随机变量的数字特征

合集下载

论随机变量与随机变量的数字特征

论随机变量与随机变量的数字特征

论随机变量与随机变量的数字特征
随机变量是随机试验的结果,它可以取不同的取值,并且
每个取值都有相应的概率与之对应。

随机变量的数字特征
是对其分布进行度量和描述的统计量。

常见的随机变量的数字特征包括:
1. 期望值(均值):用于表示随机变量平均取值的数字特征。

对于离散型随机变量X,其期望值为E(X),定义为每
个取值乘以其概率的加权平均值。

对于连续型随机变量X,其期望值为E(X),定义为函数f(x)乘以其概率密度函数的加权积分。

期望值可以理解为随机变量对应分布的中心位置。

2. 方差:用于表示随机变量取值的离散程度。

方差越大,
随机变量的取值波动越大。

方差的计算公式为Var(X) =
E((X - E(X))²),其中E表示期望值。

3. 标准差:标准差是方差的平方根,用于衡量随机变量取
值的波动程度。

标准差越大,随机变量的取值波动越大。

4. 偏度:偏度衡量随机变量的离散程度和分布的对称性。

正偏表示分布右尾比左尾重,负偏表示分布左尾比右尾重,偏度为0表示分布左右对称。

5. 峰度:峰度衡量随机变量分布的尖峰程度。

正态分布的峰度为3,大于3表示比正态分布尖峰,小于3表示比正态分布平坦。

这些数字特征可以帮助我们更好地理解和描述随机变量的分布特点,从而进行数据分析和统计推断。

1032随机变量的数字特征

1032随机变量的数字特征

k p(x)( X )k E[( X )k ] 一阶中心矩=0
x
二阶中心矩=方差
The End
2023/12/27
11
2.方差 & 标准差
▪ 反映随机变量取值偏离均值的分散程度 ▪ 方差 Variance D(X)/ Var(X)
2
D(X ) E[(X E(X )) ]
▪ 标准差 standard deviation
(X ) D(X )
方差的运算与性质
D(X ) E[(X )2 ] E(X 2) [E(X )]2
E[(X E( X )]• E[(Y E(Y )]
Covariance
E( XY) E( X )E(Y )
▪ 相关系数
XY
Cov( X ,Y ) D( X ) D(Y )
若随机变量X与Y相互独立
▪ X与Y一定不相关
Cov(X ,Y ) Cov((Y ) D(X Y) D(X ) D(Y)
E( X ) xk pk k 1
E( X ) xf (x)dx
数学期望的性质
X/Y为相互独立的随机变量,a/b/c为常数
▪ E(c) = c ▪ E(cX) = cE(X) ▪ E(aX+b) = aE(X)+b
▪ E(X+Y) = E(X)+ E(Y) ▪ E(XY) = E(X)*E(Y)
D(X ) p(x)(x )2 (x )2 f (x)dx x
离散型变量
连续型变量
D(X+c) = D(X) D(cX) = c2D(X)
D(cX+Y) = c2D(X) + D(Y)
3.协方差 & 相关系数

随机变量的数字特征

随机变量的数字特征

例 若随机变量X的概率密度为
f(x)(1 1x2), x
则称X服从柯西(Cauchy)分布。

|x|
f(x)d x (1| x|x2)dx 发散
所以柯西分布的数学期望不存在。
《医药数理统计方法》
§3.1
三、数学期望的性质
1、E(C)=C 2、E(CX)=C×E(X) 3、E(X±Y)=E(X)±E(Y)
n
n
3)设X1,X2,…,Xn相互独立,则 V(Xi)V(Xi)
i1
i1
V (1 n i n 1X i) n 1 2i n 1 V (X i) 1 n [1 n i n 1 V (X i)]
解:红细胞的变异系数为 C V(X1)4 0..1 27 98 16.965%
血红蛋白的变异系数为
10.2 C V(X2)117.68.673%
所以,血红蛋白的变异较大。
《医药数理统计方法》
§3.2
二、方差的性质
1、V(C)=0 证明:V(C)=E{[CE(C)]2} =E[(CC)2]=0
2、V(CX)=C2V(X) 证明:V(CX)=E{[CXE(CX)]2}
而 E (X 2 ) E (X X ) E (X )E (X ) 1 1 1
339
计算是错误的!!
《医药数理统计方法》
§3.2
§3.2 方差、协方差和相关系数
一、方差 二、方差的性质 三、其他数字特征
《医药数理统计方法》
§3.2
一、方差
例3.15 为了比较甲、乙两个专业射击运动 员的技术水平,令每人各射击5次,分别以 X1,X2表示他们射击的环数,结果如下:

E(X) xf(x)dx

随机变量的数字特征

随机变量的数字特征

x 1 1 2 b ab dx x a b-a b-a 2 2
例3 设随机变量X~E(λ),求EX.
e- x , x 0 解 X的概率密度函数 f ( x ) 0 ,x 0
- x 0 0
故,
EX xf ( x)dx xe dx ( x)d(e x )
例7 设(X,Y)的联合概率分布为
X Y 1 3 0 0 1/8 1 3/8 0 2 3/8 0 X P 3 0 1/8 1 3 Y 0 1 2 3
求EX,EY,E(XY).
解 X,Y的边缘分布为 所以 EX=3/2, EY=3/2,
3/4 1/4
P 1/8 3/8 3/8 1/8
据定理2 有
3 3 E ( XY ) (1 0) 0 (1 1) (1 2) (1 3) 0 8 8 1 1 9 (3 0) (3 1) 0 (3 2) 0 (3 3) 8 8 4

E[ g( X , Y )] g( xi , y j ) pij
i j
(2) 若(X,Y)为连续型随机向量,(X,Y)~f(x,y),则
E[ g ( X,Y )]




g ( x, y ) f ( x, y )dxdy
例5 设随机变量X服从[0,π]的均匀分布,求 E (sin X ), E ( X 2 ), E ( X EX )2 解 由定理1,有
八、方差的性质
数字特征的优越性(了解):
1. 较集中地反映了随机变量变化的一些平均特征. 2. 很多重要的随机变量(如二项分布、泊松分布、均匀 分布、指数分布、正态分布等)的分布函数都能用一、两 个数字特征完全确定.

概率论与数理统计课件:随机变量的数字特征

概率论与数理统计课件:随机变量的数字特征
随机变量的数字特征
首页 返回 退出
例7 (正态分布的数学期望)设 X ~ N( μ, σ 2 ), 求E(X).
解:
E(X) =
+
-
xf ( x )dx =
+
-
1
x
e
2πσ
( x - μ )2
2σ 2
dx
x-μ
, 则
令 t=
σ
E(X) =
+
-
t2
2
t2
+ 2
-
1
μ
( μ + t σ)
+
若级数 | g( xk ) | pk < + , 则 Y = g( X ) 的数学期望为
k =1
+
E(Y ) = E(g( X )) = g( xk ) pk
k =1
随机变量的数字特征
首页 返回 退出
定理4.2 (连续型随机变量函数的数学期望) 设连续型随
机变量X的概率密度函数为f(x),若
随机变量的数字特征
第一节 随机变量的数学期望
第二节 方差
第三节 协方差和相关系数
第四节 R实验
随机变量的数字特征
首页 返回 退出
第一节 随机变量的数学期望
一、离散型随机变量数学期望
二、连续型随机变量数学期望
二、随机变量函数的数学期望
三、数学期望的性质
随机变量的数字特征
首页 返回 退出2
§4.1随机变量的数学期望
P{X = xi } = pi , i = 1,2,
如果
+
| x
i
.
| pi < +

2.3随机变量的数字特征

2.3随机变量的数字特征

E[X-E(X)]2
为随机变量X的方差,记为D(X),或Var(X). 称 ( X ) D( X ) 为随机变量X的标准差
2. 方差的意义
方差是一个常用来体现随机变量X 取值分散程度的量. 如果 D(X) 值大, 表示 X 取值分散程度大, E(X) 的代 表性差;
如果 D(X) 值小, 则表示X 的取值比较集中, 以 E(X)
它有以下等价的形式:
P{| X E( X ) | } 1 D( X ) . 2
例3 已知某种股票每股价格X的平均值为1元 ,标准差为0.1元,求a,使股价超过1+a元或 低于1-a元的概率小于10%。 解:由切比雪夫不等式 P(X>1+a∪X<1-a)<0.01 0.01 P{| X 1 | a} 2 ; a
0.01 0 .1 2 a

a 0.1
2
a 0.32
O


1000 1000

x x
2组
O


随机变量在期望周围的波动情况 ——方差、标准差
如何定义?
E| X-E(x) |
方便计算
E{X-E(X)}2
X1

O

X2
1000

Xn
x
E(X)=1000
1.定义 若E(X),E(X2)存在,则称

其中 f ( x ) 为X的概率密度.
例1 将资金投资在房地产和商业,收益都与市场状 态有关。把未来市场划分为好、中、差三个等级, 其发生的概率分别为0.2、0.7、0.1。 投资房地产的收益X(万元)和投资商业的收益Y (万元)的分布列为: 房地产 X 11 3 -3 问:该投资者如何选择? P 0.2 0.7 0.1

概率教材第4章随机变量的数字特征

概率教材第4章随机变量的数字特征

第4章随机变量的数字特征前面我们讨论的随机变量的分布函数,能够完整地描述随机变量的统计规律性,但是在许多实际问题中,人们并不需要去全面考察随机变量的变化情况,而只要知道它的某些特征即可.例如,评定射击运动员的射击水平时,常感兴趣的是他命中的环数的平均值,以及命中点的集中程度.命中环数的平均值越大,说明运动员的水平越高;命中点越集中,说明运动员水平越稳定.这些与随机变量有关的数值,我们称之为随机变量的数字特征,这些数字特征在概率论与数理统计中起着重要的作用.本章主要介绍随机变量的数学期望和方差、随机变量的矩以及两个随机变量的协方差和相关系数.4.1随机变量的数学期望一、离散型随机变量的数学期望平均值是日常生活中最重要的数字特征之一,已经广泛应用于社会生活和生产实践的各个领域,它对评判事物、做出决策等具有重要作用.例如,在某次教师技能大奖赛上,七位评委为某选手打出的分数如下:9.5,8.9,9.5,9.8,9.6,9.5,9.7,去掉一个最高分和一个最低分后,该教师的平均分是多少?如果用随机变量X表示有效分数,则X的概率分布为:X9.59.69.7P0.60.20.2这时该选手的平均分为:39.519.619.75⨯+⨯+⨯=0.69.50.29.60.29.79.56⨯+⨯+⨯=这个平均分数称为随机变量的数学期望,不难看出,它等于随机变量的取值与对应概率乘积的和,下面我们把这个现象用分析的语言描述出来.定义1设离散型随机变量X 的概率分布为:X 1x 2x …n x …P1p 2p …np …即{},1,2,i i P X x p i ===…,若级数11221iin n i x px p x p x p ∞==++⋅⋅⋅++⋅⋅⋅∑绝对收敛(即1iii x p∞=<+∞∑),则称其和为X 的数学期望,简称期望,也叫均值,记作EX ,即1i ii EX x p ∞==∑(4.1)否则,称X 的数学期望不存在.例1设随机变量X 服从参数为p 的0—1分布,求EX .解由题设知,X 的概率分布为:于是0(1)1EX p p p =⋅-+⋅=.例2一批产品中有一、二、三等品及废品四种,相对应的比例分别为%%%60,20,10和%10,若各等级产品对应的产值分别为6元,4.8元,4元和0元,求产品的平均产值.X 01P1p-p解设产品的产值为X 元,根据题意X 的概率分布为:X 04 4.86P0.10.10.20.6于是40.1 4.80.260.6 4.96EX =⨯+⨯+⨯=(元).例3设随机变量~(,)X B n p ,求EX .解因为~(,)X B n p ,所以X 的概率分布为:{}(1),0,1,2,,.k kn k n P X k C p p k n -==-= 于是00!(1)(1)!()!nnkkn kk n knk k kn EX kC p p p p k n k --===-=--∑∑1(1)(1)1(1)!(1)(1)![(1)(1)]!k n k nk np n p p k n k ----=--=----∑1[(1)]n np p p np -=+-=.例4设随机变量X 服从参数为λ的泊松分布,求EX .解根据题意,X 的概率分布为:{},0,1,2,,.!m e P X m m n m λλ-=== 于是101!(1)!m m m m e EX m e e e m m λλλλλλλλλ--∞∞--======-∑∑.二、连续型随机变量的数学期望定义2设连续型随机变量X 的概率密度为()f x ,若()xf x dx +∞-∞⎰绝对收敛(即()xf x dx +∞-∞<+∞⎰),则称()xf x dx +∞-∞⎰为X 的数学期望,记作EX ,即()EX xf x dx+∞-∞=⎰(4.2)否则,称X 数学期望不存在.例5设随机变量X 服从区间[,]a b 上的均匀分布,求EX .解根据题意得1,,~()0,a xb X f x b a⎧≤≤⎪=-⎨⎪⎩其他,于是1()baEX xf x dx x dx b a+∞-∞==⋅-⎰⎰2122b ax a bb a +==-.该例表明,一维均匀分布的期望为该随机变量取值区间的中点.例6设随机变量X 服从参数0λλ>()的指数分布,求EX .解根据题意得,0,~()0,x e x X f x λλ-⎧>=⎨⎩其他,于是()x EX xf x dx xe dxλλ+∞+∞--∞==⎰⎰xx xe e dx λλ+∞+∞--=-+⎰+011xeλλλ∞-=-=.例7已知连续型随机变量X 的分布函数0,01(),0221,2x F x x x x ≤⎧⎪⎪=<≤⎨⎪>⎪⎩,求EX .解根据题意随机变量X 的密度函数为1,02,()()20,x f x F x ⎧<≤⎪'==⎨⎪⎩其他,所以222001()124x EX xf x dx x dx +∞-∞==⋅==⎰⎰.例8已知随机变量X 的概率密度为:,01()0,ax b x f x +≤≤⎧=⎨⎩其他且7=12EX ,求a 与b 的值.解根据题意1()()12af x dx ax b dx b +∞-∞=+=+=⎰⎰1207()()3212a b EX xf x dx ax bx dx +∞-∞==+=+=⎰⎰解关于a 与b 的方程组得,1a =,1=2b .定义3在考虑n 维随机向量12(,,,)Tn X X X 时,若每个iEX (1,2,,)i n = 都存在,则称12(,,,)T n EX EX EX 为n 维随机向量12(,,,)T n X X X 的数学期望或均值.三、随机变量函数的数学期望设X 是随机变量,()g x 为实函数,则()Y g X =也是随机变量.理论上,可以通过X 的分布求出()Y g X =的分布,再按定义求出数学期望[()]E g X ,但是这种求法一般比较复杂,下面的定理给出了一种直接求解方法.定理1设X 是随机变量,Y 是随机变量X 的函数,()Y g X =,其中()y g x =是一元连续函数.(1)若X 为离散型随机变量,其概率分布为{}i i P X x p ==,1,2,i = ,如果无穷级数1()iii g x p∞=∑绝对收敛,即1|()|iii g x p∞=<+∞∑,则Y 的数学期望为1[()]()i i i EY E g X g x p ∞===∑.(4.3)(2)若X 为连续型随机变量,其概率密度为()f x ,如果广义积分()()g x f x dx +∞-∞⎰绝对收敛,即|()|()g x f x dx +∞-∞<+∞⎰,则Y 的数学期望为[()]()()EY E g X g x f x dx +∞-∞==⎰.(4.4)根据定理1,求随机变量()Y g X =的数学期望时,只需知道X 的分布,无需求Y 的分布,这给我们计算提供了极大的方便.上述定理可以推广到二元或二元以上随机变量函数的情形.定理2设(,)X Y 是二维随机向量,Z 是关于随机向量X 和Y 的函数,(,)Z g X Y =,其中(,)Z g x y =是二元连续函数.(1)若(,)X Y 是二维离散型随机向量,其概率分布为{,}i j ij P X x Y y p ===,,1,2i j = ,,并且11|(,)|i j ij i j g x y p ∞∞==<+∞∑∑,则11[(,)](,)i j ij i j EZ E g X Y g x y p ∞∞====∑∑.(4.5)(2)若(,)X Y 是二维连续型随机向量,其概率密度为(,)f x y ,并且|(,)|(,)g x y f x y dxdy +∞+∞-∞-∞<+∞⎰⎰,则[(,)](,)(,)EZ E g X Y g x y f x y dxdy +∞+∞-∞-∞==⎰⎰.(4.6)定理1和定理2的证明超出本书范围,略.例9设(,)X Y 的概率分布为:Y X 0123103838031818求EX ,EY ,2EX 和()E XY .解关于X 和Y 的边缘分布为:于是31313442EX =⨯+⨯=,13313=0+1+2+3=88882EY ⨯⨯⨯⨯22231=1+3=344EX ⨯⨯,331()(10)0(11)(12)(13)0(30)88819(31)0(32)0(33).84E XY =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=例10随机变量X 服从区间],0[π上的均匀分布,求EX ,2EX ,)(sin X E 及2)]([X E X E -解1()2EX xf x dx x dx πππ+∞-∞==⋅=⎰⎰,22221()3EX x f x dx x dx πππ+∞-∞==⋅=⎰⎰,0112(sin )sin ()sin (cos )0E X xf x dx x x πππππ+∞-∞==⋅=-=⎰⎰X 13i p ⋅3414Y 0123jp ⋅18383818222201[()]()()2212E X E X E X X dx πππππ-=-=-⋅=⎰.例11假定国际市场对我国某种商品的需求量是随机变量X (单位:吨),它服从区间[2000,4000]上的均匀分布,每销售出一吨该商品,可为国家赚取外汇3万元,若销售不出去,则每吨商品需贮存费1万元,问如何计划出口量,能使国家收益最大?解设计划年出口量为t 吨,国家年收益Y 万元,根据题意20004000t ≤≤,且有120004000,~()20000,x X f x ⎧≤≤⎪=⎨⎪⎩,其它,3,=()4,t X t Y g X X t X t ≥⎧=⎨-<⎩,,于是由(4.4)式有400020001()()()2000EY g x f x dx g x dx +∞-∞==⎰⎰400020001(4)32000tt x t dx tdx ⎡⎤=-=⎢⎥⎣⎦⎰⎰()26170004101000t t =-+-⨯易得当3500t =时,EY 达到最大,所以计划出口量为3500吨时,国家年收益最大.例12已知随机变量X 表示某电子元件的使用寿命(单位:小时),并且服从参数为0.001的指数分布,若规定使用寿命X 在500小时以下为废品,产值为0元;在500到1000小时之间为次品,产值为10元;在1000到1500小时之间为二等品,产值为30元;在1500小时以上者为一等品,产值为40元,求该电子元件的平均产值.解设该电子元件的产值为Y 元,由题设知0.0010.001,0,~()0,0,x e x X f x x -⎧>=⎨≤⎩0,500,10,5001000,()30,10001500,40,1500.X X Y g X X X <⎧⎪≤<⎪==⎨≤<⎪⎪≥⎩于是由(4.4)式有()()EY g x f x dx +∞-∞=⎰50010000.0010.00105000(0.001)10(0.001)x x e dx e dx --=⋅+⋅⎰⎰15000.001100030(0.001)xedx -+⋅⎰0.001150040(0.001)x e dx+∞-+⋅⎰15.65≈(元).该例表明,在利用定理1求[()]E g X 时,允许函数()y g x =不连续.例13设,01,01,(,)~(,)0,x y x y X Y f x y +≤≤≤≤⎧=⎨⎩其他,求2EX ,()E X Y +及()E XY .解由(4.6)式,有11222005(,)()12EX x f x y dxdy x x y dxdy +∞+∞-∞-∞==+=⎰⎰⎰⎰,112007()()(,)()6E X Y x y f x y dxdy x y dxdy +∞+∞-∞-∞+=+=+=⎰⎰⎰⎰,11001()(,)()3E XY xyf x y dxdy xy x y dxdy +∞+∞-∞-∞==+=⎰⎰⎰⎰.四、数学期望的性质设,,a b c 为常数,X 和Y 是随机变量,且EX 和EY 都存在,则数学期望有下列性质:性质1Ec c =.(4.7)性质2()E aX b aEX b +=+.(4.8)性质1请读者自己证明,下面给出性质2的证明.证明令Y aX b =+,因为y ax b =+是单调的,所以可以排除X 是连续型随机变量而Y 却是离散型随机变量的可能,也就是说只需分两种情况来证明,即X 与Y 都是离散型随机变量或者X 与Y 都是连续型随机变量.1.当X 为离散型随机变量时,设X 的概率分布为{}1,2,i i P X x p i === ,.则Y 的概率分布为{}i i P Y ax b p =+=,1,2i = .于是1()()i ii EY E aX b ax b p ∞==+=+∑11i i i i i a x p b p ∞∞===+∑∑aEX b =+.2.当X 为连续型随机变量时,设~()X X f x ,并且不失一般性地假设0a ≠(显然Eb b =),则1~()()Y X y bY f y f a a-=.于是()()Y EY E aX b yf y dy +∞-∞=+=⎰1[(X y by f dy a a+∞-∞-=⎰()()X y ax b ax b f x dx +∞-∞=++⎰令()()X X a xf x dx b f x dx+∞+∞-∞-∞=+⎰⎰aEX b =+.性质3()E X Y EX EY ±=±.(4.9)性质3可以推广到任意有限个随机变量的情况,即1212()()()()n n E X X X E X E X E X ±±⋅⋅⋅±=±±⋅⋅⋅±.(4.10)性质4设X 与Y 相互独立,则()E XY EX EY =⋅.(4.11)性质4可以推广到任意有限个相互独立的随机变量的情况,即设12,,,n X X X ⋅⋅⋅相互独立,则1212()()()()n n E X X X E X E X E X ⋅⋅⋅=⋅⋅⋅.(4.12)下面我们来证明性质3和性质4.证明仅就(,)X Y 为二维连续型随机向量的情形加以证明.设二维连续型随机向量(,)X Y 的概率密度为(,)f x y ,其关于X 和关于Y 的边缘概率密度分别为()X f x 和()Y f y ,则()()(,)E X Y x y f x y dxdy +∞+∞-∞-∞±=±⎰⎰(,)(,)xf x y dxdy yf x y dxdy+∞+∞+∞+∞-∞-∞-∞-∞=±⎰⎰⎰⎰EX EY =±.性质3得证.又若X 与Y 相互独立,此时(,)()()X Y f x y f x f y =⋅.于是()(,)E XY xyf x y dxdy+∞+∞-∞-∞=⎰⎰()()X Y xf x dx yf y dy +∞+∞-∞-∞=⋅⎰⎰EX EY =⋅.性质4得证.注意到:只要将证明中的“积分”用“和式”代替,就能得到(,)X Y 为二维离散型随机向量情形的证明.性质4的逆命题不成立,即由()E XY EX EY =⋅不能得到X 与Y 一定独立.例如,在例9中,我们已经计算得()94E XY EX EY =⋅=,但{1,0}0,P X Y ==={1}3{0}18,P X P Y ====显然{1,0}{1}{0}P X Y P X P Y ==≠=⋅=,故X 与Y 不独立.例14已知X 与Y 的概率分布分别为并且()8.5E X Y +=,求(1)EX ,(2)E X ,EY ;(2)2(23)E Y +.解(1)10.320.530.2 1.9EX =⨯+⨯+⨯=.由(4.8)式及(4.9)式,有(2)22 1.9 3.8E X EX ==⨯=,()8.5 1.9 6.6EY E X Y EX =+-=-=.(2)由于60.40.6 6.6EY a =⨯+⨯=,故7a =.由(4.3)式,有222(23)(263)0.4(273)0.690.6E Y +=⨯+⨯+⨯+⨯=.这里我们也可以利用定义1计算(2)E X 和2(23)E Y +,只是需要先求出2X 和223Y +的概率分布.例15设(,)X Y 等可能地取(1,0)-,(0,1)-,(1,0)和(0,1),试判断(1)()E XY 与EX EY ⋅是否相等;(2)X 与Y 是否独立.解由题设知(,)X Y 的概率分布为:Y X 1-011-0140014014114X 123P0.30.50.2Y 6a P0.40.6()(1)(1)0E XY =-⨯-⨯11(1)0(1)100(1)00044+-⨯⨯+-⨯⨯+⨯-⨯+⨯⨯1014+⨯⨯1(1)0+⨯-⨯11011004+⨯⨯+⨯⨯=,11(1)0(1)(1)0044EX EY ==-⨯+-⨯+-⨯+⨯1000104+⨯+⨯+⨯111004+⨯+⨯=,于是()E XY EX EY =⋅.(2)由于{0,0}0P X Y ===,并且111{0}{0}0442P X P Y ====++=,于是{0,0}{0}{0}P X Y P X P Y ==≠=⋅=,故X 与Y 不独立.这里已知(,)X Y 的概率分布,也可以利用期望的定义4.1计算()E XY ,EX 和EY .4.2随机变量的方差上一节我们介绍了随机变量的数学期望,它主要用来描述随机变量的平均特征,但是在许多实际问题中,仅仅知道平均值是不够的,为此本节我们引入方差的概念,用它来描述随机变量取值的离散程度.一、方差的概念先看一个例子.设甲、乙两位射击运动员打中靶的环数分别为1X ,2X ,其概率分布为:1X 78910P0.40.30.20.12X 05610计算两位运动员打中靶的环数的期望为170.480.390.2100.18EX =⨯+⨯+⨯+⨯=200.0450.1660.2100.68EX =⨯+⨯+⨯+⨯=虽然两位运动员打中靶环数的期望相同,但是比较两组数据可知甲射手比乙射手技术稳定,因此甲打中靶的环数比较集中.可见在实际问题中,仅仅靠期望来描述随机变量的分布特征还不够完善,还需要进一步研究其离散程度,通常人们关心的是随机变量X 对均值EX 的离散程度.定义4如果随机变量X 的数学期望EX 存在,则称X EX -为随机变量X 的离差.显然,随机变量X 离差的期望为零,即()=0E X EX -.(4.13)这样,如果用()E X EX -来度量X 与EX 的偏差,结果是正负偏差相互抵消,为了消除离差X EX -的符号,通常用2()E X EX -来度量X 与EX 的偏差.定义5设X 是一个随机变量,若2()E X EX -存在,则称其为X 的方差,记作DX 或VarX ,即2()DX E X EX =-.(4.14)为X 的标准差或均方差.由定义5知,方差实际上就是随机变量函数2()X EX -的数学期望,所以可以用求随机变量函数2()X EX -的数学期望的方法来求随机变量X 的方差.1.设X 为离散型随机变量,其概率分布为{}i i P X x p ==,1,2,,i = P 0.040.160.20.6若21()ii i x EX p +∞=-<+∞∑,则21()i i i DX x EX p +∞==-∑.(4.15)2.设X 为连续型随机变量,其概率密度为()f x ,若2()()x EX f x dx +∞-∞-<+∞⎰,则2()()DX x EX f x dx +∞-∞=-⎰.(4.16)可见,随机变量的方差是一个非负数.当X 的可能值密集在它的期望值EX 附近时,方差较小,反之则方差较大.因此,方差刻画了随机变量的取值的离散程度.由方差的定义式容易得到下面的常用计算式22()DX EX EX =-.(4.17)证明2()DX E X EX =-22[2()]E X X EX EX =-⋅+222()EX EX EX EX =-⋅+22()EX EX =-.(4.17)式表明2EX 不小于2()EX ,而且提供了一种计算方差的主要方法,即它把方差的计算归结为计算两个容易求得的期望EX 和2EX .例16设随机变量X 服从参数为p 的0—1分布,求DX .解由题设知,X 的概率分布为X 01P1p-p由例1知,EX p =,再由(4.3)式2220(1)1EX p p p =⋅-+⋅=,于是222()(1)DX EX EX p p p p =-=-=-.例17在本节开始所举甲、乙两位射击运动员射击一例中,求1DX 及2DX .解前面已经计算过128EX EX ==,又22222170.480.390.2+100.165EX =⨯+⨯+⨯⨯=22222200.0450.1660.2+100.671.2EX =⨯+⨯+⨯⨯=,所以22111()1DX EX EX =-=,22222()7.2DX EX EX =-=.例18设X 服从区间[,]a b 上的均匀分布,求DX .解由题设知1,,~()0,a xb X f x b a⎧≤≤⎪=-⎨⎪⎩其他.由(4.4)式,有222221()3ba a ab b EX x f x dx x dx b a +∞-∞++==⋅=-⎰⎰,由例5知,2a bEX +=,于是222222()()()3212a ab b a b b a DX EX EX +++-=-=-=.*例19设随机变量~()X P λ,其中0λ>,求DX .解X 的概率分布为{}!m P X m e m λλ-==,(0,1,2,...)m =.由例4可知=EX λ,根据(4.3)式2201(11)!(1)!m m i i EX m e m em m λλλλ∞∞--====-+-∑∑21(2)!(1)!m m m m e e m m λλλλ∞∞--===+--∑∑2122010(2)!(1)!m m m m e e m m λλλλλλ--∞∞---=-==+--∑∑2λλ=+.因此利用(4.17)式有2222()()DX EX EX λλλλ=-=+-=.即=EX DX λ=.例20设X 服从参数为λ的指数分布,即X 的概率密度为,0,()0,x e x f x λλ-⎧>=⎨⎩其他.其中0λ>,求DX .解由例6可知1=EX λ,再由(4.4)式,有2220()x EX x f x dx x e dxλλ+∞+∞--∞==⎰⎰220xx x e xe dxλλ+∞--+∞=-+⎰22λ=.因此,利用(4.17)式有2221()DX EX EX λ=-=.*例21设随机变量2~(,)X N μσ,即X的概率密度为22()2(),x f x μσ--=(x -∞<<+∞),其中μ,σ为实数,并且0σ>,求,EX DX .解根据题意得22()2()x EX xf x dx dxμσ--+∞+∞-∞-∞==⎰⎰令x y μσ-=,则dxdy σ=,由泊松积分221y dy -+∞-∞=⎰,有22y EX dy-+∞-∞=⎰2222y y yedyμ--+∞+∞-∞-∞=+⎰μ=.由(4.16)式,有2()()DX x EX f x dx+∞-∞=-⎰22()22x e dxμσ--+∞-∞=⎰2222y y e d y-+∞-∞⎰=222y de σ-+∞-∞=-⎰222222y y ye dyσ--+∞-∞+∞=+-∞⎰2σ=.特别地,若~(0,1)X N ,则0EX =,1DX =.定义4.6在考虑n 维随机向量12(,,,)Tn X X X 时,若每个i DX (1,2,)i = 都存在,则称12(,,,)T n DX DX DX 为n 维随机向量12(,,,)T n X X X 的方差.二、方差的性质关于方差,我们有下面几个重要性质.设X ,Y 是随机变量,a ,b ,c 为实值常数,则性质10Dc =.(4.18)性质22()D aX a DX =.(4.19)性质3()D X b DX +=.(4.20)性质1到性质3的证明留给读者自己完成.性质42()D aX b a DX +=.(4.21)证明222()[()()][()]D aX bE aX b E aX b E a X EX +=+-+=-222()a E X EX a DX =-=.性质5若X 与Y 相互独立,则()D X Y DX DY ±=+.(4.22)证明由(4.17)式,有22()()[()]D X Y E X Y E X Y ±=±-±2222(2)[()2()]E X XY Y EX EX EY EY =±+-±⋅+2222[2()][()2()]EX E XY EY EX EX EY EY =±+-±⋅+2222[()][()]2[()]EX EX EY EY E XY EX EY =-+-±-⋅2[()]DX DY E XY EX EY =+±-⋅.由X 与Y 独立,有()E XY EX EY =⋅.于是()D X Y DX DY ±=+.性质5的逆命题不成立,即由()D X Y DX DY ±=+,不能得到X 与Y 相互独立.但是它可以推广到任意有限个相互独立的随机变量的情形,即若12,,,n X X X 相互独立,则11()n niii i D X DX===∑∑.(4.23)例22设随机变量~(,)X B n p ,求DX .解根据题意{}ii n in P X i C p q-==,(0,1,,)i n = ,则X 可以理解为n 重伯努利试验中“成功”的次数.若令1,1,2,,,0,i i X i n i ⎧==⎨⎩ 第次成功,第次失败,则12n X X X X =++⋅⋅⋅+,并且(1,2,,)i X i n = 相互独立同服从参数为p 的0—1分布,于是i EX p =,i DX pq =,(1,2i = ,).由(4.10)式及(4.23)式,有11()nni ii i EX E X EXnp =====∑∑,11()nni ii i DX D X DXnpq =====∑∑.例23设随机变量X 与Y 相互独立,并且0EX EY ==,2DX DY σ==,求2()E X Y -.解由(4.9)式,有()0E X Y EX EY -=-=,由X 与Y 独立,得222()2D X Y DX DY σσσ-=+=+=,于是2222()()[()]202E X Y D X Y E X Y σσ-=-+-=+=.4.3常用分布及其数学期望与方差表为了方便今后查询,现将七种常用分布的期望与方差总结为下表.表4—1常用分布及其数学期望与方差总结表4.4协方差与相关系数前面我们介绍了随机变量的数学期望和方差,本节将讨论反映多维随机变量的两个分量之间关系的强弱的数字特征.一、协方差在证明方差的性质时,我们已经知道,在X 与Y 相互独立的条件下,有[()()]0E X EX Y EY --=,可知,当[()()]0E X EX Y EY --≠时,X 与Y 一定不独立.这说明[()()]E X EX Y EY --在一定程度上反映了随机变量X 与Y 之间的关系.定义7设(,)X Y 为二维随机向量,EX 和EY 均存在,若数学期望[()()]E X EX Y EY --存在,则称数值[()()]E X EX Y EY --为X 与Y的协方差,记作cov(,)X Y ,即cov(,)[()()]X Y E X EX Y EY =--.(4.24)显然,cov(,)X X DX=(4.25)由定义7知,X 与Y 的协方差实际上就是二元随机变量函数()()X EX Y EY --的数学期望,因此由定理2有(1)设(,)X Y 是二维离散型随机向量,其概率分布为{,}i j ij P X x Y y p ===,,1,2,i j = ,并且|()()|ij ijijx EX y EY p--<+∞∑∑,则cov(,)()()i j ij ijX Y x EX y EY p =--∑∑.(4.26)(2)设(,)X Y 是二维连续型随机向量,其概率密度为(,)f x y ,并且|()()|(,)x EX y EY f x y dxdy +∞+∞-∞-∞--<+∞⎰⎰,则cov(,)()()(,)X Y x EX y EY f x y dxdy +∞+∞-∞-∞=--⎰⎰.(4.27)此外,协方差还有下面常用性质:1.cov(,)()X Y E XY EX EY =-⋅.(4.28)证明cov(,)()()X Y E X EX Y EY =--()E XY XEY YEX EX EY =--+⋅()E XY EX EY =-⋅.公式(4.28)提供了一种计算协方差的主要方法,即它将协方差的计算归结为计算三个数学期望EX ,EY 和()E XY .2.cov(C,X)0,=C 为任意常数.3.cov(X,X)DX =.4.设X 与Y 独立,则cov(,)0X Y =.5.()2cov(,)D X Y DX DY X Y ±=+±.(4.29)6.对称性cov(,)cov(,)X Y Y X =.(4.30)7.齐次性cov(,)cov(,)aX bY ab X Y =.(4.31)8.可加性cov(,)cov(,)cov(,)X Y Z X Z Y Z ±=±.(4.32)性质2至性质8的证明留给读者自行完成.二、相关系数和相关性协方差在一定程度上反映了X 与Y 相互间的关系,但它还受X 与Y 本身度量单位的影响.例如,kX 和kY 之间的统计关系与X 和Y 之间的统计关系应该是一样的,但协方差却扩大了2k 倍,即2cov(,)cov(,)kX kY k X Y =为了克服这一缺点,可将每个随机变量标准化,即取*X=*Y =并将**cov(,)X Y 作为X 和Y 之间相互关系的一种度量,而********cov(,)()()()()X Y E X Y E X E Y E X Y =-=E===此结果表明,可利用标准差对协方差进行修正,从而得到一个新的数字特征—相关系数.定义8设(,)X Y 为二维随机向量,0DX >,0DY >,则称为X 与Y 的相关系数,记作XY ρ,也可简记为ρ,即XYρ==(4.33)显然,XY ρ的协方差.定理3设X 与Y 是两个随机变量,并且XY ρ存在,则有||1XY ρ≤.证明由定义8知,只需证明2cov (,)X Y DX DY ≤⋅.由于任何随机变量的方差都是一个非负实数,所以对任意实数k ,恒有()D Y kX -2()E Y kX EY kEX =--+222[()2()()()]E Y EY k Y EY X EX k X EX =----+-0≥,即22cov(,)0DY k X Y k DX -+≥.上面不等式的左边是一个关于k 的一元二次函数,因此该不等式成立的充分必要条件为判别式0∆≤,即2[2cov(,)]40X Y DX DY ∆=--⋅≤,于是2cov (,)X Y DX DY ≤⋅.定理4设Y 是随机变量X 的线性函数:Y aX b =+,则当0a >时,1XY ρ=;当0a <时,1XY ρ=-.证明由定义7知cov(,)()()X Y E X EX Y EY =--()[()()]E X EX aX b E aX b =-+-+2()aE X EX =-aDX =.因为2()DY D aX b a DX =+=,所以||||XY aDX aa DX a ρ===,即当0a >时,1XY ρ=;当0a <时,1XY ρ=-.以上两个定理表明,当Y aX b =+时,XY ρ的绝对值达到最大值1.事实上,还可以证明定理4的逆命题也是成立的.因此,X 与Y 的相关系数XY ρ反映了X 与Y 线性关系的密切程度.定义9设XY ρ为X 与Y 的相关系数.(1)如果0XY ρ≠,则称X 与Y 是相关的(实为一定程度的线性相关).其中当||1XY ρ=时,称X 与Y 是完全相关的;当0XY ρ>时,称X 与Y 正相关;当0XY ρ<时,称X 与Y 负相关.(2)如果0XY ρ=,则称X 与Y 不相关(实为线性无关).显然,若X 与Y 相互独立,则0XY ρ=.例24设(,)X Y 的概率分布为Y X 1231-0.10.20.1000.20.110.20.1求X 与Y 的协方差及相关系数.解由(,)X Y 的概率分布,不难得到其关于X 和关于Y 的边缘概率分布为于是(1)0.400.310.30.1EX =-⨯+⨯+⨯=-,10.320.530.2 1.9EY =⨯+⨯+⨯=.由(4.3)式及(4.5)式,有222(1)0.410.30.7EX =-⨯+⨯=,222210.320.530.2 4.1EY =⨯+⨯+⨯=,()(1)10.1(1)20.2(1)30.1010020.2E XY =-⨯⨯+-⨯⨯+-⨯⨯+⨯⨯+⨯⨯030.1110.2120.11300.4+⨯⨯+⨯⨯+⨯⨯+⨯⨯=-.于是222()0.7(0.1)0.69DX EX EX =-=--=,222() 4.11.90.49DY EY EY =-=-=,cov(,)()0.40.11.90.21X Y E XY EX EY =-⋅=-+⨯=-,0.210.360.830.7XY ρ-===-⨯.例25已知随机变量X 服从区间[0,2]π上的均匀分布,并且sin Y X =,sin()Z X k =+,k 为常数,求Y 与Z 的相关系数YZ ρ.解由题设知1,[0,2],~()20,X x X f x ππ⎧∈⎪=⎨⎪⎩其他.由(4.4)及(4.6)式,有201(sin )sin 02EY E X xdx ππ===⎰,X 1-01P0.40.30.3Y 123P0.30.50.2201[sin()])02EZ E X k x k dx ππ=+=+=⎰,222201(sin )sin 0.52EY E X xdx ππ===⎰,222201[sin ()]sin ()0.52EZ E X k x k dx ππ=+=+=⎰,()[sin sin()]E YZ E X X k =+201sin sin()2x x k dx ππ=+⎰201[cos cos(2)]4k x k dxππ=-+⎰1cos 2k =.于是22()0.5DY EY EY =-=,22()0.5DZ EZ EZ =-=,cov(,)()Y Z E YZ EY EZ =-⋅1cos 2k =,1cos 2cos YZ k k ρ==.若2k π=,则0YZ ρ=,此时221Y Z +=.但由于Y 与Z 满足关系221Y Z +=,所以Y 与Z 不独立.例26对于二维随机向量(,)X Y ,设X 服从[1,1]-上的均匀分布,并且2Y X =,证明0XY ρ=.证明由题设知1,[1,1],~()20,X x X f x ⎧∈-⎪=⎨⎪⎩其他.于是0EX =.由(4.4)式及(4.28)式,有13311()02E X x dx -==⎰,cov(,)()X Y E XY EX EY =-⋅3()0E X ==,因此0XY ρ=.但由于X 与Y 满足关系2Y X =,所以X 与Y 不独立.上两例表明,X 与Y 不相关,但它们不独立.因此,由X 与Y 不相关不能得到X 与Y 相互独立.事实上,X 与Y 不相关是指没有线性关系,但并不排除存在其他关系,如平方关系.*例27设二维随机向量1212(,)~(,,,,)X Y N μμσσρ,求X 与Y 的相关系数XY ρ.解根据二维正态分布的边缘概率密度知221212,,,EX EY DX DX μμσσ====而12cov(,)()()(,)X Y x y f x y dxdyμμ+∞+∞-∞-∞=--⎰⎰12()()x y μμ+∞+∞-∞-∞=--⎰222112211()exp 2y x x dxdy μμμρσσσ⎡⎤⎫---⎥⨯--⎪⎥⎭⎦令211211,,y x x t u μμμρσσσ⎛⎫---=-=⎪⎭则有222()/21121cov(,)()2ut X Y u e dtduσσρσσπ+∞+∞-+-∞-∞=+⎰⎰2221222()()2u tu e du e dt ρσσπ+∞+∞---∞-∞=⎰⎰2222)()u tue du te dt +∞+∞---∞-∞⎰⎰12ρσσ==于是XYρρ==.注 1.二维正态分布随机向量(,)X Y 的概率密度中的参数ρ是X 与Y 的相关系数,X 和Y 的各自的数学期望、方差及它们的相关系数可以确定二维正态随机向量的分布;2.在第三章已经讲过,若(,)X Y 服从二维正态分布,则X 和Y 相互独立的充分必要条件为0ρ=.现知XY ρρ=,故对于二维正态随机向量(,)X Y 来讲,X 和Y 不相关与X 和Y 相互独立是等价的.4.5矩、协方差矩阵与相关矩阵本节在推广随机变量的期望、方差和两个随机变量的协方差、相关系数等数字特征基础上,引入矩、协方差矩阵和相关矩阵这些概念.一、矩定义10设X 为随机变量,若1,2,k EX k =,…存在,则称其为X 的k 阶原点矩,(简称k 阶矩),也记作k v .若()2,3,k E X EX k -=,…存在,则称其为X 的k 阶中心矩,也记作k μ.若2,3,kE X EX k -=,…存在,称其为X 的k 阶绝对中心矩.对于二维随机向量X Y (,),若(,1,2,k l E X Y k l =),…存在,则称其为X 和Y 的+k l 阶混合矩.若[()(),1,2,k l E X EX Y EY k l --=],…存在,则称其为X 和Y 的+k l 阶混合中心矩.注1.随机变量X 的数学期望EX 是X 的一阶原点矩;2.随机变量X 的方差DX 是X 的二阶中心矩.二、协方差矩阵与相关矩阵定义11设12(,,,)n X X X 是n 维随机向量,并且(1,2,,)i DX i n = 存在,则以cov(,)i j X X 为元素的n 阶矩阵111212122212.....................n n n n nn v v v v v v V v v v ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,ii i v DX =,cov(,)ij i j v X X =,,1,2,,i j n = 称为该n 维随机向量的协方差矩阵,记作V .显然,协方差矩阵V 是对称矩阵,即ij ji v v =,,1,2,,i j n = .定义12设12(,,,)n X X X 是n 维随机向量,其任意两个分量i X 与j X 的相关系数ij ρ(,1,2,,i j n = )都存在,则以ij ρ为元素的n 阶矩阵111212122212.....................n n n n nn R ρρρρρρρρρ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦称为该n 维随机向量的相关矩阵,记作R .由于cov(,)i i i X X DX =,1,2,,i n =,因此1ii ρ==,(1,2,,i n = ),ij ρ==(,1,2,,i j n = ).对于协方差矩阵和相关矩阵,我们主要讨论2n =的情况.例28已知二维随机向量(,)X Y 的协方差矩阵为251236a V ⎡⎤=⎢⎥⎣⎦,求参数a 以及相关矩阵R .解根据题意知11221ρρ==,1221120.456ρρ====⨯又由对称性知12a =,因此10.40.41R ⎡⎤=⎢⎥⎣⎦.例29已知随机变量X 的方差2DX σ=,并且32Y X =-,求(,)X Y 的协方差矩阵及相关矩阵.解211v DX σ==,222(32)4v DY D X σ==-=.由于32Y X =-为线性函数,所以1XY ρ=-,即12211ρρ==-.于是2122112cov(,)2XY v v X Y ρρσ===-.因此222221222424V σσσσσ-⎡⎤-⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦,1111R -⎡⎤=⎢⎥-⎣⎦.例30计算例24中(,)X Y 的协方差矩阵V .解由于110.69v DX ==,220.49v DY ==,12cov(,)0.21v X Y ==-,因此0.690.210.210.49V -⎡⎤=⎢⎥-⎣⎦.例31设(,)X Y 的概率密度为221,1,(,)0,x y f x y π⎧+≤⎪=⎨⎪⎩其他,求(,)X Y 的相关矩阵R .解由(4.6)式,有11()()0E XY dy -==⎰11()0EX EY dy -===⎰于是cov(,)()0X Y E XY EX EY =-⋅=显然0DX DY =>,所以120ρ==于是1001R ⎡⎤=⎢⎥⎣⎦.习题四1.盒中有5个球,其中有3个白球、2个黑球,从中一次任取两个球,求取得白球数X 的数学期望与方差.2.设随机变量X 的概率分布为{}1(2,4,,18,20),10P X k k ===…求EX .3.袋中有5个乒乓球,编号为1,2,3,4,5,现从中一次任取3个,用X 表示取出的3个球中最大编号,求EX .4.设随机变量X 的概率分布为求EX ,2EX 和2(35)E X +.5.连续型随机变量X 的概率密度为,01()0,kx x f x α⎧<<=⎨⎩其他,,0k α>(),且0.75EX =,求(1),k α;(2)DX .6.一个螺丝钉的重量是随机变量,平均重10克,标准差为1克,求100个同型号螺丝钉重量的数学期望和方差.7.设随机变量X 的概率密度为110()1010x x f x x x +-≤<⎧⎪=-≤≤⎨⎪⎩,,,其他,求EX 和DX .8.设随机变量||1~()0x X f x <=⎩,其他,求EX 和DX .X 2-02P0.40.30.39.设随机变量X 的概率密度为0()00,x e x f x x -⎧≥=⎨<⎩,,,求:(1)2Y X=的数学期望;(2)2XY e-=的数学期望.10.设随机变量X 与Y 相互独立,概率密度分别为01()0,X x x f x ≤≤⎧=⎨⎩2,,,其他和55()05,y Y e y f y y -⎧>=⎨≤⎩,,,求()E XY .11.设随机变量X 与Y 相互独立,概率密度分别为01()0,X x f x ≤≤⎧=⎨⎩1,,,其他和0()00,y Y e y f y y -⎧>=⎨≤⎩,,,求()E X Y +.12.设随机变量X 服从柯西分布,即其概率密度为21()(),(1)f x x x π=-∞<<+∞+试证明X 的数学期望不存在.13.设随机变量X 的分布函数为10()0x e x F x λ-⎧->=⎨⎩,,其他,求EX 和DX .14.一台实验仪器中有3个元件,各元件发生故障是相互独立的,其概率分别为0.2,0.3,0.4,求发生故障的元件数的数学期望及方差.15.同时掷2颗骰子,设随机变量X 表示出现点数的最大值,求EX 和DX .16.把4只球随机的投入4个盒子中,设X 表示空盒子的个数,求EX 和DX .17.一批零件中有9个合格品和3个废品,在安装机器时,从这批零件中任取1个,如果取出的是废品就不再放回去.求在取得合格品以前,已经取出废品数的数学期望和方差.18.调查结果表明:某地区的科技人员年龄X 具有如下概率密度4(24)(84),2484,()0,k x x x f x ⎧--≤≤=⎨⎩其他,(1)求常数k 的值;(2)计算该地区科技人员的平均年龄.19.设随机变量X 服从参数为λ的指数分布,并且Y =,求Y 的数学期望与方差.20.设随机变量X 服从区间[0,2]上的均匀分布,并且|1|Y X =-,求EY 和DY .21.对某一目标进行射击,每次射击相互独立并且击中概率为p ,(1)若直到击中为止,求射击次数的数学期望与方差;(2)若直到击中k 次为止,求射击次数的数学期望与方差.22.设X 服从参数为2的泊松分布,32Y X =-,试求,,EY DY cov(,)XY X Y ρ及.23.设随机向量(,)X Y 的概率密度为1(),02,02(,)80,x y x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩,其他,试求,,cov(,)()XY EX EY X Y D X Y ρ+,,.24.设随机向量(,)X Y 的概率密度为(),0,0,(,)0,x y e x y f x y -+⎧<<+∞<<+∞=⎨⎩其他,求cov(,)X Y .25.设随机变量X 的方差16DX =,随机变量Y 的方差25DY =,又X 与Y 的相关系数0.5XY ρ=,求()D X Y +与()D X Y -.26.设随机向量(,)X Y 服从单位圆域{}22(,)1x y x y +≤上的均匀分布,试证明X ,Y 不相关.27.将3个球随机地放入4个盒子,记(1,2)i X i =表示第i 个盒子内球的个数,求随机向量12(,)X X 的协方差矩阵.28.设随机变量X 的概率密度为0.5,02()0,x x f x <<⎧=⎨⎩其他,求随机变量X 的1至4阶原点矩和中心距.29.设随机变量X 服从拉普拉斯分布,即其概率密度为1(),2xf x e x λλ-=-∞<<+∞,其中0λ>为常数,求X 的k 阶中心距.30.设随机向量21.502,01(,)~(,)0xy x y X Y f x y ⎧≤≤≤≤=⎨⎩,,其他,求随机向量(,)X Y 的均值和协方差矩阵.31.设随机向量22[(5)8(5)(3)25(3)](,)~(,)x x y y X Y f x y Ae -+++-+-=,试确定A 的值,并求X 与Y 的相关矩阵.32.设二维随机向量(,)X Y 的概率密度为sin()(,)(,)0A x y x y Df x y +∈⎧=⎨⎩,,其他,其中D 为矩形区域(,)0,022x y x y ππ⎧⎫≤≤≤≤⎨⎬⎩⎭.(1)求系数A ;(2)求EX EY DX 及DY ;(3)求cov(,)X Y 及XY ρ;(4)求协方差矩阵C 及相关系数矩阵R .选做题四1.某流水生产线上每个产品部合格的概率为01p p <<(),各产品合格与否相互独立,当出现一个不合格产品时即停机检修.设开机后第一次停机时已生产了的产品个数为X ,求X 的数学期望E X ()和方差D X ().2.已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格产品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中次品件数X 的数学期望;(2)从乙箱中任取一件产品是次品的概率.3.设随机变量X 的概率密度函数为()1cos ,0,220,x x f x π⎧≤≤⎪=⎨⎪⎩其他,对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.4.设两个随机变量,X Y 相互独立,且都服从均值为0,方差为12的正态分布,求随机变量X Y -的方差.5.假设二维随机向量,X Y ()在矩形(){},02,01G x y x y =≤≤≤≤上服从均匀分布,记0,,1,X Y U X Y ≤⎧=⎨⎩若若>,0,2,1,2,X Y V X Y ≤⎧=⎨>⎩若若(1)求U V 和的联合分布;(2)求U V 和的相关系数γ.6.箱中装有6个球,其中红、白、黑球个数分别为1,2,3,现从箱中随机地取出2个球,记X 为取出红球的个数,Y 为取出白球的个数.(1)求随机向量,X Y ()的概率分布;(2)求Cov(,)X Y .7.设二维离散型随机向量,X Y ()的概率分布为Y X 012014014101302112112(1)求{}2P X Y =;(2)求Cov(,)X Y Y -.8.设A B 和为随机事件,且()14P A =,()13P B A =,()12P A B =,令110X Y ⎧⎧==⎨⎨⎩⎩, A发生,, B发生,0,A不发生,,B不发生.(1)求二维随机向量(),X Y 的概率分布;(2)求X Y 和的相关系数XY ρ.9.游客乘电梯从底层到电视塔顶层观光,电梯于每个整点的第5分钟、25分钟和55分钟从底层起行.假设一游客在早晨8点的第X 分钟到底层候梯处,且X 在[0,60]上服从均匀分布,求该游客等候时间的数学期望.10.两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布,首先开动其中一台,当其发生故障时停用而另一台自行开动,试求两台记录仪无故障工作的总时间T 的概率密度f t ()、数学期望和方差.11.一商店经销某种商品,每周进货的数量X 与顾客对该种商品的需求量Y 是相互独立的随机变量,且都服从区间[10,20]上的均匀分布,商品每销售出一单位商品获得利润1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获得利润500元,试计算此商点经销该种商品每周所得利润的期望值.12.设,A B 是两个随机事件,随机变量111,1,A B X Y A B ⎧⎧==⎨⎨--⎩⎩,若出现,,若出现,若不出现,若不出现,试证明:随机变量X Y 和不相关的充分必要条件是A B 与相互独立.13.假设随机变量U 在区间[2,2]-上服从均匀分布,随机变量11111,11,1U U X Y U U ≤-≤⎧⎧==⎨⎨->-->⎩⎩,若,,若,若,若,试求:(1)X Y 和的联合概率分布;(2)()D X Y +.14.设随机变量X 的概率密度为()1,10,21,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩,其他,令()2,,Y X F x y =为二维随机向量(),X Y 的分布函数,求:(1)Y 的概率密度()Y y f ;(2)()Cov ,X Y ;(3)1,42F ⎛⎫- ⎪⎝⎭.。

随机变量的数字特征

随机变量的数字特征

求 X 的数学期望 EX 。
解 由连续型随机变量数学期望的定义,有
EX xf (x)dx
0
1
2
x 0dx+ x xdx+ x (2 x)dx x 0dx
0
1
2
1 x2dx+ 2 (2x x2 )dx 1.
0
1
三、随机变量函数的数学期望
定理 设 X 为随机变量,y g(x)为实函数,
EX 2 2EX 2 EX 2 EX 2 EX 2.
方差的性质: (1)D(C) 0;
(2)DX C D(X );
(3)DCX C2DX ;
x,
例3.6 设随机变量 X 的密度函数为 f (x) 2 x,
0,
0 x 1 1 x 2 . otherwise
求 X 的方差D(X ).
(1)设
X 为离散型随机变量,概率分布为
PX
xi
pi ,i
1, 2,
,
若 g(xi ) pi 绝对收敛,则 Eg(X ) 存在,且
i 1
E g( X )= g(xi ) pi.
i 1
(2)设 X为连续型随机变量,密度函数为 f (x) ,若
g(x)
f
(x)dx
绝对收敛,则
Eg(X )
存在,且
机变量 X 的方差,记为 D(X ) ,或 Var(X ) ,并称 D(X )
为 X 的标准差。
方差的计算:
考虑到方差实际上为随机变量函数的数学期望:g( X ) X EX 2,因此
若 X 为离散型随机变量,概率分布为 pi PX xi , i 1,2, ,则
D( X ) EX EX 2 xi EX 2 pi. i 1

概率论与数理统计 第4章 随机变量的数字特征

概率论与数理统计 第4章  随机变量的数字特征

解:
1 (5 0.5x)( 3 x2 x)dx
0
2
4.65(元)
2021/7/22
21
4.1.2 随机变量函数的数学期望
将定理4.1推广到二维随机变量的情形.
定理4.2 设Z是随机变量X,Y的函数Z = g(X,Y), g是连续函数.
(1) 若(X,Y)是二维离散型随机变量,其分布律
为P{X xi ,Y yj } pij, i, j 1,2,, 则有
解:由于 P{ X k} k e ,k = 0,1,2,…,
k!
因而
E( X ) kP{ X k} k k e
k0
k0 k!
k e
k1 (k 1)!
e
k 1
k1 (k 1)!
e k ee k0 k!
2021/7/22
12
4.1.1 数学期望的概念
2. 连续型随机变量的数学期望
2021/7/22
18
4.1.2 随机变量函数的数学期望
定理4.1 设Y为随机变量X的函数:Y = g(X) (g是连续
函数).
(1) 设X是离散型随机变量,其分布律为
P{X xk } pk , k 1,2,
若级数 g( xk ) pk绝对收敛,则 E(Y ) E[g( X )] g( xk ) pk
f ( x) 25( x 4.2), 4 x 4.2,
0,
其 它.
求pH值X的数学期望E(X).
解:
E( X ) xf ( x)dx
4
4.2
x 25( x 3.8)dx x (25)(x 4.2)dx
3.8
4
4
2021/7/22
15

第三章 随机变量的数字特征

第三章 随机变量的数字特征
概率论
第三章 随机变量(向量)的数字特征
§3.1 随机变量的数学期望 §3.2 随机变量的方差 §3.3 协方差与相关系数
为了完整的描述随机变量的统计特性,自然应该知道 其分布函数,因为随机变量的分布函数可以反映随机变量 取值的规律。但是在实际问题中,一方面随机变量的分布 或分布函数并不都是容易求得的,另一方面,往往也不需 要知道随机变量的详尽的概率分布,而仅需要知道其某些
四、随机变量函数的数学期望 1. 一元随机变量函数的情况 设Y g( X )是随机变量 X的函数, (1)离散型
如果随机变量X 的概率函数为 P{ X xk } pk k 1, 2, 则有E (Y ) E[ g ( X )] g ( xk ) pk
k 1
(2)连续型
x2
1 n
Pk
n
… xi … 1 n
… xn … 1 n
E ( X ) x1 1 x2 1 ... xn 1 1 xi n n n n
i 1
2.两点分布 由数学期望的定义
E( X ) p
X pi
0
1
q
p
3. 二项分布 若随机变量 X ~ B(n, p) ,其概率函数为
xR
( x )2 2 2
1 E ( X ) xf ( x)dx xe 2 t2 (x ) 1 令t ( t )e 2 dt 2 t2 1 e 2 dt 2
dx
解:由上面的公式
1 1 2 E (W ) kv f (v)dv kv dv ka a 3 0
2 2 a
例3.6 设X与Y相互独立,它们的概率密度函数分别为

随机变量的5个数字特征

随机变量的5个数字特征

随机变量的5个数字特征。

随机变量的5个数字特征
随机变量是一种可以在多种不同情况下表现出不同数值的变量,它的数字特征可以帮助我们更加深入的了解一个随机变量的性质。

下面就介绍随机变量的5个数字特征:
首先是均值,它是一个随机变量的平均数,用来反映其数值的平均水平,可以帮助我们预测其可能表现出的数值范围;
其次是方差,它反映了一个随机变量的数值水平差异程度,当方差较低时,意味着随机变量的数值波动不大;
接着是标准差,它是方差的平方根,可以反映一个随机变量的数值分散程度,标准差越小,意味着数值的分布越集中;
最后还有三个数字特征,分别是偏度、峰度和相关系数,它们分别反映一个随机变量数值分布的偏斜程度、峭度以及与其他变量之间的关联程度。

总之,随机变量的5个数字特征,即均值、方差、标准差、偏度、峰度和相关系数,可以帮助我们更加深入地了解一个随机变量的性质,从而更好地分析和预测数据作出正确的决策。

概率统计-随机变量的数字特征_68704

概率统计-随机变量的数字特征_68704
(1) X 的分布律: X 10 30 50 P 1/6 3/6 2/6
EX=10*(1/6)+30*(3/6)+50*(2/6)=33.33(分)
返回主目录
第四章 随机变量的数字特征
(2)旅客8:20分到达 X的分布率为
§1 数学期望
X 10 30 50
70
90
P 3/6 2/6 (1/6)*(1/6) (3/6)*(1/6) (2/6)*(1/6)
设 Y=g(X), g(x) 是连续函数,
(1)若 X 的分布率为 Pk P{X xk } k 1,2,

Pk g( xk ) 绝对收敛, 则 EY= Pk g(xk )
k 1
k 1
(2).若 X 的概率密度为 f (x) ,且 g(x) f (x)dx绝对收敛,
则 EY= g(x) f (x)dx 。
轴,y轴和直线x+y+1=0所围成的区域。
求EX,E(-3X+2Y),EXY。
y
解:
2,(x, y) A f (x, y) 0,其它;
0x
x y 1 0
0
0
EX= xf (x, y)dxdy dx x 2dy
返回主目录
第四章 随机变量的数字特征
定理 2:
§1 数学期望
若(X ,Y ) 是二维随机变量,g(x, y) 是二元连续函数,
Z g(x, y)
(1). 若( X ,Y ) 的分布律为 P{X xi ,Y y j } Pij ,
且 g(xi , y j )Pij 绝对收敛;则 EZ= g(xi , y j )Pij 。
k
ai P{X
i 1
ai}

随机变量的数字特征(NXPowerLite)

随机变量的数字特征(NXPowerLite)
随机变量的数字特征 (nxpowerlite)
目录
• 引言 • 数学期望 • 方差 • 协方差与相关系数 •矩 • 数字特征的综合应用
01
引言
定义与概念
随机变量
随机变量是用来描述随机现象的变量 ,其取值具有随机性。
数字特征
数字特征是用来描述随机变量的一些 数值性质,如均值、方差、中位数等 。
数字特征的重要性
性质
数学期望具有线性性质,即对于两个 随机变量X和Y,有E(X+Y)=EX+EY。
计算方法
离散型随机变量的数学期望
E(X)=∑x*p(x),其中x为随机变量X的所有可能取值,p(x)为相应的概率。
连续型随机变量的数学期望
E(X)=∫x*f(x)dx,其中f(x)为随机变量X的概率密度函数。
数学期
相关系数是衡量两个随机变量线性关系的强度和方向的指标, 表示为ρ(X,Y)。
性质
相关系数具有对称性,即ρ(X,Y)=ρ(Y,X);相关系数介于-1和1 之间,|ρ(X,Y)|越接近1,线性关系越强。
协方差与相关系数的计算方法
协方差计算公式
Cov(X,Y)=1/n Σ[(xi-EX)(yi-EY)],其中n为样本量,xi、yi分别为第i个样本的观测值,EX、EY分别为X、Y的期望 值。
预测
通过计算数学期望,可以对随机变量的未来取值进行 预测。
决策
在风险决策中,数学期望可以用来计算期望收益或期 望损失,帮助决策者做出最优选择。
统计推断
在参数估计和假设检验中,数学期望可以用来估计未 知参数或检验统计假设。
03
方差
定义与性质
01 方差是衡量随机变量取值分散程度的量,表示随 机变量偏离其期望值的程度。

概率论与数理统计(经管类)复习要点 第4章 随机变量的数字特征

概率论与数理统计(经管类)复习要点 第4章 随机变量的数字特征

第四章 随机变量的数字特征1. 把刻画随机变量某些方面特征的数值称为随机变量的数字特征,如期望、方差、协方差、相关系数等。

2. 随机变量的期望反映了随机变量取值的集中位置。

离散型随机变量的期望设离散型随机变量X 的分布律为P {X =x k }=p k ,k=1,2,…若级数∑ix i p i 绝对收敛(即级数∑i丨x i 丨p i 收敛),则定义X 的数学期望(简称均值或期望)为E (X )=∑ix i p i注:当X 的可能取值为有限多个x 1,x 2,…,x n 时,E (X )=∑=ni 1x i p i 当X 的可能取值为可列多个x 1,x 2,…,x n ,…时,E (X )=∑∞=1i x i p i三种重要离散型随机变量的数学期望:3. 离散型随机变量函数的数学期望 设离散型随机变量X 的分布律为P {X =x k }=p k ,k=1,2,…令Y =g (X ),若级数∑∞=1k g (x k )p k 绝对收敛,则随机变量Y 的数学期望为E (Y )= E[g (X )] =∑∞=1k g (x k )p k4. 连续型随机变量的期望三种重要连续型随机变量的数学期望:5. 连续型随机变量函数的数学期望2017.4单解:6. 二维随机变量的期望二维随机变量函数的期望7. 期望的性质(1)常数的期望等于这个常数,即E (C )=C ,其中C 为常数证明 常数C 作为随机变量,它只可能取一个值C ,即P {X =C }=1,所以E (C )=C ⋅1=C(2)常数与随机变量X 乘积的期望等于该常数与随机变量X 的期望的乘积,即E (C X )=C ⋅E (X ) (3)随机变量和的期望等于随机变量期望之和,即E (X +Y )= E (X )+ E (Y ) 推广:E (C 1X +C 2Y )= C 1E (X )+ C 2E (Y ),其中C 1,C 2为常数 一般地,设X 1,X 2,…,X n ,为n 个随机变量,则有E (∑=ni iX 1)=∑=ni iX E 1)(E (∑=ni ii X C 1)=∑=ni iiX E C 1)( 其中C i(i=1,2,…)为常数(4)两个相互独立的随机变量乘积的期望等于期望的乘积,即若X ,Y 是相互独立的随机变量,则E (XY )= E (X )E (Y )由数学归纳法可证得:当X1,X2,…,X n相互独立时有E(X1,X2,…,X n)= E(X1)E(X2)…E(X n)2018.4单解:指数分布的期望值为 1,故E(X)= E(Y)=21,所以E(X Y)= E(X)E(Y)=412018.4计解:(1)平均收益率E(X)=1%×0.1+2%×0.2+3%×0.1+4%×0.3+5%×0.2+6%×0.1=3.6%(2)预期利润10×3.6%=0.36万元2017.10单解:E(-3X +2)=-3 E(X)+2=-3×51+2=572017.4填解:E(X+Y)= E(X)+ E(Y)=20×0.1+2=48. 方差反映了随机变量偏离中心——期望的平均偏离程度。

随机变量的数字特征

随机变量的数字特征

随机变量的数字特征
随机变量的数字特征包括均值、方差、标准差、偏度和峰度等。

其中,均值是衡量随机变量中心位置的指标,是所有取值的平均数;方差是随机变量离均值的距离平方的平均数;标准差是方差的算术平方根,也是随机变量离均值距离的度量,具有与随机变量相同的量纲;偏度是随机变量概率分布的偏斜程度,为其分布的非对称程度的度量;峰度则是随机变量概率分布的尖锐程度,衡量随机变量的概率分布在平均值附近的峰值高低。

可以通过计算公式来求解以上数字特征,例如均值的计算公式为所有取值的总和除以取值的数量;方差的计算公式为将每个取值与均值的差值平方后的总和除
以取值的数量;标准差的计算公式则是方差的算术平方根;偏度的计算公式为三阶中心矩与标准差的比值;峰度的计算公式为四阶中心矩与标准差的四次幂的比值。

了解随机变量的数字特征有助于描绘随机变量的特征与规律,进而分析和预测其行为。

同时,对于特定应用领域,也需要针对性地选择数字特征进行分析,以
更好地满足应用的需求。

2.2随机变量的数字特征

2.2随机变量的数字特征

x f ( x ) dx
f ( x)


0dx a x f ( x ) dx 0dx b
b
a
b
EX 存在.
例 已知 r .v . X ~ [ a , b ]上的均匀分布, 求 EX

1 , X ~ f ( x) b a 0,

a xb
n ' n x n1 ( x n )' x x 1时, n 1 n 1 n 1 2 3 n ' x ' 1 2 ( x x x ... x ...) 1 x (1 x )


二.连续型随机变量 的数学期望
0
1 2 2 1 1 0 sin xdx 2 ( cos x ) 0 2 cos x 2
0 2
0
例 r .v . X ~ [ 0, 2 ]上的均匀分布, 求E (sin X ),
E ( X EX )2
1 2 ,
解 X ~ f ( x)
2
0 x 2
x2 2 EX x f ( x )dx 0dx dx 0dx a ba b
a b
1 b 2 1 x3 b 1 b 3 a 3 a 2 ab b 2 a x dx b a 3 a b a 3 ba 3
例 r .v . X ~ [ 0, 2 ]上的均匀分布, 求E (sin X ),
说明:
x x
n n n
n n
pn x1 p1 x2 p2 ... xn pn ... 收敛
EX x1 p1 x2 p2 ... xn pn ...

随机变量的数字特征

随机变量的数字特征

随机变量的数字特征第四章随机变量的数字特征第⼀节基本概念1、概念⽹络图→切⽐雪夫不等式矩⽅差期望⼀维随机变量→协⽅差矩阵相关系数协⽅差⽅差期望⼆维随机变量2、重要公式和结论例4.1:箱内装有5个电⼦元件,其中2个是次品,现每次从箱⼦中随机地取出1件进⾏检验,直到查出全部次品为⽌,求所需检验次数的数学期望。

例4.2:将⼀均匀骰⼦独⽴地抛掷3次,求出现的点数之和的数学期望。

例4.3:袋中装有标着1,2,…,9号码的9只球,从袋中有放回地取出4只球,求所得号码之和X 的数学期望。

例4.4:设随机变量X 的概率密度为,)(21)(||+∞<<-∞=-x e x f x求E (X )及D (X )。

例4.5:设随机变量X~N (0, 4), Y~U (0, 4),且X ,Y 相互独⽴,求E (XY ),D (X+Y )及D (2X-3Y )。

例4.6:罐中有5颗围棋⼦,其中2颗为⽩⼦,另3颗为⿊⼦,如果有放回地每次取1⼦,共取3次,求3次中取到的⽩⼦次数X 的数学期望与⽅差。

例4.7:在上例中,若将抽样⽅式改为不放回抽样,则结果⼜是如何?例4.8:“随机变量X 的数学期望E(X)= µ.”的充分条件:(1)X 的密度函数为f(x)=λµλ--x e21 (λ>0,-∞(2) X 的密度函数为222)(21)(σµσπ--=x ex f ,(+∞<<∞-x )例4.9:利⽤切⽐雪夫不等式估计随机变量与其数学期望之差⼤于3倍标准差的概率。

例4.10:设随机变量X 和Y 的⽅差存在且不等于0,则D (X+Y )=D (X )+D (Y )是X 和Y(A )不相关的充分条件,且不是必要条件;(B )独⽴的充分条件,但不是必要条件;(C )不相关的充分必要条件;(D )独⽴的充分必要条件。

()。

例4.11:设X 与Y 相互独⽴都服从P (λ),令U=2X+Y ,V=2X-Y 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机变量的数字特征讨论随机变量数字特征的原因 (1)在实际问题中,有的随机变量的概率分布难确定,有的不可能知道,而它的一些数字特征较易确定。

(2)实际应用中,人们更关心概率分布的数字特征。

(3)一些常用的重要分布,如二项分布、泊松分布、指数分布、正态分布等,只要知道了它们的某些数字特征,就能完全确定其具体的分布。

§4.1 数学期望一、数学期望的概念1.离散性随机变量的数学期望例4.1:大学一年级某班有32名同学,年龄情况如下:解:平均年龄=14810721224218201019718217+++++⨯+⨯+⨯+⨯+⨯+⨯ 25.19=把上式改写为:3212232421328203210193271832217⨯+⨯+⨯+⨯+⨯+⨯设X 为从该班任选一名同学的年龄,其概率分布为定义4.1:设离散型随机变量X 的分布列为:若∑kkkp x 绝对收敛(即+∞<=∑∑k kkk k kp x p x ),则称它为X 的数学期望或均值(此时,也称X 的数学期望存在),记为E(X),即若∑kkkp x 发散,则称X 的数学期望不存在。

说明:(1)随机变量的数学期望是一个实数,它体现了随机变量取值的平均; (2) 要注意数学期望存在的条件:∑kkkp x 绝对收敛; (3) 当X 服从某一分布时,也称某分布的数学期望为EX 。

∑=kkk p x EX例4.2:设X服从参数为p的两点分布,求EX EX=p例4.3:设X~B(n,p),求EXEX=np例4.4:设X服从参数为λ的泊松分布,求EXEX=λ2.连续型随机变量的数学期望定义4.2: 设连续型随机变量X 的概率密度为f(x).若积分⎰+∞∞-dxxxf)(绝对收敛,(即⎰∞∞-+∞<dxxf x)(),则称它为X的数学期望或均值(此时,也称X的数学期望存在),记为E(X),即)()(⎰∞∞-=dxxxfXE若⎰∞∞-+∞=dxxfx)(,则称X的数学期望不存在。

例4.5:设X服从U[a,b],求E(X)。

EX=2ba+例4.6:设X服从参数为λ的指数分布,求EX EX=λ例4.7:),(~2σμNX,求EXEX=μ下面分析书上P101---P104例。

例1 P101 例2 P101 例3P102---103解:注意由于8:00~9:00, 9:00~10:00都恰有一辆车到站,所以(i)8:00到车站的旅客在8:50前一定会上车,而(ii)8:20到车站的旅客则可以直到9:50才会上车。

例4 P1033.随机变量函数得数学期望定理4.1:设随机变量X 的函数为Y =g(X), (1)若离散型随机变量X 的分布律为)(k k x X P p ==,k =1,2,… ,∑kkk p x g )(绝对收敛,则Y 的数学期望存在,且)()]([)( ∑==kk k p x g X g E Y E(2)若连续型随机变量X 的概率密度为f(x), Y =g(X)也是连续型随机变量,⎰+∞∞-dx x f x g )()(绝对收敛,则Y的数学期望存在,且)()()]([)( ⎰∞∞-==dx x f x g X g E Y E定理4.2:设二维随机变量(X ,Y )的函数Z=g(x,y) (1) 若二维离散型随机变量(X,Y)的联合分布律 为,....2,1, , ),(====j i y Y x X P p j i ij且有∑ji ijjip y x g ,),(绝对收敛,则Z 的数学期望存在,且),()],([)( ,∑==ji ij j i p y x g Y X g E Z E(2) 若二维连续型随机变量(X,Y)的联合概率密 度为 f (x,y),Z=g(X,Y) 也是连续型随机变量,并且⎰⎰∞∞-∞∞-dxdy y x f y x g ),(),(绝对收敛,则Z 的数学期望存在,且),(),()],([) E(⎰⎰∞∞-∞∞-==dxdy y x f y x g Y X g E Z例5 P106例6 P107例7 P107以下为第一版例。

例4.8:设X ~U [0,π],Y=Xsin ,求E(Y )。

例4.9:设(X,Y )的联合分布律为λλ---===em n m p p m Y n X P mn m n !)-(! )1(),(其中, ,,1,0;,2 ,1 ,0 ;10 ;0n m n p ==<<>λ求E(XY)。

二.数学期望的性质 性质1:若c 为常数,则E(c )=c 。

性质2:若c 为常数,随机变量X 的数学期望存在,则:c X 的数学期望存在,且E(c X)=c E(X)性质3:若二维随机变量(X,Y)的分量X,Y 的数学期望都存在,则X+Y 的数学期望存在,且E(X+Y)=E(X)+E(Y)推论:若n 维随机变量(X 1,X 2,...,n X )的分量X 1,X 2,...,n X 的数学期望都存在,则X 1 + X 2 +...+n X 的数学期望存在,且)()( 11∑∑===ni i n i i X E X E性质4:若随机变量X,Y 相互独立,它们的数学期望都存在,则X •Y 的数学期望存在,且)(EY EX Y X E ⋅=⋅推论:若随机变量X 1,X 2,....,X n 相互独立,它们的数学期望都存在,则X 1X 2…X n 的数学期望存在,且)()(11i ni i n i X E X E ==∏=∏性质5:若随机变量只取非负值,又E(X)存在,则E(X)≥0。

若Y X ≤对任何∈ωS ,)(),(Y E X E 存在,则)()(Y E X E ≤。

特别地,若b a b X a ,,≤≤为常数,)(X E 存在,则b X E a ≤≤)(。

例8 P109例9 P110第一版例例4.14:设一批同类型的产品共有N 件,其中次品有M 件。

今从中任取n (假定n ≤N-M )件,记这n 件中所含次品数为X ,求E (X )。

三.综合性的例题(第一版) 例:设X 的概率密度为⎩⎨⎧≤≤+=其它010)(2x bxa x f ,其中a,b 为常数,且E (X )=53。

求a,b 的值。

注意:f(x)中有几个未知数要建几个方程来求之。

例: 射击比赛规定:每位射手向目标独立重复射击四法子弹,全未中的0分,仅中一发得15分,恰中两发得30分,恰中三发得55分,全中得100分。

若某射手的命中率为0.6,求他得分的数学期望。

例:某水果商店,冬季每周购进一批苹果。

已知该店一周苹果销售量X(单位:kg)服从U[1000,2000]。

购进的苹果在一周内售出,1kg 获纯利1.5元;一周内没售出,1kg 需付耗损、储藏等费用0.3元。

问一周应购进多少千克苹果,商店才能获得最大的平均利润。

§4-2 方差一.方差的概念1、定义4.3:设随机变量X 的数学期望为E(X),若E(X-E(X))2存在,则称它为X 的方差(此时,也称X 的方差存在),记为D(X)或Var(X),即D(X)=E(X-E(X))2称D(X)的算术平方根D X ()为X 的标准差或均方差,记为)(X σ,即)()( X D X =σ由数学期望的性质5知,若随机变量X 的方差D(X)存在,则D(X)≥0。

简言之,方差是一个非负实数。

当X 服从某分布时,我们也称某分布的方差为D(X)。

2、计算方差(1)若X 是离散型随机变量,其分布律为p i =P(X=x i ),i=1,2,...,且D(X)存在,则))((D(X) 2i ∑-=ii p X E x(2)若X 是连续型随机变量,其概率密度为f(x),且D(X)存在,则)(E(X))-(x D(X) 2⎰∞∞-=dx x f(第一版)例1:设X ~B(1,p),求D(X) 例2:设X ~N(μ,σ2),求D(X) 例3:设X ~U[a,b],求D(X)(3)D(X)=E(X 2)-(EX)2证明:P112. 例1 P112 例2 P112(第一版)例4:设X ~π(λ),求D(X) 例5:已知X )3(~),2,10(~2πY N ,求)2(22Y X E +二.方差的性质性质1:若C 为常数,则D(C)=0性质2:若C 为常数,随机变量X 的方差存在,则CX 的方差存在,且 D(CX)=C 2D(X)证明由自己完成性质3:若随机变量X,Y 相互独立,它们的方差都存在,则X ±Y 的方差也存在,且D(X ±Y)=D(X)+D(Y)证明:P113推论:若随机变量X 1,X 2,…,X n 相互独立,它们的方差都存在,则X 1+X 2+...+X n 的方差存在,且 )()()(11n n X D X D X X D ++=++性质4:若随机变量X 的方差存在,对任意的常数C ≠E(X),则 D(X)=2)(EX X E - < E(X-C)2即函数g(C)=E(X-C)2在C=E(X)处达到最小值D(X)。

性质5若D(X)存在,则D(X)=0的充要条件是: P(X=E(X))=1例3 P113第一版例:例6:X 服从 B(n,p),求D(X).例7:某种商品每件表面上的疵点数X 服从泊松分布,平均每件上有0.8个疵点。

若规定表面不超过一个疵点的为一等品,价值十元,表面疵点数大于1不多于4的为二等品,价值8元。

某件表面疵点数是4个以上着为废品,求产品价值的均值和方差。

已知)8.0(~πX 设产品价值为Y V R ..(E 元03.938088.0101898.080222=⨯+⨯+=EX 8672.0)()()(22=-=∴X E X E X D例 :设随机变量X 的方差D(X)存在,且D(X)>0令)()(X D X E X X-=*,其中E(X)是X 的数学期望,求)D(X )(**和X E 。

三.契比雪夫不等式(Chebyshev)契比雪夫不等式:设随机变量X 的方差D(X)存在,则对任意的ε>0,均有P{⎢X-E(X)⎪≥ε} ≤ 2)(εX D或等价地P{⎢X-E(X)⎪<ε}≥1-2)(εX D例:P{⎢X-E(X)⎪<3σ}≥0.8889P{⎢X-E(X)⎪<4σ}≥0.9375解:P{⎢X-E(X)⎪<3σ}≥1-22)3(σσ=1-91P{⎢X-E(X)⎪<4σ}≥1-161Data;A=8/9; put a=; A=15/16; put a=; Run;A=0.8888888889 A=0.9375§4.3 几种生要随机变量的数学期望与方差 P115这部分结果很重要,要牢记。

P117, 关于正态随机变量的三个重要数据:{})1()1(-Φ-Φ=+≤<-σμσμX P1)1(2-Φ==0.6826894921{})2()2(22-Φ-Φ=+≤<-σμσμX P1)2(2-Φ==0.9544997361{})3()3(33-Φ-Φ=+≤<-σμσμX P=1Φ)3(2-=0.9973002039SAS的两种计算公式:data;p1=PROBNORM(1)-PROBNORM(-1); put p1=;p2= PROBNORM(2)-PROBNORM(-2); put p2=;p3= PROBNORM(3)-PROBNORM(-3); put p3=;run;p1=0.6826894921p2=0.9544997361p3=0.9973002039data;p1=2*PROBNORM(1)-1; put p1=;p2=2*PROBNORM(2)-1; put p2=;p3=2*PROBNORM(3)-1; put p3=;run;p1=0.6826894921p2=0.9544997361p3=0.9973002039也可以验证数据,即以μ为中心,需要几倍的标准差σ距离所构成的区间,其区间内的概率为上述所示。

相关文档
最新文档