高二数学 教案 2.1.1合情推理导学案人教版_选修2-2 2.1.1合情推理(三)
2018-2019学年人教A版选修2-2 2.1.1合情推理 教案 (1)
教学设计2.1合情推理与演绎推理2.1.1合情推理整体设计教材分析合情推理所蕴含的数学思想贯穿于高中数学的整个知识体系,但是作为一节内容出现在高中数学教材中尚属首次.合情推理是新课标教材的亮点之一,本节内容对合情推理的一般方法进行了必要的归纳和总结,同时也对后继知识的学习起到了引领的作用.教材的设计是对“观察发现、归纳类比、抽象概括、演绎证明”等数学思维方法的总结与归纳,使已学过的数学知识和思想方法系统化、明晰化.教材紧密地结合了已学过的数学实例和生活实例,避免了空泛地讲数学思想、方法;以变分散为集中,变隐性为显性的方式学习合情推理,是知识、方法、思维和情感的融合与促进,让学生在学知识的同时充分体会数学的发展过程.课时分配2课时.第1课时内容为归纳推理;第2课时内容为类比推理.第1课时教学目标1.知识与技能目标结合生活实例了解推理的含义;掌握归纳推理的结构和特点,能够进行简单的归纳推理;体会归纳推理在数学发现中的作用.2.过程与方法目标通过探索、研究、归纳、总结等方式,使归纳推理全方位地呈现在学生面前,让学生了解数学不单是现成结论的体系,结论的发现也是数学的重要内容,从而形成对数学较为完整的认识;培养学生发散思维能力,充分挖掘学生的创新思维能力.3.情感、态度与价值观通过学习本节课,培养学生实事求是、力戒浮夸的思维习惯,深化学生对数学意义的理解,激发学生的学习兴趣;认识数学的科学价值、应用价值和文化价值;通过探究学习培养学生互助合作的学习习惯,形成良好的思维方式和锲而不舍的钻研精神.重点难点重点:掌握归纳推理的特点和推理过程,体会归纳推理在科学发现中的作用.难点:归纳推理的应用;如何培养学生发现问题、解决问题的能力.教学过程引入新课某市为了解本市的高中生数学学习状态,对四所学校做了一个问卷调查,其中有两方面问题的统计数据如下:根据这四所学校的情况,你能推测全市高中生对数学的印象吗?活动设计:先让学生独立思考,然后小组交流,教师巡视指导,并注意与学生交流.学情预测:学生可能会说出很多不同的答案.教师提问:你的推测一定正确吗?活动结果:有的学生可能会说“正确”;有的学生可能会说“不正确”;有的学生可能会说“不确定”.教师:推测不一定正确.设计意图自然合理地提出问题,让学生体会“数学来源于生活”,创造和谐积极的学习气氛,为课堂结尾“数学是生动活泼的,发现问题是数学学习的一个重要目的”埋下伏笔.探究新知生活中我们经常会遇到这样的情形:看见柳树发芽,冰雪融化,……看见花凋谢了,树叶黄了,……看见乌云密布,燕子低飞,……引导学生做一些简单的推理:1.由铜、铁、铝、金、银等金属都能导电,猜想:一切金属都能导电.2.由三角形内角和为180°,凸四边形内角和为360°,凸五边形内角和为540°,猜想:凸n边形内角和为(n-2)·180°.提出问题:像上面这样的思维方式就是推理,请问你认为什么是推理?活动设计:学生先自由发言,教师逐步引导学生发现推理的结论是通过猜想得到的.学情预测:学生开始的回答可能不全面、不准确,但在其他同学的不断补充、纠正下,会趋于完善.活动结果:推理的概念:根据一个或几个已知的事实(或假设)来确定一个新的判断的思维方式就叫推理.注意:一个完整的推理是由前提和结论两部分构成的.设计意图从大量的生活实例出发,让学生充分体会推理的含义和推理的构成,使推理概念的形成更自然、更生动,并训练和培养学生的抽象概括和表达能力.看下面两个推理:1.金受热后体积膨胀;银受热后体积膨胀;铜受热后体积膨胀;铁受热后体积膨胀.由此猜想:金属受热后体积膨胀.2.1,1+3=4,1+3+5=9,1+3+5+7=16,1+3+5+7+9=25,……由此猜想:1+3+…+(2n-1)=n2.提出问题:这两个推理在思维方式上有什么共同特点?活动设计:学生先独立思考,然后分小组讨论.活动结果:共同特点:部分推出整体,个别推出一般.归纳推理的概念:根据一类事物的部分对象具有某种性质,推出该类事物的全部对象都具有这种性质的推理,或由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体,由个别到一般的推理.设计意图引导学生观察两个推理的前提与结论,根据前提与结论的关系由学生作出进一步分类并尝试命名.提出问题:你在生活中遇到过归纳推理吗?(学生自由发言)活动设计:学生分小组讨论:将学生划分为两大部分,一部分学生讨论生活中运用归纳推理的例子,另一部分学生讨论学习中使用归纳推理的例子.学情预测:学生会举出大量的归纳推理的实例,也可能举出这样的例子:“地球上有生命,火星具有一些与地球类似的特征,猜想:火星上也有生命.”设计意图通过学生所举的例子,教师可以了解学生对归纳推理的理解程度,通过正反实例明确概念的内涵和外延,加深对关键词、重点词的理解,及时更正学生在认识理解中产生的偏差,巩固归纳推理的定义.理解新知教师举例:介绍歌德巴赫猜想.观察下列等式:3+7=10,3+17=20,13+17=30.你们能从中发现什么规律?学情预测:学生的回答可能很杂,甚至会五花八门.如果换一种写法呢?10=3+7,20=3+17,30=13+17.活动设计:学生先独立思考,然后学生分小组讨论.教师适时介入全班引导:提醒学生注意各等式左边的数是什么数?各等式右边是几个数?均是什么数?这反映了一个什么样的规律?活动结果:偶数=奇质数+奇质数.提出问题:这个规律对于其他偶数是否成立?可以先从几个较小的偶数开始,具体验证一下.活动设计:学生独立思考,独立举例.教师:全班学生交流研究成果.共同得到,第一个等于两个奇质数之和的偶数是6,即6=3+3.其他结果略.教师:根据上述过程,哥德巴赫大胆地猜想:“任何一个不小于6的偶数都等于两个奇质数之和”.从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.但我国著名数学家陈景润、王元、潘承洞等均分别取得了很好的结果,做出了巨大的贡献.当然也曾经有人作了些具体的验证工作,例如:6=3+3,8=3+5,10=5+5=3+7,12=5+7,14=7+7=3+11,16=5+11,18=5+13,…,1 000=29+971,1 002=139+863,等等.有人对3.3×108以内且大过6的偶数一一进行验算,哥德巴赫猜想都成立,但依然没有严格的数学证明.因此,我们仍然不能说:“哥德巴赫猜想”成立,即这个规律对于其他偶数是否成立还不得而知.(教师还可以介绍其他学科中运用归纳推理得到的重要发现)提出问题:请同学们根据前面所列举的归纳推理的例子,总结归纳推理的作用.活动设计:全班学生先在老师的带领下共同回顾前面所列举的归纳推理的例子,然后独立思考,小组讨论后汇报结果.活动结果:归纳推理的作用:1.发现新事实;2.提供研究方向.设计意图通过学生主动探究规律,感受归纳推理对发现新事实、得出新结论的作用.在学生独立思考时教师不做任何提示,培养学生探究能力和合作精神.介绍费马猜想:已知221+1,222+1,223+1,224+1都是质数,运用归纳推理你能得出什么样的结论?教师:22n +1(n ∈N )都是质数,这就是著名的费马猜想.半个世纪后欧拉发现:225+1=4 294 967 297=641×6 700 417.这说明了什么?教师:费马猜想是不成立的.后来人们又发现226+1,227+1,228+1都是合数,又能得到什么样的结论?教师:任何形如22n +1(n ∈N ,n ≥6)的数都是合数.设计意图教师生动讲述欧拉发现第五个费马数的过程,激发学生的好奇心与求知欲,同时,通过“猜想——验证——再猜想”说明科学的进步与发展处在一个螺旋上升的过程,同时说明归纳推理的结论不一定正确,有待进一步证明.活动结果:归纳推理的一般步骤:1.通过观察个别情况发现某些相同性质;2.从已知的相同性质中推出一个表述明确的一般性命题;(即猜想)3.检验猜想.运用新知例题 已知数列{a n }的首项a 1=1,且有a n +1=a n a n +1,试归纳出数列的通项公式. 思路分析:数列的通项公式表示的是数列{a n }的第n 项与序号之间的对应关系.为此,我们先根据已知的递推公式,算出数列的前几项.解:当n =1时,a 1=1;当n =2时,a 2=11+1=12;当n =3时,a 3=121+12=13;当n =4时,a 4=131+13=14. 观察可得,数列的前4项都等于相应序号的倒数,由此猜想,这个数列的通项公式为a n =1n. 点评:掌握归纳推理的一般步骤,进一步感受归纳推理的作用.我们通过归纳得到了关于数列的通项公式的一个猜想,虽然猜想是否正确还有待严格证明,但这个猜想可以为我们的研究提供一种方向.巩固练习设n 是自然数,则18(n 2-1)[1-(-1)n ]的值( ) A .一定是零 B .不一定是整数C .一定是偶数D .是整数但不一定是偶数答案:C变练演编设f(n)=n 2+n +11,n ∈N ,计算f(1)、f(2)、f(3)、f(4)、f(5)、…,你有什么发现? 思路分析:分别计算f(1)、f(2)、f(3)、f(4)、f(5)的具体数值,进行观察,发现这组数据的局部特征,从而对整体作出推断.解:当n =1时,f(1)=12+1+11=13;当n =2时,f(2)=22+2+11=17;当n =3时,f(3)=32+3+11=23;当n =4时,f(4)=42+4+11=31;当n =5时,f(5)=52+5+11=41.观察可得,f(1)、f(2)、f(3)、f(4)、f(5)都是质数,由此猜想,任何f(n)=n 2+n +11,n ∈N 都是质数.变式1:设f(n)=n 2+n ,n ∈N ,计算f(1)、f(2)、f(3)、f(4)、f(5)、…,你有什么发现? 变式2:设f(n)=n 2+n +11,n ∈N ,计算f(2)-f(1)、f(3)-f(2)、f(4)-f(3)、f(5)-f(4)、…,你有什么发现?变式3:设f(n)=n 2+n ,n ∈N ,计算f(2)-f(1)、f(3)-f(2)、f(4)-f(3)、f(5)-f(4)、…,你有什么发现?提出问题:归纳推理所得的结论有时是正确的,但有时也是错误的,那么我们为什么还要进行归纳推理呢?活动设计:学生自己进行计算研究,将所有发现的结果一一列举,并由学生相互之间予以评价.活动成果:变式1:f(n)(n∈N)都是偶数;变式2:f(n+1)-f(n)=2(n+1)(n∈N)都是偶数;变式3:f(n+1)-f(n)=2(n+1)(n∈N)都是偶数.达标检测1.根据下面给出的数塔猜测123 456×9+7等于()A.1 111 1101×9+2=11B.1 111 11112×9+3=111C.1 111 112123×9+4=1 111D.1 111 113 1 234×9+5=11 1112.在数列{a n}中,a1=1,且a n=12(a n-1+1a n-1)(n≥2),试归纳出这个数列的通项公式.3.观察下面的“三角阵”,试找出相邻两行数间的关系.11 112 1133 11464 1……11045……4510 1答案:1.B2.数列的通项公式a n=1(n∈N).3.相邻两行数间的关系是每一行首尾的数都是1,其他的数等于上一行中与之相邻的两个数的和.课堂小结1.知识收获:了解了归纳推理的含义;2.方法收获:掌握了归纳推理的方法和步骤;3.思维收获:归纳推理是进行猜测发现结论、探索和提供思路的常用的思维方法. 布置作业1.课本习题2.1 A 组 1题、3题.2.实习作业:登陆网站,选择两个猜想探究来源.补充练习基础练习1.观察下列数列的特点1,2,2,3,3,3,4,4,4,4,…,第100项是( )A .10B .13C .14D .1002.由集合{a 1},{a 1,a 2},{a 1,a 2,a 3},…的子集个数归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为( )A .nB .n +1C .2nD .2n -13.由710>58,911>810,1328>921,…,若a>b>0,m>0,则b +m a +m 与b a之间的大小关系为( ) A .相等 B .前者大C .后者大D .不确定4.1,13,17,115,131,…的一个通项公式a n =__________. 5.f(x)=12x+2,通过计算f(0)+f(1),f(-1)+f(2)的值,猜想f(-n)+f(n +1)=__________.答案:1.C 2.C 3.B 4.a n =12n -1(n ∈N *) 5.22 拓展练习6.观察以下各等式:sin 230°+cos 260°+sin30°·cos60°=34; sin 240°+cos 270°+sin40°·cos70°=34; sin 215°+cos 245°+sin15°·cos45°=34. 分析上述各式的共同特点,写出能反映一般规律的等式,并对等式的正确性加以证明.解:反映一般规律的等式是sin 2θ+cos 2(θ+30°)+sinθ·cos(θ+30°)=34. 证明:sin 2θ+cos 2(θ+30°)+sinθ·cos(θ+30°)=sin 2θ+(cosθcos30°-sinθsin30°)2+sinθ(cosθcos30°-sinθsin30°)=sin 2θ+(32cosθ-12sinθ)2+sinθ(32cosθ-12sinθ) =sin 2θ+34cos 2θ+14sin 2θ-32cosθsinθ+32cosθsinθ-12sin 2θ =34(sin 2θ+cos 2θ)=34. 设计说明以问题驱动为指导,通过不断提出问题,研究问题,解决问题,使学生获得知识,完成教学.给学生创建一个开放、有活力、有个性的数学学习环境.感受数学美和发现规律的喜悦,激励学生更积极地去寻找规律、认识规律.同时让学生感受到只要做个有心人,发现规律并非难事.以学生熟悉的例子为载体,引导他们提炼、概括、归纳推理的含义和归纳推理的方法,自然合理地提出问题,让学生体会“数学来源于生活”.创造和谐积极的学习气氛.让学生通过直观感知、观察分析、归纳类比,形成由浅入深、由易到难、由特殊到一般的思维飞跃,并借助例题具体说明在数学发现的过程中应该如何应用归纳推理.备课资料哥德巴赫(1690.3.18~1764.11.20)是德国数学家;出生于格奥尼格斯别尔格;曾在英国牛津大学学习;原学法学,但由于在欧洲各国访问期间结识了贝努利家族,所以对数学研究产生了兴趣.1725年到了俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年,移居莫斯科,并在俄国外交部任职.1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个质数(只能被1和它本身整除的数)之和.如6=3+3,12=5+7等等.哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者为“二重哥德巴赫猜想”,后者为“三重哥德巴赫猜想”):(1)每个不小于6的偶数都可以表示为两个奇质数之和;(2)每个不小于9的奇数都可以表示为三个奇质数之和.连欧拉这样首屈一指的数学家都不能证明其正确性,这个猜想便引起了许多数学家的注意.从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.当然也曾经有人作了些具体的验证工作,例如:6=3+3,8=3+5,10=5+5=3+7,12=5+7,14=7+7=3+11,16=5+11,18=5+13,…….有人对3.3×108以内且大于6的偶数一一进行验算,哥德巴赫猜想都成立.但还没有严格的数学证明.目前“最佳”的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积.”通常都简称这个结果为大偶数.但目前没有任何人对哥德巴赫猜想作出过实质性的贡献.所有的证明都存在问题.一件事物之所以引起人们的兴趣,因为我们关心它,假如一个问题的解决丝毫不能引起人类的兴趣,我们就会闭上眼睛,假如这个问题对我们的知识毫无帮助,我们就会认为它没有价值.哥德巴赫猜想是数的一种表现次序,人们持久地喜欢它,是因为如果没有这种次序,人们就会丧失对更深刻问题的信念——因为无序是对美的致命伤,假如哥德巴赫猜想是错误的,它将限制我们的观察能力,使我们难以跨越一些问题并无法欣赏.一个问题把它无序的一面强加给我们的内心生活,就会使我们的感受趋向丑陋,引起自卑和伤感.哥德巴赫猜想实际是说,任何一个大于3的自然数n,都有一个x,使得n+x与n-x都是质数,因为,(n+x)+(n-x)=2n.这是一种质数对自然数形式的对称,代表一种秩序,它之所以意味深长,是因为质数这种似乎杂乱无章的东西被人们用自然数n对称地串联起来,正如牧童一声口哨就把满山遍野乱跑的羊群唤在一起一样,它使人心旷神怡,又像生物基因DNA,呈双螺旋结构绕自然数n转动,人们从玄虚的质数看到了纯朴而又充满青春的一面.对称不仅是视觉上的美学概念,它还意味着对象的统一.人类的精神威信建立在科学对迷信和无知的胜利之上,人类的精神健康依赖于一种自信,只有自信才能导入完美的信念使理想进入未来中,完美的信念使人生的辛劳和痛苦得以减轻,这样任何惊心动魄的灾难,荡气回肠的悲怆都难以摧毁人的信念,只有感到无能时,信念才会土崩瓦解,肉体在空虚的灵魂诱导之下融入畜类,人类在失败中引发自卑.哥德巴赫猜想的哲学意义正是如此.(设计者:赵海彬)第2课时教学目标1.知识与技能目标通过对已学知识的回顾,进一步理解推理这种基本的分析问题的方法,了解类比推理的含义,掌握类比推理的基本方法与步骤,并把它们用于对问题的发现与解决中去.2.过程与方法目标类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质;通过教学使学生认识到,类比的性质相似性越多,相似的性质与推测的性质之间的关系就越密切,从而类比得出的结论就越可靠.3.情感、态度与价值观(1)正确认识合情推理在数学中的重要作用,培养学生养成认真观察事物,发现事物之间的质的联系的良好个性品质,善于发现问题、分析问题、解决问题.(2)认识数学在日常生产生活中的重要作用,培养学生学数学、用数学、完善数学的意识.重点难点重点:了解类比推理的含义,能利用类比进行简单的推理.难点:用类比进行推理,提出猜想.教学过程引入新课我们先看几个推理的实例:1.工匠鲁班类比带齿的草叶和蝗虫的牙齿,发明了锯.2.人类仿照鱼类的外型和它们在水中沉浮的原理,发明了潜水艇.3.利用平面向量的基本定理类比得到空间向量的基本定理.提出问题1:这些推理是归纳推理吗?活动设计:先让学生独立思考,然后小组交流.学情预测:学生根据上节所学归纳推理的定义,很快就可以得出答案.活动结果:以上推理不是归纳推理.提出问题2:这三个推理过程有何共同特点?活动设计:学生先独立思考,然后再分小组讨论.学情预测:以实例1为例,学生的思路有可能是这样的:草叶是齿形的;草叶能割破手;我需要一种能割断木头的工具;它也可以是齿形的.这是学生应该能想到的,但对这种思维方式共同点的总结存在一定的难度.活动结果:将两类不同事物进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式.设计意图自然合理地提出问题,让学生体会“数学来源于生活”,以此创造和谐积极的学习氛围.探究新知我们再看几个类似的推理实例.例1科学家对火星进行研究,发现火星与地球有许多类似的特征:(1)火星也是绕太阳运行、绕轴自转的行星;(2)有大气层,在一年中也有季节变更;(3)火星上大部分时间的温度适合地球上某些已知生物的生存,等等.科学家猜想:火星上也可能有生命存在.例2根据等式的性质猜想不等式的性质.等式的性质:猜想不等式的性质:(1)a=b⇒a+c=b+c; (1)a>b⇒a+c>b+c;(2)a=b⇒ac=bc; (2)a>b⇒ac>bc;(3)a=b⇒a2=b2等等. (3)a>b⇒a2>b2等等.提出问题:这两个推理实例在思维方式上有什么共同特点?活动设计:学生先独立思考,然后学生分小组讨论,教师适当加以指导.活动结果:共同特点:由特殊到特殊的推理.类比推理的定义:这种由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.设计意图从大量的实例出发,让学生充分体会类比推理的含义和类比推理的构成,使类比推理概念的形成自然、生动,训练和培养学生的抽象概括和表达能力.理解新知教师举例:类比平面内直角三角形的勾股定理,试给出对空间中三个面两两垂直的四面体性质的猜想.活动设计:学生先独立思考,然后分小组讨论.教师适时介入全班引导,提醒学生注意类比的对象是什么?平面内直角三角形的性质是什么?反映的是哪些几何量之间的关系?给出空间四面体性质应从哪些方面进行类比?学情预测:学生的回答可能很杂,甚至于偏离主题,教师应及时地加以引导.活动结果:猜想:S2=S21+S22+S23.类比推理的几个特点:1.类比是从人们已经掌握的事物的属性,推测正在研究的事物的属性,是以已有的旧的认识为基础,类比出新的结果;2.类比是从一种事物的特殊属性推测另一种事物的特殊属性;3.类比的结果是猜测,不一定可靠,但它却有发现的功能.设计意图通过所举的例子,教师可以了解学生对类比推理的理解程度,使学生加深对关键词、重点词的理解,掌握类比推理的特点,及时更正学生在认识理解中产生的偏差,巩固类比推理的定义.运用新知例1计算机中常用的十六进位制是逢16进1的计算制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:例如用16进位制表示E+D=1B,则A×B等于()A.6E B.72C.5F D.0B思路分析:类比十六进位制是逢16进1的规律,找到本题所规定的进位制的规律.解析:因为用16进位制表示E+D=1B,所以A×B=6E,应选A.答案:A点评:类比推理的一般步骤:(1)找出两类对象之间可以确切表述的相似特征;(2)用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;(3)检验猜想,即证明结论.2试将平面上圆的性质与空间中球的性质进行类比.思路分析:从已掌握的平面上圆的基本性质出发,逐步类比推测出空间中球的性质,圆的定义:平面内到一个定点的距离等于定长的点的集合.球的定义:空间内到一个定点的距离等于定长的点的集合.圆球弦←→截面圆直径←→大圆周长←→表面积面积←→体积解:点评:通过例题让学生进一步熟悉进行类比推理的一般过程,同时体会类比推理的特点和作用.虽然猜想的正确性还有待严格证明,但这个猜想可以为我们的研究提供一个方向.设计意图选择开放性命题加以练习,让全班同学做.在学生学习类比推理方法和步骤的同时,完成对类比推理的再认识.教师:我们上节所学的归纳推理和本节所学的类比推理,就其所进行的推理过程可以概括为:从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想可见,上节所学的归纳推理和本节所学的类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.提出问题:合情推理所得的结论有时是正确的,有时是错误的,那么我们为什么还要进行合情推理呢?活动设计:学生先独立思考,然后进行讨论.活动成果:合情推理是指“合乎情理”的推理.数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.下面再来看一个例子:例3如图所示,有三根针和套在一根针上的若干金属片(小在上,大在下).按下列规则,把金属片从一根针上全部移到另一根针上.1.每次只能移动1个金属片;2.较大的金属片不能放在较小的金属片上面.试推测:把n个金属片从1号针移到3号针,最少需要移动多少次?思路分析:我们分别从1,2,3,4个金属片的情形入手,探究其中的规律性,进而归纳出移动n个金属片所需的次数.解:当n=1时,只需把金属片从1号针移到3号针,用符号(13)表示,共移动了1次.当n=2时,为了避免将较大的金属片放在较小的金属片上面,我们利用2号针作为“中间针”,移动的顺序是:(1)把第1个金属片从1号针移到2号针;(2)把第2个金属片从1号针移到3号针;(3)把第1个金属片从2号针移到3号针;用符号表示为(12)(13)(23),共移动了3次.当n=3时,把上面两个金属片作为一个整体,则归结为n=2的情形,移动的顺序是:(1)把上面两个金属片从1号针移到2号针;(2)把第3个金属片从1号针移到3号针;(3)把上面两个金属片从2号针移到3号针.。
高中数学教案选修2-2《2.1.1 合情推理(1)》
教学目标:1.了解归纳推理的概念和归纳推理的作用.2.掌握归纳推理的一般步骤.3.能利用归纳进行一些简单的推理.教学重点:了解合情推理的含义,能利用归纳进行简单的推理.教学难点:用归纳进行推理,做出猜想.教学过程:一、创设情境从一个或几个已知命题得出另一个新命题的思维过程称为推理.任何推理都包含前提和结论两个部分,前提是推理所依据的命题,它告诉我们已知的知识是什么;结论是根据前提推得的命题,它告诉我们推出的知识是什么.下面我们来看3个推理案例:案例1 前提 当0n =时, 21111n n -+=; 当1n =时,21111n n -+=; 当2n =时,21113n n -+=; 当3n =时,21117n n -+=;当4n =时,21123n n -+=; 当5n =时,21131n n -+=.11,11,13,17,23, 31都是质数. 结论 对于所有的自然数n ,211n n -+的值都是质数.案例2 前提 矩形的对角线的平方等于长、宽的平方和.结论 长方体的对角线的平方等于长、宽、高的平方和.案例3 前提 所有的金属都能导电,铜是金属.结论 铜能导电.三个推理案例的共同点是它们都是由“前提”和“结论”两部分组成,但是在推理的结构形式上表现出不同的特点,据此可以分为合情推理与演绎推理.二、构建新知在案例1中,由“对自然数n 的几个特殊值,211n n -+都是质数”,推出“对所有自然数n ,211n n -+都是质数.”我们再看几个类似的推理实例:1.蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的.因为蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所以我们猜想所有的爬行动物都是用肺呼吸的.2.三角形的内角和是180︒,凸四边形的内角和是360︒,凸五边形的内角和是540︒.归纳推理的一般步骤:(1)对有限的资料进行观察、分析、归纳 整理;(2)提出带有规律性的结论,即猜想;(3)检验猜想.归纳推理的思维过程:三、数学运用例1 已知数列{a n }的每一项均为正数,221111(12)n n a a a n +=,=+=,,,试归纳出数列{a n }的一个通项公式.分析 学生通过具体的:当1n =时,11a =,当2n =时,2a ,当3n =时,2a 由此我们猜想{a n }的一个通项公式为n a .例2 已知数列{a n }的通项公式21()(1)n a n n +N =∈+, 12()(1)(1)(1)n f n a a a ⋅⋅⋅=---.试通过计算(1)(2)(3)f f f ,,的值,推测出()f n 的值.分析 学生讨论结果预测如下:113(1)1144f a =-=-= 1213824(2)(1)(1)(1)(1))94936f a a f ⋅⋅=--=-=== 12312155(3)(1)(1)(1)(2)(1)163168f a a a f ⋅⋅=---=-== 由此猜想,2()2(1)n f n n +=+ 四、学生探究 1.已知111()1()23f n n n +⋅⋅⋅N =++++∈,经计算:3(2)2f =,(4)2f >,5(8)2f >,(16)3f >,7(32)2f >,推测当2n ≥时,有_______________________. 2.已知:2223sin 30sin 90sin 1502++=,2223sin 5sin 65sin 1252++=. 观察上述两等式的规律,请你写出一般性的命题,并证明之.3.观察(1)tan10tan 20tan 20tan 60tan 60tan101++=. (2)tan5tan10tan10tan 75tan 75tan51++=. 由以上两式成立,推广到一般结论,写出你的推论.五、课堂总结1.归纳推理的特点:(1)归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.(2)归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.(3)归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上. 提出带有规律性的结论.(4)归纳推理是由部分到整体,从特殊到一般的推理.通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.2.归纳推理的一般步骤:(1)通过观察个别情况发现某些相同的性质.(2)从已知的相同性质中推出一个明确表述的一般命题(猜想).六、课后作业教材第66页练习第2题,第3题,第4题,第5题.。
人教课标版高中数学选修2-2《合情推理》教案-新版
2.1 合情推理与演绎推理2.1.1 合情推理一、教学目标 1.核心素养通过学习归纳推理与类比推理,初步形成基本的数学抽象和逻辑推理能力. 2.学习目标(1)结合已学过的数学实例和生活实例,了解归纳推理的含义及逻辑特点,体会归纳推理的作用,掌握归纳推理的一般步骤,能够利用归纳进行一些简单的推理.(2)结合已学过的数学实例和生活中的实例,了解类比推理的含义及逻辑特点,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用. 3.学习重点了解合情推理的含义,能利用归纳推理与类比推理进行一些简单的推理. 4.学习难点运用所学知识对具体问题进行归纳和类比的推理,做出合理的猜想. 二、教学设计 (一)课前设计 1.预习任务任务1 阅读教材P 70-P 77,思考:什么是归纳推理?什么是类比推理?2.预习自测1.下列表述正确的是( ).①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理.A .①②③;B .②③④;C .②④⑤;D .① ③ ⑤. 解:D2.已知数列}{n a 的前n 项和)2(2≥⋅=n a n S n n ,且,通过计算猜 想( )A .B .C .D .解:A3.下面使用类比推理正确的是( )(二)课堂设计1.知识回顾(1)由等差数列的定义推导其通项公式是怎么实现的.(2)平面向量的运算与空间向量的运算有什么共性.(3)椭圆和圆的哪些几何性质是相似的.2.问题探究问题探究一归纳推理的含义●活动一结合实例,体会归纳推理1.由铜,铁,金等金属都能导电,猜想:一切金属都能导电.2.由三角形内角和为180°,凸四边形内角和为360°,凸五边形内角和为540°,猜想:凸n边形内角和为(n-2)180°这些思维过程就是归纳推理,那么你认为什么是归纳推理呢?●活动二梳理小结,掌握归纳推理的逻辑含义下面两个推理:1.金受热后体积膨胀;银受热后体积膨胀;铜受热后体积膨胀;铁受热后体积膨胀.由此猜想:金属受热后体积膨胀.2.1,1+3=4,1+3+5=9,1+3+5+7=161+3+5+7+9=25......由此猜想:1+3+5+7+...+(2n-1)= n2提出问题:这两个推理在思维方式上有什么共同特点?学生先独立思考,然后可小组交流归纳推理定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理,简称归纳.归纳推理的特点:1.归纳推理是由部分到整体,由个别到一般的推理.2.人们在进行归纳推理的时候,总是先搜集一定的事实材料,有了个别性、特殊性的事实作为前提,然后才能进行归纳推理,因此归纳推理要在观察和试验的基础上进行.3.归纳推理能够发现新事实,获得新结论,是做出科学发现的重要手段.归纳推理的一般步骤:①对有限的资料进行观察、分析、归纳整理;②在此基础上提出带有规律性的结论,即猜想;③检验猜想.说明:由归纳推理所获得的结论,仅仅是一种猜想,未必可靠,(如:费马猜想)但它由特殊到一般,由具体到抽象的认识性能,对于提供科学的发现方法,确实是非常有用的.问题探究二类比推理的含义.●活动一结合实例,体会类比推理问题1:为什么人们会猜测火星上有生命呢?问题2:用以上方法,类比圆的特征,填写下表球的特征,说说推理的过程.并回答下面两个问题:1. 为什么圆可以和球类比?2. 圆和球类比的规律是什么?规律总结:圆←→球弦←→截面圆直径←→大圆周长←→表面积面积←→体积●活动二梳理小结,掌握类比推理的逻辑含义类比推理定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简称类比.类比推理的特点1. 类比推理是由特殊到特殊的推理.2. 由于类比的前提是两类对象之间具有某些可以清楚定义的类似特征,所以进行类比推理的关键是明确的指出两类对象在某些方面的类似特征.3. 类比推理是以旧的知识做基础,推测新的结果,具有发现的功能.类比推理的一般步骤:①找出两类对象之间可以确切表述的相似特征;②用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;③检验这个猜想.S的归纳过程.例1:用推理的形式表示等差数列1,3,5,…,(2n-1),…的前n项和n 【知识点:归纳推理】详解:对等差数列1,3,5,…,(2n-1),…的前1,2,3,4,5,6 项和分别进行计算:21222324252611;1342;13593;1357164;13579255;1357911366.___________________________S S S S S S ===+===++===+++===++++===+++++==故,等差数列1,3,5,…,(2n -1),…的前n 项和2.n S n =点拨:归纳推理是由部分到整体,由个别到一般的推理,需要对有限的资料进行观察、分析、归纳 整理,在此基础上提出带有规律性的结论,即猜想.例2:设2()41, f n n n n N +=++∈,计算f (1),f (2),f (3),f (4),…,f (10)的值,同时做出归纳推理,并用n =40验证猜想是否正确. 【知识点:归纳推理】 详解:2222222222(1)114143;(2)224147;(3)334153;(4)444161;(5)554171;(6)664183;(7)774197;(8)8841113;(9)9941131;(10)101041151,f f f f f f f f f f =++==++==++==++==++==++==++==++==++==++=43,47,53,61,71,83,97,113,131,151都是质数.结论:当n 取任何正整数时,2()41f n n n =++的值都是质数.因为当n =40时,2(40)4040414141,f =++=⨯所以(40)f 是合数.因此,上面的归纳推理得到的猜想不正确.点拨:由归纳推理所获得的结论,仅仅是一种猜想,未必可靠,需要进行严格的证明或通过举反例推翻其一般性.例3:类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.【知识点:类比推理】 详解:列表如下结论:2222123S S S S =++.点拨:类比推理是由特殊到特殊的推理,由于类比的前提是两类对象之间具有某些可以清楚定义的类似特征,所以进行类比推理的关键是明确的指出两类对象在某些方面的类似特征. 3.课堂总结【知识梳理】(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理.归纳推理是由特殊到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.类比推理是由特殊到特殊的推理.(3)归纳与类比都是合情推理,但是它们的结论都未必正确,需要进行证明结论是真或通过举反例说明结论是假.【重难点突破】(1)进行归纳推理的时候,要先搜集一定的事实材料,有了个别性、特殊性的事实作为前提,然后才能进行归纳推理,因此归纳推理要在观察和试验的基础上进行.(2)类比的前提是两类对象之间具有某些可以清楚定义的类似特征,所以进行类比推理的关键是明确的指出两类对象在某些方面的类似特征. 4.随堂检测1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论不能判断正误 【知识点:合情推理的含义与作用】解:B. 根据合情推理可知,合情推理必须有前提有结论.2.下列平面图形中,与空间中的平行六面体作为类比对象较为合适的是()A.三角形B.梯形C.平行四边形D.矩形【知识点:类比推理的含义】解:C3.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是()①各棱长相等,同一顶点上的任两条棱的夹角都相等②各个面都是全等的正三角形,相邻两个面所成的二面角都相等③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等A.①B.①②C.①②③D.③【知识点:类比推理的含义】解:C正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.4.观察下列各式:72=49,73=343,74=2 401,…,则72 015的末两位数字为() A.01 B.43C.07 D.49【知识点:简单的合情推理】解:B因为71=7,72=49,73=343,74=2 401,75=16 807,76=117 649,…,所以这些数的末两位数字呈周期性出现,且周期T=4.又2 015=4×503+3,所以72 015的末两位数字与73的末两位数字相同,为43.5.设f(x)=2xx+2,x1=1,x n=f(x n-1)(n≥2),则x2,x3,x4分别为________.猜想x n=________.【知识点:简单的合情推理】解:23,24,25…2n+1x2=f(x1)=21+2=23,x3=f(x2)=2×2323+2=12=24,x4=f(x3)=2×1212+2=25,∴x n =2n +1. (三)课后作业基础型 自主突破1.数列2,5,11,20,x ,47,…中的x 等于( ) A .28 B .32 C .33 D .27 【知识点:归纳推理】解:B 观察发现从第二项开始,每一项与前一项的差构成公差为3的等差数列,所以x=32. 2.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式:S =底×高2,可推知扇形面积公式S 扇等于( )A.r 22B.22lC.2lrD .不可类比 【知识点:类比推理】 解:C3.观察:112156<+,1125.155.5<+,11221724<++-,...,对于任意的正实数b a ,,使112<+b a 成立的一个条件可以是( ) A .22=+b a B .21=+b a C .20=ab D .21=ab 【知识点:归纳推理】 解:B4.已知数列{}n a 的前n 项和为n S ,且n n a n S a 21,1== *N n ∈,试归纳猜想出n S 的表达式为( ) A.12+n n B. 112+-n n C. 112++n n D. 22+n n【知识点:归纳推理】 解:A 依次求得11=S ,342=S ,46233==S ,猜想n S 12+=n n.5. 下面几种推理是合情推理的是________.(填序号) ①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸n边形内角和是(n-2)·180°.【知识点:简单的合情推理】解:①②④6.已知2+23=223,3+38=338,4+415=4415,…,若6+ab=6ab(a,b∈R),则a+b=________. 【知识点:归纳推理】解:41 根据题意,由于2+23=223,3+38=338,4+415=4415,…,那么可知6+ab=6ab,a=6,b=6×6-1=35,所以a+b=41.能力型师生共研7.在如下数表中,已知每行、每列中的数都成等差数列,那么位于表中的第n【知识点:归纳推理】解:n2+n由题中数表知:第n行中的项分别为n,2n,3n,…,组成一等差数列,所以第n 行第n+1列的数是n2+n.8.在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC外接圆半径r=a2+b22.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,则其外接球的半径R=________.【知识点:类比推理】解:a2+b2+c22通过类比可得R=a2+b2+c22.证明:作一个在同一个顶点处棱长分别为a,b,c的长方体,则这个长方体的体对角线的长度是a2+b2+c2,故这个长方体的外接球的半径是a 2+b 2+c 22,这也是所求的三棱锥的外接球的半径.9.在平面内有n (n ∈N *,n ≥3)条直线,其中任何两条不平行,任何三条不过同一点,若这n 条直线把平面分成f (n )个平面区域,则f (5)的值是______,f (n )的表达式是________. 【知识点:归纳推理】解:16;f (n )=n 2+n +22 由题意得,n 条直线将平面分成nn +12+1个平面区域,故f (5)=16,f (n )=n 2+n +22.10.仔细观察下面○和●的排列规律: ○●○○●○○○●○○○○●○○○○○●○○○○○○ ●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________. 【知识点:归纳推理】解:14 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……,则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=2)3(+n n ,易知f (14)=119,f (15)=135,故n =14. 探究型 多维突破11.如图(1)若从点O 所作的两条射线OM 、ON 上分别有点M 1、M 2与点N 1、N 2,则三角形面积之比1122OM N OM N S S ∆∆=OM 1OM 2·ON 1ON 2.如图(2),若从点O 所作的不在同一平面内的三条射线OP 、OQ和OR 上分别有点P 1、P 2,点Q 1、Q 2和点R 1、R 2,则类似的结论为______________________.【知识点:类比推理】解:111222O PQ R O P Q R V V --=OP 1OP 2·OQ 1OQ 2·OR 1OR 2 由图看出三棱锥P 1-OR 1Q 1及三棱锥P 2-OR 2Q 2的底面面积之比为OQ 1OQ 2·OR 1OR 2,又过顶点分别向底面作垂线,得到高的比为OP 1OP 2,故体积之比为111222O PQ R O P Q R V V--=OP 1OP 2·OQ 1OQ 2·OR 1OR 2.12. 设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.【知识点:简单的合情推理】解:f(0)+f(1)=130+3+131+3=11+3+13+3=3-12+3-36=33,同理可得:f(-1)+f(2)=33,f (-2)+f(3)=33,并注意到在这三个特殊式子中,自变量之和均等于1.归纳猜想得:当x1+x2=1时,均有f(x1)+f(x2)=3 3.证明:设x1+x2=1,∵f(x1)+f(x2)=====自助餐1.下列推理是归纳推理的是()A.A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,则P点的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇【知识点:归纳推理】解:B从S1,S2,S3猜想出数列的前n项和S n,是从特殊到一般的推理,所以B是归纳推理,故应选B.2.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是()①各棱长相等,同一顶点上的任两条棱的夹角都相等②各个面都是全等的正三角形,相邻两个面所成的二面角都相等③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等A.①B.①②C.①②③D.③【知识点:类比推理】解:C .正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对. 3.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中正确结论的个数是( ) A .0 B .1 C .2D .3【知识点:类比推理】解:B (a +b )n ≠a n +b n (n ≠1,a ·b ≠0),故①错误.sin(α+β)=sin αsin β不恒成立.如α=30°,β=60°,sin 90°=1,sin 30°·sin 60°=34,故②错误.由向量的运算公式知③正确. 4.若数列{a n }是等差数列,则数列{b n }(b n =a 1+a 2+…+a nn)也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( ) A .d n =c 1+c 2+…+c nnB .d n =c 1·c 2·…·c nnC .d n = n c n 1+c n 2+…+c nn n D .d n =nc 1·c 2·…·c n 【知识点:类比推理】解:D 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n n -12d ,∴b n =a 1+n -12d =d 2n +a 1-d 2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n 1·q 1+2+…+(n -1)=c n1·q (1)2n n -,∴d n =nc 1·c 2·…·c n =c 1·q12n -,即{d n }为等比数列,故选D.5.数列{}n a 中,a 1=1,S n 表示前n 项和,且S n ,S n +1,2S 1成等差数列,通过计算S 1,S 2,S 3,猜想当n ≥1时,S n =( )A .1212-+n nB .1212--n nC .nn n 2)1(+ D .1-121-n【知识点:归纳推理】 解:B6.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:图(1)图(2)他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图(2)中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( ) A .289 B .1 024 C .1 225D .1 378【知识点:简单的合情推理】解:C .记三角形数构成的数列为{a n },则a 1=1,a 2=3=1+2,a 3=6=1+2+3,a 4=10=1+2+3+4,可得通项公式为a n =1+2+3+…+n =n n +12.同理可得正方形数构成的数列的通项公式为b n =n 2.将四个选项的数字分别代入上述两个通项公式,使得n 都为正整数的只有1 225.7.在平面几何中,有“正三角形内切圆半径等于这个正三角形高的13”.拓展到空间,类比平面几何的上述正确结论,则正四面体的内切球半径等于这个正四面体的高的________. 【知识点:类比推理】解:14 设正三角形的边长为a ,高为h ,内切圆半径为r ,由等面积法知3ar =ah ,所以r =13h ;同理,由等体积法知4SR =HS ,所以R =14H . 8.观察下列等式: (1+1)=2×1(2+1)(2+2)=22×1×3 (3+1)(3+2)(3+3)=23×1×3×5 …照此规律,第n 个等式可为____________________________. 【知识点:归纳推理】解:(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1) 由已知的三个等式左边的变化规律,得第n 个等式左边为(n +1)(n +2)…(n +n ),由已知的三个等式右边的变化规律,得第n 个等式右边为2n 与n 个奇数之积,即2n ×1×3×…×(2n -1).9. 已知数列{a n }为等差数列,若a m =a ,a n =b (n -m ≥1,m ,n ∈N *),则a m +n =nb -man -m .类比等差数列{a n }的上述结论,对于等比数列{b n }(b n >0,n ∈N *),若b m =c ,b n =d (n -m ≥2,m ,n ∈N *),则可以得到b m +n =________. 【知识点:类比推理】解:n -m d ncm 设数列{a n }的公差为d ,数列{b n }的公比为q .因为a n =a 1+(n -1)d ,b n =b 1q n -1,a m +n =nb -ma n -m,所以类比得b m +n =n -m d n c m . 10. 在平面上,设h a ,h b ,h c 是三角形ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a+P b h b+P ch c=1.把它类比到空间,则三棱锥中的类似结论为______________________. 【知识点:类比推理】解:P a h a +P b h b +P c h c +P dh d =1 设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P aha+P b h b+P c h c+P dh d=1.11.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.①sin 213°+cos 217°-sin 13°cos 17° ②sin 215°+cos 215°-sin 15°cos 15° ③sin 218°+cos 212°-sin 18°cos 12° ④sin 2(-18°)+cos 248°-sin(-18°)cos 48° ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°(1)试从上述五个式子中选择一个,求出这个常数.(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.【知识点:简单的合情推理】 解:(1)选择②式计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=34. (2)sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°·cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 12. 已知函数f (x )=-aa x +a (a >0,且a ≠1).(1)证明:函数y =f (x )的图象关于点(12,-12)对称; (2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值. 【知识点:简单的合情推理】解:(1)证明:函数f (x )的定义域为全体实数,任取一点(x ,y ),它关于点(12,-12)对称的点的坐标为(1-x ,-1-y ).由已知y =-a a x +a ,则-1-y =-1+a a x +a =-a xa x +a ,f (1-x )=-a a 1-x +a =-a a a x +a =-a ·a x a +a ·a x =-a xa x +a,∴-1-y =f (1-x ),即函数y =f (x )的图象关于点(12,-12)对称.(2)由(1)知-1-f (x )=f (1-x ),即f (x )+f (1-x )=-1. ∴f (-2)+f (3)=-1,f (-1)+f (2)=-1,f (0)+f (1)=-1. 则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3.。
高中数学 2.1.1合情推理(归纳推理)教案 理 新人教B版选修2-2
2.1.1合情推理(归纳推理)【教学目标】理解合情推理的概念,掌握归纳推理与类比推理的方法;通过本节的学习,掌握归纳法和类比法的步骤,体会逻辑推理的严谨性;体会数学在现实生活中的应用.【教学重点】归纳推理的概念 【教学难点】利用归纳推理进行简单的推理一、课前预习:(阅读教材53—54页,完成知识点填空)1.根据______或______已知事实( )得出_____________,这种思维方式称为 。
推理都是由________和________两部分组成,推理可分为_________与______________2.__________________________________的推理叫做合情推理。
3.______________和____________是数学中常见的合情推理.4.根据一类事物的 具有某种性质,推出这类事物的____________都具有这种性质的推理,叫做归纳推理(简称_______).5.归纳推理的一般步骤:1. ; 2. .二、课上学习:例1.蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。
蛇,鳄鱼,海龟,蜥蜴都是爬行动物,结论______________.例2.参照教材54—55页两个例题,完成下列问题(1)=+321 ;=++33321 ;=+++3334321 ;=++++333354321猜想:=++++333...321n(2)=+==+n n n n n a a a a a a 猜测它的通项公式:并且中,数列,1111 (3)已知:2223sin 30sin 90sin 1502++=,2223sin 5sin 65sin 1252++=。
观察上述两等式的规律,请你写出一般性的命题 .三、课后练习:教材55页探索与研究:归纳凸多面体的面数、顶点数、棱数之间的关系.。
人教a版数学【选修2-2】2.1.1《合情推理》ppt课件
牛刀小试 1.已知a1=3,a2=6,且an+2=an+1-an,则a33为( A.3 B.-3 C.6 D.-6 [答案] A
)
[解析] a3=a2-a1=6-3=3, a4=a3-a2=3-6=-3, a5=a4-a3=-3-3=-6, a6=a5-a4=-6-(-3)=-3, a7=a6-a5=-3-(-6)=3, a8=a7-a6=6. 归纳猜想该数列为周期数列,且周期为6,所以a33=a6×5+3 =a3=3,故应选A.
(3)∵2 Sn=an+1, ∴2 S1=a1+1,即 2 a1=a1+1,∴a1=1. 又 2 S2=a2+1,∴2 a1+a2=a2+1, ∴a2 2-2a2-3=0. ∵对一切的 n∈N*,an>0,∴a2=3. 同理可求得 a3=5,a4=7,猜测出 an=2n-1.
[解析] (1)由已知有a1=3=22-1, a2=2a1+1=2×3+1=7=23-1, a3=2a2+1=2×7+1=15=24-1, a4=2a3+1=2×15+1=31=25-1. 猜测出an=2n+1-1,n∈N* (n≥2).
(2)由已知有 a1=a, 2-a 1 1 1 a2 = = ,a3= = , 2-a1 2-a 2-a2 3-2a 3-2a 1 a4 = = . 2-a3 4-3a n-1-n-2a 猜测出 an= .(n≥2) n-n-1a
-1
) B.nn D.(2n)2
[答案] B
1 4 x x 4 [解析] 由 x+x ≥2,x+x2=2+2+x2≥3, b x x x b 可推广 x+x3=3+3+3+x3≥4,知 b=33, a x x x a 所以对于结论 x+xn=n+n+…+n+xn≥n+1 知 a=nn, 故 应选 B.
高中数学新人教版B版精品教案《人教版B高中数学选修2-2 2.1.1 合情推理》
合情推理(教学设计)------沈阳市第三十五中学齐婷婷教材说明:人教B版选修2-2《合情推理与演绎推理》课型:新授课课时:1课时学情分析:(一)学生的知识经验在前面学生已通过对逻辑一章的学习,具备了基本的逻辑思维能力,结合已学过的数学实例和日常生活中的实例,具有了一定的探索,证明的经验,了解了逻辑证明在数学以及日常生活中的作用。
(二)学生的生活基础学生已经具备了基本的逻辑知识,有较强的逻辑推断能力,掌握了简单命题和复合命题,以及命题之间推断关系,即充分必要条件,能够用已有的知识的引申去解决一些生活中常见的推断问题。
(三)学生的思维水平由于受以前传统教学方式的影响,学生的数学证明思路仍然过于简单和没有逻辑性,还有没有形成一套完整的思维体系去解决数学问题的证明,因此在学习上缺少谨慎思维和逻辑思维能力。
教学内容分析教学的主要内容:合情推理(归纳推理,类比推理)教学目标(一)知识与技能1.结合已学过的数学实例和生活中的实例,了解合情推理的含义。
2.能利用归纳进行简单的推理,体会并认识合情推理在数学发现中的作用。
(二)过程与方法1.通过探索,研究,归纳,总结形成本节的知识网络。
2.让学生认识到数学既是证明的科学,又是归纳的科学,数学规律和结论的发现往往使用的是合情推理。
(三)情感态度价值观1.结合本节内容,强调推理与其他学科以及实际生活的联系,体会推理的意义及重要性。
2.体会合情推理有助于培养学生进行归纳的严谨作风,从而形成实事求是的好习惯。
教学重点归纳推理及类比推理教学难点(一)教会学生归纳推理的基本方法(二)如何提高学生的数学思维能力以教师为主导,以学生为主体,以能力发展为目标,从学生的认识规律出发进行启发。
在合情推理的讲授中运用讨论法,讲授法调到送学生积极性,引导学生在学习过程中体会数学的应用价值,感受知识的无穷魅力。
教学资源与手段资源:白粉笔,展台,实物投影仪手段:利用幻灯片加载实例,贴合实际,加强理解教学设计过程归纳推理:根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳)。
高中数学 第二章 推理与证明 2.1.1 合情推理教学设计 新人教A版选修2-2-新人教A版高二选修
合情推理教学目标:1.了解合情推理的含义;理解归纳推理的概念,能利用归纳的方法进行一些简单的推理.2.培养学生的归纳探索能力,提高学生的创新意识.3.培养学生勇于创新而又不失严谨的思维习惯和在探索真理时锲而不舍的钻研精神.重点与难点:本节课的教学重点是归纳推理的概念理解和应用;教学难点是提高学生从特殊到一般的归纳能力.教学方式:本节课采用的是启发式教学,综合使用了讲授、问答、活动等多种教学方式.教学工具:多媒体、圆纸片、硬币.教学过程:推理.三问:对比(1)、(3)这两个推理,你能发现它们的相同点和不同点吗?3. 归纳推理的概念形成幻灯片:看下面的例子,试写出一般性结论.(1)1+3=4;1+3+5=9;1+3+5+7=16.(2)一元一次方程有一个实数根;一元二次方程最多有两个实数根;一元三次方程最多有三个实数根.提问:什么是归纳推理?学生发言,教师点评.总结:根据一类事物的部分对象具有某种性质,推出该类事物的所有对象都具有这种性质的推理,称为归纳推理(简称归纳).回顾给出定义的过程,其本身就是归纳(从特殊到一般)的过程,所以可以说“我们归纳出了归纳”. (这两个“归纳”上有点区别,第一个重在归纳总结,第二个才是归纳推理.)二问的目的是:引导学生归纳合情推理的概念.三问的目的是:引出归纳推理(不必出现类比推理这个名词).纯数学的实例,使学生体会归纳推理的含义.引导学生概括归纳推理的概念.现学现用,而且这句话本身很有趣,有利于激发学生的兴趣.三. 经典探究,深化新知幻灯片:汉诺塔问题汉诺塔问题的探索,完整体现了归纳推理的过程,很具有代2111112222n n -个个2(N*)n ∈21111122223333n n n -=个个2个3.*41,N n n ++∈,计算)10(,),f 的值,并归纳一般性结论.。
高中数学 2.1.1 合情推理学案 新人教A版选修2-2
§2.1.1 合情推理学习目标:1、了解合情推理的含义,能利用归纳和类比等进行简单的推理;2、了解合情推理在数学发现中的作用。
一、主要知识:1、归纳推理: 。
2、类比推理: 。
二、典例分析:〖例1〗:(1)已知数列{}n a 中,11a =,112nn na a a +=+,求出234,,a a a 的值,并归纳猜想通项公式n a 。
(2)设平面内有()3n n ≥条直线,其中有且仅有两条直线互相平行,任意三条直线不过同一点,若有()f n 表示这n 条直线交点的个数,则()4f = ,当4n >时,()f n = 。
〖例2〗:在三棱锥S ABC -中,SA SB ⊥,SB SC ⊥,SC SA ⊥,且,,SA SB SC 和底面所成角分别为123,,ααα,三侧面,,SBC SAC SAB ∆∆∆的面积分别为123,,S S S ,类比三角形的正弦定理,给出空间情形的一个猜想。
〖例3〗:已知椭圆具有性质:若,M N 是椭圆C 上关于原点对称的两点,点P 是椭圆上任意一点,当直线,PM PN 的斜率都存在,并记为,PM PN k k 时,那么PM k 与PN k 之积是与点P 的位置无关的定值。
试对双曲线()222210x y a b a b -=>>写出类似特征的性质,并加以证明。
三、课后作业:1、已知123,6a a ==,且21n n n a a a ++=-,则33a =( )A 、3B 、3-C 、6D 、6-2、已知{}n b 为等比数列,52b =,则912392b b b b =。
若{}n a 为等差数列,52a =,则的类似结论为( )A 、912392a a a a = B 、912392a a a a ++++=C 、123929a a a a =⨯D 、123929a a a a ++++=⨯3、在平面几何中,ABC ∆是等边三角形,其外接圆、内切圆的半径分别为,R r ,其比为2:1。
人教版高中数学选修2-2教案:2.1.1合情推理
普通高中课程标准实验教科书—数学选修2-2[人教版A]2.1.1合情推理教学目标:结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用教学重点:了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用教学过程一、引入新课1归纳推理(一)什么是归纳推理归纳推理的前提是一些关于个别事物或现象的命题,而结论则是关于该类事物或现象的普遍性命题。
归纳推理的结论所断定的知识范围超出了前提所断定的知识范围,因此,归纳推理的前提与结论之间的联系不是必然性的,而是或然性的。
也就是说,其前提真而结论假是可能的,所以,归纳推理乃是一种或然性推理。
拿任何一种草药来说吧,人们为什么会发现它能治好某种疾病呢?原来,这是经过我们先人无数次经验(成功的或失败的)的积累的。
由于某一种草无意中治好了某一种病,第二次,第三次,……都治好了这一种病,于是人们就把这几次经验积累起来,做出结论说,“这种草能治好某一种病。
”这样,一次次个别经验的认识就上升到对这种草能治某一种病的一般性认识了。
这里就有着归纳推理的运用。
(二)归纳推理与演绎推理的区别和联系归纳推理与演绎推理的主要区别是:首先,从思维运动过程的方向来看,演绎推理是从一般性的知识的前提推出一个特殊性的知识的结论,即从一般过渡到特殊;而归纳推理则是从一些特殊性的知识的前提推出一个一般性的知识的结论,即从特殊过渡到一般。
其实,从前提与结论联系的性质来看,演绎推理的结论不超出前提所断定的范围,其前提和结论之间的联系是必然的,即其前提真而结论假是不可能的。
一个演绎推理只要前提真实并且推理形式正确,那么,其结论就必然真实。
而归纳推理(完全归纳推理除外)的结论却超出了前提所断定的范围,其前提和结论之间的联系不是必然的,而只具有或然性,即其前提真而结论假是有可能的。
也就是说,即使其前提都真也并不能保证结论是必然真实的。
高中数学新人教版B版精品教案《2.1.1 合情推理》
合情推理
公主岭
市第三中学校 丁一 一、教学目标:
1、知识与技能:了解合情推理,并能进行简单的归纳和类比
2、过程与方法:启发式讲解、互动式讨论。
通过探究逐步达到教学目的
3、情感态度与价值观:
(1)体会数学知识与现实世界的联系,培养逻辑推理能力
(2)体会理论4、德育目标:鼓励学生发现问题,能利用归纳进行简单的推理,体会并认识合情推理在数学发现中的作用
二、教学重点、难点 1重点:理解合情推理
2难点:应用合情推理解决问题 三、课型:新授课 四、课时安排:1课时 五、教具:多媒体,汉诺塔模型 六、教学过程: (一)导入
通过富翁让仆人买芒果的例子,专家预测天气,医生诊断病情,考古学家推测文物出土年份,《明星大侦探》综艺来导入,引入合情推理 (二)新授
(1)通过哥德巴赫猜想引出归纳推理定义及特点
例1试一试,能归纳出什么结论
(2)通过费马猜想得出:归纳推理的结
论未必正确 (3)通过鲁班发明锯、人类发明潜水艇,以及火星上是否存在生命几个例子,引入类比推理,且类比推理的结论未必正确
(4)介绍数学中常见的类比推理 (5)课堂互动——汉诺塔 (6)小结:
归纳推理类比推理的定义及特点
归纳推理与类比推理统称为合情推理 (7)作业:
优化学案 课时45分钟 (8)板书
合情推理
1、归纳推理
2、类比推理
由部分到整体 由特殊到特殊
由个别到一般
{}公式试归纳出此数列的通项中,数列例)
3,2,1(1,1211⋯=+==+n a a a a a n
n
n n。
高中数学 2.1.1《合情推理与演绎推理》课件 新人教选修2-2
B c2=a2+b2
a
c
s1 o s2
s3
Cb
A
B
C
猜想: S2△ABC =S2△AOB+S2△AOC+S2△BOC
第十二页,共20页。
例3:(2001年上海)已知两个圆①x2+y2=1:与② x2+(y-3)2=1,则由①式减去②式可得上述两圆 的对称轴方程.将上述命题在曲线仍然为圆 的情况下加以推广,即要求得到一个更一般 的命题,而已知命题应成为所推广命题的一 个特例,推广的命题为----设--圆---的---方--程---为---①-------(b-x≠---a-d-)-)2-+,-(则-y---由-b-)①-2-=-r式-2-与减---②去--(②-x---式-c-)可-2-+-得(--y上---d述-)-2-两=-r-圆-2-(-的-a-≠对---称c-或-轴-----
第十九页,共20页。
谢谢大家
2023/5/16
生产计划部
第二十页,共20页。
统称为合情推理。
合情推理常常能为我们提供证明的思路和方向
第十四页,共20页。
例:如图有三根针和套在一根针上的若干金属片. 按下
列规则,把金属片从一根针上全部移到另一根针上.
1.每次只能移动1个金属片;
2.较
大的金属片不能放在较小的金属片上面.试推测;把n个金属
片从1号针移到3号针,最少需要移动多少次?
归纳是立足于观察、经验、实验和对有限资料分析
的基础上.提出带有规律性的结论.
需证明
第三页,共20页。
练:数一数图中的凸多面体的面数F、顶点数V
和棱数E,然后用归纳法推理得出它们之间 的关系.
高中数学 2.1.1合情推理与演绎推理(一)教案 新人教版选修2-2-新人教版高二选修2-2数学教案
§2.1.1合情推理与演绎推理〔一〕[内容分析]:归纳是重要的推理方法,在掌握一定的数学基础知识〔如数列、立体几何、空间向量等等〕后,对数学问题的探究方法加以总结,上升为思想方法。
[教学目标]:1、知识与技能:〔1〕结合数学实例,了解归纳推理的含义〔2〕能利用归纳方法进行简单的推理,2、过程与方法:通过课例,加深对归纳这种思想方法的认识。
3、情感态度与价值观:体验并认识归纳推理在数学发现中的作用。
[教学重点]:〔1〕体会并实践归纳推理的探索过程〔2〕归纳推理的局限[教学难点]:引导和训练学生从的线索中归纳出正确的结论),试归纳出通项→如何证明:将递推公式变k 时命题成立,再证由这两步,可以归纳出什么结论? 〔目的:渗[练习与测试]: 〔基础题〕1〕数列2,5,11,20,,47,x …中的x 等于〔〕A .28B .32C .33D .272〕从222576543,3432,11=++++=++=中得出的一般性结论是_____________。
3)定义,,,A B B C C D D A ****的运算分别对应以下图中的(1)、(2)、(3)、(4),那么以下图中的〔A 〕、〔B 〕所对应的运算结果可能是〔〕.〔1〕 4〕 〔A A.,B D A D ** B.,B D A C ** C.,B C A D ** D.,C D A D ** 4)有10个顶点的凸多面体,它的各面多边形内角总和是________. 5)在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝, 第二件首饰是由6颗珠宝(图中圆圈表示珠宝)构成如图1所示的正六边形, 第三件首饰如图2, 第四件首饰如图3, 第五件首饰如图4, 以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六变形,依此推断第6件首饰上应有_______________颗珠宝,第n 件首饰所用珠宝总数为_________________颗.6)n n a n na 11+=+〔n=1.2. …〕11=a 试归纳这个数列的通项公式答案:1〕B 523,1156,20119,-=-=-=推出2012,32x x -==2〕2*1...212...32(21),n n n n n n n N ++++-+++-=-∈ 注意左边共有21n -项 3〕B4〕〔n-2〕3605〕 91,1+5+9+…4n+1=2n 2+3n+1 6〕 a 1=1,a 2=21 a 3=31… a n =n1〔中等题〕1〕观察以下的图形中小正方形的个数,那么第n 个图中有个小正方形.2〕-1 .3 .-7 .15 .( ) ,63 , , , 括号中的数字应为〔 〕 A.33 B.-31 C.-27 D.-57 3)设平面内有n 条直线〔n ≥ 3〕,其中有且仅有两条直线互相平行,任意三条直线不过同一点,假设用表示 n 条直线交点的个数,那么 f 〔4 〕=( ) A.3 B.4 C.5 D.64)顺次计算数列:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,的前4项,由此猜测123...)1()1(...321++++-++-++++=n n n a n 的结果. 答案:1〕1+2+3+4+…+(n+1)=)2)(1(21++n n 2〕B 正负相间,3=1+2,7=3+22,15=7+23,15+24=31,31+25=63 3〕C4〕依次为,1,22,32,42,所以a n =n 2〔难题〕1).迄今为止,人类已借助“网格计算〞技术找到了630万位的最大质数。
人教版高中数学选修2-2学案:2.1.1合情推理(二)
2.1.1合情推理(二)【学习目标】1.结合已学过的数学实例,了解类比推理的含义;2.能利用类比进行简单的推理,体会并认识合情推理在数学发现中的作用.【新知自学】知识回顾:归纳推理就是由某些事物的 ,推出该类事物的 的推理,或者由的推理.简言之,归纳推理是由 的推理.2.归纳推理的思维过程大致是:实验、观察→概括、推广→猜测一般性结论.3.归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想).新知梳理:问题1:鲁班由带齿的草发明锯;人类仿照鱼类外形及沉浮原理发明潜水艇;问题2:地球上有生命,火星与地球有许多相似点,如都是绕太阳运行、绕轴自转的行星,有大气层,也有季节变更,温度也适合生物生存,科学家猜测:火星上有生命存在. 以上都是类比思维,即类比推理.2.类比推理就是由两类对象具有和其中 ,推出另一类对象也具有这些特征的推理. 简言之,类比推理是由 到 的推理.3. 和 都是根据已有的事实,经过观察、分析、比较、联想,再进行 ,然后提出 的推理,我们把它们统称为合情推理.一般说合情推理所获得的结论,仅仅是一种猜想,未必可靠.对点练习:). A.合情推理是正确的推理 B.合情推理就是归纳推理C.归纳推理是从一般到特殊的推理D.类比推理是从特殊到特殊的推理2. 下面使用类比推理正确的是( ). A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C.“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c≠0)”D.“n n a a b =n (b )” 类推出“n na ab +=+n (b ):22n a +++也是等差数列4.三角形的面积为()2S a b c r =++⋅,,,a b c 为 三角形的边长,r 为三角形内切圆的半径,利用类 比推理,得到四面体的体积为_____ _________.【合作探究】典例精析:.类比角度实数的加法 实数的乘法运算结果运算律逆运算单位元变式练习:.例2.类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.变式练习:规律总结:.2. 类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质得出一个命题(猜想).3. 合情推理仅是“合乎情理”的推理,它得到的结论不一定真,但合情推理常常帮我们猜测和发现新的规律,为我们提供证明的思路和方法.【课堂小结】【当堂达标】1.若数列{a n }是等差数列,对于)(121n n a a a nb +++= ,则数列{}n b 也是等差数列. 类比上述性质,若数列{}n c 是各项都为正数的等比数列,对于0>n d ,则n d = 时,数列{}n d 也是等比数列.2. 在ABC ∆中,不等式1119A B C π++≥成立;在四边形ABCD 中,不等式1111162A B C D π+++≥成立;在五边形ABCDE 中,不等式11111253A B C D E π++++≥成立.猜想,在n 边形12n A A A 中,有怎样的不等式成立?3.如图,若射线OM ,ON 上分别存在点12,M M 与点12,N N ,则三角形面积之比11221122OM N OM N S OM ON S OM ON ∆∆=∙.若不在同一平面内的射线OP ,OQ 上分别存在点12,P P ,点12,Q Q 和点12,R R ,则类似的结论是什么?【课时作业】1.线段AB 两端点的坐标为1122(,),(,)A x y B x y ,则线段AB 的中点坐标为1212(,)22x x y y G ++,类比得:三角形ABC 三顶点坐标为112233(,),(,),(,)A x y B x y C x y ,则三角形ABC 的重心G 的坐标为 .2.在等差数列{}n a 中,若100a =,则有*121219(19,)n n a a a a a a n n N -+++=+++<∈且成立。
人教A版选修2-2 2.1.1合情推理 学案
第二章第1节 合情推理与演绎推理一、 合情推理 课前预习学案一,预习目标:了解合情推理的含义,能利用归纳和类比等方法进行简单的推理。
二,预习内容:(1) 从______________推出___________的结论,这样的推理通常称为归纳推理. 归纳推理的思维过程大致是试验、观察 —— 概括、推广 —— 猜测一般结论(2) 已知数列{}a n的每一项均为正数,a 1=1,1221+=+a an n (n=1,2,……),试归纳数列{}a n的一个通项公式。
(3) 根据两个对象之间在某些方面的____________,推演出它们在其他方面也______________,这样的推理通常称为类比推理.类比推理的思维过程大致为观察、比较 —— 联想、类推 —— 猜测新的结论 (4) 类比实数的加法和乘法,并列出它们类似的性质。
三、提出疑惑课内探究学案一、学习目标结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比进行简单的推理,体会并认识合情推理在数学发现中的作用。
二、学习过程:例1、在同一个平面内,两条直线相交,有1个焦点;3条直线相交,最多有3个交点;… …;从中归纳一般结论,n 条直线相交,最多有几个交点?例2、有菱形纹和无菱形纹的正六边形地板砖,按图所示的规律拼成若干个图案,则第n个图案中的正六边形地板砖有多少块?小结归纳推理的特点:例3、试将平面上的圆与空间的球进行类比。
练习:类比平面内直角三角形的勾股定理,试给出空间四面体性质的猜想。
小结类比推理的特点:当堂检测:1、已知数对如下:(1,1),(1,2),(2,1),(1,3)(2,2),(3,1),(1,4),(2,3),(3,2),(4,1)(1,5),(2,4),… …,则第60个数对是_______2、在等差数列{}a n中,na aa c n n +•••++=21也成等差数列,在等比数列{}b n中,dn=____________________ 也成等比数列课后练习与提高1、 右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a 所表示的数是(A)2 (B) 4 (C) 6 (D) 82、 下列推理正确的是(A) 把()a b c + 与 log ()a x y + 类比,则有:log ()log log a a a x y x y +=+. (B) 把()a b c + 与 sin()x y + 类比,则有:sin()sin sin x y x y +=+. (C) 把()nab 与 ()na b + 类比,则有:nnn()x y x y +=+.(D) 把()a b c ++ 与 ()xy z 类比,则有:()()xy z x yz =.3、四个小动物换座位,开始是鼠、猴、兔、猫分别坐1,2,3,4号位子上(如图),第一次前后排动物互换座位,第二次左右列动物互换座位,…,这样交替进行下去,那么第2005次互换座位后,小兔的座位对应的是(A)编号1 (B) 编号2 (C) 编号3 (D) 编号44、下列各列数都是依照一定的规律排列,在括号里填上适当的数 (1)1,5,9,13,17,( ); (2( ).5、从222576543,3432,11=++++=++=中,得出的一般性结论是 .第三次第二次第一次开始合情推理一、教材分析数学归纳法是人教A版普通高中课程标准实验教科书选修2-2第2章第三小节的内容,此前学生刚学习了合情推理,合情推理用的是不完全归纳法,结论的正确性有待证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)较大的金属片不能放在较小的金属片上面.
试推测:把n个金属片从1号针移到3号针,最少需要移动多少次?
◆反馈练习
1.如图所示,面积为 的平面凸四边形的第 条边的边长记为 ,此四边形内任一点 到第 条边的距离记为 ,若 ,则. 类比以上性质,体积为 的三棱锥的第 个面的面积记为 , 此三棱锥内任一点 到第 个面的距离记为 ,若 , 则 ( )
第03课时类比推理的理解,知道合情推理的方法和步骤,提升思维水平。
学习过程
一、学前准备
1.三角形的面积为 , 为
三角形的边长, 为三角形内切圆的半径,利用类
比推理,得到四面体的体积为______________
____________________________________________
2.已知数列 满足 , ( ),则 的值为, 的值为.
3.(课本P98A4)任取一个正整数,反复进行下述两种运算:
(1)若是奇数,就是该数乘以3再加上1;
(2)若是偶数,就将该数除以2。
你能据此作出什么猜想?
课后作业
1.(课本P98A1)根据下列图案中的圆圈的排列规则,猜想第(5)个图形由多少个圆圈组成,是怎样排列的;第n个图形有多少个圆圈
2.费马猜想:
法国数学家费马观察到
都是质数,于是他大胆提出了猜想。
请提出你的猜想:
二、新课导学
◆探究新知(预习教材P75~P77,找出疑惑之处)
1.归纳推理和类比推理统称为合情推理,合情推理的推理过程大致是什么?
◆应用示例
例1.(课本P75例4)看图2.1-2所示,有三根针和套在一根针上的若干金属片,按下列规则,把金属片从一根针上全部移到另一根针上.
2.(课本P98A2)猜想 的值。
3.(课本P98A3)设 ,并且对于任意 成立。猜想 的表达式。
新课标第一网
4.(课本P82)平面与空间的余弦定理
在平面内余弦定理给出了三角形的三条边与其中的一个角之间的关系(左图),四面体(右图)与三角形类比,(设二面角V-BC-D,V-BD-C,C-VB-D,B-VC-D,B-VD-C的大小依次为 )
三角形△ABC
四面体V-BCD
A,B,C
类比余弦定理,可以得到下列猜想:
A. B. C. D.
2.线段AB两端点的坐标为 ,则线段AB的中点坐标为 ,类比得:三角形ABC三顶点坐标为 ,则三角形ABC的重心G的坐标为
3.(课本P84A5)在等差数列 中,若 ,则有
成立。类比上述性质,在等比数列 ,若 ,则存在什么样的等式?
学习评价
1.对于平面几何中的命题“如果两个角的两边分别对应垂直,那么这两个角相等或互补”,在立体几何中,类比上述命题,可以得到命题:“____________________________”.