25.2 用列举法求概率(第2课时)PPT课件

合集下载

2用列举法求概率课件

2用列举法求概率课件
一次操作或另一个条件为_竖__列__,列出表格计算概率. 2、树状图法求概率
当一次实验涉及_两__个__以__上__的因素时,列表法就不方便了, 为不重复不遗漏地列出所有可能的结果,通常用_树__状__图__法__.
(1)使用条件:可能出现的结果较多、有限,各种结果出现
的可能性_均__等__. (2)适用范围:一次实验要涉及_两__个__及__两__个__以__上__的__因素. (3)具体方法:先画出第一个因素产生的_可__能__性__的__结__果__, 再在第一步的每个可能结果的分支上画出_第__二__个__因__素__
测评反馈
5、一个袋中里有4个珠子,其中2个红色,2个蓝 色,除颜色外其余特征均相同,若从这个袋中任取2个 珠子,都是蓝色珠子的概率为多少?
解:由题意画出树状图:

蓝 红







由树状图可以看 出,所有可能出现的 结果共有6个,都是蓝 色珠子的结果有1个。
故 P都是蓝色 1
6
拓展延伸
用下图所示的转盘进行“配紫色” 游戏,游戏者获胜的概率是多少?
刘华的思考过程如下:
随机转动两个转盘,所有可能出现的结果如下:
灰 开始 白

蓝 (灰,蓝)
绿 (灰,绿)
黄 (灰1 ,黄)
蓝 绿
((白白9 ,,蓝绿))
黄 (白,黄
绿)蓝
(红,蓝) (红,绿)
黄 (红,黄)
你认为她的 想法对吗,
为什么?
总共有9种结果,每种结果出现的可 能性相同,而能够配成紫色的结果只
P(3
个元音)=
1 12

甲 教材导读

25.用列举法和列表法求概率PPT课件(人教版)

25.用列举法和列表法求概率PPT课件(人教版)

活动 3 例题精讲 通过上面例 1 的分析,学生对用列表法求概率有了初步的了 解,为了帮助学生熟练掌握这种方法,教师引导学生分析解决教 材第 136 页例 2.然后引导学生进行题后小结: 当一个事件要涉及两个因素并且可能出现的结果数目较多 时,通常采用列表法.运用列表法求概率的步骤如下: (1)列表;
活动1 创设情境 我们在日常生活中经常会做一些游戏,游戏规则制定是否公平, 对游戏者来说非常重要,其实这就是一个游戏双方获胜概率大小的 问题. 下面我们来做一个小游戏,规则如下: 老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老 师赢;如果落地后两面一样,你们赢.请问:你们觉得这个游戏公 平吗? 学生思考计算后回答问题:把其所能产生的结果全部列出来,应 该是正正、正反、反正、反反,共有四种可能,并且每种结果出现 的可能性相同.
实际上,可以将这个游戏分两步进行,教师指点学生构造下列表格:
分析:第一考虑转动A盘:指针可能指向1,6,8三个数字中的任意 一个,可能出现的结果就会有3个;接着考虑转动B盘:当A盘指针指向1 时,B盘指针可能指向4,5,7三个数字中的任意一个.当A盘指针指向6 或8时,B盘指针同样可能指向4,5,7三个数字中的任意一个,这样一 共会产生9种不同的结果.
(2)通过表格计数,确定公式 P(A)=mn 中的 m 和 n 的值;
(3)利用公式 P(A)=mn 计算事件发生的概率.
教材第138页 练习第1~2题. 活动5 课堂小结与作业布置 课堂小结 引导学生从知识、方法、情感三方面来谈一谈这节课的收获,要 求每个学生在组内交流,派小组代表发言. 作业布置 教材第139页~140页 习题第1~3题和第5题.
25.2 用列举法求概率
第1课时 用列举法和列表法求概率

人教版九年级上册《25.2 用列举法求概率(2)》课件( (共30张PPT)

人教版九年级上册《25.2 用列举法求概率(2)》课件( (共30张PPT)

AB
EDC
HI
(1)取出的3个小球中恰好有1个,2个,3个写
有元音字母的概率各是多少?

A
B
解:由树状图得,所有
乙 C D E C D E 可能出现的结果有12个,
丙H I H I H I H I H I H I
A AA AA A B B B B B B C CD DE E C C D D E E H I H I H I HI H I HI
7 6 -2
解:根据题意,画出树状图如下
第一个数字
6
-2
7
第二个数字 6 -2 7 6 -2 7 6 -2 7
(1)两次取出的小球上的数字相同的可能性只有3种,所以 P(数字相同)= 3 = 1
99
(2)两次取出的小球上的数字之和大于10的可能性只有4种,
所以P(数字之和大于10)= 4 9
5.甲、乙、丙三个盒中分别装有大小、形状、质 地相同的小球若干,甲盒中装有2个小球,分别写有 字母A和B;乙盒中装有3个小球,分别写有字母C、D 和E;丙盒中装有2个小球,分别写有字母H和I;现 要从3个盒中各随机取出1个小球.

1 P(正面向上)= 4

(反,反)
树状图的画法
如一个试验中涉及2个因素,第一个因素中有2种可能情况;第 二个因素中有3种可能的情况. 则其树形图如下图:
一个试验
第一个因素
A
B
第二个因素 1 2 3 1 2 3 n=2×3=6
树状图法:按事件发生的次序,列出事件可能出现的结果.
活动:石头、剪刀、布 同学们:你们玩过“石头、剪刀、布”的游戏吗, 小明和小华正在兴致勃勃的玩这个游戏,你想 一想,这个游戏能用概率分析解答吗?

人教版九年级数学上册--25.用列表法求概率-课件

人教版九年级数学上册--25.用列表法求概率-课件
币反面向上(记为事件B)有2种,
由当上一表次可实知验共涉有及4种两等个可因能素性时的(如结掷果两,个骰子∴)P,(且B)可=2能/4出=1现/2的,结果较多
时,为不重复不遗漏地列出所有可能的结果,用列表法.
当堂训练
用列表法求概率
同时掷两枚质地均匀的骰子,计算下列事件的概率
知识点二
(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;
6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 为事件C)有11种,
由上表可知共有36种等可能性的结果, ∴P(C)=11/36,
课堂小结
列举法 求概率
用列表法求概率
知识梳理
当一次实验涉及一个因素时(如掷一枚骰子),用直接列举法.
列表法
前提条件:确保实验中每种结果出现的可能性大小相等. 适用对象:两个实验因素或分两步进行的实验.
用列表法求概率
提升能力
2.在6张卡片上分别写有1~6,随机的抽取一张后放不回放回,再随机的抽取一
张,那么,第一次取出的数字能够整除第2次取出的数字的概率是多少?
解:列表如下:
其中第一次取出的数字能够整除第
1 2 3 4 5 6 2次取出的数字(记为事件A)有14种,
1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
你们赢,如果落地后朝上的是一正一反,老师赢.请问,你们觉得这个游戏
公平吗?
你能把这问题改编成数学问题吗?
典例精讲
用直接列举法求概率
【例1】“先同后时将掷一两硬枚币硬掷币两”次,试求下列事件的概率: 第1枚 (1)两枚硬币全部正面向上;
(2)一枚硬币正面向上,一枚硬币反面向上;
知识点一

人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件

人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件

板书设计
把两枚骰子分别记为第1枚和第2枚,这样就可以用下面的方形表格列举出
所有可能出现的结果.
解决问题
两枚骰子分别记为第1枚和第2枚,所有可能的结果列表如下:
(1)满足两枚骰子点数相同(记为事件A)的结果有6个
6
1
(表中斜体加粗部分),所以P(A)= 36 = 6.
(2)满足两枚骰子的和是9(记为事件B)的结果有4个
2.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球表面积的
百分比. 若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是
%.
达标检测
1.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为


1
A.
3
11
B.
36
5
C.
12
1
D.
4
2.不透明的袋子中装有红球1个、绿球1个、白球2个,这些球除颜色外无
出场,由于人为指定出场顺序不合规,要重新抽签确定出场顺序,则抽签后三个
运动员出场顺序都发生变化的概率是
.
达标检测
5.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,
2
3
其中红球1个,若从中随机摸出一个球,这个球是白球的概率为 .
(1)求袋子中白球的个数;
(2)随机摸出一个球后放回并搅匀,再随机摸出一个球,请用画树状图
5
,全是辅音字母的结果有两个,
12
2
1
即BCH,BDH,所以P(三个辅音)= = .
12
6
P(一个元音)=
练习巩固
1.经过某十字路口的汽车,可能直行,也可能左转或右转. 如果这三种可能

列举法求概率2

列举法求概率2

“同时掷两枚硬币”与“先后两次掷 一枚硬币”,这两种试验的所有可能 结果一样吗?
例2.袋子中装有红.绿各一个小球,随机摸出一个小球后 放回,再随机摸出一个.求下列事件的概率: (1)第一次摸到红球,第二次摸到绿球; (2)两次都摸到相同颜色的球;
(3)两次摸到的球中有一个绿球和一个红球.
随堂练习
总结经验: 当一次试验要涉及两个因素,并且可能出 现的结果数目较多时,为了不重不漏的列 出所有可能的结果,通常采用列表的办法
1 4
思考: 从1,2,3,4的4个数中任取两个,他们的和 是偶数的概率是多少?
; https:/// 加盟网 ; ; 2019.1 ;
自觉自己实在找到了个好丈夫,他待人真的很好.可惜,大家都处于战争状态下,那些日子她一个姑娘已经见过了太多的生与死.新型的战争改变了女孩所有的游击战经验,新的敌人比倭寇敌人还有残酷. 她刚刚获悉,前方参与歼灭战的友军,他们屠杀了所有的德国战俘.那种行为和政委们说 的不一样,结果政委们又有了新的说辞."对于法西斯魔鬼我们不能有一丁点怜悯,战争开始后他们已经在屠杀手无寸铁的斯拉夫人们.所有的德剧士兵都是魔鬼,如果不杀死他们,明天死亡的就是你自己." 战士们对于敌人的侵略满怀仇恨,如今又多了一丝恐惧,或许政委们希望那样子,士兵 会宁可战死也不会去做悲催的俘虏.其实德国人对苏力俘虏确实毫无人性,李小克直接告诉妻子,各级政委的说辞都是正确的,毕竟不是日内瓦公约签署国. 希特勒也在他的著作写的非常清楚."不是说学会了德语就是德国人,比如说白人、中国人,他们即使学会了德语依旧是劣等的." 所以 李小克不会同情他的敌人,再说苏军正在撤退,为了避免节外生枝最好还是如此. 然而杀俘行为确实激怒了冯冯克.德军被俘士兵是成片的被枪毙,为了泄愤他们甚至一直暴尸荒野.愤怒全

优秀课件九年级数学上册:25.2 用树状图法求概率 树状图 课件 (共17张PPT)

优秀课件九年级数学上册:25.2 用树状图法求概率 树状图 课件 (共17张PPT)

作业
习题25.2 第4,5题
六、拓展延伸
1.小明是个小马虎,晚上睡觉时将两双不同 的袜子放在床头,早上起床没看清随便穿了 两只就去上学,问小明正好穿的是相同的一 双袜子的概率是多少?
解:设两双袜子分别为A1、A2、B1、B2,则
开始
A1
A2 B1 B2 A2 B1 B2 A1 A2 B1
A1 B1 B2
12
有两个元音字母(记为事件B)的结果有4个,所以 1 4 P(B)= =
12
3
有三个元音字母(记为事件C)的结果有1个,所以 1 P(C)= 12 (2)全是辅音字母(记为事件D)的结果有2个,所以 P(D)= 2 = 1
12 6

画树状图求概率的基本步骤: (1)明确一次试验的几个步骤及顺序; (2)画树形图列举一次试验的所有可能结果; (3)试验的所有可能结果数n,数出随机事件A 包含的结果数m; (4)计算随机事件的概率
25.2. 用列举法求概率
(画树状图法求概率)
一.复习提问,巩固旧知

问题1.列举一次试验的所有可能结果时,学过哪些方法? 直接列举法. 列表法. 问题2.用列举法求概率的基本步骤是什么?
(1)列举出一次试验的所有可能结果; (2)数出事件A包含的结果数m,试验的所有可能结果数n; m P ( A ) (3)计算概率 n
m P ( A) n
四、巩固练习
经过某十字路口的汽车,它可能继续 直行,也可能向左转或向右转,如果这三种 可能性大小相同,当有三辆汽车经过这个 十字路口时,求下列事件的概率 (1)三辆车全部继续直行;
(2)两辆车向右转,一辆车向左转;
(3)至少有两辆车向左转
解:根据题意,可以画以下树状图:

九年级数学《用列举法求概率(2)》课件

九年级数学《用列举法求概率(2)》课件

解:(2)120×16=96(个).
20
答:估计达到良好及以上的社区有 96 个. (3)将干垃圾、湿垃圾、可回收垃圾、有害垃圾分别用a,b,c,d表 示,根据题意画树状图如下:
共有 12 种等可能的情况数,其中小明恰好提到干垃圾和湿垃圾的有 2 种, 则小明恰好提到干垃圾和湿垃圾的概率是 2 = 1.
答案图
共有 12 种等可能的结果数,其中两次摸到红球的结果数为 2, 所以两次摸到红球的概率= 2 = 1.
12 6
6.(2020无锡)现有4张正面分别写有数字1,2,3,4的卡片,将4张 卡片的背面朝上,洗匀.
(1)若从中任意抽取 1 张,抽的卡片上的数字恰好为 3 的概率
1
是 4;
(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取 1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用 “画树状图”或“列表”等方法写出分析过程)
பைடு நூலகம்
为( C )
A.1
B.1
C.1
D.2
4
3
2
3
8.(创新题)数学课上,李老师准备了四张背面看上去无差别的 卡片A,B,C,D,每张卡片的正面标有字母a,b,c表示三条线段(如 图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中 随机抽取一张卡片后不放回,再随机抽取一张.
a=1 b= 2 c=3 A
解:(1)画树状图得:
答案图
则点Q所有可能的坐标有 (1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3) 共12种.
(2)∵共有 12 种等可能的结果,其中在函数 y=-x+5 的图象上

人教版九年级数学上册2用列举法求概率课件

人教版九年级数学上册2用列举法求概率课件

).
3.从26个英文字母中任意选一个,是C或D的概率是

小结
1. 有一道四选一的单项选择题,某同学用排除法排除了一个概率是( )
A. 二分之一
B.三分之一
C.四分之一
D.3
2. 从一幅充分均匀混合的扑克牌中,随机抽取一张,抽到大王的
概率是(
),抽到牌面数字是6的概率(
),
抽到黑桃的概率是(
25.2 用列举法求概率
古典概型
一次实验具有两个共同的特点:①一次实验中,可能出现的结果有有限个; ②一次实验中,各种结果产生的可能性相等. 具有这些特点的实验称为古典概 型. 古典概型的概率求法: 一般地,如果在一次实验中,有n种可能的结果,并且它们产生的可能性都相 等,事件A包含其中的m种结果,那么事件A产生的概率为P(A)= .
练习
同时掷两个质地均匀的骰子,计算下列事件的概率: 1. 两个骰子的点数相同 2. 两个骰子的点数之和是9 3. 至少有一个骰子的点数为2.
列表法与树状图的区分
对于不放回型的概率求法,要注意排除不存在的情况,防止出现错 误.
例题
在一个盒子中有质地均匀的3个小球,其中两个小球都涂着红色,另一 个小球涂着黑色,则计算以下事件的概率选用哪种方法更方便? 1、从盒子中取出一个小球,小球是红球. 2、从盒子中每次取出一个小球,取出后再放回,取出两球的颜色相同. 3、从盒子中每次取出一个小球,取出后再放回,连取了三次,三个小 球的颜色都相同.
练习
从分别标有1、2、3、4、5号的5根纸签中随机地抽取一根,抽出的 签上的号码有5种可能的结果,即1、2、3、4、5,每一根签抽到的 可能性相等,都是 .
列表法
当一次实验要涉及两个因素并且可能出现的结果数目较多时,为了 不重不漏地列出所有可能的结果,经常采用列表法.

九年级数学上册25.2用列举法求概率第2课时用树状图法求概率习题课件新版新人教版

九年级数学上册25.2用列举法求概率第2课时用树状图法求概率习题课件新版新人教版
(1)求两次传球后,球恰在B手中的概率; (2)求三次传球后,球恰在A手中的概率.
∵共有 4 种等可能的结果,两次传球后, 球恰在 B 手中的只有 1 种情况,∴两次传球 后,球恰在 B 手中的概率为14.
(2)画树状图得:
∵共有 8 种等可能的结果,三次传球后,球恰在 A 手中的有 2 种情况, ∴三次传球后,球恰在 A 手中的概率为28=14.
摸到相同颜色的小球的概率.(请结合树状图或列表解答)
8.(1)设袋子中白球有 x 个,根据题意,得x+x 1=23,解得 x=2,经检验, x=2 是原分式方程的解,∴袋子中白球有 2 个. (2)画树状图得:
∵共有 9 种等可能的结果,两次都摸到相同颜色的小球的有 5 种情况, ∴两次都摸到相同颜色的小球的概率为59.
13.某市初中毕业女生体育中考考试项目有四项,其中“立定跳
远”“1 000米跑”“篮球运球”为必测项目,另一项从“掷实心
球”“一分钟跳绳”中选一项测试.则甲、乙、丙三位女生从“掷实 心球”或“一分钟跳绳”中选择同一个考试项14目的概率是________.
14.如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行 涂色,每个区域必须涂色并且只能涂一种颜色,请用树状图法求A, C两个区域所涂颜色不相同的概率.
共 8 种情况,完全相同的有 2 种,则 P(完全相同)=28=14. 1
(3)2n-1.
(请用“画树状图”的方法给出分析过程,并求出结果)
15.画树状图为:
共有 8 种等可能的结果数,其中至少有两瓶为红枣口味的结果数为 4, 所以该住户收到的三瓶酸奶中,至少有两瓶为红枣口味的概率=48=12.
16.甲、乙、丙、丁四名运动员参加4×100米接力赛,如果甲必须 安排在第二棒,那么,这四名运动员在比赛中的接棒顺序有( C )

《用列举法计算概率》课件-02 (2)

《用列举法计算概率》课件-02 (2)
学生交流后回答: 在出现的结果非常多时,用列表法较为简
单。 当试验包含两步时,列表法比较方便,当
然也可以用树形图法,当试验在三步或 三步以上时用树形图法方便,此时难以 用列表法。
总结前知
归纳新知
32
创设情境 引入新课
师生互动 探求新知
运用新知 深化概念
自主分析 再探新知
交流反思 课时小结
思考题:
经过某十字路口的汽车,它可能继续直行, 也可能向左或向右转,如果这三种可能性 大小相同,三辆汽车经过这个十字路口, 求下列事件的概率: 1.三辆汽车全部继续直行。 2.两辆车向右转一辆车向左转. 3.至少有两辆车向左转.
师生互动 探求新知
运用新知 深化概念
自主分析 再探新知
交流反思 课时小结
(1)只有一个元音字母的结果有5个,即ACH, ADH,BCI,BDI,BEH,所以;
P(一个元音)
5 12
同理:有两个元音的结果有4个,即ACI,ADI, AEH,BEI,全部为元音字母的结果只有1个,即 AEI ,所以
P(两个元音)
1
一、教材分析 二、教法学法分析 三、教学过程分析 四、教学评价
2
一、教材分析
(一)、地位和作用 (二)、学情分析 (三)、教学目标分析
3
一、教材分析
(一)、地位和作用
本节内容是在学生已经学习了随机事 件、概率的意义等知识的基础上,从上 节所讲的用列举法求简单概率出发,以 探寻快捷、准确的新方法求概率为目标, 并为学生高中阶段学习概率知识奠定基 础。重在培养学生探索精神和创新意识。
33
34
创设情境 引入新课
师生互动 探求新知
运用新知 深化概念
自主分析 再探新知

人教版九年级上册数学精品教学课件 第25章 概率初步 用列举法求概率

人教版九年级上册数学精品教学课件 第25章 概率初步 用列举法求概率

不同的概率为( C )
A. 1
1
1
B.
C.
D. 3
4
3
2
4
2. a、b、c、d 四本不同的书放入一个书包,至少放
一本,最多放两本,共有 10 种不同的放法.
3. 在一个不透明的袋子里,装有三个分别写有数字 6, -2,7 的小球,它们的形状、大小、质地等完全相同. 先从袋子里随机取出一个小球,记下数字后放回袋子 里,摇匀后再随机取出一个小球,记下数字. 请你用 列表或画树状图的方法求下列事件的概率. (1)两次取出的小球上的数字相同; (2)两次取出的小球上的数字之和大于 10.
AB
E DC
HI



(1) 取出的 3 个小球中恰好有 1 个,2 个,3 个写有元音
字母的概率各是多少?
解:由树状图知所有 甲
A
B
可能出现的结果有 12
个,它们出现的可能 乙 C D E C D E
性相等.
满足只有一个元音字
母的结果有 5 个,则 P (一个元音) = 5 .
12
丙 H IH IH I H IH IH I A AA AA A B B B B B B C CD DE E C C D D E E H IH IH I H I H IH I
例3 甲、乙、丙三人做传球的游戏,开始时,球在甲 手中,每次传球,持球的人将球任意传给其余两人中 的一人,如此传球三次. (1) 写出三次传球的所有可能结果 (即传球的方式); (2) 指定事件A:“传球三次后,球又 回到甲的手中”,写出 A 发生的所有 可能结果; (3) 求P(A).
解:(1) 第一次 第二次 第三次 结果
问题引入 现有 A、B、C 三盘包子,已知 A 盘中有 两个酸菜包和一个糖包,B 盘中有一个酸菜包和一个 糖包和一个韭菜包,C 盘中有一个酸菜包和一个糖包 以及一个馒头. 老师就爱吃酸菜包,如果老师从每个 盘中各选一个包子 (馒头除外),请你帮老师算算选的 包子全部是酸菜包的概率是多少.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汇报人:XXX 汇报日期:20XX年10月10日
2020年10月2日
14
2020年10月2日
3
1.复习引入
问题 抛掷三枚质地均匀的硬币,三枚正面朝上 的概率是多少?为什么?
2020年10月2日
4
2.探究新知
例 甲口袋中装有 2 个相同的小球,它们分别写有 字母 A 和 B;乙口袋中装有 3 个相同的小球,它们分别 写有字母 C,D 和 E;丙口袋中装有 2 个相同的小球, 它们分别写有字母 H 和 I.从三个口袋中各随机取出 1 个小球.
C C DD E ECCDDE E
H I HI H IHIHIHI
这些结果的可能性相等.
(1)只有 1 个元音字母的结果有 5 种,所以
P(1
个元音)=
5 12

2020年10月2日
8
2.探究新知
由树状图可以看出,所有可能出现的结果共有 12 种,即
AAAAAABBBBBB
C C DD E ECCDDE E
这些结果的可能性相等.
全部为元音字母的结果有 1 种,所以
P(3
个元音)=
1 12

2020年10月2日
10
2.探究新知
由树状图可以看出,所有可能出现的结果共有 12 种,即
AAAAAABBBBBB

C C DD E ECCDDE E
H I HI H IHIHIHI
这些结果的可能性相等.
(2)全是辅音字母的结果有 2 种,所以
H I HI H IHIHIHI
这些结果的可能性相等.
有 2 个元音字母的结果有 4 种,所以
P(2 个元音)=124
1 =3

2020年10月2日
9
2.探究新知
由树状图可以看出,所有可能出现的结果共有 12 种,即
AAAAAABBBBBB
C C DD E ECCDDE E
H I HI H IHIHIHI
(1)取出的 3 个小球上恰好有 1 个、2 个和3 个元 音字母的概率分别是多少?
(2)取出的 3 个小球上全是辅音字母的概率是多 少?
2020年10月2日
5
2.探究新知
解:根据题意,可以画出如下树状图:

A
B

C DE C D E
丙 H IH IH I H I H I H I
2020年10月2日
6
2.探究新知
由树状图可以看出,所有可能出现的结果共有 12 种,即
AAAAAABBBBBB C C DD E ECCDDE E H I HI H IHIHIHI 这些结果的可能性相等.
2020年10月2日
7
2.探究新知
由树状图可以看出,所有可能出现的结果共有 12 种,即
AAAAAABBBBBB
12
4.课堂小结
(1)画树状图法求概率的一般步骤是什么? (2)相对列表法,画树状图法在列举试验所有等 可能结果方面有什么优势?
2020年10月2日
13
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
P(3 个辅音)=122
=
1 6

2020年10月2日
11
3.练习巩固
练习 经过某十字路口的汽车,可能直行,也可能 向左转或向右转.如果这三种可能性大小相等,求三辆 汽车经过这个十字路口时,下列事件的概率:
(1)三辆车全部继续直行; (2)两辆车向右转,一辆车向左转; (3)至少有两辆车向左转.
2020年10月2日
九年级 上册
25.2 用列举法求概率(第2课时)
2020年10月2日
1
课件说明
• 本课是在学生已经学习了用列表法求概率的基础上, 继续用画树状图法求概率,深化学生对用列举法求概 率的认识.
2020年10月2日
2
课件说明
• 学习目标: 用画树状图法求事件的概率.
• 学习重点: 用画树状图法求事件的概率.
相关文档
最新文档