定量分析中的误差和数据处理

合集下载

第二章 定量分析中的误差及结果处理

第二章 定量分析中的误差及结果处理
常量组分:化学分析法 —— 操作方便,准确度高 微量组分:仪器分析法 —— 灵敏度高 二、减少随机误差(偶然误差)
增加平行测定次数
三、消除系统误差 (一)对照试验 —— 检验有无方法误差
(二)空白试验 —— 检验有无试剂误差
试样 + 试剂 试剂 则 样品含量
同一条件 同一条件
测定结果 X1
测定结果 X0 ( X0—空白值
二、偏差与精密度
思考题:
甲乙两位同学对同一样品进行了五次重复测定, 测定结果分别如下: 甲: 0.3,0.2,0.3,0.3,0.4, x = 0.3 乙: = 0.3 0.1, 0.6, 0.2, 0.1, 0.5,
x
(1)甲同学测定的几个结果中哪个结果更好?乙同 学的呢? (2)两位同学的测定水平哪个更好?如何评价?
5 前面是偶数 —— 舍
5 后面全为 0 或无数字 尾数= 5时 5 后面有任一不为 0 的数 —— 入 5 前面是奇数 —— 入
例:将下列数字修约为三位有效数字
0. 3216 解: 0.322 21. 2499 21.2 10. 2500 10.2 10. 3500 10.4 3.42 3.415 10. 25001
36.50 37.00
平均值
37.50
38.00
真值
(三)准确度和精密度的关系
1、精密度高,准确度一定高。( ) 2、精密度高,准确度一定低 ( ) 3、精密度的高低不会影响准确度( ) 4、要有高的准确度,必须要有高的精密度( )
精密度是保证准确度的先决条件.精密度差, 所测结果不可靠,就失去了衡量准确度的前提, 高的精密度,不一定能保证高的准确度.
主要来源有
仪器误差:
试剂误差: 操作误差 :

定量分析的误差和数据处理

定量分析的误差和数据处理

查表:P 0.95, f 6 1 5时,t表 2.57
t计算 t表说明 x与差异异著,有系统误差
1.4.2 两组数据平均值的比较
为了比较两组数据 x1、s1、n1与 x2、s2、n2间是
否存在显著性差异,需首先用F检验法检验两 组测定结果的精密度s1、s2之间是否差异显著。
定量分析的误差和数据处理
测定结果的两个特征
准确度:即人、仪器、方法 所得结果也不可能绝对准确。
结论:定量分析中误差是不可避免的,定量分析的结 果只能是真值的近似值。误差是客观存在的。真值是 测不出的。
测定结果的第二个特征
精确度:同一个人、同一样品、相同条件下、多次平 行测定,所得结果也不可能完全相同 这是一个自然规律
标准偏差s也影响置信区间。“做多次平行测定 取平均值以减少随机误差对准确度的影响” 的前提是必须保证测定的精密度。
1.3.3 可疑值的取舍
(1)由过失引起必须舍弃; (2)非过失引起,必须根据统计学原理决定其
取舍。
取舍的意义:
无限次平行测定,随机误差遵从态分布规律, 可大可小,且绝对值相等的正负差出现机会相 同,故任一测定结果,不论偏差小都不应舍 弃;
相对标准偏差。
解: x 10.43%
d di 0.18% 0.036%
n
5
d 100% 0.036% 100% 0.35%
x
10.43%
s
d
2 i

8.610 7 4.610 4 0.046%
n 1
4
s 100% 0.046% 100% 0.44%
英国化学家W.Gosset(戈赛特)根据统计学原理,提出 t—分布,描述有限数据分布规律

定量分析中的误差及数据处理

定量分析中的误差及数据处理
(2)仪器误差:仪器不符合要求 例: 天平两臂不等 砝码未校正 滴定管、容量瓶未校正
(3)试剂误差 所用试剂纯度差,有杂质。
例:去离子水不合格 试剂级别不合适
(4)主观误差 操作人员主观因素造成。
例:指示剂颜色辨别偏深或偏浅 滴定管读数位置不正确
2. 偶然误差产生的原因 (1)偶然因素 (2)滴定管读数
平均偏差:
d
1 n
n
| xi
i 1
x
|
相对平均偏差: d 100 % x
特点:简单
缺点:大偏差得不到应有反映
2. 标准偏差 标准偏差的计算分两种情况:
(1) 当测定次数趋于无穷大时:
总体标准偏差 : X 2 / n
μ 为无限多次测定 的平均值(总体平均值), 即
lim
n
1 n
n i 1
3. 过失误差产生的原因
(三) 误差减免方法 1. 系统误差的减免 方法误差—— 采用标准方法,对比实验 仪器误差—— 校正仪器 试剂误差—— 作空白实验 2. 偶然误差的减免 增加平行测定的次数
思考题:
1.下列叙述错误的是:
A.方法误差属于系统误差 B.系统误差包括操作误差 C.系统误差又称可测误差 D.系统误差呈正态分布 E. 系统误差具有单向性
定量分析中的误差和数据处理
分析测试的误差与偏差 误差产生的原因及其减免方法 分析结果的数据处理 分析测试结果准确度的的评价 有效数字及其运算规则
一、分析测试的误差与偏差
误差和准确度 偏差和精密度 准确度和精密度的关系
1.误差和准确度
准确度: 测定值与真实值的接近程度。 准确度的高低用误差来衡量。
C 20.6,20.9,21.1,21.0 D 20.8,20.6

定量分析中的误差及数据处理

定量分析中的误差及数据处理
进行预测和控制。
多元线性回归
总结词
多元线性回归是定量分析中常用的方法,用于探索多个自变量与一个因变量之 间的线性关系。
详细描述
多元线性回归通过最小二乘法拟合一个平面或一个超平面,使得因变量的观测 值与预测值之间的残差平方和最小。这种方法可以帮助我们了解多个自变量对 因变量的影响程度和方向,并可进行预测和控制。
对各种不确定度进行量化评估,计算其对最终测量结 果的影响。
不确定度报告
将不确定度评估结果整合到测量报告中,为用户提供 完整的数据分析结果。
04
回归分析
一元线性回归
总结词
一元线性回归是定量分析中常用的方法,用于探索一个因变量与一个自变量之间的线性 关系。
详细描述
一元线性回归通过最小二乘法拟合一条直线,使得因变量的观测值与预测值之间的残差 平方和最小。这种方法可以帮助我们了解自变量和因变量之间的关联程度和方向,并可
Box-Cox变换
离散化
是一种通用的数据变换方法,通过选择适当 的λ值,使数据达到最合适的形式。
将连续变量转换为离散变量,便于分类或 决策树算法的使用。
数据插值与外推
线性插值
基于已知的数据点,通过线性函数进行插值, 得到未知点的值。
样条插值
通过样条函数进行插值,可以更好地处理数 据的弯曲程度。
多项式插值
05
数据分析与可视化
描述性统计
总结词
描述性统计是定量分析的基础,用于 概括和描述数据的特征。
详细描述
通过均值、中位数、众数、标准差等 统计量,描述数据的集中趋势和离散 程度。此外,还包括数据的频数分布 、偏度、峰度等描述性统计指标。
推断性统计
总结词
推断性统计基于样本数据推断总体特征 ,通过样本信息对总体进行估计和预测 。

第二章 定量分析中的误差与数据处理

第二章 定量分析中的误差与数据处理
x x
平均偏差( 平均偏差(average deviation)又称算术平均偏差: )又称算术平均偏差:
d=
∑d
i=1
n
i
n
=
∑x
i =1
n
i
−x
n
相对平均偏差: 相对平均偏差:
d ×100% x
例:测定合金中铜含量的两组结果如下
d dr 测定数据/ 测定数据/% X 第一 10.3,9.8,9.4,10.2,10.1, 10.0 0.24% 2.4% 组 10.4,10.0,9.7,10.2,9.7 第二 10.0,10.1,9.3*,10.2,9.9, 10.0 0.24% 2.4% 组 9.8,10.5*,9.8,10.3,9.9
特点 单向性。 ① 单向性。对分析结果的影响 比较固定, 比较固定,即误差的正或负固 定。 重现性。平行测定时, ② 重现性。平行测定时,重复 出现。 出现。 可测性。可以被检测出来, ③ 可测性。可以被检测出来, 因而也是可以被校正的。 因而也是可以被校正的。
偶然误差(随机误差)—由偶然因素引起的误差
10kg
±1 Ea % = ×100% = 10% 10
±1 Ea % = × 100% = ±0.1% 1000
1000kg
1.相对误差衡量分析结果的准确度更加客观; 1.相对误差衡量分析结果的准确度更加客观; 相对误差衡量分析结果的准确度更加客观 2.当绝对误差相同时,被测定的量越大, 2.当绝对误差相同时,被测定的量越大,相对误 当绝对误差相同时 差越小,测定的准确程度越高。 差越小,测定的准确程度越高。
*
1.64 1.65 1.62 1.70 1.60 1.61 1.66 1.61 1.59

定量分析中误差及数据处理

定量分析中误差及数据处理
第3章 定量分析中的误差及数据处理
CLICK HERE TO ADD A TITLE
学习目的
原始测量数据如:m、V……
有效数字
测量误差 客观存在
测量结果:x1、x2、x3……
应记录几位数字?
计算公式
应保留几位数字?
误差的分类、特点及消除或减小
如何用测量值x1、x2、x3科学的表达样品真值
置信区间
可疑数值判断
=真值
和分别决定了正态曲线的位置与形状
描述了测量值x出现在某一位置的概率密度或出现在某一区域内的概率(如:出现在+内的概率为1)
反映数据集中趋势
反映数据分散趋势
3-4 随机误差的分布规律(2)
测量平均值 的分布规律
即一系列测定的平均值 (m)的分布规律(其中任一平均值均是n(有限)次测定平均结果)
01
系统误差(Systematic Error)
02
具有单向性、重现性、为可测误差,理论上可消除
03
随机误差(Random Error),亦称偶然误差
04
由不确定因素引起—服从统计规律(见3-4)
05
过失误差(mistake)
06
由粗心大意引起,可以避免,通常不算入误差范畴
误差的分类
3-1 误差的基本概念(4)
0.01 mL
0.02 mL
解:
常量滴定分析时,通常要求由滴定管读数引起的误差在0.1%以内,同时要求节约试剂,因此滴定体积一般应控制在2030 mL范围内(25 mL)
例5:滴定分析中称样质量的控制 万分之一分析天平的精度? 称取一份试样的绝对误差? 计算称样质量分别为20.0和200.0 mg时相对误差。
0.1 mg

1定量分析的误差和数据处理

1定量分析的误差和数据处理
常量滴定分析时,通常要求由滴定管读数引起 的误差在0.1%以内,同时要求节约试剂,因此滴 定体积一般应控制在2030 mL范围内(25 mL)
例:滴定分析中称样质量的控制
万分之一分析天平的精度? 0.1 mg
称取一份试样的绝对误差? 0.2 mg
计算称样质量分别为20.0和200.0 mg时相对误差。
相对误差 RE
由于真值T永不能准确得知,实际工作中常用所谓标准值代替( ):标准值系 由经验丰富的多名分析人员,在不同实验室采用多种可靠方法对试样反复分 析,并对全部个别测定结果进行统计处理后得出的较准确的结果。纯物质中 元素的理论含量也可作真值使用。
E T
(1.2)
误差E越小,表示测定结果越接近真值,准确度越高;反之,误 差E越大,准确度越低。误差有正负之分,正误差表示测定结果偏 高,负误差表示测定结果偏低。
1.3 随机误差分布规律和有限数据的统计处理
• 1.3.1随机误差的分布规律
随机误差产生的具体原因很难找出,对个别一 次测定,随机误差或正或负,或大或小,纯属 偶然;当对同一试样进行无限多次平行测定时, 各次结果的随机误差分布遵从正态分布规律: (1)由于随机误差的影响,测定值大小不一,有 离散趋势,但绝对值相等的正、负随机误差出 现的机会相等; (2)小误差出现的机会多,大误差出现的机会少, 特大误差出现的机会极少,即测定值又有集中 趋势。 由此可知,无限次平行测定各结果随机误差的 代数和趋于0,即:不存在系统误差的条件下, 无限次平行测定结果的平均值(总体平均值 ) 趋于真值。
Ⅰ定量分析的误差和数据处理
• • • • • • 1.1 准确度和精密度 1.2 误差的来源和分类 1.3 随机误差分布规律和有限数据的统计处理 1.4 系统误差的检验 1.5 提高测定准确度的措施 1.6 有效数字及运算规则

第二章 定量分析的误差和数据处理

第二章 定量分析的误差和数据处理

σ↑,y↓, 数据分散,曲线平坦 σ↓,y↑, 数据集中,曲线尖锐 测量值都落在-∞~+∞,总概率为1
标准正态分布曲线—— x ~ N(0 ,1 )曲线 为便于计算,正改标正。方法是横坐标改为u
令u x
1
u2 e 2

y f ( x)
2
又dx du f ( x)dx
正态分布曲线—— x ~ N(μ ,σ2 )曲线
1 y f ( x) e 2
( x )2 2 2
x y f ( x)
1
特点
2
以x-μ~y作图
x =μ时,y 最大→大部分测量值集中 在算术平均值附近 曲线以x =μ的直线为对称→正负误差 出现的概率相等 当x →﹣∞或﹢∞时,曲线渐进x 轴, 小误差出现的几率大,大误差出现的 几率小,极大误差出现的几率极小
准确度与精密度的关系:
准确度高必然要求精密度好,
但精密度好不一定准确都高。 消除系统误差后,高精密度才能保证高准确度
准确 度和精 密度都 ▲ 好 ▲ ▲▲


准确度 不好但精 密度好


1 2 3 4 56 7 8
★ ● ●● ● 9 10 ●



准确度 和精密度 都不好

为了说明一组平行测定数据的精密度,要用平均偏 n n 差或标准偏差来表示。 平均偏差:
1 2
u2 e 2
1 2
u2 e 2 du
(u )du
即y (u )
注:u 是以σ为单位来表示随机误差 x -μ
标准正态分布
u 1, x 1
区间概率%

定量分析的误差和数据处理.

定量分析的误差和数据处理.



练 习

准确度的高低用(误差)来衡量,它是测 定结果与(真实值)之间的差异;精密度 的高低用(偏差)来衡量,它是测定结果 与(平均值)之间的差异。
准确度和精密度的正确关系是(准确度高, 要求精密度也高)

第二部分.误差来源及消除方法

一.系统误差

二.偶然误差 三.提高系统准确度的方法

练 习
第二章
定量分析的误差和数据处理

第一部分 准确度与精密度 第二部分 误差的来源及消除方法 第三部分 有效数字及其运算规则



第四部分 分析结果的表示及数据处理
第一部分.准确度和精密度

一.准确度与误差 二.精密度与偏差


三.准确度与精密度的关系
教学要求
掌握误差及偏差的概念、种类和计算方法。
误差越小,准确度越高:
误差越大,准确度越低; 相对误差更能反映出测定结果的准确度。
二.精密度与偏差
1.偏差

绝对偏差:单次测量值与平均值之差 。
di xi x

相对偏差:绝对偏差占平均值的百分比。
di Rd i 100% x
3.标准偏差与相对标准偏差
精密度和准确度的关系

分析实验中由于水不纯而引起的误差叫(试剂误 差)。 滴定时,不慎从锥形瓶中溅失少许试液,是属于 (过失误差)。 增加测定次数可以减少(偶然误差)。



要求滴定分析时的相对误差为0.1%,50ml滴定管 的读数误差约为0.02ml,滴定时所用液体体积至少 要(20)ml.
明确准确度、精密度的概念及两者在实际应 用中的关系。
不同人员分析同一试样的结果

分析化学 第二章 定量分中误差和数据处理

分析化学 第二章 定量分中误差和数据处理


用沉淀滴定法测定纯NaCl(0.6066)中氯的质量
分数,得到下列结果:0.5982,0.6006,
0.6046,0.5986,0.6024。
则平均结果为_______ 0.6009 ____;
平均结果的绝对误差为_____-_0__._0057 ____;
相对误差为___ -0.94%_____;
(1)系统误差产生的主要原因(或分类) :
a. 方法误差 b. 仪器误差 c. 试剂误差 d. 操作误差
e. 主观误差
a.方法误差
这种误差是由于分析方法本身所造成的。例如: 在重量分析中,沉淀的溶解损失或吸附某些杂质而产 生的误差;在滴定分析中,反应进行不完全,干扰离 子的影响,滴定终点和化学计量点的不符合,以及其 他副反应的发生等,都会系统地影响测定结果。
0.0,+0.1, -0.7,+0.2,-0.1,-0.2, +0.5,-0.2,+0.3,+0.1 两组数据平均偏差均为0.24
(二)标准偏差和相对标准偏差
近年来,在分析化学的教学中,愈来愈广泛地采用数理统 计方法来处理各种测定数据。在数理统计中,我们常把所 研究对象的全体称为总体(或母体);自总体中随机抽出 的一部分样品称为样本(或子样);样本中所含测量值的 数目称为样本大小(或容量)。例如,我们对某一批煤中 硫的含量进行分析,首先是按照有关部门的规定进行取 样、粉碎、缩分,最后制备成一定数量的分析试样,这就 是供分析用的总体。如果我们从中称取10份煤样进行平 行测定,得到10个测定值,则这一组测定结果就是该试 样总体的一个随机样本,样本容量为10。
0.0,+0.1, -0.7,+0.2,-0.1,-0.2, +0.5,-0.2,+0.3,+0.1 S2=0.33

分析化学 第二章 定量分析中的误差和数据处理

分析化学 第二章  定量分析中的误差和数据处理

s
(x x)
i
2

n 1
相对标准偏差(RSD, sr):
sr
教材p42 例2
s 100% x
2.1.4 误差产生原因和减免方法 根据误差来源和性质的不同,定量分析中 的误差分为系统误差和随机误差。
1. 系统误差(可测误差) 由某种固定的原因引起的误差。
系统误差产生的原因: (1)方法误差
思考题: 下列数据各有几位有效数字? (1)0.0330
(2)10.030
(3)89.6 (6)pH=10.2
(4)3.30×10-2 (5)pKa=4.74
2.2.1 有效数字(significant figure)
1. 有效数字为分析中能实际测量到的数字 有效数字位数=所有准确数字 + 一位可疑数字 例:滴定读数20.30mL,最多可以读准前3位 第4位为估读数(可疑数字), 有±1个单位的误差 2. 数字零在数据中有双重作用: (1)若只起定位作用,不是有效数字。 例: 0.0318 为3位有效数字 (2)若作为普通数字使用,为有效数字。 例: 0.03180 为 4位有效数字 3.单位变换不影响有效数字位数 例:10.00(mL)→0.001000(L) 均为4位有效数字
特点: (1)对分析结果的影响比较恒定(单向性); (2)多次测定时重复出现(重复性); (3)影响准确度,不影响精密度; (4)可以校正消除。
(2)仪器和试剂误差 (3)操作误差 (4)主观误差
(1)方法误差:方法选择不合适 例:重量分析中,沉淀不完全或沉淀溶解损失 指示剂选择不当 (2)仪器和试剂误差: 仪器不符合要求(如,天平砝码质量、仪表 刻度、容量器皿刻度不准确等) 所用试剂纯度不够(去离子水不合格、试剂级 别不合适等 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 定量分析中的误差和数据处理 思考题
1 •准确度和精密度有什么区别?
答:准确度是指测定值与真值(如试样中待测组分的真实含量)相符合的程度,用误 差和相对误差表示。

精密度是在相同条件下多次重复测定结果之间相符合的程度,用 偏差表示。

2 •下列情况引起的误差是系统误差还是随机误差?
(1) 使用有缺损的砝码;(系)
(2) 称量试样时吸收了空气中的水分;(系) (3)称量时天平的停点稍有变动;(随)
(4) 读取滴定管读数时,最后一位数字几次读不一致; (随) (5) 标定NaOH 用的H 2C 2O 4? 2出0部分风化;(系)
(6) 标定HCI 用的NaOH 标准溶液吸收了 C02。

(系) (1) 称取基准确邻苯二甲酸氢钾约 0.5g,以标定NaOH 溶液的浓度;(分析天
平)
(2) 取10g 工业用K 2Cr 2O 7,配取铬酸洗液;(台称)
(3) 称取甲基橙,配制0.1%甲基橙溶液100ml ;(普通天平)
(4) 称一块约4g 重的铂片,要准确到小数点后第五位。

(半微量天平)
4. 如何表示总体数据的集中趋势和分散性?如何表示样本数据的集中趋势和分散 性?
答:总体数据的集中趋势用总体平均值 卩表示;分散性用标准偏差c 表示。

样本数据的集中趋势用算术平均x 表示;分散性用标准偏差S 表示。

5. 如何报告分析结果?
_
答:在报告分析结果时,要反映数据的集中趋势和分散性,一般用三项值:X (表示集 中趋势),标准差s (表示分散性),和测定次数n 。

6. 某试样分析结果为x =16.94%,n=4,若该分析方法的
试就此计算说明置信度和置信区间的含义。

答:置信度是分析结果在某一区间内出现的概率, 相应的区间为置信区间。

计 算结果说明,95%置信度时,以16.94为中心,包含卩值的置信区(16.740.04)%。

7. 何谓对照分析?何谓空白分析?他们在提高分析结果准确度各起什么作用? 答:对照分析是:
取已知准确组成的试样(例如标准试样或纯物质,已知试样的组 成最好与未知试样的组成相似,含量相近。

用测定试样的方法,在相同条件下平
行测定,得到的平均值 x 标
空白分析是:在不加待测组分的情况下,用分析试样完全相同的方法及条件 进行平行测定。

所得结果称为空白值。

台称 普通天平 分析天平
最大载重 100g 200g 200g
感量(分度值) 0.1g 1mg 0.1mg
半微量天平 20g O.OImg o=0.04%,则当置信度为95%
时, 卩=(16.74± 1.96
)%=(16.74 ± 0.04)%
3.实验中有四种天平,其性能见下表达
为下列天平选择合适天平:
0.04
对照分析用于校正方法误差,即消除测定中的系统误差。

空白分析用于消除水、试剂和器皿带进杂质所造成的系统误差
8. 请指出下列实验记录中的错误:
(1) 测天平零点
e^ = 0.12 0.02 0.13 e0= 0.09
答:e。

—0.1 0.0 0.1 e^ -0.1
(2) (2)用HCI标准溶液滴定25.00mlNaOH溶液
V HCI: 24.1 24.2 24.1 V HCI=24.13
答:滴定管读数记录不准确:V HCI =24.10,24.20,24.10,V HCI =24.13
(3) 称取0.4328g Na?B4O7,用量筒加入约20.00ml水;
答:用量筒加入约20.0ml水
(4) 由滴定管放出20ml NaOH溶液,以甲基橙作指示剂,用HCI标准溶液滴定答:由滴定管放出20.00mINaOH溶液。

习题
1. 测定某试样的含铁量,六次测定的结果(以%计)20.48,20.55,20.58,20.60,20.53
和20.50。

计算这个数据集的平均值、中位数、平均偏差、标准偏差和全距。

应如何
报告分析结果?计算95%的置信度的置信区间。

- 1
解:x 二(20.48 20.55 20.58 20.60 20.53 20.50)二20.54%
6
中位数二-(20.53 20.55)二20.54%
2
-n- -
平均偏差 = 瓦焉—x = (20.48 — 20.54 + 20.55 — 20.54 + 20.58 — 20.54 +120.60 — 20.54 n i=i 6
20.53 - 20.54 20.50 - 20.54) = 0.04%
n
上d i2
标准差s = \空—=0.05%
\ n -1
全距R 二X max X min = 20.60 - 20.48 = 0.12%
分析结果报告:x 二20.54% ,s = 0.05% ,n = 6
s 0.05
=(20.54 - 0.05)%
二x-t (20.54-2.447 )%
⑷ <6
2. 某化验室例行化验铁矿,其标准差(T
=0.15%。

今测得某铁矿中F Q Q的含量为58.25%, 若此分析结果分别是根据四次、九次测得的,计算95%S信度时各次结果平均值的置
信区间。

0.15
解:
二=x — u - (58.25 一1.96 ——)% = (58.25 二0.15)%
0.15
「x — U h = (58.25 — 1.96泊= (58.25一0.10)%
4.
3 •面种方法测定某矿样锰的百分含量,结果如下: 方法 1 x q 二 10.56% , S q = 0.10% n^ 11
方法 2 X 2 二 10.64% , S ?二 0.12% n 2 二 11 问(1)标准差之间是否有显著性差异(95%置信
度)?
(2) 平均值之间是否有显著性差异(95%置信度)?
标定一溶液的浓度,得到下列结果:0.1141,0.1140,0.1148,0.1142(mol/L) 。

问第 个结果
是否可以舍去(95%置信度)。

解:X =0.1143 S =0.036%
1
M 二?(30.44+30.52)%=30.48%
:)% = (30.42- 0.33)%
6某分析人员提出一个测定氯的新方法,并以此方法分析了一个标准试样(标准值
X=16.62%),得结果为x=16.72%,S=0.08%,n=4问95%置信度时,所得结果是否存在 系统误差?
如,
x —卩 厂 16.72 — 16.62
解:t 计算 n 4 = 2.5 3.182.
计算 s 0.08%
所得结果不存在系统误差。

7 •下列各数的有效数字是几位?
(1) 0.00058 (两位) (2) 3.6X 10-5 (两位)
(3) 0.0014% (两位) (4) 0.00987 (三位)
t 计算=
S 大 0.122 S 小 0.102
= 1.44 2.9 X 1 _ X2
nm
10.56 — 10.64 s n 1 n 2
0.10 11 11
1.876
2.086
11 11
- X 0.1148 - 0.1143
1.39 1.46
0.1148 不能舍

s
0.036%
5•测定某试样含氯百分率,得到下列结果: 30.44,30.52,30.60和30.12(%) 问(1)30.12%是否应舍去?
(2)试样中含氯百分率最好用什么数值表示? ⑶计算平均值的置信区间(95%置信度)? 解:X
T 计算二Xn 二 30.42% , S 二 0.21% (1) T 计算二
s
30.42 30.12 = 1.43 1.46 30.12%不 能舍去
0.21
(2)试样中含氯百分率最好用中位数表示: S (3)二=x — t
(30.42 一 3.182 Vn
(5) 35000 (不确定)
(6) 35000土 10 (四位) (7) 3.5X 104 (两位) (8 ) 3.500X 104 (四位) (9) 999 (三位)
(10) 0.002000 (四位)
8 •计算下列算式的结果(确定有效数字的位数):
(1) bCwQ 的摩尔质量:
39.0983 X 2+51.996 X 2+15.9996 X 7=294.19 (2) 28.40ml0.0977mol/LHCI 溶液中 HCI 含量:
28.40 咒0.0977(1.0079 +35.453) =0 1012
1.000 1000
⑷ pH=5.03,求[H +]
+ -6
[H ]=9.3 X 10 mol/L
_4 31 0^4 03心0
(5)
31.0
+5.8=7.7
3.152 x 0.002034
1000
(3)返滴定法结果计算:
x%=0.1000(25.00 一1.52)246.47 X 100%=57.87%。

相关文档
最新文档