数目应取为易于分度的数目(如3、4、6、8、12等),以利于划线钻孔。
同一组螺栓的材料直径和长度应尽量相同,以简化结构和便于装配。
3、应有合理的钉距、边距和足够的板手空间。
4、被联接件上的支承面应做成凸台或沉头座,以免引起偏心载荷而削弱螺栓的强度。
二、螺栓组联接的受力分析 注意:螺栓组设计中:⎪⎩⎪⎨⎧。
的个数应便于等分圆周例如:圆周上均布螺栓③各螺栓应均匀布置。
一样)。
样(②各螺栓的预紧力均一性能等级应均取一致。
①各螺栓的尺寸规格、‘F 分析中假设:⎪⎩⎪⎨⎧围之内③螺栓的变形在弹性范②各螺栓的刚度相同变形①被联接件是刚体,不 1、 受横向力的螺栓组当采用普通螺栓联接时(图a ),靠联接预紧后在接合面间产生的摩擦力来抵抗横向载荷;当采用铰制孔用螺栓联接(图b ),靠螺杆受剪切和挤压来抵抗横向载荷。
普通螺栓(受拉)按预紧后接合面间所产生的最大摩擦力必须大于或等于横向载荷假设:各螺栓联接接合面的摩擦力相等并集中在螺栓中心处,则根据板的平衡条件得: ∑⋅≥⋅⋅⋅F k Z i F f s 0 ⇒所需预紧力 Zi f F k F s ⋅⋅⋅≥∑式中:f ——接合面的摩擦系数,见教材。
i —-接合面的数目 Z —-螺栓数s k —-可靠性系数,考虑摩擦力不稳定性铰制孔用螺栓(受剪)靠螺栓受剪切和螺栓与孔壁相互挤压传递载荷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
螺栓联接静、动态特性实验报告
专业班级 ___________ 姓名 ___________ 日期 2006-08-15 指导教师
___________ 成绩 ___________
一、实验条件:
1、试验台型号及主要技术参数
螺栓联接实验台型号:
主要技术参数:
①、螺栓材料为40Cr、弹性模量E=206000 N/mm2,螺栓杆外直径D1= 16mm,螺栓杆内直径D2=8mm,变形计算长度L=160mm。
②、八角环材料为40Cr,弹性模量E=206000 N/mm2。
L=105mm。
③、挺杆材料为40Cr、弹性模量E=206000 N/mm2,挺杆直径D=14mm,变形计算长度L=88mm。
2、测试仪器的型号及规格
①、应变仪型号:CQYDJ-4 ②、电阻应变片:R=120Ω,灵敏系数K=2.2
二、实验数据及计算结果
1、螺栓联接实验台试验项目:空心螺杆
2、螺栓组静态特性实验
实测值理论值
预紧形变值(μm) 预紧应变值(με) 预紧力(N) 预紧刚度(N/mm) 预紧标定值(με/N)加载形变值(μm) 加载应变值(με) 加载力(N) 加载刚度(N/mm) 加载标定值(με/N)螺栓拉力 40 167 5187.7 129692.5
螺栓扭矩 113 177.1
八角环 126 0 5219.4 41172.2
挺杆 -2 -31.7
螺栓拉力 40 250 7766 194150.4
螺栓扭矩 342.8
八角环 126 7766 61635.1
挺杆 0 0 1463.9
-0.018443
0.0321915 0.1287509 0.0000000 0.0630915 0.0215039 0.3296382 0 45 182 5653.7 129692.5
120 185.2
118 0 6129.3 41172.2
-30 -475.7
45 281.25 8736.8 194150
364
118 7272.9 61634.9
0.0321913 0.1287314 0.0000000 0.0630650 0.0209458 0.3296703 0 3、螺栓联接静、动特性应力分布曲线图 (空心螺杆)
三、实验结果分析。