分块矩阵及其应用

合集下载

分块矩阵的性质及其应用【开题报告】

分块矩阵的性质及其应用【开题报告】

阵的相关计算简单化, 而且还可以用于证明一些与矩阵有关的问题. 分块矩阵应用于矩阵的秩和一些相关矩阵方面的证明问题, 以及求逆矩阵和方阵行列式的计算问题上, 对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解, 所以分块矩阵作为高等代数中的一个重要概念, 我们需要透彻的了解分块矩阵, 在此基础上较好地学会在何时应用矩阵分块, 从而研究它的性质及应用是非常必要的.根据目前国内外对矩阵应用研究的发展, 可以知道矩阵已经广泛应用到线性规划、线性代数、统计分析, 以及组合数学等.在这样的形式下, 必须要求对矩阵有一种科学的处理方式以提高应用效果.本文是通过查阅相关文献和学习相关知识后总结并探讨了分块矩阵在各方面的应用.当前对分块矩阵的应用主要发展到计算和证明两大方面.证明方面: 通过对矩阵的分块证明了有关矩阵秩的定理以及其他线性代数证明问题; 计算方面,本文通过对分块矩阵的性质的研究很好的解决了求矩阵的逆矩阵问题, 求行列式, 求矩阵的秩等问题的新的快捷方式.二、研究的基本内容, 拟解决的主要问题:研究的基本内容: 通过学习分块矩阵的相关的几种定义, 掌握分块矩阵的性质, 从而熟练分块矩阵的应用.解决的主要问题:1.了解分块矩阵的基本概念.2.探讨分块对角化的性质.3.研究分块矩阵的应用.三、研究步骤、方法及措施:研究步骤:1.查阅相关资料, 做好笔记;2.仔细阅读研究文献资料;3.在老师指导下, 确定整个论文的思路, 列出论文提纲, 撰写开题报告;4.翻译英文资料;5.撰写毕业论文;6.上交论文初稿;7.反复修改论文, 修改英文翻译, 撰写文献综述;8.论文定稿.方法、措施:通过到图书馆、上网等查阅收集资料, 参考相关内容. 在老师指导下, 与同组同学研究讨论, 用确定合理的方法来解决问题.四、参考文献:[1] 居余马. 线性代数[M]. 清华大学出版社,1992.[2] 穆大禄, 裴惠生. 高等代数教程[M]. 山东大学出版社, 1990.[3] 北京大学数学系. 高等代数[M]. 高等教育出版社.[4] 叶伯诚. 高等代数[M] . 青岛海洋大学出版社, 1989.[5]张敏. 分块矩阵的应用[J]. 吉林师范大学学报(自然科学版), 2003, 1(1): 120.[6] S.K.Jain. Linear Algebra: An Interactive Approach[M]. 北京: 机械工业出版社, 2003,7.[7] Hamilton J.D, “Time Series Analysis1” Princeton University Press[J].1999, 26 – 291.。

浅析分块矩阵的性质和应用[1]讲解

浅析分块矩阵的性质和应用[1]讲解

浅析分块矩阵的性质和应用作者姓名:周甜河南理工大学数学与信息科学学院数学与应用数学专业2007级2班性质1:分块矩阵都是可逆的,且逆矩阵为分块初等矩阵。

性质2:分块单位矩阵经过一次分块矩阵的初等变换后所得到的矩阵仍为分块初等矩阵。

摘要:分块矩阵在高等代数中有着广泛的应用,矩阵的分块运算是矩阵运算的一种重要方法。

本文主要讨论了分块矩阵的运算性质,初等变换,并举例说明和分析了分块矩阵在解决矩阵特征值计算和有关矩阵证明等问题中的应用。

利用分块矩阵可以使阶数比较高,比较复杂的矩阵和抽象矩阵的特征值问题的解决变得简明而清晰。

关键词:分块矩阵行列式特征值初等变换矩阵的逆Tentative Analysis of Properties and Applications of BlockMatricesAuthor Name:Zhou TianClass 2 Grade 2007 of Mathematics and Applied Mathematics of College Mathematics and Information Scienceof Henan Polytechnic University SchoolSummary:Block matrices has a wide use in Advanced Algebra. Operations of block matrices play an important role in the operation of matrices. This paper mainly illustrates the operation properties and the elementary transformations of block matrices. Several examples are given in the paper to show the applications of block matrices in calculating the eigenvalues of a matrix and proving a subject in connection with matrices. It is convenient to apply block matrices to deal with questions containing matrices with high order and complex appearances and calculating the eigenvalues of abstract matrices.Keywords: block matrices determinant eigenvalues elementary transformation the inverse of a matrix§1引言在高等代数中,矩阵是一项非常重要的内容,也是高等数学的很多分支研究问题的工具。

【文献综述】分块矩阵的性质及其应用

【文献综述】分块矩阵的性质及其应用
通过上面对矩阵历史的了解我们发现矩阵是很容易理解和掌握的. 然而, 矩阵在实际应
用中还是会遇到很多问题, 在实际生活中, 我们的很多问题可以用矩阵抽象出来, 但这些矩阵
一般都是高阶矩阵, 行数和列数都是一个相当大的数字, 因此我们在计算和证明这些矩阵时
会遇到很烦琐的任务. 这时我们得有一个新的矩阵处理工具, 来使这些问题得到更好的解决!
在文献[3]中给出了分块矩阵定义: 把一个 m n 矩阵 A , 在行的方向分成 s 块, 在列的方
向分成 t 块, 称为 A 的 s t 分块矩阵, 记作 A Akl st , 其中 Akl , k 1, 2,, s ,
l 1, 2,, t 称为 A 的子块, 它们是各种类型的小矩阵.
A
=
I3 0
A1
A2
并称它是 A 的一个 2 2 分块矩阵, 其中的每一个小矩阵称为 A 的一个子块. 常用的矩阵分块
方法, 除了上例中的 4 块矩阵, 矩阵的分块还有以下几种常用的分法:
(1) 按行分块
a11 a12 ... a1n A1
A
a12Βιβλιοθήκη ...a22 ...
... ...
| M || BC | | CA1B | .
文献[5-12]中还提到了有关分块矩阵的一些用法, 比如用分块矩阵证明有关矩阵乘积的
秩的定理: 矩阵乘积的秩不超过其因子的秩, 即 r( AB) r( A), 且 r( AB) r(B), 或者表示成
r( AB) min{r( A), r(B)}, 其中 r( A) 表示矩阵 A 的秩. 还可以利用分块矩阵求矩阵的行列
AD
式问题, 比如利用分块矩阵求高阶行列式
: 设 A, C 都是 n 阶矩阵, 其中| A | 0 , 并且

分块矩阵及其应用

分块矩阵及其应用

分块矩阵及其应用
分块矩阵是由若干个子矩阵组成的大矩阵,通常将行和列分成若干块,每块均为矩阵,因而得名。

分块矩阵在数学和工程领域有广泛应用。

一些应用包括:
1.矩阵求逆:对于大规模矩阵求逆,可以先将矩阵分成较小的块,在每个块的范围内求逆并重新组合。

2.矩阵乘法:矩阵乘法的时间复杂度与矩阵的大小有关,但矩阵块的大小也会影响乘法的效率。

分块矩阵可以提高矩阵乘法的效率。

3.矩阵分解:对于某些特定类型的矩阵,如对称正定矩阵和稀疏矩阵,分块矩阵分解可以有效地降低计算复杂度。

4.图像处理:分块矩阵可以用于图像处理中的分块压缩和离散余弦变换等算法,以提高图像处理的效率和质量。

5.结构力学:分块矩阵广泛应用于结构力学和有限元方法中,可以描述复杂的结构系统和分析结构系统的动态行为。

(完整版)分块矩阵及其应用汇总,推荐文档

(完整版)分块矩阵及其应用汇总,推荐文档

分块矩阵及其应用徐健,数学计算机科学学院摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量,而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块.分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理.关键词:分块矩阵;行列式;方程组;矩阵的秩On Block Matrixes and its ApplicationsXu Jian, School of Mathematics and Computer ScienceAbstract In the higher algebra, block matrix is a generalization of matrix content.In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc.Keywords Block matrix; Determinant; System of equations; Rank of a matrix11 ⎪1 引 言我们在高等代数中接触到矩阵后,学习了矩阵的相关性质,但是对于一些复杂高阶矩阵,我们希望能将问题简化. 考虑将矩阵分割为若干块,并将矩阵的部分性质平移至分块矩阵中,这样的处理往往会使问题简化.定义 1.1 [1] 分块矩阵是把一个大矩阵分割成若干“矩阵的矩阵”,如把 m ⨯ n 矩阵分割为如下形式的矩阵:⎛A 11A ⎫ 1n ⎪A m ⨯n = ⎪A m 1 A m n特别地,对于单位矩阵分块:⎝ ⎭ ⎛E 0 0 ⎫ ⎪ E n ⨯n = 0 0 0 ⎪ 0 E ⎝n n ⎭ 显然,这里我们认识的矩阵元素不再局限于数字,而是一个整体,这里的A 所代表的是大矩阵囊括的小矩阵,而小矩阵一般是我们熟知的常见矩阵.ij依照以上设想,有关矩阵性质的一些问题,我们可以考虑用分块矩阵的思路来解决.2.1 矩阵的相关概念2 分块矩阵在矩阵的学习中,我们学过一些最基本的概念,比如矩阵的行列式、矩阵 的秩、矩阵的逆、初等变换、初等矩阵等等.事实上,我们发现:分块后的矩阵同样用到这些概念.a 11 定义 2.1.1[2]n 级行列式a 21a 12 a 22 a 1n a 2n等于所有取自不同行不同列的a n 1 a n 2a nn 个元素的乘积a 1j a 2ja n j的代数和,这一定义又可写成:12na 11 a 21 a 12a 22a 1na 2n =(-1) (j 1j 2 j n )a aa .a n 1 a n 2a n∑j 1j 2 j n1j 1 2j 2n j n[2]定义 2.1.2向量组的极大无关组所含向量的个数称为这个向量组的的秩.所O I ⎪ ⎪ ⎪1谓矩阵的行秩就是指矩阵的行向量组的秩;矩阵的列秩就是矩阵列向量组的秩. 定义 2.1.3 [2] n 级方阵称为可逆的,如果有n 级方阵 B ,使得A B = A -1 .BA = E (这里 E 是n 级单位矩阵),那么B 就称为 A 的逆矩阵,记为定义 2.1.4 [3] 对分块矩阵施行下列三种初等变换: (1) 互换分块矩阵的某两行(列);(2) 用一个非奇异阵左(右)乘分块矩阵的某一行(列);(3) 用一个非零阵左(右)乘分块矩阵的某一行(列)加至另一行(列)上, 分别称上述三种初等行(列)变换为分块矩阵的初等行(列)变换. 定义 2.1.5 [3] m + n 2 ⨯ 2 ⎛I m O ⎫对 阶单位矩阵作 分块,即I m +n = O I ⎪ ,然后⎝ n ⎭对其作相应的初等变换所得到的矩阵称为分块初等矩阵. 分块矩阵具有以下形式:(1) 分块初等对换阵⎛I n O ;⎫ ⎝ m ⎭⎛P O ⎫ ⎛I m O ⎫(2) 分块初等倍乘阵 0 I ⎪ , ⎪ ;⎝ n ⎭ (3) 分块初等倍加阵⎛I m R 1 ⎫ O I ⎝ 0 Q ⎭ ,⎛I m O ⎫ ; S I ⎝ n ⎭ ⎝ n ⎭其中 P , Q 分别是m 阶和n 阶可逆方阵,且R ∈ R m ⨯n ,S ∈ R n ⨯m为非零阵.2.2 矩阵的运算性质矩阵的运算包括加法、乘法、数乘,这里主要讨论矩阵的运算性质: 定义 2.2.1 [4] 矩阵加法:设A = (a ) , B = (b ) 是两个同型矩阵,ij snij sn则矩阵C = (c i j )= (a i j+ b i j )称为 A 和 B 的和,记为C = A + B .元素全为零的矩阵称为零矩阵,记为O s n ,可简单记为O,对于矩阵 A 、 B ,有:(1) A + O = A(2) A + ( -A ) = 0(3) A - B = A + ( -B )(4) ( A + B ) + C = A + ( B + C )snsnn11 (5)A + B = 定义 2.2.2 [4] B + A矩阵乘法:设A = (a ) ,B = (b ) 是两个不同型矩阵,i k s nk j n m那么矩阵C = A B =(c i j ),称为矩阵 A 与 B 的乘积,其中:smc i j = a i 1b 1j + a i 2b 2j+ a i n b n j= ∑a i k b k jk =1在乘积的定义中,我们要求第二个矩阵行数和第一个矩阵列数相等.特别地,矩阵的乘法和加法满足以下性质:(1) A ( B + C ) = A B + A C(2) ( B + C )A = B A + C A(3) (A B )D =A (B D )⎛k a 11 k a 1k a 1 ⎫定义 2.2.3 [4] 矩阵数乘: k a 21k ak a 2n ⎪ ⎪A = (a ) 与 数 22 ⎪称为矩阵 ⎪⎪ ij sn k a k a k a ⎝ s 1 s 2 s n ⎭k 的数量乘积,记为kA ,有以下性质:(1) 1 * A = A ;(2) k(l A ) = (k l )A ;(3) k ( A + B )= kA + kB ;(4) (k + l )A = kA +lA ; (5) k (A + B ) = kA +kB .2.3 分块矩阵的初等变换性质我们对于分块矩阵,也有其运算性质:设 A 、 B 是m ⨯ n 矩阵,若对它们有相同的划分,也就有:⎛A 11 + B A 1t + B 1t ⎫ ⎪ 加法:A + B = ⎪ . ⎪ A + B A + B ⎪ ⎝ s 1 s 1 st st ⎭乘法:C = A B , 其中:∑ ⎪ 1 C i j = A i 1B 1j + A i 2B 2j+ + A i n B n j⎛k A 11k A 1 ⎫⎪ n= A i k B k j .k =1数乘:k A =⎪ .⎪ k Ak A⎝s 1 s t ⎭总结了矩阵的运算性质,我们主要看看分块矩阵初等变换性质:定义 2.3.1 [2] 由单位矩阵 E 经过一次初等变换得到的矩阵称为初等矩阵. 初等矩阵都是方阵,包括以下三种变换:(1) 互换矩阵 E 的i 行与 j 行的位置; (2) 用数域 P 中的非零数c 乘 E 的i 行; (3) 把矩阵 E 的 j 行的k 倍加到i 行.定义 2.3.2 [5] 将单位矩阵分块,并施行如下三种变换中的一种变换而得到的方阵称为分块初等矩阵:(1) 对调两块同阶的块所在的行或列; (2) 某一块乘以同阶的满秩方阵;(3) 某一块乘以一个矩阵后加到另一行上(假定这种运算可以进行).如:我们对分块矩阵⎛ A B ⎫进行相应变换,只要应用矩阵的计算性质,左乘对⎝C D ⎭ 应分块矩阵: ⎛ O E m ⎫ ⎛ A B ⎫ ⎪⎪⎛C D ⎫ ⎪ ⎝E n O ⎭ ⎝C D ⎭⎝ A B ⎭ ⎛P O ⎫ ⎛ A B ⎫ ⎛P A = P B ⎫ O E ⎪C D ⎪ ⎪⎝ n ⎭ ⎝⎭ ⎝ C D ⎭ ⎛E m O ⎫ ⎛ A B ⎫ ⎛ = A B⎫P E ⎪C D ⎪ ⎪C + P AD + P B⎝ n ⎭ ⎝⎭ ⎝ ⎭2.4 矩阵的分块技巧对矩阵的分块不是唯一的,我们往往根据问题的不同进行不同的分块,分块的合适与否,都对问题的解决至关重要,最常见的有四种分块方法[6] :(1) 列向量分法,即A =(1,⎛ ⎫ ⎪, n ),其中j 为 A 的列向量.(2) 行向量分法,即A = ⎪ ,其中j 为 A 的行向量.⎪ ⎝ m ⎭=1⎪ (3)分两块,即A = (A 1, A 2 ),其中A 1 ,A 2 分别为A 的各若干列作成.或 A = ⎛B ⎫ ,其中B ,B 分别为 A 的若干行作成. B ⎪1 2 ⎝ 2 ⎭⎛C 1 C 2 ⎫(4) 分四块,即A =C C ⎪ .⎝ 3 4 ⎭我们在进行分块时,希望分割的矩阵块尽可能是我们所熟悉的简单矩阵,于是,我们有必要熟悉一些常见的矩阵.2.5 常见的矩阵块我们把高等代数中学习过的一些常见矩阵总结如下: (1) 单位矩阵:对角线元素都为1,其余元素为0 的n 阶方阵. (2) 对角矩阵:对角线之外的元素都为0 的n 阶方阵. (3) 三角矩阵:对角线以上(或以下)元素全为0 的n 阶方阵. (4) 对称矩阵:满足矩阵 A 的转置和 A 相等. (5) 若尔丹(Jordan )块:形如⎛ 0 1 0 0 ⎫ 0 ⎪J ( ,t ) ⎪= ⎪0 0 ⎪ 0 0 0 1 ⎝ ⎭(6) 若尔丹形矩阵:由若干个若尔丹块组成的准对角矩阵, 其一般形状形如:⎛A 1 ⎫⎪ A 2⎪ ⎪ ⎪A ⎪ ⎝n ⎭在复杂矩阵中,找到这些矩阵块,会使计算简化.3.1 行列式计算的应用3 分块矩阵及其应用定理 3.1.1 [2] 拉普拉斯(Laplace )定理:设在行列式 D 中任意取定了k 个 行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式 D .事实上,行列式计算中的拉普拉斯定理就包括了矩阵分块的思想,它通过取k 级子式的方法,提取出矩阵内的矩阵块. 然而,在行列式计算中,行列式a ⎪ a 按行或列的展开更为常用. 这里,我们最常用到的是取列向量分块和行向量分块.例 3.1.1 [7] :(爪形行列式)计算行列式:a 01 1 1 1 a 10 0 1 0 a 2 0 ,其中a i ≠ 0(i = 1, 2, , n ) .1 0 0 a n解:设Q =A D ,其中A = (a )C B a 1 B =,C = ( 1, 1, , 1)T ,D = ( 1, 1, , 1) .a n因为a i ≠ 0(i = 1, 2, , n ) ,所以 B 是可逆矩阵.-1⎛n 1 ⎫又易知: A - D B C = a 0 - ∑ ⎪ . ⎝ i =1 i ⎭根据分块矩阵乘法: ⎛ E0 ⎫ ⎛ A D ⎫ --1 ⎪ ⎪= ⎛A D ⎫-1 ⎝ C A E ⎭ ⎝C B ⎭ ⎝ 0 B - C A D ⎭A D -1 -1 ⎛ n 1 ⎫则:= AB - C A D =B A - D BC = a a a a-∑ a ⎪C B⎛n 1 ⎫ 12n 0⎝i =1 i ⎭故:原行列式=a 1a 2 a n a 0 - ∑ ⎪ . ⎝ i =1 i ⎭例 3.1.2 [7] :(对角行列式)计算行列式:adH 2n= a d.c bcb解:令⎪ a x A =⎛a ⎫⎪ ,B = ⎛b ⎫⎪ ,C = ⎛ c ⎫ ⎛ ,D = d ⎫⎪ ⎪ ⎪ ⎪ ⎪ a ⎪ b ⎪ c ⎪ d ⎪ ⎝ ⎭ 为n 阶方阵. 由于a ≠ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ 0,故 A 为可逆方阵.⎛ b - c a -1d⎫⎪ 又易知:B - C A -1D =⎝ b - c a -1d ⎪ b - -1 ⎪ ca d ⎭故 H 2n= A D = C BAB - C A -1D = a n (b - c a -1d )n= (a b - c d )n .例 3.1.3 [8] :设 A 、 B 、C 、 D 都是n 阶矩阵,证明当 AC = CA 时, A 可逆时,有A D= A B - C DC B⎛ A D ⎫ ⎛E -A 1D-⎛ A 0 ⎪ ⎫,证明:若 A 可逆,⎪ ⎪ =-1 ⎝C B ⎭ ⎝OE ⎭ ⎝C B - C A D ⎭A D故:=C BAB - C A -1D = A B - A C A-1D = A B - C D .注意到,这里计算分块矩阵行列式和计算一般数字矩阵行列式有所区别,不是简单的a d c b= a b - c d ,其矩阵块限制条件有所加强. 所以本例告诉我们,在矩阵分块以后,并非所有一般矩阵性质都可以应用到分块矩阵中.3.2 线性方程组的应用对于线性方程组,我们有以下四种表述: (1) 标准型:⎧a 11x 1 + a 12x 2+ + ax = b ⎪ 1nn 1⎨ax + ax + + a x = b ; ⎪a 21 x 1+ 22 2 + + 2n n a x = b ⎩ m1 1 m2 2 m n n m (2) 矩阵型:令A = ⎣a i j ⎦m ⨯n,x = (x 1, x 2, , x n )' ,B = (b 1, b 2, b m )' 方程组可以表述为: Ax = B ;(3) 列向量型:令2⎢a ⎥ ⎝O O⎪ ⎪ ⎪ ⎡a 11 ⎤ ⎢21 ⎥⎡a 12 ⎤⎥ 22 ⎡a 1n ⎤ ⎢ ⎥ = , 1 ⎢ ⎥ 2 = , , ⎢ ⎥= ⎢a 2n ⎥ n ⎢ ⎥ ⎢ ⎥ ⎣a m 1 ⎦ ⎢ ⎥ ⎣a m 2 ⎦ ⎢ ⎥ ⎣a m n ⎦则方程组又可以表述为:x 11 + x22+ + x nn = B ;(4)行向量型: x ' + x ' + + x' = B ' .1 12 2n n可见,矩阵分块为我们解方程组提供了新的思路.事实上,在求齐次线性方程组系数矩阵的秩时,在判断非齐次线性方程组是否有解时,行列向量组的合理应用,使得问题解决更加便捷、明了.例 3.2.1:(齐次线性方程组)求解方程组:⎧ x 1 + 2x 2 2x ⎪ + x + 2x 3 - 2x + x 4 = 0 - 2x = 0 ⎨ 1 x -2x - 4x 3 - 3x 4=0 ⎩ 1 2 3 4 解:对系数矩阵施行行变换,并将结果用分块矩阵表示:⎛1 0 -25 ⎫ - 3⎪ ⎛ 1 2 2 1 ⎪⎫ ⎛ 1 2 2 1 ⎪⎫4 ⎪ ⎛E C ⎫ A = 2 1 -2 -2 0 -3 -6 -4 0 1 2 ⎪ = 2 ⎪ ⎪1 -1 -4 -3⎪ 0 -3 -6 -4⎪ 3 ⎪ 12 ⎭ ⎝ ⎭ ⎝ ⎭ 0 0 0 0 ⎪⎪ ⎝ ⎭R ( A ) = 2,基础解系含4 - 2 = 2 个.而方程又满足:相应的可以取:⎛E 2 C ⎫ ⎛1 ⎫ = ⎛ 0⎫⎪ ,⎝O 1 O 2 ⎭ ⎝2 ⎭⎝ 0⎭⎛ 5 ⎫ 2 3 ⎪ ⎛ -C ⎫⎪⎝ E 2 ⎭⎪ = -2 4 ⎪3 ⎪1 0 ⎪ ⎝ 0 1 ⎭-⎪ 0 3 ⎪⎭⎛ 2 ⎫ ⎛ 5 ⎫3 ⎪有通解: = k + k,其中= -2⎪1, =- ⎪ 4 ⎪ . 1 12 21 ⎪2 ⎪ ⎪ ⎝ 0 ⎭⎪ 1 ⎪ ⎝ ⎭例 3.2.2 [9] :(非齐次线性方程组)求解方程组:⎧⎪ x 1 + 2x 2- 3x 4 + 2x 5 = 1 x - x - 3x + x - 3x = 2 ⎪ ⎨ 1 2 3 4 52x - 3x + 4x - 5x + 2x = 7 ⎪ 9x ⎩ 1= 25 解:我们分别对于方程组的系数矩阵和增广矩阵求秩:r ( A ) = 3,而r ( A ) = 4 , 故r ( A ) ≠ r ( A) . 从而方程组无解. ⎛ Λ45 -b ⎫事实上,我们可以利用分块矩阵叙述:经对分块矩阵 ⎝ E变换,都不能把最后一列变成0 ,所以该方程组无解.例 3.2.3:证明: n 阶方阵 A 的秩为n- 1,则r a n k ( A* )=1首先证明此例需要利用的一个引理: 4进行行列0 引理:A = (a i j )n ⨯n ,B = (b i j )n ⨯n ,r( A ) = r ,A B =0 ,则r ( B ) ≤ n - r证明:对矩阵 B 进行列向量的分块,B = (B 1, B 2, B n ) ,A B = 0 则有:A B i= 0 ,B i 是AX = 0 的解. 而A X =0 基础解系有n - r 个解.故:r ( B ) ≤ n - r 再证明本例: 因为r ( A )= n - 1,则 A = 0 ,A 至少有一个n -1级子式不为零,r a n k ( A* ) ≥ 1.而:A * =AE = 0 .利用引理得:r a n k ( A * ) ≤ 1,故r a n k ( A )=*.51 - 9 x +2 6x - 163 x4 + 2x 52 3 4 5⎝⎪ 1 2= ⎪ ⎪ 得证.3.3 求矩阵逆的应用我们在求矩阵逆的时候包括很多方法:利用定义求逆、利用伴随矩阵求逆、 利用初等变换求逆、混合采用初等行列变换求逆等等.这里我们统一用矩阵分块的思路来求矩阵的逆.例 3.3.1 [6] :设 A 、 B 是n 阶方阵,若 A + B 与 A - B 可逆,试证明: ⎛ A B ⎫可逆,并求其逆矩阵. B A ⎭ ⎪ 解:令D = ⎛ A B ⎫,由假设知 A + B ≠ 0 , A - B ≠ 0B A ⎪ .那么:D =A B⎝ ⎭A +B B =A + BB= A + B A - B ≠ 0 .B AB + A AA - B即 D 可逆. 再令D -1 ⎛D 1= D 2⎫ , 由D -1 = E ,即:可得:D D ⎝ 3 4 ⎭⎛ A B ⎫ ⎛D D ⎫ ⎛E 0 ⎫ ⎪ ⎪⎪ ⎝B A ⎭ ⎝D 3D 4 ⎭ ⎝ 0E ⎭⎪⎧A D 1 + B D 3 = E B D + A D = 0⎪12⎨A D +B D = 0 B D 2 + A D 4 = E ⎩ 2 4将第一行和第二行相加、相减,得:⎪D + D = ( A + B )-1 ⎨1 3⎩D 1 - D 3= ( A - B )-1 解之得:D = 1 ⎡( A + B )-1 + ( A - B )-1 ,D = 1⎡( A + B )-1 - ( A - B )-11 2 ⎣⎦ 2 2 ⎣⎦类似地:D 2所以: = D 3 ,D 4= D 1 .⎛ A B ⎫-11 ⎛( A + B )-1 + ( A - B )-1 ( A + B )-1 - ( A - B )-1 ⎫⎪ = 2 -1 -1 -1-1 ⎪ . ⎝B A ⎭ ⎝( A + B ) - ( A - B )( A + B ) + ( A - B ) ⎭ =⎝⎭ ⎝ - ⎪⎪ ⎪0 例 3.3.2 [6] :已知分块形矩阵M = ⎛ A B ⎫可逆,其中 B 为p ⨯ p 块, C 为C 0 ⎪ ⎝ ⎭q ⨯ q 块,求证: B 与C 都可逆,并求M-1 . 解:由0 ≠M = (-1)p qBC ,则: B ≠0 , C ≠ 0 ,即证 B 、C 都可逆.这里用分块矩阵的广义初等变换来求逆: ⎛ A B E p0 ⎫ → ⎛ A B E 0 ⎫ → ⎛ 0B E -AC -1 ⎫⎪ ⎪ -1 ⎪ -1⎝C 0 0 Eq ⎭ ⎝E 0 0 C ⎭ ⎝E 0 0 E ⎭→ ⎛ 0 E B -1-B -1A C -1 ⎫ → ⎛E 0 0 C-1 ⎫E 0 0 C-1⎪ 0 E B -1-B -1A C -1 ⎪ ⎭-1⎛C -1 ⎫故 :M = B -1-B -1A C-1 ⎪ . ⎝⎭备注:本例和上例属于同一个类型的问题,但我们利用分块矩阵,可以有两种不同的方法来解决,待定系数法和广义初等变换都是求逆的有效方法.值得注意的是,在题目没有直接给出分块矩阵的情况时,我们要学会自己构造:⎛ 1 0 1 ⎫ 例 3.3.3 [10] :求矩阵A = 2 1 0 ⎪的逆矩阵.⎝ ⎭ 解:构造矩阵:⎛ 10 1 1 00⎫⎪⎛ 1 0 1 1 0 0⎫⎪2 0 0 1 -2 -2 1 0 D = ⎛ A E ⎫= -3 1 0 0 1 2 -5 0 0 1⎪ → 0 2 -2 3 0 1⎪ ⎪⎪ ⎪ ⎝E O ⎭6⨯6 1 0 0 0 00 1 0 0 0 0⎪ 1 0 0 0 0 0⎪ 0⎪ 0 1 0 0 0 0⎪0 0 1 0 0 0 0 1 0 0 0 ⎝ ⎭ ⎝ ⎭⎛ 1 0⎫⎪ 00 1⎪ →1 0⎪ ⎛ 1 0 1 1 0 0⎫ 0 1 -2 -2 1 0 0 1⎪ → 1 0⎪⎪ ⎪ 0 0⎪ 0 0⎪ 00⎪ 0 0⎪ ⎝⎭ ⎝ ⎭ 0 1 1 0 1 -2 -2 1 0 2 7 -2 0 0 0 0 1 0 0 0 0 1 0 00 2 7 -2 0 -1 0 0 1 0 0 0 0 1 0 0- - ⎪ ⎝ ⎭ ⎝ ⎭1 ⎛ 1 0 0 1 0 0⎫⎪0 1 0 2 1 0 ⎛ 10 0 1 0 0⎪⎫ 0 1 0 2 1 0 0 0 17 -2 1⎪0 0 2 7 -2 1⎪1 ⎪→ ⎪ → 10 - 0 0 0⎪ .1 0 -1 0 0 0⎪2⎪ 0 1 2 0 0 0⎪ 00 10 01 0 0 0⎪0 0 1 0 0 0⎪⎝所以;⎭⎪⎝2⎭⎛1 0 1 ⎫ ⎛ 5 1 ⎫- 2 ⎪⎛ 1 0 0⎫ - 2 -1 - 2 ⎪ A -1 = 0 1 1 ⎪ -2 1 0⎪ = 5 -1 1 ⎪ . ⎪ ⎪ ⎪ 1 ⎪ 7 -2 17 1 ⎪ 0 0 2 ⎪ ⎝ ⎭ 2 -1 2 ⎪ 此方法在计算上并不简单,但是它把平常的单纯的一种变换变成了两种变换同时应用,把已知的可逆矩阵置于含单位矩阵的分块矩阵中,以此求逆矩阵, 有时比较简单.3.4 矩阵秩基本不等式矩阵理论中, 矩阵的秩是一个重要的概念,而矩阵经过运算后所得新矩阵 的秩往往与原矩阵的秩有一定关系. 现把高等代数书中有关矩阵秩最基本的不等式总结如下:(1)矩阵和的秩不超过两矩阵秩的和.即:设 A 、 B 均为m ⨯ n 矩阵,则:r ( A + B ) ≤ r(A ) + r ( B ) .(2)矩阵乘积的秩不超过各因子的秩.即:设 A 是m ⨯ n 矩阵 , B 是n ⨯ s 矩(3)r ⎛A B ⎫阵,则:r ( A B ) ≤≥ r ( A ) + r ( B ) . m i n {r ( A ) , r ( B )}.(4)r ⎝ 0 C ⎭ ⎪ ⎛A ⎫ ⎪⎪ ≥ A i j .A ⎪ ⎝ m ⎭再来介绍由分块矩阵证明导出的两个基本不等式例 3.4.1[11] :(薛尔弗斯特不等式)设A = (a ) ,B = (b ) ,证明:ij s ⨯nij n ⨯mr a n k ( A B ) ≥ r a n k ( A ) + r a n k ( B ) - n⎪ 证明:由分块矩阵的乘积⎛ E n 0⎪ ⎫ ⎛E B ⎫ ⎪⎛E n -B ⎫⎛E n 0 ⎫ -A E A n0 0 E ⎪ = ⎪0 - ⎝ s ⎭ ⎝ ⎭ ⎝ 知:m ⎭⎝ A B ⎭ r a n k⎛E n B⎫ = r a n k (E ) + r a n k ( -A B ) = n + r a n k ( A B )A 0 ⎪n.⎝ ⎭但,r a n k⎛E nB ⎫ A 0⎪= r a n k⎛B E n ⎫ ≥ r a n k ( A ) + r a n k ( B ) ⎪故:得证.⎝⎭ ⎝ 0 A ⎭.n + r a n k ( A B )≥ r a n k ( A ) + r a n k ( B )备注:在矩阵秩不等式的证明过程中,我们往往会构造如下的分块矩阵: (1) 矩阵不等式中含两个不同矩阵:构造 ⎛A 0 ⎫⎪;⎝ 0 B ⎭(2) 矩阵不等式中含有两个不同矩阵及阶数:构造⎛ A E ⎫ ⎪ 或者 ⎛ A 0 ⎫ ⎪.⎝ 0 B ⎭ ⎝E B ⎭具体分块矩阵的元素则要看题目所给的条件.例 3.4.2 [6] :(Frobenius 不等式)设 A 、 B 、C 是任意3 个矩阵,乘积ABC 有意义,证明:r ( A B C ) ≥ r ( A B ) + r ( B C ) - r ( B )证明:设 B 是n ⨯ m 矩阵,r ( B ) = r那么存在n 阶可逆阵 P , m 阶可逆阵Q ,使B = ⎛Er0⎫ P ⎪ Q .⎝ 0 0⎭把 P 、Q 适当分块:P = (M , S ),Q =⎛N ⎫, 由上式有: T ⎝ ⎭故:r ( A B C )= r ( A M N C ) B = (M , S )⎛E r0⎫ ⎛N ⎫ = M N .⎪ ⎪ ⎝ 0 0⎭ ⎝T ⎭≥ r ( A M ) + r ( N C ) - r0 ≥ r ( A M N ) + r ( M N C ) - r ( B )得证.= r ( A B ) + r ( B C ) - r ( B ) .3.5 矩阵秩不等式证明的应用矩阵基本不等式的证明思路,在一般不等式中也常常用到, 以下例题是对矩阵秩不等式的推广及其应用:例 3.5.1[11] :设 A 为m ⨯ k 矩阵, B 为k ⨯ n 矩阵,则证明:r a n k ( A )+r ank( B ) - k≤ r ank( AB) ≤ m i n {r a n k ( A ) , r a n k ( B )}证明:先证明右边的不等式,由:(A 0)(E k0 B ) = ( A A B ) ;E n可得:⎛E k A E 0⎪ ⎫ ⎛B ⎪⎫ = ⎛ B A B ⎫⎪ ,⎝m ⎭ ⎝ ⎭⎝ ⎭r a n k ( A ) =r ank( A 0) = r a n k ( A A B ) ≥ r a n k ( A B ) ;r a n k ( B ) = r a n k ⎛ B ⎫ = r a n k ⎛ B ⎫≥ r a n k ( A B ) .⎪ ⎪⎝ 0 ⎭ ⎝AB ⎭ 再证左边的不等式.注意到下列事实:⎛E m -A ⎫ ⎛ A 0 ⎫ ⎛E ⎪k -B ⎫ = ⎛ 0 -A B ⎫⎪ 0 E ⎪E B 0E⎪ E 0 ⎝k ⎭ ⎝ k 则:⎭ ⎝ n ⎭⎝ k ⎭0 ⎫⎛ 0r a n k ⎛ A ⎪ = r a n k-A B ⎫ ⎪于是:⎝E kB ⎭ ⎝E k0 ⎭⎛ A 0 ⎫r a n k ( A ) + r ank ( B ) ≤r ank ⎪ = r a n k ( -A B ) + r a n k (E k )= r a n k ( A B ) + k⎝E kB ⎭ 从而: r a n k ( A ) + r a n k ( B ) - k ≤ r a n k ( A B ) .这里也是用到构造矩阵的方法.例 3.5.2 [6] :设n 阶矩阵 A 、 B 可交换,证明:r a n k ( A + B ) ≤ r a n k ( A ) + r a n k ( B ) - r a n k ( A B )→ → , ⎝ ⎭ 解:利用分块初等变换,有:⎛A O ⎫ ⎛A B ⎫ ⎛A + B B ⎫⎪ ⎪⎪ ⎝O B ⎭ ⎝O B ⎭ ⎝ B B ⎭ 因为 AB = BA ,所以:⎛ E O ⎫ ⎛A + B B ⎫ = ⎛A + B B ⎫ .B -A - ⎪ B ⎪ O- ⎪B B A B ⎝ 于是,有:⎭ ⎝ ⎭ ⎝ ⎭r a n k ( A ) + r a n k ( B )= r a n k⎛A + B B ⎫≥ r a n k ⎛A + B B ⎫B ⎪⎝ B ⎭ ⎝ ⎪O-A B ⎭即:r a n k ( A + B )得证.≥ r a n k ( A + B ) + r a n k ( A B ) .≤ r a n k ( A ) + r a n k ( B ) - r a n k ( A B ) .例 3.5.3:设 A 是n 阶方阵,且r ( A ) = r ( A 2 ,证明:对任意自然数k ,有r ( A k ) = r ( A )⎛A 2O ⎫证:构造分块矩阵 O A 2 ⎪,由 Frobenius 不等式: 2 2 2 ⎛A O ⎫ ⎛A 2 -A 3 ⎫ ⎛O -A 3 ⎫ 3 r ( A )+r( A ) ≤ r ⎪ = r A A 2 A O ⎪ = r A O ⎪ = r ( A ) + r ( A ) . 由:r ( A ) = r ( A 2 ) ⎝ ⎭ ⎝ ⎭ ⎝ ⎭所以,r ( A3 ) = r ( A 2 * A )≤ r ( A2 ) .故: r(A 2 ) = r ( A 3 .由此可推得:r ( A3) = r ( A 4) , r ( A4) = r ( A5 ) , .故:对任意自然数k , 有:r ( A k ) = r ( A ) .3.6 综合应用在掌握了分块矩阵的技巧之后,可以由其导出的一个重要的定理:特征多项式的降阶定理,以下主要讨论该定理及其结论的应用.例 3.6.1 [6] :(特征多项式的降阶定理)设 A 是m ⨯n 矩阵, B 是n ⨯ m 矩阵. 证明: AB 的特征多项式f A B ( ) 与 BA 的特征多项式f B A( ) 有如下的关系:nm1 2 s证:先要把上式改写为:n f () =m f () .A BB AnE -m A B =mEE 1 Bn - B A .用构造法,设 ≠ 0 ,令: H =n.A E m⎛1 ⎫ ⎛E 1 B ⎫对 ⎛E n 0⎪ ⎫ E n B ⎪= n ⎪ ⎝ -A E⎪⎪ 1 ⎪ 两边取行列式得: n ⎭ A E⎝ m ⎭ 0 E - ⎝A B ⎪⎭ H = E -1 A B = 1 m E - A B .⎛E 1 B ⎫ ⎛E nm 0 ⎫⎛ 1( ) m1 B ⎫ 再对 n ⎪ -A E ⎪ E - B A ⎪ 两边取行列式得: ⎪ ⎪ = n⎪⎝ A E m ⎭⎝ n ⎭ ⎝ H = E -0 1B A = E m ⎭ 1 n E - B A .故: 1nE n- B A =1Em mn- A B() nmE n - B A = nE m - A B .上述等式是假设了 ≠ 0 ,但是两边均为的n + m 次多项式,有无穷多个值使它们成立(0)≠ ,从而一定是恒等式,即证.这个等式也称为薛尔弗斯特(Sylvester )公式. 以下例题是定理的应用. 例 3.6.2 [6] :设 A 为m ⨯ n 矩阵, B 为n ⨯ m 矩阵,证明: AB 与 BA 有相同的非零特征值.证:由定理:m E - B A = n E - A B .设 E m- A B = m -s (- ) ( - ) ( - ) ,其中12 m ≠么有:0 ,即 AB 有s 个非零特征值:1, 2, , s , 由上面两式,那nE - B A = ( - 1) ( - ) 2 (- )n- s s即证 BA 也只有s 个非零特征值:1, 2, , s .m∑ 例 3.6.3 [6] :设 A 、 B 分别是m ⨯n 和n ⨯ m 矩阵,证明:t r A B = t r B A .解:由上例知,若E - A B = m -s ( - a ) ( - a )m1s其中a 1a 2 a s ≠ 0. 则 AB 的全部特征值为1 = a 1, , s= a s , s +1= = m = 0 ,且:E - B A = n -s ( - a ) ( - a ) .n1s即 BA 的全部特征值为:1 = a 1,2 = a2, ,s +1= = n = 0 .从而 t r A B =sa ii=1=t r B A .可见,在一些问题中,直接利用特征多项式的降阶定理会更加方便处理,这里则要求我们对分块矩阵的了解更加深刻.结论本文主要通过“分块矩阵、分块矩阵及其应用”两个部分,分别简单介绍了分块矩阵的性质概念、导出的定理结论和相关应用.主要是将分块矩阵的技巧和推广做了一个内容的总结.本文简单的将矩阵工具应用于计算行列式、解决线性方程组、求矩阵的逆、证明矩阵秩的相关定理等,对应不同问题也举了几个重要的应用以及它们的综合应用.将以前出现的矩阵思想整体化,并对相关知识也做了一个系统的复习.最后,本文还有一些不足之处,有待于进一步的改善和提高.参考文献[1] 上海交通大学线性代数编写组. 线性代数[M]. 高等教育出版社, 1982. [2] 北京大学. 高等代数{M}. 高等教育出版社, 1998.[3] 高百俊. 分块矩阵的初等变换及其应用[J]. 伊犁师范学院学报, 2007(4):14-18.[4]张红玉, 魏慧敏. 矩阵的研究[M]. ft 西人民出版社, 2010.[5]雷英果. 分块初等方阵及其应用[J].工科数学, 1998, 14(4):150-154. [6]钱吉林. 高等代数题解精粹(第二版)[M]. 中央民族大学出版社, 2010.[7] 王莲花, 李念伟, 梁志新. 分块矩阵在行列式计算中的应用[J]. 河南教育学院学报(自然科学版), 2005, 14(3):12-15.[8] 张贤科, 许甫华. 高等代数学[M]. 清华大学出版社, 1998:91-96.[9]杨子胥. 高等代数习题集[M]. ft东科学技术出版社, 1981.[10]鲁翠仙. 分块矩阵在求矩阵逆的应用[D]. 云南:云南大学数学系数学研究所,2009:14-15.[11]刘丁酉. 高等代数习题精解[M].中国科学技术大学出版社, 1999.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

分块矩阵的初等变换及其应用

分块矩阵的初等变换及其应用

分块矩阵的初等变换及其应用一、引言分块矩阵作为矩阵的一种特殊形式,具有重要的数学应用。

在线性代数中,我们学习到了矩阵的初等变换,它们是一类重要的矩阵操作,可以通过一系列的行变换和列变换来改变矩阵的形态。

而分块矩阵的初等变换则是在分块矩阵中进行的一种特殊的操作,本文将详细介绍分块矩阵的初等变换及其应用。

二、分块矩阵的初等变换分块矩阵的初等变换是指对分块矩阵进行一系列的操作,包括交换分块的位置、对某个分块进行乘法变换和加法变换等。

这些操作可以通过矩阵的行变换和列变换来实现。

1. 交换分块的位置交换分块的位置是指将分块矩阵中的两个分块进行位置交换。

这种操作可以通过交换两个分块所在的行或列来实现。

2. 对某个分块进行乘法变换对某个分块进行乘法变换是指对分块矩阵中的某个分块进行乘以一个非零标量的操作。

这种操作可以通过将分块矩阵中对应的行或列乘以一个非零标量来实现。

3. 对某个分块进行加法变换对某个分块进行加法变换是指对分块矩阵中的某个分块进行加上另一个分块的操作。

这种操作可以通过将分块矩阵中对应的行或列加上另一个分块所在的行或列来实现。

三、分块矩阵的应用分块矩阵的初等变换在数学和工程领域中有着广泛的应用。

下面将介绍几个典型的应用场景。

1. 线性代数中的矩阵运算在线性代数中,我们经常需要对矩阵进行运算,如求逆矩阵、求特征值等。

分块矩阵的初等变换可以简化这些运算的过程,使得计算更加简便和高效。

2. 线性方程组的求解线性方程组的求解是数学中的一个重要问题。

分块矩阵的初等变换可以通过行变换和列变换将线性方程组转化为简化的形式,从而更容易求解。

3. 矩阵的相似性在矩阵的相似性中,我们经常需要对矩阵进行相似变换。

分块矩阵的初等变换可以通过对分块矩阵进行相似变换,从而得到相似的简化矩阵。

4. 矩阵的分解矩阵的分解是数学中的一个重要问题,可以帮助我们更好地理解矩阵的结构和性质。

分块矩阵的初等变换可以通过对分块矩阵进行分解,从而得到更简化的形式。

分块矩阵的原理和应用

分块矩阵的原理和应用

分块矩阵的原理和应用1. 原理分块矩阵是一种特殊的矩阵结构,将大型矩阵分割成更小的块状矩阵,以便进行更高效的运算和存储。

分块矩阵的原理主要包括以下几个方面:1.1 分块矩阵的定义分块矩阵由多个块状子矩阵组成,每个子矩阵都是相对较小的矩阵。

这些子矩阵可以是任意维度的矩阵,但通常都是方阵。

分块矩阵的维度取决于它所包含的子矩阵的维度和排列方式。

1.2 分块矩阵的运算分块矩阵可以进行各种矩阵运算,例如加法、减法和乘法等。

在进行这些运算时,可以利用分块矩阵的特殊结构,将运算过程分解为对各个子矩阵的运算,从而提高计算效率。

1.3 分块矩阵的存储分块矩阵的存储方式也与普通矩阵存储方式有所不同。

在分块矩阵中,每个子矩阵都被存储在一个相邻的内存块中,而各个子矩阵之间的存储空间可以是非连续的。

这种存储方式可以提高数据的局部性,进而提高计算效率。

2. 应用分块矩阵在科学计算和工程领域有广泛的应用,以下列举了一些常见的应用领域:2.1 计算机图形学在计算机图形学中,分块矩阵常用于表示和处理三维图形中的几何变换矩阵。

通过分块矩阵的运算,可以实现旋转、缩放和平移等常见的几何变换操作。

2.2 信号处理在信号处理中,分块矩阵常用于表示和处理信号的频谱信息。

通过分块矩阵的乘法运算,可以实现信号的卷积和相关等基本操作,进而实现滤波和频谱分析等应用。

2.3 优化算法在优化算法中,分块矩阵常用于表示优化问题的约束矩阵。

通过分块矩阵的运算,可以将大规模的优化问题分解为小规模的子问题,从而提高求解效率。

2.4 数据压缩在数据压缩领域,分块矩阵常用于表示和处理图像和视频数据。

通过分块矩阵的变换和压缩算法,可以实现图像和视频数据的无损或有损压缩,从而减小存储空间和传输带宽的需求。

3. 总结分块矩阵作为一种特殊的矩阵结构,在科学计算和工程领域有着广泛的应用。

它的原理包括定义、运算和存储等方面,通过合理利用分块矩阵的结构,可以提高计算效率和存储效率。

浅谈分块矩阵的性质及应用doc

浅谈分块矩阵的性质及应用doc

浅谈分块矩阵的性质及应用doc分块矩阵是由几个矩阵块组成的矩阵,它的出现主要是为了更好地解决某些复杂的数学问题。

在实际应用中,分块矩阵既可以用于表示线性系统,也可以用于表示迭代算法的计算过程。

本文将从性质和应用两个方面对分块矩阵进行浅谈。

1. 分块矩阵的性质分块矩阵的一些性质能够帮助我们更好的理解它的本质。

下面将介绍几个较为常见的性质。

(1) 直和分块矩阵:如果一个分块矩阵的所有矩阵块都是对角矩阵,那么我们称这个分块矩阵为直和分块矩阵。

直和分块矩阵与对角矩阵非常相似,都具有稳定的性质和巨大的计算优势。

(2) 块矩阵的转置:对于一个分块矩阵A,通常有以下转置公式:(A^T)_i,j=A_j,i。

也就是说,分块矩阵的转置相当于交换原矩阵的每一块。

(3) 块矩阵的乘法:设A和B是两个分块矩阵,当且仅当A的列数等于B的行数时,我们才可以进行矩阵乘法AB。

具体方法是将A中的每一块分别与B中的每一列乘起来,然后对结果进行相加。

另外还有两个性质需要注意。

首先,如果A和B都是直和分块矩阵,则它们的乘积也是直和分块矩阵。

其次,如果A和B都是分块对称矩阵,那么它们的乘积也是分块对称矩阵。

(1) 线性系统求解:分块矩阵可以用于求解大规模的线性系统,它的基本思想是将系统分成若干个小规模的子系统,利用线性代数中的基本定理,通过求解小系统的逆矩阵逐步求解全局矩阵的逆矩阵。

具体而言,我们可以将原矩阵A分解为A=BCD,其中B和D都是对角矩阵,C是一般的矩阵。

然后,我们可以将原始线性系统Ax=b转化为一个新的线性系统(D^-1CB)x=D^-1b。

由于B和D都是对角矩阵,所以它们的逆矩阵很容易求得。

接下来,我们只需要在新的线性系统中解x即可。

(2) 特征值计算:分块矩阵也可以用于特征值问题的求解,尤其是在计算大规模稀疏矩阵的特征值时特别有效。

具体而言,我们可以采用分块对角化的方法,将原矩阵A分解为A=BCD,其中B和D都是对角矩阵,C是一般的矩阵。

分块矩阵及其应用

分块矩阵及其应用

分块矩阵及其运用摘要分块矩阵是高等代数中的一个重要内容,是处理阶数较高的矩阵时常采用的技巧,也是数学在多领域的研究工具。

对矩阵进行适当分块,可使高阶矩阵的运算可以转化为低阶矩阵的运算,同时也使原矩阵的结构显得简单而清晰,从而能够大大简化运算步骤,或给矩阵的理论推导带来方便。

有不少数学问题利用分块矩阵来处理或证明,将显得简洁、明快。

本文先介绍了分块矩阵的概念、运算,几类特殊的分块矩阵,讨论了分块矩阵的初等变换,接着介绍了分块初等矩阵及其性质,最后分类举例说明了分块矩阵在高等代数中的一些应用,包括在在行列式计算中的应用,在证明矩阵秩的问题中的应用,在矩阵求逆问题中的应用,在解线性方程组问题中的应用,在线性相关性及矩阵分解中的应用,在特征值问题中的应用,在相似与合同问题中的应用以及在其他问题中的应用等。

大量的例体现了矩阵分块法的基本思想,说明了应用分块矩阵可以使高等代数中的很多计算与证明问题简单化,所以了解分析并掌握分块矩阵的性质与应用及相关的技巧是非常必要的。

关键词矩阵分块矩阵初等变换应用Block Matrix and its ApplicationAbstract:Matrix is an important concept in high algebra,it's often used to deal with high order matrix and it's an instrument of math in many fields.Dividing matrix in a proper way can turn the operation of high order matrix into the operation of a low order matrix.At the same time,it makes the structure of the original matrix look simple and clear,so it can simplify the steps of the operation a lot or bring the convenience for the theory derivation of matrix.A lot of math problems solved or proved by using block matrix appears concise.At the beginning,this paper introduces the concepts and operations of block matrix and some special kinds of block matrix,then,it discusses the elementary transformation of block matrix and introduces the elementary block matrix and it's natures.At last,it explains the use of block matrix in high algebra by making examples in several kinds,including the use in the calculation of determinant,the testify of the problem of the rank of matrix,the answer of the inverse of matrix,the answer of system of linear equations,the linear correlation and the dividing of matrix,the problem of the eigenvalue,the similar matrix and Contract matrix and so on.A lot of example shows the basic theory of block matrix,It shows that using block matrix can make the calculation and the testify in high algebra easier.It is necessary that we must learn and analyse and grasp the skill of block matrix which is an important concept in high algebra.Key words: matrix block matrix elementary transformation application目录1前言 (1)2分块矩阵 (1)2.1分块矩阵的定义 (1)2.2分块矩阵的运算 (2)2.2.1加法 (2)2.2.2数乘 (2)2.2.3乘法 (2)2.2.4转置 (4)2.3两种特殊的分块矩阵 (4)2.3.1分块对角矩阵 (4)2.3.2分块上(下)三角形矩阵 (5)2.4两种常见的分块方法 (6)2.5分块矩阵的初等变换 (7)2.6分块初等矩阵及其性质 (7)3分块矩阵的应用 (8)3.1在行列式计算中的应用 (9)3.2在证明矩阵秩的问题中的应用 (17)3.3在逆矩阵问题中的应用 (25)3.3.1解线性方程组法 (26)3.3.2初等变换法 (27)3.3.3三角分解法 (29)3.4在解线性方程组问题中的应用 (30)3.4.1齐次线性方程组 (30)3.4.2非齐次线性方程组 (31)3.5在线性相关性及矩阵分解中的应用 (34)3.5.1关于矩阵列(行)向量的线性相关性 (34)3.5.2矩阵的分解 (34)3.6在特征值问题中的应用 (35)3.7分块矩阵在相似问题中的应用 (37)3.8分块矩阵在合同问题中的应用 (38)3.9分块矩阵在矩阵分解中的应用 (40)3.10分块矩阵的其他应用 (41)4结束语 (42)参考文献 (43)致谢 (44)1 前言矩阵作为重要的数学工具之一,有极其实用的价值。

分块矩阵的性质及其应用

分块矩阵的性质及其应用

分块矩阵的性质及其应用依宇天(吉首大学数学与计算机科学学院,湖南 吉首 416000)摘要:矩阵分块是解决矩阵问题的常用方法,矩阵分块适当可为解决问题带来极大方便。

关键词:分块矩阵、矩阵的分块、矩阵的计算、证明、应用Block matrix and its applicationYi Yu Tian(College of mathematics and computer science, jishou university,jishou hunan,416000)Abstract : Block matrix is a matrix to solve problem of the commonly used methods,block matrix suitable for solve the problem bring great convenience.Keywords: Block matrix, block matrix, matrix calculation, proof, application引言:本文详细、全面论述证明了矩阵的分块在《高等代数》中的应用。

包括用分块矩阵证明矩阵乘积的秩的定理问题,用分块矩阵求逆矩阵问题,用分块矩阵求矩阵的行列式问题,用分块矩阵求矩阵的秩的问题,利用分块矩阵证明一个矩阵是零矩阵的问题。

1.分块矩阵1.1分块矩阵的定义令A 为m ⨯n 矩阵,把A 分成如下形式⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=st s s t t A A A A A A A A A A 212222111211 其中A ij (i=1、2…S ,j=1、2…t )为m i ⨯n j 矩阵,且m 1+m 2+…+m s =m ,n 1+n 2+…+n t =n ,称其中的每一个小矩阵为A 的一个分块。

1.2分块矩阵的计算 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=st s t A A A A A 1111,=B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡st s t B B B B 1111这里A 、B 的行列数相同,且分法一致,那么⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=+st st s s t t B A B A B A B A 11111111B A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=st s t aA aA aA aA aA 1111.分块矩阵乘法运算复杂一些,但只要做到A 的列的分法与B 的行的分发一致,即设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=rs r s A A A A A 1111,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=st s t B B B B B 1111 那么⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=•rt r t i C C C C B A 111。

分块矩阵在行列式计算中的应用

分块矩阵在行列式计算中的应用

分块矩阵在行列式计算中的应用一、分块矩阵的定义和性质分块矩阵是将一个矩阵按照行和列进行分块的一种表示方式。

假设有一个m×n的矩阵A可以被分成k行l列的分块矩阵,则可表示为:A=[A₁₁A₁₂…A₁lA₂₁…A₂l...Ak₁ Ak₂ … Akl]其中,每个Aij都是一个子矩阵。

分块矩阵有以下重要性质:1.行列式的乘积可以转化为分块矩阵的行列式之积。

例如,设有两个分块矩阵A和B,它们的行列式分别为,A,和,B,则有:AB,=,A,B2.分块矩阵可以简化行列式的计算。

将一个大矩阵按照一定规则分为几个子矩阵后,可以通过计算子矩阵的行列式来获得原矩阵的行列式,从而简化了计算过程。

1.初等行列变换2.求逆矩阵对于分块矩阵,其逆矩阵的计算也可以通过分块的方式进行。

设A为可逆矩阵,其分块矩阵表示为:A=[A₁₁A₁₂A₂₁A₂₂]若A₁₁为可逆矩阵,则其逆矩阵可以表示为:A^(-1)=[A₁₁^(-1)-A₁₁^(-1)A₁₂A₂₂^(-1)A₂₁^(-1)A₁₁^(-1)A₁₂A₂₂^(-1)A₂₂^(-1)]其中A₁₁^(-1)、A₂₂^(-1)和A₁₁^(-2)A₁₂A₂₂^(-1)都是子矩阵的逆矩阵。

3.计算特殊类型的行列式在计算特定类型的行列式时,分块矩阵的应用可以简化计算过程。

例如,计算拟对角行列式时,可以使用分块矩阵的方式将矩阵分解成多个对角块,然后分别计算每个对角块的行列式之积。

4.计算特定型的行列式分块矩阵的应用还可以用于计算特定型的行列式。

例如,计算置换矩阵的行列式时,可以将矩阵按行、列进行分块,然后计算每个子矩阵的行列式,最后通过乘法和加法运算得到最终的行列式。

以上仅是分块矩阵在行列式计算中的一些常见应用,实际上分块矩阵在线性代数的其他领域也有广泛的应用,如特征值和特征向量的计算、线性方程组的求解等。

熟练掌握分块矩阵的定义、性质和应用可以提高行列式计算的效率,并且对于理解线性代数中的其他概念和方法也具有重要意义。

研究矩阵分块的方法及应用

研究矩阵分块的方法及应用

研究矩阵分块的方法及应用矩阵分块(Matrix Partition)是一种将一个大矩阵分割成若干个块或子矩阵的方法。

这种方法在许多数学和工程应用中非常有用,因为它可以简化复杂的矩阵运算,并提供更高效的算法和快速的计算。

矩阵分块的方法具有广泛的应用,包括线性代数、微积分、信号处理、图像处理、统计学、优化等领域。

矩阵分块的方法可以根据不同的目的和要求采用不同的策略和分块方式。

一般来说,矩阵分块的方法分为两种类型:按行分块和按列分块。

按行分块是将矩阵按照横向划分为若干行向量子矩阵,而按列分块则是将矩阵按照纵向划分为若干列向量子矩阵。

除了按行和按列划分外,还可以将矩阵按照主对角线、次对角线、对称轴等方式进行分块。

矩阵分块的方法可以大大简化复杂的矩阵运算,使得问题的求解更加直观和高效。

一种常见的应用是矩阵乘法。

对于两个大型矩阵相乘的情况,采用普通的矩阵乘法算法的计算复杂度很高,但通过将大矩阵分块成若干小块矩阵,可以采用并行计算的方式,提高计算效率。

另一个常见的应用是矩阵求逆。

对于大型矩阵求逆的计算复杂度很高,并且可能出现数值不稳定的问题。

通过将大矩阵分块成若干小块矩阵,可以使用分块逆矩阵的方法来计算整体矩阵的逆矩阵,从而提高计算的稳定性和效率。

矩阵分块的方法还广泛应用于图像处理和信号处理领域。

在这些领域中,矩阵表示图像或信号的数据,通过将大矩阵分块为若干小块,可以对局部区域进行处理,从而实现对整体数据的处理和分析。

例如,对图像进行滤波操作时,可以将图像分为若干小块,分别进行滤波处理,然后将处理后的小块矩阵合并成一个大矩阵,从而得到滤波后的图像。

此外,矩阵分块的方法还可以应用于线性代数的求解和优化问题。

例如,在解线性方程组时,可以将系数矩阵和右侧向量分块,从而将问题分解为多个小规模的子问题,通过求解这些子问题,最终获得整个线性方程组的解。

类似地,在优化问题中,可以通过将大矩阵分块为若干小块,将复杂的优化问题分解为多个简单的子问题,从而更高效地求解问题。

第四节 分块矩阵

第四节 分块矩阵
A14 A4 = O O 52 O 54 2 4 , , ⇒ A1 = 4 而 A1 = A2 O 52 O
1 0 24 A2 4 = 24 = 6 4 1 2 0 , 4 2
上页 下页 返回 结束
3 4 4 −3 A= 0 0 0 0
上页 下页 返回 结束
A1n A1 , n 4) 若 A = O O ; 则A = As n As
As −1 A1 , 则 A −1 = N 5) 若 A = N ; A −1 A 1 s
O A B∗
上页 下页 返回 结束
例6 设
0 0 625 0 0 625 0 0 3 A1 O A4 = 4 , A = 2 0 ., 解 令 A= , 其中 A1 = 4 0−3 0 2 162 0 2 O A2 0 0 64 16 A18 O 8 8 8 8 8 8 16 A = , A = A1 A2 = A1 A2 = 10 O A2 8
0 0 0 0 1 2 0 0 1 2 0 0 3 0 0 2 1 0 0 1 35
A
B
A
0 0 0 1 0 0 3 都是分块对角阵. 都是分块对角 分块对角阵 0 0 1 0 2 2 0
B
上页
下页
返回
结束
分块对角矩阵具有下述性质: 分块对角矩阵具有下述性质: 1) A = A1 A2 L As ;
第二章 矩阵及其运算
第四节 分块矩阵
zxs
什么是分块矩阵 分块矩阵的运算 基本应用
上页
下页

分块矩阵的知识点

分块矩阵的知识点

分块矩阵的知识点分块矩阵是线性代数中的一个重要概念,它在矩阵运算和矩阵分析中扮演着关键角色。

分块矩阵将一个大的矩阵划分为若干个小的子矩阵,从而简化了复杂的矩阵运算和计算过程。

本文将介绍分块矩阵的基本概念、构造方式以及在矩阵运算中的应用。

1.分块矩阵的定义分块矩阵是由若干个小的子矩阵组成的大矩阵。

这些子矩阵可以是任意大小和形状,而且它们可以是实数矩阵或复数矩阵。

分块矩阵可以表示为如下形式:A=[A11A12A21A22]其中A ij表示分块矩阵A的第i行第j列的子矩阵。

2.分块矩阵的构造方式分块矩阵的构造方式有多种,常见的有水平分块和垂直分块两种方式。

–水平分块:将大矩阵按行划分为若干个子矩阵。

例如,将一个m×n的矩阵划分为两个子矩阵A1和A2,则可以表示为:A=[A1A2]–垂直分块:将大矩阵按列划分为若干个子矩阵。

例如,将一个m×n的矩阵划分为两个子矩阵A1和A2,则可以表示为:A=[A1A2]分块矩阵的构造方式可以根据实际问题的需求选择,不同的构造方式对于矩阵运算的简化程度有所差异。

3.分块矩阵的运算分块矩阵的运算可以通过对子矩阵进行逐个操作来完成。

常见的分块矩阵运算包括矩阵的加法、乘法和转置。

–矩阵的加法:对应位置的子矩阵进行相加。

例如,对于两个分块矩阵A和B,其加法运算可以表示为:A+B=[A11+B11A12+B12A21+B21A22+B22]–矩阵的乘法:通过子矩阵的乘法和求和得到结果。

例如,对于两个分块矩阵A和B,其乘法运算可以表示为:AB=[A11B11+A12B21A11B12+A12B22 A21B11+A22B21A21B12+A22B22]–矩阵的转置:将子矩阵沿主对角线进行交换。

例如,对于一个分块矩阵A,其转置运算可以表示为:A T=[A11T A21TA12T A22T]通过分块矩阵的运算,可以简化矩阵运算的复杂度,提高计算效率。

4.分块矩阵的应用分块矩阵在各个领域中都有广泛的应用,特别是在数值计算和矩阵分析中。

浅谈分块矩阵的性质及应用

浅谈分块矩阵的性质及应用

浅谈分块矩阵的性质及应用摘要:本文主要谈及分快矩阵的思想在线性代数的证明。

解线性方程组,矩阵得知逆及矩阵的逆,和初等变换中的应用。

关键词:分块矩阵;线性方程组;矩阵的秩及矩阵的逆;初等变换On the nature of block matrix and its applicationAbstract: this thesis uses the blocking matrix method into proving and applying the linear algebra, tries to solve the linear equations, and the proof of other relative matrix rank and elementary matrix.Key word s: Block matrix; Linear algebra; rank of matrix; elementary matrix.前言:矩阵得分快是处理问题的一重要方法,把一个告诫矩阵分成若干个地界矩阵,在运算中把低阶矩阵当作数一样处理,这样高阶矩阵就化作低阶矩阵,长能使我们迅速接近问题的本质,从而达到解决问题的目的,使解题更简洁,思路更开阔,因此本文主要谈及分块矩阵再求行列式的值,解线性方程组,求矩阵的秩及逆等方面的应用。

1.预备知识:1.1分块矩阵的定义:将分块矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A的子块,一子块为元素的形式上的矩阵成为分块矩阵。

1.2分块矩阵的运算:1.2.1分块矩阵的加法:设分块矩阵 A 与 B 的行数相同,列数相同,采用相同的得分块法,有A=1111n m mn A A A A ⎛⎫ ⎪⎪⎪⎝⎭,1111n m mn B B B B B ⎛⎫⎪= ⎪ ⎪⎝⎭其中ij A 与ij B 的行数相同,列数相同,那么A+B=111111111n n m m n mn A B A B A BA B ++⎛⎫⎪⎪ ⎪++⎝⎭1.2.2分块矩阵与数的乘法:A=1111n m mn A A A A ⎛⎫ ⎪ ⎪⎪⎝⎭,1111n m mn A A A A A λλλλλ⎛⎫⎪= ⎪ ⎪⎝⎭1.2.3设A 为m l ⨯矩阵,B 为l n ⨯矩阵,分块成11111111t r s st t tr A A B B A B A A B B ⎛⎫⎛⎫⎪ ⎪==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭其中1i A ,2i A ……,it A 的列数分别等于1j B ,2j B ……,tj B 的行数,那么1111r s sr C C AB C C ⎛⎫ ⎪=⎪ ⎪⎝⎭,其中1tij ik ik k C A B ==∑(i=1……s ;j=1,……,r)1.2.4设1111t s st A A A A A ⎛⎫⎪=⎪⎪⎝⎭,则1111T T t TT T s st A A A A A ⎛⎫⎪= ⎪ ⎪⎝⎭2. 分块矩阵的性质及应用:2.1 分块矩阵的性质:设A 为n 阶矩阵,若A 的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即A=100n A A ⎛⎫ ⎪⎪ ⎪⎝⎭,其中i A (i=1,2……,s )都是方阵,那么称A 为分块对角矩阵,分块矩阵的行列式一般据有下列性质12s A A A A =,由此性质可知,若i A ≠0(1,2i s =)则A 0≠,并有11110s A A A ---⎛⎫ ⎪=⎪ ⎪⎝⎭例:设A=500031021⎛⎫ ⎪⎪ ⎪⎝⎭ 求1A -解:500031021A ⎛⎫ ⎪= ⎪ ⎪⎝⎭=1100A A ⎛⎫⎪⎝⎭,其中()11115,5A A -⎛⎫== ⎪⎝⎭,23121A ⎛⎫= ⎪⎝⎭,121123A --⎛⎫= ⎪-⎝⎭,所以11005011023A -⎛⎫⎪ ⎪=- ⎪ ⎪- ⎪⎝⎭ 2.2 将分块矩阵与初等变换结合在矩阵运算及球逆矩阵中具有重要作用:现将某个单位矩阵如下进行分块:00mn EE ⎛⎫⎪⎝⎭对其进行行(列)对换等作用,可得到如下类型一些矩阵:0000,,,,0000n m mmm n n n E P E P E E E E E P E P ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭用这些矩阵左乘或右乘任一个分块矩阵A B C D ⎛⎫⎪⎝⎭,只要分块乘法能够进行,其结果就是对它进行相应的变换,如0mn EA B A B PE C D C PA D PB ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪++⎝⎭⎝⎭⎝⎭,适当选择P 可使C PA +=0,例如A 可逆时,选1P CA -=-则0C PA +=,于是上式的右端可成为10A B D CA B -⎛⎫⎪-⎝⎭,其在求逆矩阵方面是非常有用的,例1:0A T C D ⎛⎫=⎪⎝⎭,A D 可逆,求1T -解:由10000mn E A A CA E C D D -⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭及1110000A A D D ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭易知11100A TD ---⎛⎫= ⎪⎝⎭10m n E CA E -⎛⎫ ⎪-⎝⎭=11110A D CA D ----⎛⎫⎪-⎝⎭例2:1A B T C D ⎛⎫= ⎪⎝⎭,设T 可逆,D 可逆,试证11()A BD C ---存在,并求11T -解:由10mn A B E BD C D E -⎛⎫-⎛⎫ ⎪ ⎪⎝⎭⎝⎭10A BD CCD -⎛⎫-= ⎪⎝⎭,而又端仍可逆故11()A BD C ---存在再由上题例1可知11111111()0()A BD C T D C A BD C D -------⎛⎫-= ⎪--⎝⎭10m n E BD E -⎛⎫- ⎪⎝⎭=111111111111()()()()m m A BD C E A BD C BD D C A BD C E D C A BD C BD D ------------⎛⎫---= ⎪---+⎝⎭2.3分块矩阵在证明关于矩阵乘积的秩的定理中的作用:例:设A 是数域P 上n m ⨯矩阵,B 是数域P m s ⨯上矩阵,于是秩(AB)min ≤秩(A),秩(B),即乘积的秩不超过各因子的秩证明:只需证明秩()AB ≤秩()B ,同时秩()AB ≤秩()A ,分别证明这两个不等式设1112121222123m m n n n a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭,111212122212s s m m ms b b b b b b B b b b ⎛⎫⎪ ⎪=⎪ ⎪⎝⎭令12,,,m B B B 表示B的行向量(即对B进行分块)12,,,n C C C 表示AB 的行向量,由计算可知,i C 的第j 个分量和1122i i im m a B a B a B +++的第j 的分量都等于1mik kj k a b =∑,因而()11221,2,,i i i im m C a B a B a B i n =+++=即矩阵AB 的行向量组12,,,n C C C 可经由B 的行向量组线性表示出所以AB 的秩不能超过B 的秩,即秩()AB ≤秩()B同样,令12,,,m A A A 表示A 的列向量,12,,,s D D D 表示AB 的列向量,由计算可知,()11221,2,,i i i mi m D b A b A b A i s =+++=这个式子表明,矩阵AB 的列向量组可由矩阵A 的列向量组线性表示出,因而前者的秩不仅\可能超过后者的秩,这就是说秩()AB ≤秩()A(注:在此证明中用分块矩阵的方法,即12m B B B B ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭这就是B 的一种分块,按分块相乘就有111122121122221122m m m m n n nm m a B a B a B a B a B a B AB a B a B a B +++⎛⎫⎪+++ ⎪= ⎪⎪+++⎝⎭很容易看出AB 的行向量是B 的行向量的线性组合) 2.4 分块矩阵在线性方程组方面的应用对于线性方程组11112211211222221112n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 记()ij A a =,12n x x X x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,12m b b b b ⎛⎫⎪ ⎪= ⎪⎪⎝⎭,11121112n m m mnm a a a b B a a a b ⎛⎫ ⎪=⎪ ⎪⎝⎭,A 为系数矩阵,X 为未知向量,b 为常数项向量,B 为增广矩阵按分块矩阵记法可记为()B A b =或(),B A b =此方程也可记为AX b =,把系数矩阵A 按行分成m 块,则AX b =可记做12m A A A ⎛⎫⎪ ⎪ ⎪⎪⎝⎭X =12m b b b ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭把系数矩阵A 按列分成n 块,则与相乘的X 对应按行分成n 块,记作()12,,,n ααα 12n x x x ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭b =,即1122n n x x x b ααα+++=,其都为线性方程组的各种变形形式,在求解过程中变形以更方便快捷例:利用分块矩阵证明克拉默法则:对于n 个变量n 个方程线性方程组11112211211222221112n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩如果他的系数行列式0D ≠,则它有唯一解,即()()1122111,2,,j j j j n nj x D b A b A b A j n D D==+++=证明把方程组改写成矩阵方程AX b =,这里()ijn nA a ⨯=为n 阶矩阵,因0A D =≠,故1A -存在,令1X A b -=,有1AX AA b -=表明1X A b -=是方程组的解向量,由Ax b = ,有11A AX A b --= ,即1X A b -=,根据逆矩阵的唯一性,知1X A b -=是方程的唯一解向量,由逆矩阵公式11A A A-*=,有11x A b A b D-*==即111211111122112122222112222212112211n n n n n n n n nnn n n n n nn x A A A b b A b A b A x A A A b b A b A b A D D x A A A b b A b A b A +++⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎪+++ ⎪ ⎪⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭即()()1122111,2,,j j j n nj j x b A b A b A D j n D D=+++==结束语:矩阵得分快不算是一个抽象的概念,我们能够清楚的了解知道并掌握它的概念及性质,进而能够灵活的运用,这样对我们今后的学习与研究都会有很大的帮助。

分块矩阵的定义及应用

分块矩阵的定义及应用

分块矩阵的定义及应用分块矩阵,也称为块矩阵或子矩阵,是由多个小矩阵按照一定规则排列所组成的矩阵。

它的特点是矩阵中的各个元素被分成了若干个块,每个块是一个分离的矩阵。

分块矩阵的形式可以写为:A = [A11 A12 (1)A21 A22 (2)... ... ... ...An1 An2 ... Anm]其中,A11、A12、...、A1m是行向量组成的矩阵;A21、A22、...、A2m是行向量组成的矩阵;...;An1、An2、...、Anm是行向量组成的矩阵。

每一个Aij 都表示一个分块矩阵,大小及形状可以不同。

分块矩阵的应用非常广泛,主要体现在以下几个方面:1. 线性方程组求解:分块矩阵可以用于解决大规模线性方程组的求解问题。

通过将系数矩阵分块,可以降低计算复杂度,并且可以通过并行计算来提高求解效率。

2. 矩阵乘法加速:分块矩阵可以用于加速矩阵乘法运算。

将矩阵分块后,可以利用并行计算的优势,同时进行多个小矩阵的乘法运算,从而提高运算效率。

3. 特征值计算:分块矩阵可以用于求解大型矩阵的特征值和特征向量。

通过分块矩阵的分解,可以降低计算复杂度,并且可以采用迭代方法进行求解,从而提高求解效率。

4. 矩阵的逆和广义逆:分块矩阵可以用于求解矩阵的逆和广义逆。

通过分块矩阵的分解,可以减小计算量,并且可以采用迭代方法进行求解,从而提高求解效率。

5. 随机矩阵的分析:分块矩阵可以用于随机矩阵的分析。

通过分块矩阵的分解,可以对矩阵的结构和随机性进行分析,从而研究矩阵的统计特性和性质。

除了上述应用之外,分块矩阵还可以用于矩阵的分解、正交化、正则化等问题的求解。

分块矩阵的应用不仅仅局限于数学领域,也被广泛应用于工程、物理、计算机科学等领域。

总之,分块矩阵是将大型矩阵拆分为多个小矩阵,通过分块的方式来简化复杂的计算问题。

它在线性方程组求解、矩阵乘法加速、特征值计算、矩阵逆和广义逆求解、随机矩阵分析等方面有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分块矩阵及其应用徐健,数学计算机科学学院摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量,而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块.分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理.关键词:分块矩阵;行列式;方程组;矩阵的秩On Block Matrixes and its ApplicationsXu Jian, School of Mathematics and Computer ScienceAbstract In the higher algebra, block matrix is a generalization ofmatrix content. In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc.Keywords Block matrix; Determinant; System of equations; Rank of a matrix1 引言我们在高等代数中接触到矩阵后,学习了矩阵的相关性质,但是对于一些复杂高阶矩阵,我们希望能将问题简化. 考虑将矩阵分割为若干块,并将矩阵的部分性质平移至分块矩阵中,这样的处理往往会使问题简化.定义1 分块矩阵是把一个大矩阵分割成若干“矩阵的矩阵”,如把m n ⨯矩阵分割为如下形式的矩阵:m nA ⨯=1111n m mn A A A A ⎛⎫⎪ ⎪ ⎪⎝⎭特别地,对于单位矩阵分块:n nE ⨯=11000000nn E E ⎛⎫ ⎪ ⎪ ⎪⎝⎭显然,这里我们认识的矩阵元素不再局限于数字,而是一个整体,这里的ijA所代表的是大矩阵囊括的小矩阵,而小矩阵一般是我们熟知的常见矩阵.依照以上设想,有关矩阵性质的一些问题,我们可以考虑用分块矩阵的思路来解决.2 分块矩阵矩阵的相关概念在矩阵的学习中,我们学过一些最基本的概念,比如矩阵的行列式、矩阵的秩、矩阵的逆、初等变换、初等矩阵等等.事实上,我们发现:分块后的矩阵同样用到这些概念.定义[2] n 级行列式111212122212n n n n nna a a a a a a a a 等于所有取自不同行不同列的n 个元素的乘积1212n j j nj a a a 的代数和,这一定义又可写成:111212122212n n n n nna a a a a a a a a =()()121212121n n nj j j j jnj j j ja a a τ-∑.定义2向量组的极大无关组所含向量的个数称为这个向量组的的秩.所谓矩阵的行秩就是指矩阵的行向量组的秩;矩阵的列秩就是矩阵列向量组的秩. 定义2 n 级方阵称为可逆的,如果有n 级方阵B ,使得AB BA E ==(这里E 是n 级单位矩阵),那么B 就称为A 的逆矩阵,记为1A -. 定义3对分块矩阵施行下列三种初等变换:(1) 互换分块矩阵的某两行(列);(2) 用一个非奇异阵左(右)乘分块矩阵的某一行(列);(3) 用一个非零阵左(右)乘分块矩阵的某一行(列)加至另一行(列)上, 分别称上述三种初等行(列)变换为分块矩阵的初等行(列)变换.定义3对m n +阶单位矩阵作22⨯分块,即m n I +=mn I O OI ⎛⎫ ⎪ ⎪⎝⎭,然后对其作相应的初等变换所得到的矩阵称为分块初等矩阵. 分块矩阵具有以下形式:(1) 分块初等对换阵nm I O OI ⎛⎫⎪ ⎪⎝⎭; (2) 分块初等倍乘阵0n P O I ⎛⎫ ⎪⎝⎭,0mI O Q ⎛⎫⎪⎝⎭;(3) 分块初等倍加阵1mn I R OI ⎛⎫⎪ ⎪⎝⎭,m n I O SI ⎛⎫ ⎪ ⎪⎝⎭;其中P ,Q 分别是m 阶和n 阶可逆方阵,且1m nR R ⨯∈,n m S R ⨯∈为非零阵.矩阵的运算性质矩阵的运算包括加法、乘法、数乘,这里主要讨论矩阵的运算性质:定义4 矩阵加法:设()=ij sn A a , ()=ij snB b 是两个同型矩阵,则矩阵()ij sn C c ==()ij ij sn a b +称为A 和B 的和,记为C A B =+.元素全为零的矩阵称为零矩阵,记为sn O ,可简单记为O ,对于矩阵A 、B ,有:(1) A O A += (2) ()0A A +-= (3) ()A B A B -=+- (4) ()()A B C A B C ++=++ (5)A B B A +=+定义4 矩阵乘法:设()=ik sn A a ,()=kj nm B b 是两个不同型矩阵,那么矩阵()ij smC AB c ==,称为矩阵A 与B 的乘积,其中:11221nij i j i j in nj ik kj kc a b a b a b a b ==++=∑ 在乘积的定义中,我们要求第二个矩阵行数和第一个矩阵列数相等.特别地,矩阵的乘法和加法满足以下性质: (1) ()A B C AB AC +=+ (2) ()B C A BA CA +=+ (3) ()()AB D A BD =定义4矩阵数乘:111212122212n n s s sn ka ka ka kaka ka kaka ka ⎛⎫⎪ ⎪⎪ ⎪ ⎪⎝⎭称为矩阵()ij sn A a =与数k 的数量乘积,记为kA ,有以下性质:(1) 1A A *=;(2) ()()k lA kl A =; (3) ()k A B kA kB +=+; (4) ()k l A kA lA +=+; (5) ()k A B kA kB +=+.分块矩阵的初等变换性质我们对于分块矩阵,也有其运算性质:设A 、B 是m n ⨯矩阵,若对它们有相同的划分,也就有:加法:11111111t t s s st st A B A B A B A B A B ⎛⎫++ ⎪⎪+= ⎪ ⎪ ⎪++⎝⎭. 乘法:C AB =, 其中:11221nij i j i j in nj ik kj kC A B A B A B A B ==+++=∑.数乘:1111t s st kA kA kA kA kA ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭.总结了矩阵的运算性质,我们主要看看分块矩阵初等变换性质: 定义2 由单位矩阵E 经过一次初等变换得到的矩阵称为初等矩阵. 初等矩阵都是方阵,包括以下三种变换:(1) 互换矩阵E 的i 行与j 行的位置; (2) 用数域P 中的非零数c 乘E 的i 行; (3) 把矩阵E 的j 行的k 倍加到i 行. 定义5将单位矩阵分块,并施行如下三种变换中的一种变换而得到的方阵称为分块初等矩阵:(1) 对调两块同阶的块所在的行或列; (2) 某一块乘以同阶的满秩方阵;(3) 某一块乘以一个矩阵后加到另一行上(假定这种运算可以进行).如:我们对分块矩阵A B C D ⎛⎫⎪⎝⎭进行相应变换,只要应用矩阵的计算性质,左乘对 应分块矩阵:m nO E E O ⎛⎫ ⎪ ⎪⎝⎭A B C D ⎛⎫ ⎪⎝⎭=C D A B ⎛⎫ ⎪⎝⎭n PO OE ⎛⎫ ⎪⎝⎭A B C D ⎛⎫ ⎪⎝⎭=PA PB C D ⎛⎫⎪⎝⎭m n E O P E ⎛⎫ ⎪ ⎪⎝⎭A B C D ⎛⎫ ⎪⎝⎭=A B C PA D PB ⎛⎫ ⎪++⎝⎭矩阵的分块技巧对矩阵的分块不是唯一的,我们往往根据问题的不同进行不同的分块,分块的合适与否,都对问题的解决至关重要,最常见的有四种分块方法6:(1) 列向量分法,即()1,,n A αα=,其中j β为A 的列向量.(2) 行向量分法,即1m A ββ⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中j β为A 的行向量.(3) 分两块,即()12,A A A =,其中1A ,2A 分别为A 的各若干列作成.或⎛⎫= ⎪ ⎪⎝⎭12B A B ,其中1B ,2B 分别为A 的若干行作成.(4) 分四块,即1234C C A C C ⎛⎫= ⎪ ⎪⎝⎭.我们在进行分块时,希望分割的矩阵块尽可能是我们所熟悉的简单矩阵,于是,我们有必要熟悉一些常见的矩阵.常见的矩阵块我们把高等代数中学习过的一些常见矩阵总结如下:(1)单位矩阵:对角线元素都为1,其余元素为0的n 阶方阵. (2)对角矩阵:对角线之外的元素都为0的n 阶方阵.(3)三角矩阵:对角线以上(或以下)元素全为0的n 阶方阵. (4)对称矩阵:满足矩阵A 的转置和A 相等. (5)若尔丹(Jordan )块:形如00010(,)000001J t λλλλ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭(6) 若尔丹形矩阵:由若干个若尔丹块组成的准对角矩阵, 其一般形状形如:12n A A A ⎛⎫⎪ ⎪ ⎪ ⎪ ⎪⎝⎭在复杂矩阵中,找到这些矩阵块,会使计算简化.3分块矩阵及其应用行列式计算的应用定理2拉普拉斯(Laplace )定理:设在行列式D 中任意取定了k 个行.由这k行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式 D .事实上,行列式计算中的拉普拉斯定理就包括了矩阵分块的思想,它通过取k 级子式的方法,提取出矩阵内的矩阵块. 然而,在行列式计算中,行列式按行或列的展开更为常用. 这里,我们最常用到的是取列向量分块和行向量分块.例7:(爪形行列式)计算行列式:012111101001na a a a ,其中0(1,2,,)i a i n ≠=.解:设A DQ C B=,其中0()A a = 1na B a =,(1,1,,1)T C =,(1,1,,1)D =.因为0(1,2,,)i a i n ≠=,所以 B 是可逆矩阵.又易知: 1011ni i A DB C a a -=⎛⎫-=-⎪⎝⎭∑. 根据分块矩阵乘法:1100E AD A DCA E C B B CA D --⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭则:1112011nn i i A DA B CA D B A DB C a a a a a C B --=⎛⎫=-=-=- ⎪⎝⎭∑ 故:原行列式=12011nn i i a a a a a =⎛⎫- ⎪⎝⎭∑.例7:(对角行列式)计算行列式:2n ada dH c bcb =.解:令a A a ⎛⎫ ⎪=⎪ ⎪⎝⎭,b B b ⎛⎫⎪= ⎪ ⎪⎝⎭,c C c ⎛⎫⎪= ⎪ ⎪⎝⎭,d D d ⎛⎫⎪= ⎪ ⎪⎝⎭为n 阶方阵. 由于0a ≠,故A 为可逆方阵.又易知:1B CA D --=111b ca d b ca db ca d ---⎛⎫-⎪-⎪ ⎪ ⎪-⎝⎭故112()()n n n n A DH A B CA D a b ca d ab cd C B--==-=-=-.例8:设A 、B 、C 、D 都是n 阶矩阵,证明当AC CA =时,A 可逆时,有A DAB CD C B=-证明:若A 可逆,110AD AE A D C B C B CA D O E --⎛⎫⎛⎫⎛⎫-= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭, 故:11A DA B CA D AB ACA D AB CD C B--=-=-=-. 注意到,这里计算分块矩阵行列式和计算一般数字矩阵行列式有所区别,不是简单的a dab cd c b=-,其矩阵块限制条件有所加强. 所以本例告诉我们,在矩阵分块以后,并非所有一般矩阵性质都可以应用到分块矩阵中.线性方程组的应用对于线性方程组,我们有以下四种表述: (1)标准型:11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b ⎧+++=⎪+++=⎨⎪+++=⎩; (2)矩阵型:令ij m n A a ⨯⎡⎤=⎣⎦,'=12(,,,)n x x x x ,'=12(,,)m B b b b方程组可以表述为:Ax B =; (3)列向量型:令112111m a a a α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,122222m a a a α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,,12n n nmn a a a α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦则方程组又可以表述为:1122n n x x x B ααα+++=;(4)行向量型: ααα''''+++=1122n n x x x B .可见,矩阵分块为我们解方程组提供了新的思路.事实上,在求齐次线性方程组系数矩阵的秩时,在判断非齐次线性方程组是否有解时,行列向量组的合理应用,使得问题解决更加便捷、明了.例:(齐次线性方程组)求解方程组:1234123412342202220430x x x x x x x x x x x x ⎧+++=⎪+--=⎨⎪---=⎩ 解:对系数矩阵施行行变换,并将结果用分块矩阵表示:21251023122112214212203640123114303640000E C A O O ⎛⎫-- ⎪⎪⎛⎫⎛⎫⎛⎫ ⎪⎪⎪=-----= ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎪ ⎪⎝⎭()2R A =,基础解系含422-=个. 而方程又满足:2112200E C O O αα⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 相应的可以取:25234231001C E ⎛⎫ ⎪⎪⎛⎫-⎪--= ⎪ ⎪⎝⎭ ⎪⎪ ⎪⎝⎭有通解:1122k k βββ=+,其中12210β⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭,2534301β⎛⎫⎪ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭.例9:(非齐次线性方程组)求解方程组:1245123451234512345232133223452799616225x x x x x x x x x x x x x x x x x x x ⎧+-+=⎪--+-=⎪⎨-+-+=⎪⎪-+-+=⎩ 解:我们分别对于方程组的系数矩阵和增广矩阵求秩:()3r A =,而()4r A =, 故()()r A r A ≠. 从而方程组无解.事实上,我们可以利用分块矩阵叙述:经对分块矩阵45450b E ⎛⎫Λ-⎪ ⎪⎝⎭进行行列变换,都不能把最后一列变成0,所以该方程组无解.例:证明:n 阶方阵A 的秩为n-1,则()=1rank A * 首先证明此例需要利用的一个引理:引理:()ij n n A a ⨯=,()ij n n B b ⨯=,()r A r =,0AB =,则()r B n r ≤- 证明:对矩阵B 进行列向量的分块,12,(,)n B B B B =,0AB =则有:0i AB =,i B 是0AX =的解. 而0AX =基础解系有n r -个解. 故:()r B n r ≤- 再证明本例:因为()1r A n =-,则0A =,A 至少有一个1n -级子式不为零,()1rank A *≥.而:0AA A E *==.利用引理得:()1rank A *≤,故()=1rank A *. 得证.求矩阵逆的应用我们在求矩阵逆的时候包括很多方法:利用定义求逆、利用伴随矩阵求逆、利用初等变换求逆、混合采用初等行列变换求逆等等.这里我们统一用矩阵分块的思路来求矩阵的逆.例6:设A 、B 是n 阶方阵,若A B +与A B -可逆,试证明:A B B A ⎛⎫⎪⎝⎭可逆,并求其逆矩阵. 解:令AB D BA ⎛⎫=⎪⎝⎭,由假设知0A B +≠,0A B -≠.那么: 0A B A B B A BB D B A B A A A B++===+-0A B A B =+-≠.即D 可逆. 再令12134D D DD D -⎛⎫= ⎪ ⎪⎝⎭, 由1DD E -=,即:123400D D A B E BA D D E ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 可得:1312242400AD BD E BD AD AD BD BD AD E⎧+=⎪+=⎪⎨+=⎪⎪+=⎩将第一行和第二行相加、相减,得:113113()()D D A B D D A B --⎧+=+⎪⎨-=-⎪⎩ 解之得:1111()()2D A B A B --⎡⎤=++-⎣⎦,1121()()2D A B A B --⎡⎤=+--⎣⎦类似地:23D D =,41D D =. 所以:1111111111()()()()2()()()()A B A B A B A B A B BA AB A B A B A B ---------⎛⎫⎛⎫++-+--= ⎪⎪+--++-⎝⎭⎝⎭.例6:已知分块形矩阵0AB MC ⎛⎫=⎪⎝⎭可逆,其中B 为p p ⨯块,C 为q q ⨯块,求证:B 与C 都可逆,并求1M -.解:由()01pq M B C ≠=-,则:0B ≠,0C ≠,即证B 、C 都可逆.这里用分块矩阵的广义初等变换来求逆:111000000pq A BE A BEBEAC C E E C EE ---⎛⎫⎛⎫⎛⎫-→→ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭11111111000000E B B AC E C E C EB B AC --------⎛⎫⎛⎫-→→⎪ ⎪-⎝⎭⎝⎭故:111110C MB B AC -----⎛⎫= ⎪-⎝⎭. 备注:本例和上例属于同一个类型的问题,但我们利用分块矩阵,可以有两种不同的方法来解决,待定系数法和广义初等变换都是求逆的有效方法.值得注意的是,在题目没有直接给出分块矩阵的情况时,我们要学会自己构造:例10:求矩阵101210325A ⎛⎫ ⎪= ⎪ ⎪--⎝⎭的逆矩阵.解:构造矩阵:66101100101100210010012210325001022301100000100000010000010000001000001000A E D E O ⨯⎛⎫⎛⎫⎪⎪-- ⎪ ⎪ ⎪⎪⎛⎫---==→ ⎪⎪⎪⎝⎭ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭101101011000122100122100027210027211000001010001000001000000100000100⎛⎫⎛⎫ ⎪⎪---- ⎪ ⎪ ⎪⎪--→→ ⎪⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 1001001001000102100102100017210027211100001010002012000011000001000100002⎛⎫ ⎪⎛⎫- ⎪ ⎪- ⎪- ⎪ ⎪ ⎪- ⎪→→ ⎪-⎪- ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭. 所以;1151101100222011210511172171001222A -⎛⎫⎛⎫---- ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭. 此方法在计算上并不简单,但是它把平常的单纯的一种变换变成了两种变换同时应用,把已知的可逆矩阵置于含单位矩阵的分块矩阵中,以此求逆矩阵,有时比较简单.矩阵秩基本不等式矩阵理论中, 矩阵的秩是一个重要的概念,而矩阵经过运算后所得新矩阵的秩往往与原矩阵的秩有一定关系. 现把高等代数书中有关矩阵秩最基本的不等式总结如下:(1)矩阵和的秩不超过两矩阵秩的和.即:设A 、B 均为m n ⨯矩阵,则:()r ()()r A B A r B +≤+.(2)矩阵乘积的秩不超过各因子的秩.即:设A 是m n ⨯矩阵 ,B 是n s ⨯矩阵,则:{}()min (),()r AB r A r B ≤.(3)()()0A B r r A r B C ⎛⎫≥+ ⎪⎝⎭.(4)1ij m A r A A ⎛⎫⎪≥⎪ ⎪⎝⎭.再来介绍由分块矩阵证明导出的两个基本不等式 例11:(薛尔弗斯特不等式)设()ij s nA a ⨯=,()ij n mB b ⨯=,证明:()()()rank AB rank A rank B n ≥+-证明:由分块矩阵的乘积00000n nn ns m E E B E B E A E E A AB ⎛⎫⎛⎫-⎛⎫⎛⎫= ⎪⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭知:()()()0nn E B rank rank E rank AB n rank AB A ⎛⎫=+-=+⎪⎝⎭. 但,()()00n n E B B E rank rank rank A rank B AA ⎛⎫⎛⎫=≥+⎪ ⎪⎝⎭⎝⎭. 故:()()()n rank AB rank A rank B +≥+得证.备注:在矩阵秩不等式的证明过程中,我们往往会构造如下的分块矩阵:(1) 矩阵不等式中含两个不同矩阵:构造00A B ⎛⎫⎪⎝⎭;(2) 矩阵不等式中含有两个不同矩阵及阶数:构造0A E B ⎛⎫ ⎪⎝⎭或者0AE B ⎛⎫⎪⎝⎭.具体分块矩阵的元素则要看题目所给的条件.例6:(Frobenius 不等式)设A 、B 、C 是任意3个矩阵,乘积ABC 有意义,证明:()()()()r ABC r AB r BC r B ≥+-证明:设B 是n m ⨯矩阵,()r B r = 那么存在n 阶可逆阵P ,m 阶可逆阵Q ,使000r E B P Q ⎛⎫=⎪⎝⎭.把P 、Q 适当分块:(),P M S =,NQ T ⎛⎫=⎪⎝⎭, 由上式有: ()0,00r E N B M S MN T ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭. 故:()()()()r ABC r AMNC r AM r NC r =≥+- ()()()r AMN r MNC r B ≥+-()()()r AB r BC r B =+-.得证.矩阵秩不等式证明的应用矩阵基本不等式的证明思路,在一般不等式中也常常用到, 以下例题是对矩阵秩不等式的推广及其应用:例11:设A 为m k ⨯矩阵,B 为k n ⨯矩阵,则证明:{}()+rank(B)-k rank(AB)min (),()rank A rank A rank B ≤≤证明:先证明右边的不等式,由:()0()()0knE B A A AB E =;⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭00km E B B AB A E , 可得:()rank (0)()()rank A A rank A AB rank AB ==≥; ⎛⎫⎛⎫==≥ ⎪ ⎪⎝⎭⎝⎭()()0B B rank B rank rank rank AB AB .再证左边的不等式.注意到下列事实:00000mkkk k n E A E B A AB E B E E E ⎛⎫⎛⎫--⎛⎫⎛⎫-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭则:000kk A AB rank rank E B E ⎛⎫⎛⎫-=⎪ ⎪⎝⎭⎝⎭于是:0()rank ()rank ()()()k k A rank A B rank AB rank E rank AB k E B ⎛⎫+≤=-+=+⎪⎝⎭从而: ()()()rank A rank B k rank AB +-≤.这里也是用到构造矩阵的方法.例6:设n 阶矩阵A 、B 可交换,证明:()()()()rank A B rank A rank B rank AB +≤+- 解:利用分块初等变换,有:A O AB A BB O B O B BB ⎛⎫⎛⎫⎛⎫+→→ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 因为AB BA =,所以:E OA B B A B B BA B BB O AB ⎛⎫⎛⎫⎛⎫++= ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭. 于是,有:()()A BB A B B rank A rank B rank rank BB OAB ⎛⎫⎛⎫+++=≥⎪ ⎪-⎝⎭⎝⎭()()rank A B rank AB ≥++.即:()()()()rank A B rank A rank B rank AB +≤+-. 得证.例:设A 是n 阶方阵,且2()()r A r A =,证明:对任意自然数k ,有()()k r A r A =证:构造分块矩阵22A O O A ⎛⎫⎪⎝⎭,由Frobenius 不等式: 22332232()+r ()()()A O A A O A r A A r r r r A r A AA A O A O ⎛⎫⎛⎫⎛⎫--≤===+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 由:2()()r A r A =所以,322()()()r A r A A r A =*≤. 故:23r ()()A r A =.由此可推得:3445()(),()(),r A r A r A r A ==.故:对任意自然数k , 有:()()k r A r A =.综合应用在掌握了分块矩阵的技巧之后,可以由其导出的一个重要的定理:特征多项式的降阶定理,以下主要讨论该定理及其结论的应用.例6:(特征多项式的降阶定理)设A 是m n ⨯矩阵,B 是n m ⨯矩阵. 证明:AB 的特征多项式()AB f λ与BA 的特征多项式()BA f λ有如下的关系:()()n m AB BA f f λλλλ=.证:先要把上式改写为:n m m n E AB E BA λλλλ-=-.用构造法,设0λ≠,令:1n mE BH AE λ=. 对11010n n n n m m E BE E B A E AE E AB λλλ⎛⎫⎛⎫ ⎪⎛⎫ ⎪⎪=⎪ ⎪ ⎪-⎪ ⎪⎝⎭- ⎪⎝⎭⎝⎭两边取行列式得: 11()m m m H E AB E AB λλλ=-=-. 再对11100nnnn mm E E B E BA B A E A E E λλλ⎛⎫⎛⎫⎛⎫- ⎪ ⎪= ⎪⎪⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭⎝⎭两边取行列式得:11()n n n H E BA E BA λλλ=-=-.故:11n m nmE BA E AB λλλλ-=-m n n m E BA E AB λλλλ-=-.上述等式是假设了0λ≠,但是两边均为λ的n m +次多项式,有无穷多个值使它们成立(0)λ≠,从而一定是恒等式,即证. 这个等式也称为薛尔弗斯特(Sylvester )公式. 以下例题是定理的应用.例6:设A 为m n ⨯矩阵,B 为n m ⨯矩阵,证明:AB 与BA 有相同的非零特征值.证:由定理:m n n m E BA E AB λλλλ-=-. 设m 12s ()()()m s E AB λλλλλλλλ--=---,其中120m λλλ≠,即AB 有s 个非零特征值:12,,,s λλλ, 由上面两式,那么有:n-s 12()()()n s E BA λλλλλλλλ-=---即证BA 也只有s 个非零特征值:12,,,s λλλ.例6:设A 、B 分别是m n ⨯和n m ⨯矩阵,证明:trAB trBA =.解:由上例知,若1()()m s m s E AB a a λλλλ--=--其中120s a a a ≠.则AB 的全部特征值为111,,,0s s s m a a λλλλ+=====,且:1(-)()n s n s E BA a a λλλλ--=-.即BA 的全部特征值为:11221,,,0s n a a ττττ+=====.从而 1si itrAB a trBA ===∑.可见,在一些问题中,直接利用特征多项式的降阶定理会更加方便处理,这里则要求我们对分块矩阵的了解更加深刻.结论本文主要通过“分块矩阵、分块矩阵及其应用”两个部分,分别简单介绍了分块矩阵的性质概念、导出的定理结论和相关应用.主要是将分块矩阵的技巧和推广做了一个内容的总结.本文简单的将矩阵工具应用于计算行列式、解决线性方程组、求矩阵的逆、证明矩阵秩的相关定理等,对应不同问题也举了几个重要的应用以及它们的综合应用.将以前出现的矩阵思想整体化,并对相关知识也做了一个系统的复习.最后,本文还有一些不足之处,有待于进一步的改善和提高.参考文献[1]上海交通大学线性代数编写组. 线性代数[M]. 高等教育出版社, 1982.[2]北京大学. 高等代数{M}. 高等教育出版社, 1998.[3]高百俊. 分块矩阵的初等变换及其应用[J]. 伊犁师范学院学报, 2007(4):14-18.[4]张红玉, 魏慧敏. 矩阵的研究[M]. 山西人民出版社, 2010.[5]雷英果. 分块初等方阵及其应用[J].工科数学, 1998, 14(4):150-154.[6]钱吉林. 高等代数题解精粹(第二版)[M]. 中央民族大学出版社, 2010.[7]王莲花, 李念伟, 梁志新. 分块矩阵在行列式计算中的应用[J]. 河南教育学院学报(自然科学版), 2005, 14(3):12-15.[8]张贤科, 许甫华. 高等代数学[M]. 清华大学出版社, 1998:91-96.[9]杨子胥. 高等代数习题集[M]. 山东科学技术出版社, 1981.[10]鲁翠仙. 分块矩阵在求矩阵逆的应用[D]. 云南:云南大学数学系数学研究所, 2009:14-15.[11]刘丁酉. 高等代数习题精解[M].中国科学技术大学出版社, 1999.。

相关文档
最新文档