高三第二次月考(文)数学试卷
华南师大附中高三第二次月考数学(文)试题(答案不全)
学必求其心得,业必贵于专精2012—2013年华南师大附中高三综合测试(二)试题数学(文科)本卷共20小题,满分150分,时间120分钟一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知集合11{2,1,0,1,2}{|28R}2x M N x x +=--=<<∈,,,则M N =( )A .{1,0,1}-B .{2,1,0,1,2}--C .{0,1}D .{10}-,2、设a ∈R ,若i i a 2)(-(i 为虚数单位)为正实数,则a =( )A .2B .1C .0D .1-3、一组数据20,30,40,50,50,60,70,80的平均数、中位数、众数的大小关系是A .平均数>中位数>众数B .平均数<中位数<众数C .中位数<众数<平均数D .众数=中位数=平均数4、若 ]2,4[ππθ∈,47sin =θ,则θ2sin =( )A 。
错误! B. -错误! C. 错误! D. -错误!5、设 S n 为等差数列 {a n } 的前 n 项和,若S 3 = 3,S 6 = 24,则a 9 =( )A. 13 B 。
14 C 。
15 D 。
166、已知-7,1a ,2a ,-1四个实数成等差数列,-4,1b ,2b ,3b ,-1五个实数成等比数列,则212b a a-=( )A .1B .-1C .2D .±17、函数],0[)(26sin(2ππ∈-=x x y 为增函数的区间是 ( )A.[0,3π]B.[12π,12π7]C.[3π,6π5]D.[6π5,π]8、已知xx f )21()(=,其反函数为)(x g 则)(2x g 是( )A 。
奇函数且在),0(+∞上是增函数;B.偶函数且在),0(+∞上是增函数; C 。
奇函数且在)0,(-∞上是增函数;D.偶函数且在)0,(-∞上是增函数;9、△ABC 中,∠C = 60°,且CA = 2,CB = 1,点M 满足 错误!= 2错误!,则 错误!·错误!=( )A. 4 + 错误! B 。
天津南开中学2024届高三第二次检测数学试卷及答案
2024南开中学高三数学第二次月考一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}ln A x y x ==,{}21B y y x ==+,则()RA B ⋂=ð()A.()0,1 B.(]0,1 C.[)0,1 D.[]0,12.设数列{}n a 的公比为q ,则“10a >且01q <<”是“{}n a 是递减数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.函数()2cos e ex x x x f x -+=-的大致图像为()A.B.C.D.4.设5log 2a =,ln 2b =,0.20.5c -=,则a ,b ,c 的大小关系为()A.a c b<< B.a b c<< C.b<c<aD.c a b<<5.设n S 为正项等比数列{}n a 的前n 项和,5a ,33a ,4a 成等差数列,则84S S 的值为()A.116B.117C.16D.176.已知35a b =且211a b+=,则a 的值为()A.3log 15B.5log 15C.3log 45D.5log 457.我国古代数学名著《九章算术》中记载“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.问积几何?”这里的“羡除”,是指由三个等腰梯形和两个全等的三角形围成的五面体.在图1所示羡除中,////AB CD EF ,10AB =,8CD =,6EF =,等腰梯形ABCD 和等腰梯形ABFE 的高分别为7和3,且这两个等腰梯形所在的平面互相垂直.按如图2的分割方式进行体积计算,得该“羡除”的体积为()A.84B.66C.126D.1058.记()n a τ表示区间[],n n a 上的偶数的个数.在等比数列{}n a n -中,14a =,211a =,则()4a τ=()A.39B.40C.41D.429.将函数πsin 24y x ⎛⎫=+ ⎪⎝⎭图象上的所有点向右平移π4个单位长度,得到函数()y g x =的图象,则()A.()g x 为奇函数B.()3πcos 24g x x ⎛⎫=-⎪⎝⎭C.()g x 的最小正周期为2πD.()g x 的单调递增区间为5πππ,π88k k ⎡⎤-+-+⎢⎥⎣⎦,Zk ∈二.填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.设i 是虚数单位,()12a i i bi +=+(,a b ∈R ),则b a -=_____.11.在5223x x ⎛⎫- ⎪⎝⎭的展开式中,x 的系数是______.12.已知直线():20l y kx k =->与圆221x y +=相切,且被圆()()2240x y a a ++=>截得的弦长为k =______;=a ______.13.锐角α,β满足2π23αβ+=,tan tan 22αβ=-α和β中的较小角等于______.14.D 为ABC 的边AB 一点,满足2AD DB = .记CA a = ,CB b = ,用a ,b 表示CD =______;若1CD = ,且ABC 的面积为98,则ACB ∠的最小值为______.15.若二次函数()()2121f x ax b x a =+---在区间[]2,3上存在零点,则22a b +的最小值为______.三.解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.16.在ABC 中,,,A B C 对应的边为,,a b c .已知1cos 2a C cb +=.(Ⅰ)求A ;(Ⅱ)若4,6b c ==,求cos B 和()cos 2A B +的值.17.如图,在直三棱柱111ABC A B C -中,AB BC ⊥,12AB BC BB ===,D 为棱AB 的中点.M 为线段1BC 的中点.(1)求证:1//BC 平面1A CD ;(2)求平面1A CD 与平面1C DC 的夹角的余弦值;(3)求点M 到平面1A CD 的距离.18.椭圆22221x y a b+=的左、右顶点分别为A ,B ,上顶点为()0,2C ,左、右焦点分别为1F ,2F ,且1AF ,12F F ,1F B 成等比数列.(1)求椭圆的方程;(2)过1F 的直线l 与椭圆交于M ,N 两点,直线CM ,CN 分别与x 轴交于P ,Q 两点.若CMN CPQ S S =△△,求直线l 的斜率.19.已知数列{}n a 是首项为1的等差数列,数列{}n b 是公比不为1的等比数列,满足122a a b +=,233a a b +=,454a a b +=.(1)求{}n a 和{}n b 的通项公式;(2)求数列{}n n a b 的前n 项和n S ;(3)若数列{}n d 满足11d =,1n n n d d b ++=,记12nkn i kd T b ==∑.是否存在整数m ,使得对任意的*n ∈N 都有212nn nd mT b ≤-<成立?若存在,求出m 的值;若不存在,说明理由.20.已知函数()2e xf x a x =-,0a >且1a ≠.(1)当e a =时,求曲线()y f x =在1x =处的切线方程;(2)若1a >,且()f x 存在三个零点1x ,2x ,3x .(i )求实数a 的取值范围;(ii )设123x x x <<,求证:1233x x x ++>.2024南开中学高三数学第二次月考一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】A【3题答案】【答案】A【4题答案】【答案】B【5题答案】【答案】D【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】C【9题答案】【答案】B二.填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.【10题答案】【答案】3.【11题答案】【答案】720【12题答案】【答案】①.②.4【13题答案】【答案】π6##30︒【14题答案】【答案】①.1233a b + ②.π2【15题答案】【答案】125三.解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.【16题答案】【答案】(Ⅰ)π3A =(Ⅱ)1114-【17题答案】【答案】(1)证明见解析;(2)306;(3)63.【18题答案】【答案】(1)22154x y +=(2)12-或0【19题答案】【答案】(1)21n a n =-,2nn b =(2)()12326n n S n +=-⋅+(3)存在5m =,理由见解析【20题答案】【答案】(1)e e 0x y -+=(2)(i )1a <<,(ii )证明见解析。
2020-2021学年浙江省杭州二中高三(上)第二次月考数学试卷(文科) Word版含解析
2022-2021学年浙江省杭州二中高三(上)其次次月考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合M={y|y=2﹣x},P={y|y=},则M∩P=()A.{y|y>1} B.{y|y≥1} C.{y|y>0} D.{y|y≥0}2.等比数列{a n}中,a1>0,则“a1<a4”是“a3<a5”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.已知圆C:x2+y2﹣2x=1,直线l:y=k(x﹣1)+1,则l与C的位置关系是()A.确定相离B.确定相切C.相交且确定不过圆心D.相交且可能过圆心4.已知等比数列{a n}的公比为q(q为实数),前n项和为S n,且S3、S9、S6成等差数列,则q3等于()A.1 B.﹣C.﹣1或D.1或﹣5.已知x,y 满足,且z=2x+y的最大值是最小值的4倍,则a的值是()A.B.C.D.46.已知等差数列{a n}的前n项和为S n ,且=5,=25,则=()A.125 B.85 C.45 D.357.若正数a,b 满足,的最小值为()A.1 B.6 C.9 D.168.已知F1,F2分别是椭圆的左,右焦点,现以F2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M,N,若过F1的直线MF1是圆F2的切线,则椭圆的离心率为()A.﹣1 B.2﹣C.D.9.若等差数列{a n}满足a12+a102=10,则S=a10+a11+…+a19的最大值为()A.60 B.50 C.45 D.40 10.已知函数f(x)是定义在R上的奇函数,在(0,2]上是增函数,且f(x﹣4)=﹣f(x),给出下列结论:①若0<x1<x2<4且x1+x2=4,则f(x1)+f(x2)>0;②若0<x1<x2<4且x1+x2=5,则f(x1)>f(x2);③若方程f(x)=m在[﹣8,8]内恰有四个不同的实根x1,x2,x3,x4,则x1+x2+x3+x4=﹣8或8;④函数f(x)在[﹣8,8]内至少有5个零点,至多有13个零点其中结论正确的有()A.1个B.2个C.3个D.4个二、填空题:本大题共7小题,每小题4分,共28分.11.函数f(x)=的全部零点所构成的集合为.12.如图为了测量A,C两点间的距离,选取同一平面上B,D两点,测出四边形ABCD各边的长度(单位:km):AB=5,BC=8,CD=3,DA=5,如图所示,且A、B、C、D四点共圆,则AC的长为km.13.在△ABC中,∠A=,D是BC边上任意一点(D与B、C不重合),且丨|2=,则∠B=.14.已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形.若P为底面A1B1C1的中心,则PA与平面ABC所成的角的大小为.15.已知sinα,cosα是关于x的方程x2﹣ax+a=0的两个根,则sin3α+cos3α=.16.已知O是△ABC外心,若,则cos∠BAC=.17.已知函数f(x)=﹣x,对,有f(1﹣x)≥恒成立,则实数a的取值范围为.三、解答题18.在△ABC中,角A,B,C的对边分别为a,b,c,已知bcosC+bsinC﹣a﹣c=0.(Ⅰ)求B;(Ⅱ)若b=,求2a+c的取值范围.19.如图,在三棱锥P﹣ABC中,BC⊥平面PAB.已知PA=AB,D,E分别为PB,BC的中点.(1)求证:AD⊥平面PBC;(2)若点F在线段AC上,且满足AD∥平面PEF,求的值.20.已知数列{a n}的首项为a(a≠0),前n项和为,且有S n+1=tS n+a(t≠0),b n=S n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)当t=1时,若对任意n∈N*,都有|b n|≥|b5|,求a的取值范围;(Ⅲ)当t≠1时,若c n=2+b1+b2+…+b n,求能够使数列{c n}为等比数列的全部数对(a,t).21.如图,已知圆G:x2﹣x+y2=0,经过抛物线y2=2px的焦点,过点(m,0)(m<0)倾斜角为的直线l交抛物线于C,D两点.(Ⅰ)求抛物线的方程;(Ⅱ)若焦点F在以线段CD为直径的圆E的外部,求m的取值范围.22.已知函数f(x)=x2﹣1,g(x)=a|x﹣1|.(Ⅰ)若当x∈R时,不等式f(x)≥g(x)恒成立,求实数a的取值范围;(Ⅱ)求函数h(x)=|f(x)|+g(x)在区间[﹣2,2]上的最大值.2022-2021学年浙江省杭州二中高三(上)其次次月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合M={y|y=2﹣x},P={y|y=},则M∩P=()A.{y|y>1} B.{y|y≥1} C.{y|y>0} D.{y|y≥0}考点:交集及其运算;函数的定义域及其求法;函数的值域.专题:函数的性质及应用.分析:先化简这两个集合,利用两个集合的交集的定义求出M∩P.解答:解:∵M={y|y=2﹣x}={y|y>0},P={y|y=}={y|y≥0},∴M∩P={y|y>0},故选C.点评:本题考查函数的值域的求法,两个集合的交集的定义,化简这两个集合是解题的关键.2.等比数列{a n}中,a1>0,则“a1<a4”是“a3<a5”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:规律型.分析:结合等比数列的性质,利用充分条件和必要条件的定义进行推断即可.解答:解:在等比数列中设公比为q,则由a1<a4,得a1<a1q3,∵a1>0,∴q3>1,即q>1.由“a3<a5”得,即q2>1,∴q>1或q<﹣1.∴“a1<a4”是“a3<a5”的充分不必要条件.故选:A.点评:本题主要考查充分条件和必要条件的推断,利用等比数列的运算性质是解决本题的关键,比较基础.3.已知圆C:x2+y2﹣2x=1,直线l:y=k(x﹣1)+1,则l与C的位置关系是()A.确定相离B.确定相切C.相交且确定不过圆心D.相交且可能过圆心考点:直线与圆的位置关系.专题:计算题.分析:将圆C方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,与r比较大小即可得到结果.解答:解:圆C方程化为标准方程得:(x﹣1)2+y2=2,∴圆心C(1,0),半径r=,∵≥>1,∴圆心到直线l的距离d=<=r,且圆心(1,0)不在直线l上,∴直线l与圆相交且确定不过圆心.故选C点评:此题考查了直线与圆的位置关系,涉及的学问有:圆的标准方程,点到直线的距离公式,娴熟把握直线与圆位置关系的推断方法是解本题的关键.4.已知等比数列{a n}的公比为q(q为实数),前n项和为S n,且S3、S9、S6成等差数列,则q3等于()A.1 B.﹣C.﹣1或D.1或﹣考点:等比数列的性质.专题:计算题.分析:依据等比数列的求和分别表示出S3、S9、S6代入2S9=S6+S3,即可得到答案.解答:解:依题意可知2S9=S6+S3,即2=+整理得2q6﹣q3﹣1=0,解q3=1或﹣,当q=1时,2S9=S6+S3,不成立故排解.故选B.点评:本题主要考查了等比数列的性质.属基础题.5.已知x,y 满足,且z=2x+y的最大值是最小值的4倍,则a的值是()A.B.C.D.4考点:简洁线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用z的几何意义,结合目标函数z=2x+y的最大值是最小值的4倍,建立方程关系,即可得到结论.。
湖南省长沙市2025届高三上学期第二次月考数学试卷含答案
湖南2025届高三月考试卷(二)数学(答案在最后)命题人、审题人:高三数学备课组时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数11i z =+的虚部是()A.1 B.12 C.12- D.1-【答案】C【解析】【分析】先化简给定复数,再利用虚部的定义求解即可.【详解】因为()()11i 1i 1i 1i 1i 1i 222z --====-++-,所以其虚部为12-,故C 正确.故选:C.2.已知a 是单位向量,向量b 满足3a b -= ,则b 的最大值为()A.2B.4C.3D.1【答案】B【解析】【分析】设,OA a OB b == ,由3a b -= ,可得点B 在以A 为圆心,3为半径的圆上,利用向量的模的几何意义,可得 b 的最大值.【详解】设,OA a OB b == ,因为3a b -= ,即3OA OB BA -== ,即3AB = ,所以点B 在以A 为圆心,3为半径的圆上,又a 是单位向量,则1OA = ,故OB 最大值为134OA AB +=+= ,即 b 的最大值为4.故选:B.3.已知角θ的终边在直线2y x =上,则cos sin cos θθθ+的值为()A.23- B.13- C.23 D.13【答案】D【解析】【分析】由角θ的终边,得tan 2θ=,由同角三角函数的关系得cos 1sin cos 1tan θθθθ=++,代入求值即可.【详解】因为角θ的终边在直线2y x =上,所以tan 2θ=.所以cos 111sin cos 1tan 123θθθθ===+++.故选:D.4.已知函数()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩对任意的12,x x ∈R ,且12x x ≠,总满足以下不等关系:()()12120f x f x x x ->-,则实数a 的取值范围为()A.34a ≤ B.34a ≥ C.1a ≤ D.1a ≥【答案】D【解析】【分析】由条件判定函数的单调性,再利用指数函数、二次函数的性质计算即可.【详解】()()()12120f x f x f x x x ->⇒- 在上单调递增,又()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩,当0x <时,()e 33xf x a =+-单调递增,当0x ≥时,()f x 单调递增,只需1330a a +-≤+,解得1a ≥.故选:D.5.如图,圆柱的母线长为4,,AB CD 分别为该圆柱的上底面和下底面直径,且AB CD ⊥,三棱锥A BCD -的体积为83,则圆柱的表面积为()A.10πB.9π2C.4πD.8π【答案】A【解析】【分析】取AB 的中点O ,由13A BCD OCD V S AB -=⋅△,可求解底面半径,即可求解.【详解】设底面圆半径为r ,由AB CD ⊥,易得BC AC BD AD ===,取AB 的中点O ,连接,OC OD ,则,AB OC AB OD ⊥⊥,又OC OD O,OC,OD =⊂ 平面OCD ,所以AB ⊥平面OCD ,所以,11182423323A BCD OCD V S AB r r -=⋅=⨯⨯⨯⨯= ,解得=1,所以圆柱表面积为22π42π10πr r +⨯=.故选:A.6.已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过焦点F 的直线l 与抛物线交于,A B 两点,则23AF BF +的最小值为()A.52+ B.5 C.10 D.11【答案】B【解析】【分析】(方法一)首先求出抛物线C 的方程为24y x =,设直线l 的方程为:1x ty =+,与抛物线C 的方程联立,利用根与系数的关系求出21x x 的值,再根据抛物线的定义知11AF x =+,21BF x =+,从而求出23AF BF +的最小值即可.(方法二)首先求出111AF BF+=,再利用基本不等式即可求解即可.【详解】(方法一)因为抛物线C 的焦点到准线的距离为2,故2p =,所以抛物线C 的方程为24y x =,焦点坐标为1,0,设直线l 的方程为:()()11221,,,,x ty A x y B x y =+,不妨设120y y >>,联立方程241y x x ty ⎧=⎨=+⎩,整理得2440y ty --=,则12124,4y y t y y +==-,故221212144y y x x =⋅=,又B =1+2=1+1,2212p BF x x =+=+,则()()12122321312352525AF BF x x x x +=+++=++≥=,当且仅当12,23x x ==时等号成立,故23AF BF +的最小值为5.故选:B.(方法二)由方法一可得121x x =,则11AF BF +211111x x =+++121212211x x x x x x ++==+++,因此23AF BF +()1123AF BF AF BF ⎛⎫=++ ⎪ ⎪⎝⎭235AF BF BF AF =++55≥+=+,当且仅当661,123AF BF =+=+时等号成立,故23AF BF +的最小值为5.故选:B.7.设函数()()cos f x x ϕ=+,其中π2ϕ<.若R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.则()y f x =的图象与直线114y x =-的交点个数为()A.1B.2C.3D.4【答案】C【解析】【分析】利用给定条件求出()πcos 4f x x ⎛⎫=- ⎪⎝⎭,再作出图像求解交点个数即可.【详解】对R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以π4x =是=的一条对称轴,所以()ππZ 4k k ϕ+=∈,又π2ϕ<,所以π4ϕ=-.所以()πcos 4f x x ⎛⎫=- ⎪⎝⎭,在平面直角坐标系中画出()πcos 4f x x ⎛⎫=-⎪⎝⎭与114y x=-的图象,当3π4=-x 时,3π14f ⎛⎫-=- ⎪⎝⎭,11113π3π4164y --=⨯(-=-<-,当5π4x =时,5π14f ⎛⎫=- ⎪⎝⎭,5π5π14111461y =⨯-=->-,当9π4x =时,9π14f ⎛⎫= ⎪⎝⎭,11119π9π4416y =⨯-=-<,当17π4x =时,17π14f ⎛⎫= ⎪⎝⎭,111117π17π4416y =⨯-=->所以如图所示,可知=的图象与直线114y x =-的交点个数为3,故C 正确.故选:C.8.已知定义域为R 的函数()(),f x g x 满足:()()()()()()00,g f x g y f y g x f x y ≠-⋅=-,且()()()()()g x g y f x f y g x y -=-,则下列说法正确的是()A.()01f =B.()f x 是偶函数C.若()()1112f g +=,则()()2024202420242f g -=-D.若()()111g f -=,则()()202420242f g +=【答案】C【解析】【分析】对A ,利用赋值法令0,0x y ==即可求解;对B ,根据题中条件求出()f y x -,再利用偶函数定义即可求解;对C ,先根据题意求出()()001f g -=-,再找出()()11f x g x ---与()()f x g x ⎡⎤-⎣⎦的关系,根据等比数列的定义即可求解;对D ,找出()()11f x g x -+-与()()f x g x ⎡⎤+⎣⎦的关系,再根据常数列的定义即可求解.【详解】对A ,()()()()()f x g y f y g x f x y -⋅=- ,令0,0x y ==,即()()()()()00000f g f g f -⋅=,解得()00f =,故A 错;对B ,根据()()()()()f x g y f y g x f x y -=-,得()()()()()f y g x f x g y f y x -=-,即()()f y x f x y -=--,故()f x 为奇函数,故B 错;对C ,()()()()()g x g y f x f y g x y -=- 令0x y ==,即()()()()()00000g g f f g -=,()00f = ,()()200g g ∴=,又()00g ≠,()01g ∴=,()()001f g ∴-=-,由题知:()()f x yg x y ---()()()()()()()()f x g y f y g x g x g y f x f y ⎡⎤=-⋅--⎣⎦()()()()f y g y f x g x ⎡⎤⎡⎤=+-⎣⎦⎣⎦,令1y =,即()()()()()()1111f x g x f g f x g x ⎡⎤⎡⎤---=+-⎣⎦⎣⎦,()()1112f g += ,()()()()1112f xg x f x g x ⎡⎤∴---=-⎣⎦,即()(){}f xg x -是以()()001f g -=-为首项2为公比的等比数列;故()()()2024202420242024122f g -=-⨯=-,故C 正确;对D ,由题意知:()()f x yg x y -+-()()()()()()()()f xg y f y g x g x g y f x f y =-⋅+-()()()()g y f y f x g x ⎡⎤⎡⎤=-+⎣⎦⎣⎦,令1y =,得()()()()()()1111f x g x g f f x g x ⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦,又()()111g f -=,即()()()()11f x g x f x g x -+-=+,即数列()(){}f xg x +为常数列,由上知()()001f g +=,故()()202420241f g +=,故D 错.故选:C.【点睛】关键点点睛:本题的关键是对抽象函数进行赋值,难点是C ,D 选项通过赋值再结合数列的性质进行求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法中正确的是()A.一个样本的方差()()()22221220133320s x x x ⎡⎤=-+-++-⎣⎦L ,则这组样本数据的总和等于60B.若样本数据1210,,,x x x 的标准差为8,则数据1221,21,x x -- ,1021x -的标准差为16C.数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23D.若一个样本容量为8的样本的平均数为5,方差为2,现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差变小【答案】ABD【解析】【分析】对于A ,由题意可得样本容量为20,平均数是3,从而可得样本数据的总和,即可判断;对于B ,根据标准差为8,可得方差为64,从而可得新数据的方差及标准差,即可判断;对于C ,根据百分位数的定义,求出第70百分位数,即可判断;对于D ,由题意可求得新数据的平均数及方差,即可判断.【详解】解:对于A ,因为样本的方差()()()222212201333,20s x x x ⎡⎤=-+-++-⎣⎦ 所以这个样本有20个数据,平均数是3,这组样本数据的总和为32060,⨯=A 正确;对于B ,已知样本数据1210,,,x x x 的标准差为8s =,则264s =,数据121021,21,,21x x x --- 的方差为2222264s =⨯2816=⨯=,故B 正确;对于C ,数据13,27,24,12,14,30,15,17,19,23共10个数,从小到大排列为12,13,14,15,17,19,23,24,27,30,由于100.77⨯=,故选择第7和第8个数的平均数作为第70百分位数,即232423.52+=,所以第70百分位数是23.5,故C 错误;对于D ,某8个数的平均数为5,方差为2,现又加入一个新数据5,设此时这9个数的平均数为x ,方差为2S ,则2285582(55)165,2999x S ⨯+⨯+-====<,故D 正确.故选:ABD.10.已知函数()32f x ax bx =-+,则()A.()f x 的值域为RB.()f x 图象的对称中心为()0,2C.当30b a ->时,()f x 在区间()1,1-内单调递减D.当0ab >时,()f x 有两个极值点【答案】BD【解析】【分析】利用一次函数、三次函数的性质结合分类讨论思想可判定A ,利用函数的奇偶性判定B ,利用导数研究函数的单调性结合特殊值法排除C ,利用极值点的定义可判定D.【详解】对于A :当,a b 至少一个不为0,则()f x 为三次或者一次函数,值域均为;当,a b 均为0时,值域为{}2,错误;对于B :函数()()32g x f x ax bx =-=-满足()()3g x ax bx g x -=-+=-,可知()g x 为奇函数,其图象关于()0,0中心对称,所以()f x 的图象为()g x 的图象向上移动两个单位后得到的,即关于0,2中心对称,正确;对于C :()23f x ax b '=-,当30b a ->时,取1,1a b =-=-,当33,33x ⎛⎫∈- ⎪ ⎪⎝⎭时,()()2310,f x x f x =-+>'在区间33,33⎛⎫- ⎪ ⎪⎝⎭上单调递增,错误;对于D :()23f x ax b '=-,当0ab >时,()230f x ax b '=-=有两个不相等的实数根,所以函数()f x 有两个极值点,正确.故选:BD.11.我国古代太极图是一种优美的对称图.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列命题中正确的是()A.函数()sin 1f x x =+是圆22:(1)1O x y +-=的一个太极函数B.对于圆22:1O x y +=的所有非常数函数的太极函数中,都不能为偶函数C.对于圆22:1O x y +=的所有非常数函数的太极函数中,均为中心对称图形D.若函数()()3f x kx kx k =-∈R 是圆22:1O x y +=的太极函数,则()2,2k ∈-【答案】AD【解析】【分析】根据题意,对于A ,D 利用新定义逐个判断函数是否满足新定义即可,对于B ,C 举反例说明.【详解】对于A ,圆22:(1)1O x y +-=,圆心为0,1,()sin 1f x x =+的图象也过0,1,且0,1是其对称中心,所以()sin 1f x x =+的图象能将圆一分为二,所以A 正确;对于B,C ,根据题意圆22:1O x y +=,如图()331,332313,03231332331,332x x x f x x x x ⎧--<-⎪⎪+-≤≤=⎨⎪+<≤⎪->⎩,与圆交于点()1,0-,1,0,且在x 轴上方三角形面积与x 轴下方个三角形面积之和相等,()f x 为圆O 的太极函数,且()f x 是偶函数,所以B ,C 错误;对于D ,因为()()()()()33()f x k x k x kx kx f x k -=---=--=-∈R ,所以()f x 为奇函数,由()30f x kx kx =-=,得0x =或1x =±,所以()f x 的图象与圆22:1O x y +=的交点为()()1,0,1,0-,且过圆心()0,0,由3221y kx kx x y ⎧=-⎨+=⎩,得()2624222110k x k x k x -++-=,令2t x =,则()232222110k t k t kt -++-=,即()()222110t k t k t --+=,得1t =或22210k t k t -+=,当1t =时,1x =±,当22210k t k t -+=时,若0k =,则方程无解,合题意;若0k ≠,则()4222Δ44k k k k=-=-,若Δ0<,即204k <<时,方程无解,合题意;所以()2,2k ∈-时,两曲线共有两个交点,函数能将圆一分为二,如图,若Δ0=,即2k =±时,函数与圆有4个交点,将圆分成四部分,若Δ0>,即24k >时,函数与圆有6个交点,且均不能把圆一分为二,如图,所以()2,2k ∈-,所以D 正确.故选:AD.【点睛】关键点点睛:本题解题的关键是理解新定义,即如果一个函数过圆心,并且函数图象关于圆心中心对称,且函数将圆分成2部分,不能超过2部分必然合题.如果函数不是中心对称图形,则考虑与圆有2个交点,交点连起来过圆心,再考虑如何让面积相等.三、填空题:本题共3小题,每小题5分,共15分.12.曲线2ln y x x =-在点()1,2处的切线与抛物线22y ax ax =-+相切,则a =__________.【答案】1【解析】【分析】求出曲线2ln y x x =-在点()1,2处的切线方程,由该切线与抛物线22y ax ax =-+相切,联立消元,得到一元二次方程,其Δ0=,即可求得a .【详解】由2ln y x x =-,则12y x'=-,则11x y ='=,曲线2ln y x x =-在点()1,2处的切线方程为21y x -=-,即1y x =+,当0a ≠时,则212y x y ax ax =+⎧⎨=-+⎩,得()2110ax a x -++=,由2Δ(1)40a a =+-=,得1a =.故答案为:1.13.已知椭圆G22+22=1>>0的左、右焦点分别为12,F F ,若P 为椭圆C 上一点,11212,PF F F PF F ⊥ 的内切圆的半径为3c,则椭圆C 的离心率为______.【答案】23【解析】【分析】由内切圆半径的计算公式,利用等面积法表示焦点三角形12PF F 的面积,得到,a c 方程,即可得到离心率e 的方程,计算得到结果.【详解】由题意,可知1PF 为椭圆通径的一半,故21b PF a =,12PF F 的面积为21122b cc PF a⋅⋅=,又由于12PF F 的内切圆的半径为3c,则12PF F 的面积也可表示为()12223c a c +⋅,所以()111222223c c PF a c ⋅⋅=+⋅,即()212223b c ca c a =+⋅,整理得:22230a ac c --=,两边同除以2a ,得2320e e +-=,所以23e =或1-,又椭圆的离心率()0,1e ∈,所以椭圆C 的离心率为23.故答案为:23.14.设函数()()44xf x ax x x =+>-,若a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则()f x b >恒成立的概率为__________.【答案】58##0.625【解析】【分析】根据题意,利用基本不等式,求得2min ()1)f x =+,转化为21)b +>恒成立,结合a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,得到基本事件总数有24个,再利用列举法,求得()f x b >成立的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】因为0,4a x >>,可得40x ->,则()()441441444x f x ax ax a x a x x x =+=++=-+++---2411)a ≥++=,当且仅当4x =时,等号成立,故2min ()1)f x =+,由不等式()f x b >恒成立转化为21)b >恒成立,因为a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则构成(),a b 的所有基本事件总数有24个,又由()221)1)912,16==+,()221)1319,201)25+=+=,设事件A =“不等式()f x b >恒成立”,则事件A 包含事件:()()1,4,1,8,()()()2,4,2,8,2,12,()()()()3,4,3,8,3,12,3,16,()()()()()()4,4,4,8,4,12,4,16,4,20,4,25共15个,因此不等式()f x b >恒成立的概率为155248=.故答案为:58.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +-=-.(1)求B ;(2)若ABC 的面积为334,且2AD DC = ,求BD 的最小值.【答案】(1)π3B =(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a +-=-,再结合余弦定理得2221cos 22a cb B ac +-==,从而可求解.(2)结合ABC V 的面积可求得3ac =,再由.112333BD BC CA BA BC =+=+,平方后得,()222142993BD c a =++ ,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a +-=-,即222a c b ac +-=,由余弦定理可得2221cos 222a cb ac B ac ac +-===,因为()0,πB ∈,所以π3B =.【小问2详解】因为ABC V 的面积为33π,43B =,所以133sin 24ac B =,所以3ac =.因为()11123333BD BC CA BC BA BC BA BC =+=+-=+,所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当6,2a c ==时取等号,所以BD .16.已知双曲线E 的焦点在x 轴上,离心率为233,点(在双曲线E 上,点12,F F 分别为双曲线的左、右焦点.(1)求E 的方程;(2)过2F 作两条相互垂直的直线1l 和2l ,与双曲线的右支分别交于A ,C 两点和,B D 两点,求四边形ABCD 面积的最小值.【答案】(1)2213x y -=(2)6【解析】【分析】(1)由222c a b =+和3e =,及点(在双曲线E 上,求出22,a b ,即可求出E 的方程;(2)设直线()()121:2,:2l y k x l y x k =-=--,其中0k ≠,根据题中条件确定2133k <<,再将1l 的方程与2213x y -=联立,利用根与系数的关系,用k 表示AC ,BD 的长,再利用12ABCDS AC BD =,即可求出四边形ABCD 面积的最小值.【小问1详解】因为222c a b =+,又由题意得22243c e a ==,则有223a b =,又点(在双曲线E 上,故229213-=b b,解得221,3b a ==,故E 的方程为2213xy -=.【小问2详解】根据题意,直线12,l l 的斜率都存在且不为0,设直线()()121:2,:2l y k x l y x k=-=--,其中0k ≠,因为12,l l 均与E 的右支有两个交点,所以313,33k k >->,所以2133k <<,将1l 的方程与2213x y -=联立,可得()222213121230k x k x k -+--=.设()()1122,,,A x y C x y ,则2212122212123,1313k k x x x x k k---+==--,所以()222121212114AC k x k x x x x =+-=++-)22222222222311212323114113133113k k k kkk k k k k +⎛⎫---+=+-⨯+ ⎪----⎝⎭,同理)22313k BD k +=-,所以))()()()2222222223131111622313313ABCD kkk S AC BD k kkk+++==⋅⋅=⋅----.令21t k =+,所以241,,43k t t ⎛⎫=-∈⎪⎝⎭,则2222166661616316161131612ABCDt S t t t t t =⋅=⋅=≥-+-⎛⎫-+---+ ⎪⎝⎭,当112t =,即1k =±时,等号成立.故四边形ABCD 面积的最小值为6.17.如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B -==,2,P 为棱11A B 上的动点.(1)求证:1AA ⊥平面11BCC B ;(2)是否存在点P ,使得平面APC 与平面111A B C 的夹角的余弦值为53333?若存在,求出点P ;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,点P 为11A B 中点【解析】【分析】(1)延长三条侧棱交于一点O ,由勾股定理证明OA OB ⊥,OA OC ⊥,根据线面垂直的判定定理得证;(2)建立空间直角坐标系,求出平面111A B C 和平面APC 的法向量,利用向量夹角公式求解.【小问1详解】延长三条侧棱交于一点O ,如图所示,由于11124,2AB A B BB ===22OB OA ==所以22216OA OB AB +==,所以OA OB ⊥,同理OA OC ⊥.又OB OC O = ,,OB OC ⊂平面OBC ,所以OA ⊥平面OBC ,即1AA ⊥平面11BCC B .【小问2详解】由(1)知,,OA OB OA OC OB OC ⊥⊥⊥,如图建立空间直角坐标系,则(()0,0,,0,A C,()()111,,0,A B C ,所以((1110,0,,0,,AA AC A B ==-=,()110,B C =.设)111,0,A P A B λλ===,则1AP AA =+)[]1,0,,0,1A P λ=∈,设平面111A B C 和平面APC 的法向量分别为(),,,m x y z n ==(),,r s t ,所以)01000r t λ⎧=+=⎪⎨+==⎪⎪⎩⎩,取()()1,1,1,1,,m n λλλ==+,则cos ,33m n m n m n ⋅===.整理得212870λλ+-=,即()()21670λλ-+=,所以12λ=或76λ=-(舍),故存在点P (点P 为11A B 中点时),满足题意.18.若无穷正项数列{}n a 同时满足下列两个性质:①存在0M >,使得*,n a M n <∈N ;②{}n a 为单调数列,则称数列{}n a 具有性质P .(1)若121,3nn n a n b ⎛⎫=-= ⎪⎝⎭,(i )判断数列{}{},n n a b 是否具有性质P ,并说明理由;(ii )记1122n n n S a b a b a b =+++ ,判断数列{}n S 是否具有性质P ,并说明理由;(2)已知离散型随机变量X 服从二项分布()1,,02B n p p <<,记X 为奇数的概率为n c .证明:数列{}n c 具有性质P .【答案】(1)(i )数列{}n a 不具有性质P ,数列{}n b 具有性质P ,理由见解析;(ii )数列{}n S 具有性质P ,理由见解析(2)证明见解析【解析】【分析】(1)判断数列是否满足条件①②,可得(i )的结果;利用错位相减法求数列{}n n a b 的前n 项和,再判断是否满足条件①②.(2)先求数列{}n c 的通项公式,再判断是否满足条件①②.【小问1详解】(i )因为21n a n =-单调递增,但无上限,即不存在M ,使得n a M <恒成立,所以数列不具有性质P .因为113nn b ⎛⎫=< ⎪⎝⎭,又数列为单调递减数列,所以数列具有性质P .(ii )数列{}n S 具有性质P .2112113333n n n S -=⋅+⋅++ ,23111121133333n n n S +-=⋅+⋅++ ,两式作差得23121111211222333333n n n n S +-=⋅+⋅+⋅++⋅- ,即1121121212223313333313n n n n n n S ++⎛⎫- ⎪-+⎝⎭=-+-=--,所以111,3n n n S +=-<∴数列{}n S 满足条件①.(){}11210,,3nn n n n n a b n S S S +⎛⎫=->∴<∴ ⎪⎝⎭为单调递增数列,满足条件②.综上,数列{}n S 具有性质P .【小问2详解】因为*0,1,,,X n n =∈N ,若X 为奇数的概率为,n c X 为偶数的概率为n d ,()1[1]nn n c d p p +==-+001112220C (1)C (1)C (1)C (1)n n n n nn n n n p p p p p p p p --=-+-+-++- ①()001112220[1]C ()(1)C ()(1)C ()(1)C ()(1)n n n n n n n n n n p p p p p p p p p p ----=--+--+--++-- ②,2n c -=①②,即1(12)2nn p c --=.所以当102p <<时,0121p <-<,故n c 随着n 的增大而增大,且12n c <.故数列{}n c 具有性质P .19.已知函数()24e 2x f x x x-=-,()2233g x x ax a a =-+--(a ∈R 且2a <).(1)令()()()(),x f x g x h x ϕ=-是()x ϕ的导函数,判断()h x 的单调性;(2)若()()f x g x ≥对任意的()1,x ∈+∞恒成立,求a 的取值范围.【答案】(1)ℎ在(),0∞-和0,+∞上单调递增;(2)(],1-∞.【解析】【分析】(1)需要二次求导,利用导函数的符号分析函数的单调性.(2)法一先利用()()22f g ≥这一特殊情况,探索a 的取值范围,再证明对()1,x ∈+∞时,()()f x g x ≥恒成立;法二利用导数工具求出函数()x ϕ的最小值()0x ϕ,同法一求证(]0,1a ∈时()00x ϕ≥,接着求证()1,2a ∈时()20ϕ<不符合题意即可得解.【小问1详解】()()()2224e 233x x f x g x x x ax a a xϕ-=-=-+-++,定义域为{}0xx ≠∣,所以()()()224e 1223x x h x x x a xϕ--==-+-',所以()()2234e 2220x x x h x x --+=+>'.所以()h x 在(),0-∞和()0,∞+上单调递增.【小问2详解】法一:由题知()()22f g ≥即()()()2232120a a a a ϕ=-+=--≥,即1a ≤或2a ≥,所以1a ≤.下证当1a ≤时,()()f x g x ≥对任意的()1,x ∈+∞恒成立.令()()24e x F x f x x x x -=+=-,则()()()()()222234e 224e 11,0x x x x x F x t x t x x x---+-'=-==>',所以()()224e 11x x F x x --=-'在()1,+∞单调递增,又()20F '=,所以当()1,2x ∈时,()()0,F x F x '<单调递减,当()2,x ∈+∞时,()()0,F F x x '>递单调增,所以()()20F x F ≥=,故()f x x ≥-,要证()()f x g x ≥,只需证()x g x -≥,即证()223130x a x a a -+++≥,令()()22313G x x a x a a =-+++,则()()()222Δ(31)43561151a a a a a a a =+-+=-+=--,若115a ≤≤,则0∆≤,所以()()223130G x x a x a a =-+++≥.若15a <,则对称轴31425a x +=<,所以()G x 在()1,+∞递增,故()()210G x G a >=≥,综上所述,a 的取值范围为(],1-∞.法二:由题知2224e 233x x x ax a a x--≥-+--对任意的()1,x ∈+∞恒成立,即()2224e 2330x x x x ax a a xϕ-=-+-++≥对任意的()1,x ∈+∞恒成立.由(1)知()()224e 1223x x x x a x ϕ--=-+-'在()1,+∞递增,又()13a ϕ'=-.①若0a ≤,则()()()10,x x ϕϕϕ'>≥'在()1,+∞递增,所以()()24110e x a ϕϕ>=-+>,符合;②若0a >,则()130a ϕ=-<',又()112224e 14e (1)(1)(1)a a a a a a a a a ϕ--⎡⎤+=-=-+⎣⎦++',令()124e(1)a m a a -=-+,则()()()14e 21a m a a h a -=-+=',则()14e 2a h a -'=-为单调递增函数,令()0h a '=得1ln2a =-,当()0,1ln2a ∈-时()()0,h a m a ''<单调递减,当()1ln2,a ∞∈-+时()()0,h a m a ''>单调递增,又()()10,00m m ='<',所以当()0,1a ∈时,()()0,m a m a '<单调递减,当()1,a ∈+∞时,()()0,m a m a '>单调递增,所以()()10m a m ≥=,则()12214e (1)0(1)a a a a a ϕ-⎡⎤+'=-+≥⎣⎦+,所以(]01,1x a ∃∈+,使得()00x ϕ'=,即()0200204e 12230x x x a x ---+-=,且当()01,x x ∈时,()()0,x x ϕϕ'<单调递减,当()0,x x ∈+∞时,()()0,x x ϕϕ'>单调递增,所以()()0222min 000004e 233x x x x x ax a a x ϕϕ-==-+-++.若(]0,1a ∈,同法一可证()0222000004e 2330x x x x ax a a x ϕ-=-+-++≥,符合题意.若()1,2a ∈,因为()()()2232120a a a a ϕ=-+=--<,所以不符合题意.综上所述,a 的取值范围为(],1-∞.【点睛】方法点睛:导数问题经常会遇到恒成立的问题.常见的解决思路有:(1)根据参变分离,转化为不含参数的函数最值问题.(2)若()0f x >恒成立,就可以讨论参数不同取值下的函数的单调性和极值与最值,最终转化为()min 0f x >;若()0f x <⇔()max 0f x <.(3)若()()f x g x ≥恒成立,可转化为()()min max f x g x ≥(需在同一处取得最值).。
宁夏石嘴山市第三中学2021届高三上学期第二次月考数学(文科)试题
2020年石嘴山市三中11月月考数学试卷(文科)答案和解析【答案】1. A2. A3. A4. C5. C6. C7. D8. D9. A10. B11. B12. D13.14.15.16司长生批 13. (−2,2) 14. {2(n =1)2n−1(n ≥2)15. 2cos x 16. 1:√3:217董红香批17(10分) 解:(1)由a ⃗ ⊥b ⃗ 得,2x +3−x 2=0,即(x −3)(x +1)=0, 解得x =3或x =−1;(2)由a ⃗ //b ⃗ ,则2x 2+3x +x =0, 即2x 2+4x =0,得x =0或x =−2. 当x =0时,a ⃗ =(1,0),b ⃗ =(3,0), ∴a ⃗ −b ⃗ =(−2,0), 此时|a ⃗ −b ⃗ |=2;当x =−2时,a ⃗ =(1,−2),b ⃗ =(−1,2), 则a ⃗ −b ⃗ =(2,−4).故|a ⃗ −b ⃗ |=√22+(−4)2=2√5.18董红香批18. (12) 解:(1)设等差数列{a n }的公差为d ,由a 1+a 2=10,a 4−a 3=2,可得a 1+a 1+d =10,d =2, 解得a 1=4,d =2,可得a n =4+2(n −1)=2n +2; (2)设等比数列{b n }的公比为q ,由b 2=a 3,b 3=a 7,可得b 1q =8,b 1q 2=16, 解得b 1=4,q =2, 则数列{b n }的前n 项和为S n =4(1−2n )1−2=2n+2−4.19(12分 ) .寇 西宁批 解:(Ⅰ)因为△ABC 的外接圆直径为200√573m.由正弦定理BCsin∠CAB =200√573,即200sin∠CAB=200√573,所以sin∠CAB =3√57,cos∠CAB =4√3√57,在△ABC 中,sin∠B =sin(∠CAB +∠ACB)=sin∠CABcos∠ACB +cos∠CABsin∠ACB =√57⋅12+√3√57⋅√32=2√57,由正弦定理可得ACsin∠B =BCsin∠CAB ,所以AC =sin∠Bsin∠CAB ⋅BC =152√573√57⋅200=500m所以AC 的值是500m ;(Ⅱ)由题意可得AD =BC =200,cos∠AED =cos60°=12,在△ADE 中,由余弦定理可得AD 2=AE 2+ED 2−2AE ⋅ED ⋅cos∠AED =(AE +ED)2−3AE ⋅ED , 所以(AE +ED)2−AD 2=3AE ⋅ED ≤3⋅(AE+ED 2)2, 所以14(AE +ED)2≤AD 2=2002, 所以可得:AE +DE ≤400,所以△ADE 的最大周长为:AD +AE +DE =200+400=600m .20.(12分) 寇 西宁批 解:(1)∵f(x)在x =2处有极值,∴f′(2)=0.∵f′(x)=3x 2+2ax ,∴3×4+4a =0,∴a =−3. 经检验a =−3时x =2是f(x)的一个极值点, 故a =−3;(2)由(1)知a =−3,∴f(x)=x 3−3x 2+2,f′(x)=3x 2−6x .令f′(x)=0,得x 1=0,x 2=2.当x 变化时f′(x),f(x)的变化情况如下表:从上表可知f(x)在区间[−1,3]上的最大值是2,最小值是−2.21.(12分) 司长生批 解:(Ⅰ)当0<x <70时,y =100x −(12x 2+40x −400=−12x 2+60x −400),当x ≥70时,y =100x −(101x +6400x−2060)−400=1660−(x +6400x).∴y ={−12x 2+60x −400,0<x <70且x ∈N1660−(x +6400x ),x ≥70且x ∈N; (Ⅱ)当0<x <70时,y =−12x 2+60x −400=−12(x −60)2+1400, 当x =60时,y 取最大值1400万元; 当x ≥70时,y =1660−(x +6400x )≤1660−2√x ⋅6400x=1500,当且仅当x =6400x,即x =80时y 取最大值1500.综上,当月产量为80台时,该企业能获得最大月利润,最大约利润为1500万元.22.(12分)司长生批 解:(I)f′(x)=cosx −sinx −a ,当a =1时,f′(x)=cosx −sinx −1=−√2sin(x −π4)−1,令f′(x)>0可得sin(x −π4)<−√22可得x ∈[−π4,0),令f′(x)<0可得sin(x −π4)>−√22可得x ∈(0,π2],故f(x)在[−π4,0)上单调递增,在(0,π2)上单调递减, 故f(x)max =f(0)=1, ∵f(−π4)=π4,f(π2)=1−π2<π4, ∴f(x)min =f(π2)=1−π2, (II)f(−π)=aπ−1≤1,故a ≤2π,f′(x)=−√2sin(x−π4)−a,∵−π≤x≤0,∴−5π4≤x−π4≤−π4,∴−1≤sin(x−π4)≤√22,−1≤−√2sin(x−π4)≤√2,(i)a≤−1时,f′(x)≥0,f(x)在[−π,0]上单调递增,f(x)<f(0)=1恒成立,(ii)−1<a≤2π时,当−π≤x≤−π4时,f′(x)单调递增,当−π4≤x≤0时,f′(x)单调递减,∴f′(π)=−1−a<0,f′(−π4)=√2−a>0,f′(0)=1−a>0,∴存在a∈(−π,−π4),使得f′(a)=0,所以当−π≤x<a时,f′(x)<0,函数f(x)单调递减,当a<x≤0时,f′(x)>0,函数单调递增,又因为f(−π)=aπ−1≤1,f(0)=1≤1,∴f(x)≤1,∴a≤2π【解析】1. 解:∵集合A={−1,0,4},集合B={x|x2−2x−3≤0,x∈N}={−1,0,1,2,3},图中阴影部分表示的集合是A∩(C U B)={4}故选A由已知中的韦恩图,我们可得图中阴影部分表示的集合是A∩(C U B),根据已知中的集合A,B,可得答案.本题考查的知识点是Venn图表达集合的关系及运算,其中分析出图中阴影部分表示的集合是A∩(C U B),是解答本题的关键.2. 解:根据题意,△ABC满足“勾三股四弦五”,其中股AB=4,则△ABC为Rt△,且cosC=35,△ABD满足勾股定理,则△ABD为Rt△,且∠ADB=90°,则有∠DAB=∠C,又由<AB ⃗⃗⃗⃗⃗ ,AD⃗⃗⃗⃗⃗⃗ >=∠DAB , 则cos <AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗⃗ >=cos∠DAB =cosC =35, 故选:A .根据题意,可得△ABC 中cosC =35,由相似三角形的性质可得∠DAB =∠C ,而<AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗⃗ >=∠DAB ,即可得答案.本题考查向量夹角的计算,注意向量夹角的定义,属于基础题.3. 【分析】由已知展开两角差的正切求得tanα,再由万能公式求得cos2α的值. 本题考查三角函数的化简求值,考查了万能公式的应用,是基础题. 【解答】解:由tan(α−π4)=−13,得tanα−tanπ41+tanαtanπ4=−13,即tanα−11+tanα=−13,解得tanα=12,∴cos2α=1−tan 2α1+tan 2α=1−141+14=35.故选:A .4. 解:由已知得f′(x)=a x , g′(x)=12√x ,设切点横坐标为t ,∴{alnt =√t a t=12√t ,解得t =e 2,a =e 2. 故选:C .根据公共点处函数值相等、导数值相等列出方程组求出a 的值和切点坐标,问题可解.本题考查导数的几何意义和切线方程的求法,以及利用方程思想解决问题的能力,属于基础题.5. 【分析】本题考查向量数量积及向量垂直的充要条件,同时考查正弦定理及两角和与差的三角函数,根据向量垂直,可得√3cosA −sinA =0,分析可得A ,再根据正弦定理可得,sinAcosB +sinBcosA =sin 2C ,进而可得sinC =sin 2C ,可得C ,再根据三角形内角和定理可得B ,进而可得答案.【解答】解:根据题意,m⃗⃗⃗ ⊥n⃗,可得m⃗⃗⃗ ·n⃗=0,即√3cosA−sinA=0,即,又0<A<π,∴A=π3,因为acosB+bcosA=csinC,正弦定理可得sinAcosB+sinBcosA=sin2C,即sin(A+B)=sinC=sin2C,又0<C<π,∴sinC=1,C=π2,故选C.6. 解:向量a⃗与b⃗ 的夹角为60°,|a⃗|=1,|b⃗ |=2,由b⃗ ⊥(2a⃗−λb⃗ )知,b⃗ ⋅(2a⃗−λb⃗ )=0,2b⃗ ⋅a⃗−λb⃗ 2=0,2×2×1×cos60°−λ⋅22=0,解得λ=12.故选:C.根据两向量垂直时数量积为0,列方程求出λ的值.本题考查了平面向量的数量积与垂直的应用问题,是基础题.7. 解:函数f(x)=12(√3sin2|x|−cos2|x|)=sin(2|x|−π6),定义域为R,f(−x)=sin(2|−x|−π6)=sin(2|x|−π6)=f(x),所以函数f(x)为偶函数,所以图象关于y轴对称,f(x)=sin(2x−π6),x≥0令2x−π6=π2,解得x=π3,所以x=π3时f(x)最大,故选:D.由三角函数的化简可得函数的解析式,再由函数的奇偶性可得函数f(x)是偶函数,再由x≥0的函数的最大值时的x值可选出结果.本题考查求函数的解析式即函数奇偶性的性质,属于中档题.8. 解:设12x−1=t,则x=2t+2,∴f(t)=4t+7,∴f(m)=4m+7=6,解得m=−14.故选:D.本题考查函数的解析式,属于基础题.设12x−1=t,求出f(t)=4t+7,进而得到f(m)=4m+7,由此能够求出m.9. 解:由题意可得a22=a1a4,∴(a1+2)2=a1(a1+6),解得a1=2,故选:A.由题意可得a1的方程,解方程可得.本题考查等差数列和等比数列的性质,属基础题.10. 解:第1代“勾股树”中,正方形的个数为3=22−1,最小正方形的边长为2,第2代“勾股树”中,正方形的个数为3+4=7=23−1,最小正方形的边长为(√2)2,第3代“勾股树”中,正方形的个数为15=24−1,最小正方形的边长为(2)3,以此类推,第n代“勾股树”中,正方形的个数为2n+1−1,最小正方形的边长为(√2)n,若“勾股树”上共得到8191个正方形,则2n+1−1=8191,解得n=12,此时最小正方形的边长为(√2)12=164.故选:B.第1代“勾股树”中,正方形的个数为3=22−1,最小正方形的边长为√2,第2代“勾股树”中,正方形的个数为7=23−1,最小正方形的边长为(√2)2,第3代“勾股树”中,正方形的个数为15=24−1,最小正方形的边长为(√2)3,以此类推,第n代“勾股树”中,正方形的个数为2n+1−1,最小正方形的边长为(√2)n,根据已知可求得n值,即可求解.本题考查正方形的性质及勾股定理的应用,考查归纳推理等基础知识,考查运算求解能力、推理论证能力、归纳总结能力,属于中档题.11. 解:∵函数y=2sin(2x−π3)(A>0,ω>0)的图象为C,故函数的最小正周期为2π2=π,故A错误;令x=π6,求得f(x)=0,可得图象C关于点(π6,0)对称,故B正确;图象C向右平移π2个单位后,得到y=2sin(2x−π−π3)=−2sin(2x−π3)的图象,显然,所得图象不关于原点对称,故C错误;当x∈区间(−π12,π2),2x−π3∈(−π2,2π3),函数f(x)在区间(−π12,π2)上没有单调性,故D错误,故选:B.由题意利用正弦函数的图象和性质,得出结论.本题主要考查正弦函数的图象和性质,属于中档题.12. 解:由题设可得:当n=2k−1(k∈N∗)时,有a2k=[cos(2k−1)π]⋅a2k−1+22k−1,即:a2k−1+a2k=22k−1(k∈N∗),∴(a1+a2)+(a3+a4)+(a5+a6)+⋯+(a39+a40)=21+23+25+⋯+239=2(1−420)1−4=2(420−1)3.故选:D.由题设条件推出相邻项之间的关系式,即可得到结果.本题主要考查由数列的递推式求数列的和,属于基础题.13. 解:∵a⃗,b⃗ 的夹角是180°∴a⃗,b⃗ 共线,∴设b⃗ =(λ,−λ),∵|b⃗ |=2√2,∴√λ2+(−λ)2=2√2,∴λ=±2,∵a⃗,b⃗ 的夹角是180°∴λ<0 ∴b ⃗ =(−2,2)故答案为:(−2,2)根据两个向量的夹角是180°,得到两个向量共线且方向相反,设出要求的向量,根据之金额各向量的模长做出向量的坐标,把不合题意的舍去.本题考查向量的数量积的坐标表示,是一个基础题,解题时注意向量的设法,这是本题要考查的一个方面,注意把不合题意的舍去.14. 解:由log 2S n =n ,得S n =2n .当n =1时,a 1=S 1=2,当n ≥2时,a n =S n −S n−1=2n −2n−1=2n−1, n =1时不成立. ∴a n ={2(n =1)2n−1(n ≥2).故答案为{2(n =1)2n−1(n ≥2).由对数式变形得到数列{a n }的前n 项和S n ,分类讨论求解其通项a n .本题考查阿勒数列的概念及简单表示法,考查了由数列前n 项和求通项,关键是注意分类讨论,是基础题.15. 解:将函数y =cos2x 的图象向右平移π4个单位,得到函数y =cos(2x −π2)=sin2x =2sinxcosx的图象又因为得到函数y =f(x)⋅sinx ,则f(x)=2cosx , 故答案为:2cos x .由题意利用函数y =Asin(ωx +φ)的图象变换规律,得出结论. 本题主要考查函数y =Asin(ωx +φ)的图象变换规律,属于基础题.16. 解:∵三个内角度数之比∠A :∠B :∠C =1:2:3,∠A +∠B +∠C =180°,∴∠A =30°,∠B =60°,∠C =90°,∴a :b :c =sin30°:sin60°:sin90°=12:√32:1=1:√3:2.故答案为:1:√3:2.由三个内角度数之比,求得三角形的内角,再利用正弦定理,即可求得结论. 本题考查正弦定理,考查学生的计算能力,属于基础题.17. 本题主要考查平面向量的坐标运算以及向量共线,垂直的充要条件.(1)利用两个向量互相垂直,可以求出x 的值; (2)由两个向量的互相平行先求出x 的值,再求模长.18. (1)设等差数列{a n }的公差为d ,由等差数列的通项公式,解方程可得公差和首项,进而得到所求通项公式;(2)设等比数列{b n }的公比为q ,运用等比数列的通项公式,解方程可得首项和公比,再由等比数列的求和公式,可得所求和.本题考查等差数列和等比数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.19. (Ⅰ)在△ABC 中,由正弦定理可得sin∠CAB =√57,cos∠CAB =√3√57,再由三角形的内角和π,可得sin∠B =sin(∠CAB +∠ACB)的值,由正弦定理可得AC 的值;(Ⅱ)由余弦定理和均值不等式可得DE +AE 的最大值,进而可得三角形的周长的最大值. 本题考查三角形的正余弦定理及均值不等式,属于中档题.20. (1)由x =−2是f(x)的一个极值点,得f′(2)=0,解出可得;(2)由(1)可求f(x),f′(x),令f′(x)=0,得x 1=0,x 2=2.当x 变化时f′(x),f(x)的变化情况列成表格,由极值、端点处函数值可得函数的最值;本题考查利用导数研究函数的极值、最值,属中档题,正确理解导数与函数的关系是解题关键.21. (Ⅰ)直接由已知分类写出分段函数解析式;(Ⅱ)当0<x <70时,利用配方法求最值,当x ≥70时,利用基本不等式求最值,取两段函数最大值的最大者得结论.本题考查函数模型的选择及应用,训练了利用配方法及基本不等式求最值,是中档题.22. (I)把a =1代入,然后对函数求导,然后结合导数与单调性的关系可求函数的最值;(II)由已知不等式恒成立转化为求解函数的最值,结合导数对a 进行分类讨论,然后结合导数与单调性关系及函数性质可求.本题主要考查了利用导数求解函数的最值,及由不等式的恒成立求解参数范围问题,体现了分类讨论思想的应用.。
四川省内江市第六中学2022-2023学年高三上学期第二次月考《文科》数学(解析版)
内江六中2022—2023学年(上)高2023第二次月考文科数学试题第Ⅰ卷 选择题(满分60分)一、选择题(每题5分,共60分)1. 已知向量()1,2a =r ,()1,1b = ,若c a kb =+ ,且b c ⊥ ,则实数k =( )A. 32B. 53-C. 53D. 32-【答案】D 【解析】【分析】根据平面向量坐标的线性运算得c得坐标,在根据向量垂直的坐标关系,即可得实数k 的值.【详解】解:因为向量()1,2a =r ,()1,1b = ,所以()1,2c a kb k k =+=++ ,又b c ⊥,所以120b c k k ⋅=+++= ,解得32k =-.故选:D.2. 复数13i2iz -=+的虚部为( )A. 75-B. 7i 5-C. 73-D. 7i 3-【答案】A 【解析】【分析】利用复数的除法运算化简,即可得复数的虚部.【详解】解:复数13i (13i)(2i)17i 17i 2i (2i)(2i)555z -----====--++-故z 的虚部为75-.故选:A .3. 若集合{1A =-,0,1},2{|1B y y x ==-,}x A ∈,则A B = ( )A. {0} B. {1}C. {0,1}D. {0,1}-【答案】D 【解析】【分析】把A 中元素代入B 中解析式求出y 的值,确定出B ,找出两集合的交集即可.【详解】解:把A 中=1x -,0,1代入B 中得:0y =,1,即{0B =,1},则{0A B = ,1}-,故选:D .4. 若变量x 、y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =+取最大值时的最优解是( )A. 5,03⎛⎫ ⎪⎝⎭B. 1,12⎛⎫-- ⎪⎝⎭C. 12,33⎛⎫⎪⎝⎭D. ()2,1-【答案】C 【解析】【分析】作出满足约束条件的可行域,平移直线20x y +=,即可得出结果.【详解】作出满足约束条件的可行域(如图中阴影部分所示).2z x y =+可化为20x y z +-=,平移直线20x y +=,当其经过点C 时,目标函数2z x y =+取得最大值,联立21y x x y =⎧⎨+=⎩,解得13x =,23y =,故最优解是12,33⎛⎫⎪⎝⎭,故选:C.5. 若a ,b 均为实数,则“ln ln a b >”是“e e a b >”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据函数ln y x =与e x y =解不等式,即可判断.【详解】解:因为ln ln a b >,由函数ln y x =在()0,+∞上单调递增得:0a b >>又e e a b >,由于函数e x y =在R 上单调递增得:a b >由“0a b >>”是“a b >”的充分不必要条件可得“ln ln a b >”是“e e a b >”的充分不必要条件.故选:A.6. 如图是函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的图象的一部分,则函数()f x 的解析式为( )A. ()2sin 26f x x π⎛⎫=+⎪⎝⎭B. ()2sin 23f x x π⎛⎫=+⎪⎝⎭C. ()sin 3f x x π⎛⎫=+ ⎪⎝⎭D. ()2sin 23f x x π⎛⎫=-⎪⎝⎭【答案】B 【解析】【分析】由图象可确定()f x 最小正周期T ,由此可得ω;根据712f A π⎛⎫=- ⎪⎝⎭可求得ϕ;由()0f =可求得A ,由此可得()f x .【详解】由图象可知:()f x 最小正周期23471T πππ⎛⎫-=⎪⎝⎭=⨯,22T πω∴==;又77sin 126f A A ππϕ⎛⎫⎛⎫=+=-⎪ ⎪⎝⎭⎝⎭,()73262k k ππϕπ∴+=+∈Z ,解得:()23k k πϕπ=+∈Z ,又02πϕ<<,3πϕ∴=,()sin 23f x A x π⎛⎫∴=+⎪⎝⎭,()0sin 3f A A π=== ,2A ∴=,()2sin 23f x x π⎛⎫∴=+ ⎪⎝⎭.故选:B.7. 已知向量,a b 的夹角为4π,且1||4,(23)122a a b a b ⎛⎫=+⋅-= ⎪⎝⎭,则向量b 在向量a 方向上的投影是( )A.B. 3C. D. 1【答案】D 【解析】【分析】由题意,根据数量积的运算,化简等式,解得模长,结合投影的计算公式,可得答案.【详解】由()123122a b a b ⎛⎫+⋅-= ⎪⎝⎭,22323122a a b a b b -⋅+⋅-= ,2213122a a b b +⋅-= ,21164cos 31224b b π+⨯⋅-=,230b -= ,(30b += ,解得b = b 在向量a 方向上的投影为cos 14b π= ,故选:D.8. 蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系.用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法,现设计一个实验计算圆周率的近似值,向两直角边长分别为6和8的直角三角形中均匀投点40个.落入其内切圆中的点有22个,则圆周率π≈( )A.6320B.3310C.7825D.9429【答案】B 【解析】【分析】根据几何概型的计算公式和题意即可求出结果.【详解】直角三角形内切圆的直径等于两直角边的和与斜边的差,即268104r =+-=,由几何概型得2222140682π⨯≈⨯⨯,从而3310π≈.故选:B.9. 双碳,即碳达峰与碳中和的简称,2020年9月中国明确提出2030年实现“碳达峰”,2060年实现“碳中和”.为了实现这一目标,中国加大了电动汽车的研究与推广,到2060年,纯电动汽车在整体汽车中的渗透率有望超过70%,新型动力电池随之也迎来了蓬勃发展的机遇.Peukert 于1898年提出蓄电池的容量C (单位:A·h ),放电时间t (单位:h )与放电电流I (单位:A )之间关系的经验公式n C I t =⋅,其中32log 2n =为Peukert 常数.在电池容量不变的条件下,当放电电流10A I =时,放电时间57h t =,则当放电电流15A I =,放电时间为( )A. 28h B. 28.5hC. 29hD. 29.5h【答案】B 【解析】【分析】根据题意求出蓄电池的容量C ,再把15A I =代入,结合指数与对数的运算性质即可得解.【详解】解:根据题意可得5710n C =⋅,则当15A I =时,571015n n t ⋅=⋅,所以32231log 2log 222257575728.5h 333nt ⎛⎫⎛⎫⎛⎫=⋅=⋅=⋅= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即当放电电流15A I =,放电时间为28.5h.故选:B .10. 已知函数()32e ,0461,0x x f x x x x ⎧<=⎨-+≥⎩,则函数()()()2232g x f x f x =--⎡⎤⎣⎦的零点个数为( ).A. 2 B. 3 C. 4 D. 5【答案】B 【解析】【分析】首先根据()()22320f x f x --=⎡⎤⎣⎦,得到()2f x =或1()2f x =-,然后利用导数分析0x ≥时函数的单调性,结合单调性画出函数的图象,通过图象即可观察出函数零点的个数.【详解】由()()()22320g x f x f x =--=⎡⎤⎣⎦,得()2f x =或1()2f x =-.当0x ≥时,2()121212(1)f x x x x x '=-=-,所以当(0,1)x ∈,()0,()'<f x f x 单调递减;当()1,x ∈+∞,()0,()'>f x f x 单调递增,所以1x =时,()f x 有极小值(1)4611f =-+=-.又0x <时,()x f x e =,画出函数()f x 的图象如图所示,由图可知:函数()()()2232g x f x f x =--⎡⎤⎣⎦的零点个数为3.故选:B .11. 已知()f x 是定义在R 上的函数满足(4)()f x f x -=-,且满足(31)f x -为奇函数,则下列说法一定正确的是( )A. 函数()f x 图象关于直线=2x 对称B. 函数()f x 的周期为2C. 函数()f x 关于点1,03⎛⎫- ⎪⎝⎭中心对称 D. (2023)0f =【答案】D 【解析】【分析】对于A.令2x x =+代入(4)()f x f x -=-即可判断.对于C.可考虑图像平移或者将3x 换元进行判断.对于BD.通过AB对称轴和对称中心即可判断出函数周期,继而计算出(2023)f 【详解】因为函数()f x 关于直线2x =-对称,不能确定()f x 是否关于直线2x =对称,A 错误;因为(31)f x -为奇函数,所以(31)(31)f x f x -=---,所以(1)(1)f x f x -=---,所以()(2)f x f x =---,所以函数()f x 关于点(1,0)-中心对称,故C 错误;由()(4)f x f x =--与()(2)f x f x =---得(4)(2)f x f x --=---,即(4)(2)f x f x -=--,故(4)()f x f x -=,所以函数()f x 的周期为4,故B 错误;(2023)(50641)(1)0f f f =⨯-=-=,故D 正确.故选:D的的12. 已知关于x 的不等式(e )e ->x x x x m m 有且仅有两个正整数解(其中e 2.71828= 为自然对数的底数),则实数m 的取值范围是( )A. 43169(,]5e 4eB. 3294(,4e 3eC. 43169[,5e 4eD. 3294[,e 3e 4【答案】D 【解析】【分析】问题转化为2(1)e x x m x +<(0x >)有且仅有两个正整数解,讨论0m ≤、0m >并构造()(1)f x m x =+、2()ex x g x =,利用导数研究单调性,进而数形结合列出不等式组求参数范围.【详解】当0x >时,由2e e 0xxx mx m -->,可得2(1)ex x m x +<(0x >),显然当0m ≤时,不等式2(1)ex x m x +<在(0,)+∞恒成立,不合题意;当0m >时,令()(1)f x m x =+,则()f x 在(0,)+∞上单调递增,令2()ex x g x =,则(2)()e xx x g x '-=,故(0,2)上()0g x '>,(2,)+∞上()0g x '<,∴()g x 在(0,2)上递增,在(2,)+∞上递减,又(0)(0)0f m g =>=且x 趋向正无穷时()g x 趋向0,故()240,e g x ⎛⎤∈ ⎥⎝⎦,综上,(),()f x g x 图象如下:由图知:要使()()f x g x <有两个正整数解,则()()()()()()11{2233f g f g f g <<≥,即2312e 43e 94e m m m ⎧<⎪⎪⎪<⎨⎪⎪≥⎪⎩,解得32944e 3e m ≤<.故选:D【点睛】关键点点睛:问题转化为2(1)ex x m x +<(0x >)有且仅有两个正整数解,根据不等式两边的单调性及正整数解个数列不等式组求范围.第Ⅱ卷非选择题(满分90分)二、填空题(每题5分,共20分)13. 1289log 24⎛⎫+= ⎪⎝⎭______ .【答案】116##516【解析】【分析】利用指数幂与对数运算即可求解.【详解】112388893111log 2log 8log 84236⎛⎫+=+=+= ⎪⎝⎭.故答案为:116.14. 曲线123x y x -=+在点()1,2--处的切线方程为________.(用一般式表示)【答案】530x y -+=【解析】【分析】利用导数的几何意义即得.【详解】由123x y x -=+,得22(23)2(1)5(23)(23)x x y x x +--'==++,所以切线的斜率为255(23)k ==-+,所以所求的切线方程为(2)5[(1)]y x --=--,即530x y -+=.故答案为:530x y -+=.15. 已知π4sin 35α⎛⎫+= ⎪⎝⎭,则πsin 26α⎛⎫+= ⎪⎝⎭___________.【答案】725##0.28【解析】分析】利用倍角余弦公式求得2π7cos(2)325α+=-,由诱导公式π2πsin(2cos(263αα+=-+,即可求值.【详解】22ππ167cos(212sin 12332525αα⎛⎫+=-+=-⨯=- ⎪⎝⎭,而πππ2π7sin(2cos(2)cos(2)662325ααα+=-++=-+=.故答案为:72516. 已知函数()sin 3f x x πω⎛⎫=+ ⎪⎝⎭(ω>0),若()f x 在20,3π⎡⎤⎢⎥⎣⎦上恰有两个零点,且在,424ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围是________.【答案】510,23⎡⎤⎢⎥⎣⎦【解析】【分析】由()f x 在20,3π⎡⎤⎢⎥⎣⎦上恰有两个零点,令3x k πωπ+=,Z k ∈,可得52338233ππωππω⎧≤⎪⎪⎨⎪>⎪⎩,令22232k x k ππππωπ-+≤+≤+,Z k ∈,可得f (x )在5,66ππωω⎡⎤-⎢⎥⎣⎦上单调递增,从而有5646240ππωππωω⎧-≤-⎪⎪⎪≥⎨⎪>⎪⎪⎩,联立求解即可得答案.【详解】解:由题意,令3x k πωπ+=,Z k ∈,得x =33k ππω-,Z k ∈,∴f (x )的第2个、第3个正零点分别为53πω,83πω,【∴52338233ππωππω⎧≤⎪⎪⎨⎪>⎪⎩,解得542ω≤<,令22232k x k ππππωπ-+≤+≤+,Z k ∈,∴52266k k x ππππωωωω-+≤≤+,Z k ∈,令k =0,f (x )在5,66ππωω⎡⎤-⎢⎥⎣⎦上单调递增,∴5,,42466ππππωω⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,∴5646240ππωππωω⎧-≤-⎪⎪⎪≥⎨⎪>⎪⎪⎩,解得1003ω<≤,综上,ω的取值范围是51023ω≤≤.故答案为:510,23⎡⎤⎢⎥⎣⎦.三、解答题(共70分)(一)必考题(共60分)17. 在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c,已知sin sin ,2A Ca b A b +==.(1)求角B 的大小;(2)求2a c -的取值范围.【答案】(1)3π(2)()0,6【解析】【分析】(1)结合A C B π+=-,以及诱导公式、二倍角公式、正弦定理化简原式,即得解;(2)利用正弦定理,辅助角公式可化简26a c A π⎛⎫-=-⎪⎝⎭,结合A 的范围即得解【小问1详解】A CB π+=- ,sinsin 2B a b A π-∴=cos sin 2B a b A ∴=sin cos sin sin 2B A B A ∴=cos sin 2sin cos 222B B B B ∴==1sin 22B ∴=,又B 为锐角,263B B ππ∴==【小问2详解】由正弦定理4sin sin sin a b c A B C ====,214sin ,4sin 4sin 4sin 2sin 32a A c C A A A A A π⎫⎛⎫∴===-=+=+⎪ ⎪⎪⎝⎭⎭,128sin 2sin 6sin cos 2a c A A A A A A A ⎫∴-=--=-=-⎪⎪⎭6A π⎛⎫=- ⎪⎝⎭由锐角ABC ,故20,0232A C A πππ<<<=-<故(),sin ,20,6626A A a c πππ⎛⎛⎫<<∴-∈∴-∈ ⎪ ⎝⎭⎝.18. 已知等差数列{}n a 的前n 项和为n S ,2512a a +=,424S S =.(1)求n a 及n S ;(2)若11n n n n a b S S ++=⋅,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-,2n S n =(2)()2111n T n =-+【解析】【分析】(1)设出等差数列的首项和公差,利用等差数列的通项公式、前n 项和公式得到关于首项和公差的方程组求出1a 和d ,进而求出n a 及n S ;(2)利用(1)求出n b ,再利用裂项抵消法进行求和.【小问1详解】设等差数列{}n a 的公差为d ,则11125124344(2)2a d a d a d +=⎧⎪⎨⨯+=+⎪⎩,解得112a d =⎧⎨=⎩,所以()12121n a n n =+-=-,()21212n n n S n n -⨯=⨯+=.【小问2详解】由(1)得:+121n a n =+,21(1)n S n +=+,则()()122221211111n n n n a n b S S n n n n +++===-⋅++,所以123n nT b b b b =+++⋅⋅⋅+()22222222111111122331114n n =-+-+-+⋅⋅-+⋅+()2111n =-+..19. 已知()2ex x a f x -=.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()1f x x ≤-对[)1,x ∞∈+恒成立,求a 的取值范围.【答案】(1)10x y --=(2)1a ≥【解析】【分析】(1)利用导数的几何意义以及直线方程的点斜式即可求解.(2)分离参数a ,转化成不等式恒成立问题,利用导数求最值即可.【小问1详解】当1a =时,()21ex x f x -=,()01f =-,()22(1)ex x x f x --'=,(0)1k f '∴==,所以切线方程为:11(0)y x +=⨯-,即10x y --=.【小问2详解】()1f x x ≤-恒成立,即2(1)e x a x x ≥--在[)1,x ∞∈+上恒成立,设2()(1)e x g x x x =--,()(2e )x g x x '=-,令()0g x '=,得120,ln 2x x ==,在[)1,+∞上,()0g x '<,所以函数2()(1)e x g x x x =--在[)1,+∞上单调递减,所以max ()(1)1g x g ==,max ()a g x ∴≥,故有1a ≥.20. 2022年2月4日北京冬奥运会正式开幕,“冰墩墩”作为冬奥会的吉祥物之一,受到各国运动员的“追捧”,成为新晋“网红”,尤其在我国,广大网友纷纷倡导“一户一墩”,为了了解人们对“冰墩墩”需求量,某电商平台采用预售的方式,预售时间段为2022年2月5日至2022年2月20日,该电商平台统计了2月5日至2月9日的相关数据,这5天的第x 天到该电商平台参与预售的人数y (单位:万人)的数据如下表:日期2月5日2月6日2月7日2月8日2月9日第x 天12345人数y (单位:万人)4556646872(1)依据表中的统计数据,请判断该电商平台的第x 天与到该电商平台参与预售的人数y (单位:万人)是否具有较高的线性相关程度?(参考:若0.300.75r <<,则线性相关程度一般,若0.75r ≥,则线性相关程度较高,计算r 时精确度为0.01)(2)求参与预售人数y 与预售的第x 天的线性回归方程;用样本估计总体,请预测2022年2月20日该电商平台的预售人数(单位:万人).参考数据:()()()55211460, 6.78i i i i i y y x x y y ==-=--=≈∑∑,附:相关系数()()()121ˆˆˆ,n i i i n i i x x y y r b ay bx x x ==--===--∑∑【答案】(1)具有较高的线性相关程度(2)ˆ 6.641.2yx =+,146.8万人【解析】【分析】(1)根据已知数据计算出相关系数r 可得;(2)由已知数据求出回归方程的系数得回归方程,然后在回归方程中令16x =代入计算可得估计值.【小问1详解】由表中数据可得1234545566468723,6155x y ++++++++====,所以()52110i i x x =-=∑又()()()55211460,66i i i i i y y x x y y ==-=--=∑∑所以0.970.75nx x y y r --==≈>所以该电商平台的第x 天与到该电商平台参与预售的人数y (单位:万人)具有较高的线性相关程度即可用线性回归模型拟合人数y 与天数x 之间的关系.【小问2详解】由表中数据可得()()()12166ˆ 6.610ni ii n i i x x y y b x x ==--===-∑∑则ˆˆ61 6.6341.2a y bx=-=-⨯=所以ˆ 6.641.2yx =+令16x =,可得ˆ 6.61641.2146.8y=⨯+=(万人)故预测2022年2月20日该电商平台预售人数146.8万人21. 已知()()2e 2ln x f x x a x x =-+(1)当e a =时,求()f x 的单调性;(2)讨论()f x 的零点个数.【答案】(1)()f x 在()0,1上单调递减,在()1,+∞上单调递增; (2)当0e ≤<a ,0个零点;当e a =或a<0,1个零点;e a >,2个零点【解析】【分析】(1)求出函数的导函数()()e 2e x f x x x x ⎛⎫'=+- ⎪⎝⎭,可得()10f '=,令()e e x g x x x =-,利用导数说明()g x 的单调性,即可求出()f x 的单调区间;(2)依题意可得()()2ln e 2ln 0x x f x a x x +=-+=,令2ln t x x =+,则问题转化为e t at =,R t ∈,利用零点存在定理结合单调性可判断方程的解的个数.【小问1详解】解:因为e a =,0x >,()()2e e 2ln x f x x x x =-+所以()()()()()2e 22e 2e e 12e 2e x x x x f x x x x x x x x x x +⎛⎫⎛⎫'=+-+=+-=+- ⎪ ⎪⎝⎭⎝⎭,()10f '=令()e e xg x x x =-,()()2e 1e 0x g x x x '=++>,所以()g x 在()0,+∞单增,且()10g =,当()0,1∈x 时()e e 0x g x x x =-<,当()1,x ∈+∞时()e e 0x g x x x =->,所以当()0,1∈x 时()0f x ¢<,当()1,x ∈+∞时()0f x ¢>,所以()f x 在()0,1单调递减,在()1,+∞单调递增【小问2详解】解:因为()()()2ln 2ln e e 2ln e 2ln 0x x x x f x a x x a x x +=⋅-+=-+=令2ln t x x =+,易知2ln t x x =+在()0,+∞上单调递增,且R t ∈,故()f x 零点转化为()()2ln e 2ln e 0x x t f x a x x at +=-+=-=即e t at =,R t ∈,的设()e t g t at =-,则()e tg t a '=-,当0a =时,()e tg t =无零点;当a<0时,()e 0t g t a '=->,故()g t 为R 上的增函数,而()010g =>,11e 10a g a ⎛⎫=-< ⎪⎝⎭,故()g t 在R 上有且只有一个零点;当0a >时,若(),ln t a ∈-∞,则()0g t '<;()ln ,t a ∈+∞,则()0g t '>;故()()()min ln 1ln g t g a a a ==-,若e a =,则()min 0g t =,故()g t 在R 上有且只有一个零点;若0e a <<,则()min 0g t >,故()g t 在R 上无零点;若e a >,则()min 0g t <,此时ln 1a >,而()010g =>,()()22ln 2ln 2ln g a a a a a a a =-=-,设()2ln h a a a =-,e a >,则()20a h a a-'=>,故()h a 在()e,+∞上为增函数,故()()e e 20h a h >=->即()2ln 0g a >,故此时()g t 在R 上有且只有两个不同的零点;综上:当0e ≤<a 时,0个零点;当e a =或a<0时,1个零点;e a >时,2个零点;【点睛】思路点睛:导数背景下的零点问题,注意利用零点存在定理结合函数单调性来讨论.(二)选考题(10分)请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22. 已知曲线1C 的参数方程为e e e e t tt t x y --⎧=+⎨=-⎩(t 为参数),以直角坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线2C 的极坐标方程4cos ρθ=.(1)求1C 的极坐标方程;(2)若曲线π(0)6θρ=>与曲线1C 、曲线2C 分别交于两点A ,B ,点(40)P , ,求△PAB 的面积.【答案】(1)24ππ(cos 244ρθθ=-<<(2)【解析】【分析】(1)将1C 的参数方程化为普通方程,再根据极坐标与直角坐标的转化公式即可得答案;(2)联立方程,分别求得点A ,B 的极坐标,根据三角形面积公式即可求得答案.【小问1详解】由e e e et tt t x y --⎧=+⎨=-⎩消去参数t ,得224x y -=,因为e e 2t t -+≥,所以曲线1C 的直角坐标方程为224(2)x y x -=≥,因为cos sin x y ρθρθ=⎧⎨=⎩,所以曲线1C 的极坐标方程为24ππ()cos 244ρθθ=-<< ;【小问2详解】由2π64cos2θρθ⎧=⎪⎪⎨⎪=⎪⎩得:A ρ=所以曲线π(0)6θρ=>与曲线1C 交于点A π)6,由π64cos θρθ⎧=⎪⎨⎪=⎩,得:B ρ=, 所以曲线π(0)6θρ=>与曲线2C :4cos ρθ=交于点B π6,则PAB S =△PA PBS S -△O △O 1π4()sin 26B A ρρ=⨯⨯-=选修4-5:不等式选讲23. 己知函数()221f x x a x a =+++-.(1)当0a =时,求不等式()2f x ≥的解集;(2)若对于任意x ∈R ,都有()2f x ≥,求实数a 的取值范围.【答案】(1)()1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭(2)32a ≤-或1a ≥.【解析】【分析】(1)分0x ≥,102x -≤<,12x <-三种情况打开绝对值,求解即可;(2)打开绝对值,将函数()f x 写成分段函数,结合单调性求解即可【小问1详解】()21f x x x=++当0x ≥时,()312f x x =+≥,解得13x ≥,当102x -≤<时,()12f x x =+≥,解得x ∈∅,当12x <-时,()312f x x =--≥,解得1x ≤-,所以不等式()2f x >的解集为()1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭.【小问2详解】因为222172()12148(0222a a a a a +++++--==>,故212a a +>-所以()2222231,11,2131,2x a a x a a f x x a a x a a x a a x ⎧⎪++-≥⎪+⎪=+++-≤<⎨⎪+⎪---+<-⎪⎩所以函数()f x 在1,2a +⎛⎤-∞- ⎥⎝⎦上递减,在1,2a +⎡⎫-+∞⎪⎢⎣⎭上递增,所以函数()f x 在R 上的最小值为21122a a f a ++⎛⎫-=+ ⎪⎝⎭.所以2122a a ++≥,即223(23)(1)0a a a a +-=+-≥解得32a ≤-或1a ≥。
2021届湖南省长沙长郡中学高三上学期第二次月考文科数学试卷
2021年湖南省长沙长郡中学高三上学期第二次月考文科数学试卷学校:___________姓名:___________班级:___________考号:___________一、填空题1.已知集合1|28,2x A x x R ⎧⎫=<<∈⎨⎬⎩⎭,{}|11,B x x m x R =-<<+∈,若x B ∈成立的一个充分不必要条件是x A ∈,则实数m 的取值范围是 .2.已知数列{}n a 的前n 项和29n S n n =-,则其通项公式n a =____________.3.给出下列关于互不相同的直线,,m n l 和平面,αβ的四个命题: ①,,,m l A A m l m αα⊂=∉点则与不共面;②//,//,,,l m l m n l n m n ααα⊥⊥⊥、是异面直线,且则;③,,,//,//.//l m l m A l m ααββαβ⊂⊂=若点则;④//,//,//,//.l m l m αβαβ若则其中真命题是_____________(填序号)4.已知线段AB 两个端点 ()()2,3,3,2A B ---,直线l 过点 ()1,2P 且与线段AB 相交,则 l 的斜率k 的取值范围为________________.5.已知圆C 过双曲线且圆心在此双曲线上,则圆心到双曲线中心的距离是__________.6.定义在区间[],a b 上的函数()y f x =,'()f x 是函数()f x 的导数,如果[],a b ξ∃∈,使得()()()'()f b f a f b a ξ-=-,则称ξ为[],a b 上的“中值点”.下列函数:①()21,f x x =+②2()1f x x x =-+,③()()ln 3f x x =+,④中在区间[]2,2-上的“中值点”多于一个的函数是___________(请写出你认为正确的所有结论的序号)[二、单选题7.若直线1ax by +=与不等式组1210210y x y x y ≤⎧⎪--≤⎨⎪++≥⎩表示的平面区域无公共点,则23a b +的取值范围是A .()7,1--B .()3,5-C .()7,3-D .R8.如图,在一个正方体内放入两个半径不相等的球12,O O ,这两个球相外切,且球1O 与正方体共顶点A 的三个面相切,球2O 与正方体共顶点1B 的三个面相切,则两球在正方体的面11AAC C 上的正投影是A .B .C .D . 9.已知1tan()42πα+=,且02πα-<<,则22sin sin 2cos()4ααπα+=-( ) A .25 B .3510- C .31010- D 25 10.已知()()()()130f x a x x a =--<,定义域为D ,任意,m n D ∈,点(),()P m f n 组成的图形为正方形,则实数a 的值为A . 1-B . 2-C . 3-D .4-11.已知M 是ABC ∆内的一点,且23,30AB AC BAC ⋅=∠=,若,MBC MCA ∆∆和MAB ∆的面积分别为1,,2x y ,则14x y+的最小值是 A .20 B . 18 C . 16 D . 912.一束光线从点()1,1A -出发,经x 轴反射到圆()()22:231C x y -+-=上的最短路程是A .321-B .26C .4D .5 13.已知直线(2)(0)y k x k =+>与抛物线2:8C y x =相交于A 、B 两点,F 为C 的焦点,若2FA FB =,则k=( )A .13B .23C .23D .22314.函数()f x 的导函数是'()f x ,若对任意的x R ∈,都有()2'()0f x f x +<成立,则A .(2ln 2)(2ln 3)32f f < B . (2ln 2)(2ln 3)32f f > C . (2ln 2)(2ln 3)32f f = D .无法比较15.在平面直角坐标系xOy 中,点()5,0A ,对于某个正实数k ,存在函数()2()0f x ax a =>,使得OA OQ OP OA OQ λ⎛⎫ ⎪=+ ⎪⎝⎭(λ为常数),这里点,P Q 的坐标分别为()()1(,1),()P f Q k f k ,,,则k 的取值范围为A .()2,+∞B . ()3,+∞C . [)4,+∞D .[)8,+∞三、解答题16.(本小题满分12分)已知函数()()sin 0,0,,2f x A x A x R πωϕωϕ⎛⎫=+>><∈ ⎪⎝⎭的图像的一部分如图所示.(1)求函数()f x 的解析式;(2)求函数()(2)y f x f x =++的最小正周期和最值.17.如图,AB 为圆O 的直径,点E 、F 在圆O 上,且//AB EF ,矩形ABCD 所在的平面和圆O 所在的平面互相垂直,且2AB =,1AD EF ==.(1)求证:AF ⊥平面CBF ;(2)设FC 的中点为M ,求证://OM 平面DAF ;(3)设平面CBF 将几何体EFABCD 分成的两个锥体的体积分别为F ABCD V -,F CBE V -, 求:F ABCD F CBE V V --18.已知以点C 2(,)t t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 和点A ,与y 轴交于点O 和点B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程.19.(本小题满分13分)已知{}n a 为等差数列,且5714,20a a ==,数列{}n b 的前n 项和为n S ,且22n n b S =-.(1)求数列{}{},n n a b 的通项公式;(2)若n n n c a b =⋅,n T 为数列{}n c 的前n 项和,求证: 20.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(−√3,0)、F 2(√3,0),椭圆上的点P 满足∠PF 1F 2=900,且ΔPF 1F 2的面积为S ΔPF 1F 2=√32. (1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A 、B ,过点Q(1,0)的动直线l 与椭圆C 相交于M 、N 两点,直线AN 与直线x =4的交点为R ,证明:点R 总在直线BM 上.21.(本小题满分14分)已知函数()ln 3()f x a x ax a R =--∈.(1)求函数()f x 的单调区间;(2)若函数()y f x =的图像在点()2,(2)f 处的切线的倾斜角为45,对于任意的[]1,2t ∈,在区间(),3t 上总不是单调函数,求m 的取值范围;(3ln n n ⨯⨯<参考答案1.2+∞(,)【解析】 试题分析:1|28,{|13}2x A x x R x x ⎧⎫=<<∈=-⎨⎬⎩⎭<<,因为x B ∈成立的一个充分不必要的条件是x A ∈,所以13m +>,即2m >.所以实数m 的取值范围是2+∞(,)考点:充分条件和必要条件的应用2.102-n【解析】试题分析:由已知得,811-==S a 当2≥n 时102)1(9)1(9221-=-+---=-=-n n n n n S S a n n n ,对n=1也适用,故n a =102-n . 考点:数列通项公式.3.①②③【解析】试题分析:由题意①m ⊂α,l∩α=A ,A ∉m ,则l 与m 不共面,此条件是异面直线的定义的符号表示,故正确; ②l 、m 是异面直线,l ∥α,m ∥α,且n ⊥l ,n ⊥m ,则n ⊥α,此条件下可以在α找到两条相交线,使得它们都与n 垂直,故可得n ⊥α,此命题正确;③若l ⊂α,m ⊂α,l∩m=A ,l ∥β,m ∥β,则α∥β,此命题是面面平行的判定定理的符号表示式,故正确;④若l ∥α,m ∥β,α∥β,则l ∥m ,在此条件下,l 与m 两条直线平行、相交、异面都有可能,故此命题是假命题.故答案为①②③考点:空间中直线与平面之间的位置关系.4.5k ≤-或1k【详解】试题分析:如图所示:由题意得,所求直线l 的斜率k 满足k≥k PB ;或k≤k PA ,根据斜率公式可知k PA =, k PB =则l 的斜率k 的取值范围为k≤-5或k≥1故答案为k≤-5或k≥1.考点:直线的图象特征与倾斜角、斜率的关系.5.316 【解析】试题分析:由双曲线的几何性质易知圆C 过双曲线同一支上的顶点和焦点,所以圆C 的圆心的横坐标为4.故圆心坐标为(4,±374). ∴它到中心(0,0)的距离为d==+911216316. 故答案为:316 考点:双曲线的简单性质.6.①④【解析】试题分析:根据题意,“中值点”的几何意义是在区间[a ,b]上存在点,使得函数在该点的切线的斜率等于区间[a ,b]的两个端点连线的斜率值.对于①,根据题意,在区间[a ,b]上的任一点都是“中值点”,f′(x )=2,满足f (b )-f (a )=f′(x )(b-a ),∴①正确;对于②,根据“中值点”函数的定义,抛物线在区间[a ,b]只存在一个“中值点”,∴②不正确; 对于③,f (x )=ln (x+3)在区间[a ,b]只存在一个“中值点”,∴③不正确;对于④,∵f′(x )2)21(3-=x ,且f (2)-f (-2)=19,2-(-2)=4; ∈±=⇒=⨯-∴121921194)21(32x x [-2,2],∴存在两个“中值点”,④正确. 故答案为:①④考点:导数的运算.7.C【解析】试题分析:不等式组1210210y x y x y ≤⎧⎪--≤⎨⎪++≥⎩表示的平面区域是由A (1,1),B (-1,1),C (0,-1)围成的三角形区域(包含边界).∵直线ax+by=1与1210210y x y x y ≤⎧⎪--≤⎨⎪++≥⎩表示的平面区域无公共点,∴a ,b 满足:⎪⎩⎪⎨⎧<--<-+-<-+⎪⎩⎪⎨⎧>-->-+->-+010101,010101b b a b a b b a b a 或.(a ,b )在如图所示的三角形区域(除边界且除原点).设z=2a+3b ,平移直线z=2a+3b ,当直线经过点A 1(0,1)时,z 最大为z=3, 当经过点B 1时,z 最小,由⎩⎨⎧-=-=⇒⎩⎨⎧=-+-=--120101b a b a b ,即B 1(-2,-1), 此时z=-4-3=-7,故2a+3b 的取值范围是(-7,3).故选:C考点:简单线性规划的应用.8.B【解析】试题分析:由题意可以判断出两球在正方体的面AA 1C 1C 上的正投影与正方形相切,排除C 、D ,把其中一个球扩大为与正方体相切,则另一个球被全挡住,由于两球不等,所以排除A ;B 正确;故选B考点:简单空间图形的三视图.9.A【分析】由条件利用两角和的正切公式求得tan α的值,再利用同角三角函数的基本关系与二倍角公式,求得2224sin sin cos ααπα+⎛⎫- ⎪⎝⎭的值. 【详解】解:∵tan (α4π+)1112tan tan αα+==-,则tan α13=-, ∵tan αsin cos αα=,sin 2α+cos 2α=1,α∈(2π-,0), 可得 sinα= ∴()2222cos cos 44sin sin cos sin sin αααααππαα++==⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭4sin sin cos ααα+=sin α=()= 故选A .【点睛】 本题主要考查两角和的正切公式的应用,同角三角函数的基本关系,二倍角公式,考查计算能力,属于基础题.10.D【解析】试题分析:要使函数有意义,则a (x-1)(x-3)≥0,∵a <0,<br />∴不等式等价为(x-1)(x-3)≤0,即1≤x≤3,∴定义域D=[1,3],∵任意m ,n ∈D ,点P (m ,f (n ))组成的图形为正方形,∴正方形的边长为2,∵f (1)=f (3)=0,∴函数的最大值为2,即a (x-1)(x-3)的最大值为4, 设f (x )=a (x-1)(x-3)=ax 2-4ax+3a , ∴当x=2时,f (2)=-a=4, 即a=-4, 故选:D .考点:函数的定义域及其求法. 11.B 【解析】试题分析:由23,30ABAC ⋅=得⇒=3230cos 04=1300==∆S ABC 从而有:x >0,y >0,且x+y=21,所以2x+2y=1,=+∴y x 41×1=(2x+2y )y x x y 8210++= 又x >0,y >0 ∴y x 41+∴y x x y 8210++=≥yxx y 82210⨯+=10+8=18 当⎪⎪⎩⎪⎪⎨⎧==+y x xy y x 8221,即当⎪⎩⎪⎨⎧=-=121y x (舍) 或⎪⎩⎪⎨⎧==3161y x 时等号成立,取得最小值18 故选B考点:基本不等式. 12.C 【详解】由反射定律得点A (-1,1)关于x 轴的对称点B (-1,-1)在反射光线上,当反射光线过圆心(2,3)时,最短距离为|BC|-R=故光线从点A 经x 轴反射到圆周C 的最短路程为4. 故选C .考点:直线与圆的位置关系. 13.D 【解析】将y=k(x+2)代入y 2=8x,得 k 2x 2+(4k 2-8)x+4k 2=0. 设交点的横坐标分别为x A ,x B , 则x A +x B =28k-4,① x A ·x B =4.又|FA|=x A +2,|FB|=x B +2, |FA|=2|FB|, ∴2x B +4=x A +2. ∴x A =2x B +2.② ∴将②代入①得x B =283k -2, x A =283k -4+2=283k -2. 故x A ·x B =228162233k k ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭=4. 解之得k 2=89.而k>0,∴k=3,满足Δ>0.故选D. 14.B 【解析】试题分析:令h (x )=xf (2lnx ),则h′(x )=f (2lnx )+xf′(2lnx )=f (2lnx )+2f′(2lnx ) ∵对任意的x ∈R 都有f (x )+2f′(x )<0成立, ∴f (2lnx )+2f′(2lnx )<0,即h′(x )<0,h (x )在定义域上单调递减, ∴h (2)>h (3),即2f (2ln2)>3f (2ln3).故选:B .考点:导数的运算. 15.A 【解析】试题分析:由题设知,点P (1,a ),Q (k ,ak 2),A (5,0), ∴向量),,1(a OP =),0,5(=OA ),,(2ak k OQ =),0,1(=∴OAOA ),11,11(2222ka ka OQOQ ++=∴又因为OA OQ OP OA OQ λ⎛⎫⎪=+⎪⎝⎭(λ为常数), 22221)111(1ka ak a ka +=⇒++=∴λλ.两式相除得2,2)1(02112222>=-∴>=-⇒+=-k a k k a k k a k 且,110,1222<-<-=∴a a k 且 2122>-=∴a k 故选A .考点:平面向量的综合题. 16.(1));44sin(2)(ππ+=x x f ;(2)最小正周期是8,22,22min max -==y y . 【解析】试题分析: (1)由图象知,A 、T 的值,求出ω及φ的值,即得f (x )的解析式; (2)由三角恒等变换,化简函数y ,求出它的最小正周期与最值. 试题解析:(1)由图象知,A=2, ∵482πωωπ=∴=∵函数f (x )的图象过点(1,2), ∴ππφπk 2214+=+⨯;4,2πφπφ=∴<);44sin(2)(ππ+=∴x x f(2)由题意,函数]4)2(4sin[2)44sin(2ππππ++++=x x y x x x 4cos 22)44cos(2)44sin(2πππππ=+++=∴最小正周期是8,22,22min max -==y y .考点:1.由y=Asin (ωx+φ)的部分图象确定其解析式;2.三角函数的周期性及其求法. 17.(1)证明:平面平面,, 平面平面=,平面,平面,…………… 2分 又为圆的直径,,平面…………………… 4分(2)设的中点为,则,又,则,为平行四边形, …………………… 6分 ,又平面,平面,平面……… 8分 (3)过点作于,平面平面,平面,, ………… 10分平面,,……………11分. 【解析】 (1)证明:平面平面,,平面平面=,平面, 平面,,……… 2分 又为圆的直径,,平面.……… 5分(2)设的中点为,则,又,则,为平行四边形, ……… 7分,又平面,平面,平面.……… 9分(3)过点作于,平面平面, 平面,,……… 11分平面,,……… 13分. ……… 14分18.(1)证明见解析(2)圆C 的方程为(x -2)2+(y -1)2=5 【分析】(1)先求出圆C 的方程(x -t )2+22)y t-(=t 2+24t,再求出|OA|,|0B|的长,即得△OAB 的面积为定值;(2)根据212t =t 得到t =2或t =-2,再对t 分类讨论得到圆C 的方程. 【详解】(1)证明:因为圆C 过原点O ,所以OC 2=t 2+24t. 设圆C 的方程是(x -t )2+22)y t-(=t 2+24t , 令x =0,得y 1=0,y 2=4t; 令y =0,得x 1=0,x 2=2t , 所以S △OAB =12OA ·OB =12×|2t |×|4t|=4, 即△OAB 的面积为定值.(2)因为OM =ON ,CM =CN ,所以OC 垂直平分线段MN . 因为k MN =-2,所以k OC =12. 所以212t =t ,解得t =2或t =-2.当t =2时,圆心C 的坐标为(2,1),OC ,此时,圆心C 到直线y =-2x +4的距离d圆C 与直线y =-2x +4相交于两点.符合题意,此时,圆的方程为(x -2)2+(y -1)2=5.当t =-2时,圆心C 的坐标为(-2,-1),OC C 到直线y =-2x +4的距离d>.圆C 与直线y =-2x +4不相交, 所以t =-2不符合题意,舍去.所以圆C 的方程为(x -2)2+(y -1)2=5. 【点睛】本题主要考查圆的方程的求法,考查直线和圆的位置关系的求法,意在考查学生对这些知识的理解掌握水平.19.(1) a n =3n-1;nn b 312⋅=;(2)祥见解析. 【解析】试题分析:(1)由题设条件知92,3221==b b ,22n n b S =-,;2)(211n n n n n b S S b b =--=---311=⇒-n n b b 此可求出数列{b n }的通项公式. (2)数列{a n }为等差数列,公差3)(2157=-=a a d ,可得a n =3n-1.从而n n n n n b a c 31)13(2⋅-=⋅=,由此能证明数列{c n }的前n试题解析:(1)数列{a n }为等差数列,公差3)(2157=-=a a d ,可得a n =3n-1.由22n n b S =-,令n=1,则b 1=2-2S 1,又S 1=b 1, 所以,321=b b 2=2-2(b 1+b 2),则922=b 当n≥2时,由22n n b S =-,可得;2)(211n n n n n b S S b b =--=---.即311=-n n b b 所以{b n }是以为321=b 首项,31为公比的等比数列,于是n n b 312⋅=. (2)由(1)得n •b n =2(3n-1)•n 31.273312727]31)13(318315312[2132<-⨯-=⋅-++⋅+⋅+⋅=∴-n n n n n n T考点:1.等差数列与等比数列的综合. 20.(1)x 24+y 2=1;(2)祥见解析.【解析】试题分析:(1)由已知,可求,,故方程为x 24+y 2=1;(2)当直线l 不与x 轴垂直时,设直线l 的方程为y =k(x −1),M(x,y)、N(x 2,y 2),R(4,y 0),由{y =k(x −1)x 24+y 2=1 得(1+4k 2)x 2−8k 2x +4k 2−4=0,由A,N,R 共线,得y 0=6y 2x 2+2,又,则(x 1−1)(x 2+2)−3(x 2−1)(x 1−2)=−2x 1x 2+5(x 1+x 2)−8,代入可得结论.试题解析:(1)由题意知:|F 1F 2|=2c =2√3, ∵椭圆上的点P 满足∠PF 1F 2=900,且S ΔPF 1F 2=√32, ∴S ΔPF 1F 2=12|F 1F 2|·|PF 1|=12×2√3×|PF 1|=√32, ∴|PF 1|=12,|PF 2|=√|F 1F 2|2+|PF 1|2=72.∴2a =|PF 1|+|PF 2|=4,a =2 又∵c =√3,∴b =√a 2−c 2=1. ∴椭圆C 的方程为x 24+y 2=1, (2)由题意知A(−2,0)、B(2,0), ①当直线l 与x 轴垂直时,M(1,√32)、N(1,−√32),则AN 的方程是:y =−√36(x +2),BM 的方程是:y =−√32(x −2),直线AN 与直线x =4的交点为R(4,−√3),∴点R 在直线BM 上.(2)当直线l 不与x 轴垂直时,设直线l 的方程为y =k(x −1),M(x,y)、N(x 2,y 2),R(4,y 0), 由{y =k(x −1)x 24+y 2=1 得(1+4k 2)x 2−8k 2x +4k 2−4=0, ∴x 1+x 2=8k 21+4k2,x 1x 2=4k 2−41+4k 2.,A,N,R 共线,∴y 0=6y 2x2+2.又,需证明B,M,R 共线,需证明2y 1−y 0(x 1−2)=0,只需证明2k(x 1−1)−6k(x 2−1)x 2+2(x 1−2)=0,若k =0,显然成立,若k ≠0,即证明(x 1−1)(x 2+2)−3(x 2−1)(x 1−2)=−2x 1x 2+5(x 1+x 2)−8=−2(4k 2−4)1+4k 2+5×8k 21+4k 2−8=0成立.∴B,M,R 共线,即点R 总在直线BM 上. 考点:直线与圆锥曲线的位置关系.【方法点睛】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意直线斜率不存在的情况及不要忽视判别式的作用.21.(1)当a >0时,f (x )的单调增区间为(0,1],减区间为[1,+∞); 当a <0时,f (x )的单调增区间为[1,+∞),减区间为(0,1]; 当a=0时,f (x )不是单调函数; (2)337-<m <-9;(3)祥见解析. 【解析】试题分析:利用导数求函数的单调区间的步骤是①求导函数f′(x );②解f′(x )>0(或<0);③得到函数的增区间(或减区间),对于本题的(1)在求单调区间时要注意函数的定义域以及对参数a 的讨论情况;(2)点(2,f (2))处的切线的倾斜角为45°,即切线斜率为1,即f'(2)=1,可求a 值,代入得g (x )的解析式,由t ∈[1,2],且g (x )在区间(t ,3)上总不是单调函数可知:⎪⎩⎪⎨⎧>'<'<'0)3(0)2(0)1(g g g ,于是可求m 的范围.(3)与函数结合证明不等式问题,常用的解题思路是利用前面的结论构造函数,利用函数的单调性,对于函数取单调区间上的正整数自变量n 有某些结论成立,进而解答出这类不等式问题的解.试题解析:(1))0(,)1()(>-='x xx a x f (2分) 当a >0时,f (x )的单调增区间为(0,1],减区间为[1,+∞); 当a <0时,f (x )的单调增区间为[1,+∞),减区间为(0,1]; 当a=0时,f (x )不是单调函数(4分)(2)12)2(=-='af 得a=-2,f (x )=-2lnx+2x-3 ∴x x mx x g 2)22()(23-++=,∴g'(x )=3x 2+(m+4)x-2(6分)∵g (x )在区间(t ,3)上总不是单调函数,且g′(0)=-2 ∴⎩⎨⎧>'<'0)3(0)(g t g (8分)由题意知:对于任意的t ∈[1,2],g′(t )<0恒成立,所以有:⎩⎨⎧<'<'0)2(0)1(g g ,337-∴<m <-9(10分)(3)令a=-1此时f (x )=-lnx+x-3,所以f (1)=-2, 由(1)知f (x )=-lnx+x-3在(1,+∞)上单调递增, ∴当x ∈(1,+∞)时f (x )>f (1),即-lnx+x-1>0, ∴lnx <x-1对一切x ∈(1,+∞)成立,(12分) ∵n≥2,n ∈N*,则有0<lnn <n-1,n n n n 1ln 0-<<∴ ∴ln 22⋅ln33⋅ ln 44⋅ln n n ⋅12<⋅23⋅34⋅11n n n-⋅= (n≥2,n ∈N*) 考点:1.利用导数研究函数的单调性;2.利用导数研究曲线上某点切线方程.。
宁夏银川一中2021届高三数学第二次月考试题 文(1)
银川一中2021届高三年级第二次月考数 学 试 卷(文)【试卷综评】突出考查数学骨干知识 ,偏重于中学数学学科的基础知识和大体技术的考查;偏重于知识交汇点的考查。
全面考查了考试说明中要求的内容,明确了中学数学的教学方向和考生的学习方向,适度综合考查,提高试题的区分度.通过考查知识的交汇点,对考生的数学能力提出了较高的要求. 第Ⅰ卷一、选择题:本大题共12小题,每题5分,总分值60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.【题文】1.设集合212{|10},{|log }A x xB x y x =-<==,那么A∩B 等于( )A .{|1}x x >B .{|01}x x <<C . {|1}x x <D .{|01}x x <≤ 【知识点】交集及其运算.A1【答案解析】B 解析:由A 中不等式变形得:(x+1)(x ﹣1)<0,解得:﹣1<x <1,即A={x|﹣1<x <1},由B 中y=,取得0<x≤1,即B={x|0<x≤1},那么A∩B={x|0<x <1}.应选:B .【思路点拨】求出A 中不等式的解集确信出A ,求出B 中x 的范围确信出B ,求出A 与B 的交集即可. 【题文】2.已知复数 z 知足(13)1i z i +=+,那么||z =( )A .22B .21C .2D . 2【知识点】复数求模.L4 【答案解析】A 解析:∵,∴=,因此|z|=应选A .【思路点拨】第一依照所给的等式表示出z ,是一个复数除法的形式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母同时进行乘法运算,取得最简形式.【题文】3.在△ABC 中,“3sin 2A >”是“3πA >”的( )A .充分没必要要条件B .必要不充分条件C .充要条件D .既不充分也没必要要条件 【知识点】必要条件、充分条件与充要条件的判定;正弦函数的单调性.A2 C3【答案解析】A 解析:在△ABC 中,∴0<A <π,∵sinA >,∴<A <,∴sinA >”⇒“∠A >”,反之那么不能,∴,“sinA>”是“∠A >”的充分没必要要条件,故A 正确.【思路点拨】在△ABC 中,0<A <π,利用三角函数的单调性来进行判定,然后再由然后依照必要条件、充分条件和充要条件的概念进行判定求解.【题文】4.O 是ABC ∆所在平面内的一点,且知足()(2)0OB OC OB OC OA -⋅+-=,那么ABC ∆的形状必然为( )A .正三角形B .直角三角形C .等腰三角形D .斜三角形【知识点】三角形的形状判定.C8 【答案解析】C 解析:∵= = ==0,∴,∴△ABC 为等腰三角形.应选C【思路点拨】利用向量的运算法那么将等式中的向量 用三角形的各边对应的向量表示,取得边的关系,得出三角形的形状.【题文】5.设向量b a ,b a +=10b a -=6,那么=⋅b a ( )A .5B .3C .2D .1【知识点】平面向量数量积的运算.F3 【答案解析】D 解析:∵|+|=,|﹣|=,∴|+|2=10,|﹣|2=6,展开得2+2+2•=10, 2+2﹣2•=6,两式相减得4•=4,∴•=1;应选D .【思路点拨】利用向量的平方等于向量的模的平方,将已知的两个等式平方相减,解得数量积.【题文】6.函数2sin 2xy x =-的图象大致是( )【知识点】函数的图象.B8【答案解析】C 解析:当x=0时,y=0﹣2sin0=0故函数图象过原点, 可排除A 又∵y'=,故函数的单调区间呈周期性转变分析四个答案,只有C 知足要求,应选C 【思路点拨】依照函数的解析式,咱们依照概念在R 上的奇函数图象必要原点能够排除A ,再求出其导函数,依照函数的单调区间呈周期性转变,分析四个答案,即可找到知足条件的结论.【题文】7.假设角α的终边在直线y =2x 上,那么ααααcos 2sin cos sin 2+-的值为( )A .0 B. 34 C .1 D. 54【知识点】同角三角函数大体关系的运用;三角函数线.C1 C2 【答案解析】B 解析:∵角α的终边在直线y=2x 上,∴tanα=2,∴==,应选:B .【思路点拨】依题意,tanα=2,将所求的关系式中的“弦”化“切”即可求得答案.【题文】8.ABC ∆的内角A B C 、、的对边别离是a b c 、、,假设2B A =,1a =,3b =,那么c = ( ) A .23 B .2C .2D .1【知识点】正弦定理;二倍角的正弦.C6 C8 【答案解析】B 解析:∵B=2A ,a=1,b=,∴由正弦定理=得:===,∴cosA=,由余弦定理得:a2=b2+c2﹣2bccosA ,即1=3+c2﹣3c ,解得:c=2或c=1(经查验不合题意,舍去),那么c=2.应选B【思路点拨】利用正弦定理列出关系式,将B=2A ,a ,b 的值代入,利用二倍角的正弦函数公式化简,整理求出cosA 的值,再由a ,b 及cosA 的值,利用余弦定理即可求出c 的值.【题文】9.假设f(x)=21ln(2)2x b x -++∞在(-1,+)上是减函数,那么b 的取值范围是( )A.[-1,+∞)B.(-1,+∞)C.(-∞,-1]D.(-∞,-1) 【知识点】利用导数研究函数的单调性.B12 【答案解析】C 解析:由题意可知,在x ∈(﹣1,+∞)上恒成立,即b <x (x+2)在x ∈(﹣1,+∞)上恒成立,由于y=x (x+2)在(﹣1,+∞)上是增函数且y (﹣1)=﹣1,因此b≤﹣1,应选C 【思路点拨】先对函数进行求导,依照导函数小于0时原函数单调递减即可取得答案.【题文】10.函数()()x x x f 21ln -+=的零点所在的大致区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【知识点】函数的零点与方程根的关系.B9【答案解析】B 解析:∵f (1)=ln (1+1)﹣2=ln2﹣2<0, 而f (2)=ln3﹣1>lne ﹣1=0,∴函数f (x )=ln (x+1)﹣的零点所在区间是 (1,2),应选B .【思路点拨】函数f (x )=ln (x+1)﹣的零点所在区间需知足的条件是函数在区间端点的函数值符号相反. 【题文】11.)0)(sin(3)(>+=ωϕωx x f 部份图象如图, 若2||AB BC AB =⋅,ω等于( )A .12πB .4πC .3πD .6π【知识点】由y=Asin (ωx+φ)的部份图象确信其解析式;平面向量数量积的运算.C4 F3 【答案解析】D 解析:由,得||•||•cos(π﹣∠ABC)=,即||•(﹣cos∠ABC)=, 由图知||=2||,因此cos∠ABC=﹣,即得∠ABC=120°,过B 作BD⊥x 轴于点D ,那么BD=,在△ABD 中∠ABD=60°,BD=,易求得AD=3,因此周期T=3×4=12,因此ω==.应选D . 【思路点拨】由,可求得∠ABC=120°,再由函数最大值为,通过解三角形可求得周期,由此即可求得ω值.【题文】12.函数()x f 是R 上的偶函数,在区间[)+∞,0上是增函数.令⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=75tan,75cos,72sinπππf c f b f a ,那么( )A .c b a <<B .a b c <<C .a c b <<D .c a b << 【知识点】偶函数;不等式比较大小.B4 E1 【答案解析】D 解析:,因为,又由函数在区间[0,+∞)上是增函数,因此,因此b <a <c ,应选A【思路点拨】通过奇偶性将自变量调整到同一单调区间内,依照单调性比较a 、b 、c 的大小. 第Ⅱ卷本卷包括必考题和选考题两部份.第13题~第21题为必考题,每一个试题考生都必需做答.第22题~第24题为选考题,考生依照要求做答.二、填空题:本大题共4小题,每题5分,共20分.【题文】13.设1232,2()log (1),2x e x f x x x -⎧<⎪=⎨-≥⎪⎩,那么((2))f f 的值为 .【知识点】分段函数的解析式求法及其图象的作法;函数的值.B1 B10【答案解析】2 解析:由题意,自变量为2,故内层函数f (2)=log3(22﹣1)=1<2, 故有f (1)=2×e1﹣1=2,即f (f (2))=f (1)=2×e1﹣1=2,故答案为 2【思路点拨】此题是一个分段函数,且是一个复合函数求值型的,故求解此题应先求内层的f (2),再以之作为外层的函数值求复合函数的函数值,求解进程中应注意自变量的范围选择相应的解析式求值.【题文】14.若sin cos 2θθ+=,那么tan 3πθ⎛⎫+ ⎪⎝⎭的值是 ___________. 【知识点】两角和与差的正切函数;同角三角函数间的大体关系.C5 C2【答案解析】-2-3 解析:∵,平方可得sin2θ=1,=1,∴=1,tanθ=1.∴===,故答案为.【思路点拨】把条件平方可得sin2θ=1,变形为 =1,解出tanθ代入=可求出结果.【题文】15.设奇函数()x f 的概念域为R ,且周期为5,假设()1f <—1,(),log 42a f =那么实数a 的取值范围是 .【知识点】函数奇偶性的性质;函数的周期性;对数的运算性质.B4 B7【答案解析】-2-3 解析:依照题意,由f (x )为奇函数,可得f (1)=﹣f (﹣1), 又由f (1)<﹣1,那么﹣f (﹣1)<﹣1,那么f (﹣1)>1,又由f (x )周期为5,那么f (﹣1)=f (4)=log2a ,那么有log2a >1,解可得a >2;故答案为a >2.【思路点拨】关键函数是奇函数,结合f (1)<﹣1,分析可得f (﹣1)>1,又由f (x )周期为5,那么f (﹣1)=f (4)=log2a ,联立可得log2a >1,解可得答案. 【题文】16.以下命题:①若||||||a b a b ⋅=⋅,那么a ∥b ;②a =(-1,1)在b =(3,4)方向上的投影为15;③若△ABC 中,a=5,b =8,c =7,那么BC ·CA =20;④假设非零向量a 、b 知足||||a b b +=,那么|2||2|b a b >+. 所有真命题的标号是______________.【知识点】向量的投影;向量的共线定理;平面向量数量积的性质及其运算律;平面向量数量积的运算.F2 F3 【答案解析】①② 解析:关于选项A ,依照,那么cosθ=±1,θ=0°或180°,那么∥,故正确;关于选项B ,依照投影的概念可得,在 方向上的投影为||cos <,>==,故正确;关于选项C ,由余弦定理可知cosC=,=5×8×cos(π﹣C )=﹣20,故不正确;关于选项D ,|+|=,不正确; 故答案为:①② 【思路点拨】选项A 依照,那么cosθ=±1,θ=0°或180°,那么∥可得结论;选项B 依照投影的概念,应用公式 在 方向上的投影为||cos <,>=求解;选项C 由余弦定理可知cosC=,=5×8×cos(π﹣C )=﹣20,可知真假;关于选项D ,显然不正确.三、解答题: 解许诺写出文字说明,证明进程或演算步骤. 【题文】17、(本小题12分)已知向量⎪⎭⎫ ⎝⎛=23,sin x m ,()02cos 3,cos 3>⎪⎭⎫⎝⎛=A x A x A n ,函数()f x m n =⋅的最大值为6. (1)求A ;(2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原先的12倍,纵坐标不变,取得函数()y g x =的图象.求()g x 在⎥⎦⎤⎢⎣⎡40π,上的值域. 【知识点】函数y=Asin (ωx+φ)的图象变换;平面向量数量积的运算;三角函数中的恒等变换应用.菁优网版权所有C4 C7 F3【答案解析】(1)A =6(2)[]633-,解析:(1)()x f =n m ⋅=3x x cos Asin +A2cos2x...... 2分=A ⎪⎪⎭⎫ ⎝⎛+x x 2cos 212sin 23=Asin ⎪⎭⎫ ⎝⎛+62πx ........4分,因为A>0,由题意知,A =6...........6分由(1)()x f =6sin ⎪⎭⎫ ⎝⎛+62πx .将函数()x f y =的图象向左平移π12个单位后取得y =6sin⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+6122ππx =6sin ⎪⎭⎫ ⎝⎛+32πx 的图象;再将取得图象上各点横坐标缩短为原先的12倍,纵坐标不变,取得y =6sin ⎪⎭⎫ ⎝⎛+34πx 的图象。
宁夏银川重点名校2023届高三上学期第二次月考数学(文)试题及答案
2023届高三年级第二次月考文 科 数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某国近日开展了大规模COVID -19核酸检测,并将数据整理如图所示,其中集合S 表示A .无症状感染者B .发病者C .未感染者D .轻症感染者2.已知2i z =+,则(i)z z -= A .2i - B .12i +C .62i -+D .62i -3.如图所示的程序框图,输入3个数,0.12a =,0.23b -=,41log 2c =,则输出的a 为 A .0 B .0.12C .0.23-D .41log 24.已知{}n a 是等差数列,172a a +=-,32a =,则{}n a 的公差d 等于 A .3B .4C .-3D .-45.设()0sin f x x =,()()10f x f x '=,()()21f x f x '=,…,()()1n n f x f x +'=,n N ∈,则()2020f x = A .sin x B .sin x -C .cos xD .cos x -6.若110a b<<,则下列不等式成立的是 A .a b ab -> B .a b ab -< C .b a ab -> D .b a ab -<7.若x ,y 满足约束条件423x y x y y +≤⎧⎪-≤⎨⎪≤⎩,则3z x y =+的最大值为A .6B .10C .14D .188.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x -≤-≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]9.函数()ln e e x xy -=+的图像大致是A .B .C .D .10.已知实数,0x y >,且11y x+=,则12x y +的最小值是A .6B .322+C .232+D .1211.已知⎪⎩⎪⎨⎧<-≥=0,30,)(3x x x x exx f x ,若关于x 的方程22()()10f x k f x ⋅--=有5个不同的实根,则实数k 的取值范围为A .72(,)(,)2e e -∞--+∞B .72](,2e e--C .72(,)2e e--D .72(,(,2])e e-∞--+∞12.英国物理学家牛顿用“作切线”的方法求函数的零点时,给出的“牛顿数列”在航空航天中应用广泛,若数列{}n x 满足()()1n n n n f x x x f x +=-',则称数列{}n x 为牛顿数列,如果()22f x x x =--,数列{}n x 为牛顿数列,设1ln2n n n x a x +=-且11a =,2n x >,数列{}n a 的前n 项和为n S ,则2022S = A .202221-B .202222-C .20221122⎛⎫- ⎪⎝⎭D .2022122⎛⎫- ⎪⎝⎭二、填空题(本大题共4小题,每小题5分.共20分)13.已知函数2,0()2,0x x a x f x x ⎧+≤=⎨>⎩,若f [ f ( - 1 ) ] = 4 ,且a > - 1 ,则 a =______.14.若1,22x ⎡⎤∃∈⎢⎥⎣⎦,使2210x x λ-+<成立是假命题,则实数λ的取值范围是___________.15.数列121321,,,,n n a a a a a a a ---⋯-,…是首项为1,公比为2的等比数列,那么n a =________.16.已知定义域为R 的偶函数()f x ,其导函数为()f x ',满足2()()4,(1)1f x xf x f >'+=,则21()2f x x >-的解集为_________. 三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。
二中高三第二次月考文科数学试卷
二中高三第二次月考文科数学试卷(考试时间:120分钟 总分:150分)一、选择题(本大题共10小题,每小题5分,满分50分) . 函数3()xf x x-=的定义域为 ( ) A .(0,3) B .(,0)(0,3)-∞ C .(,0)(0,3]-∞ D .{}0,3x R x x ∈≠≠2.复数311(i i-为虚数单位)在复平面上对应的点的坐标是 ( ) A .(1,1) B .(1,1)- C .(1,1)- D .(1,1)-- 3.“1x =”是“(1)(2)0x x --=”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.即不充分也不必要条件4.tan 330°的值为 ( ) A.33- B.3 C.33D.3-5.下图为函数11()x f x a =,22()x f x a =,33()log a f x x =在同一直角坐标系下的部分图象,则下列结论正确的是 ( )A . 31210a a a >>>>B. 32110a a a >>>>C. 12310a a a >>>>D. 21310a a a >>>>6.若2()(0)f x ax bx c a =++≠是定义在R 上的偶函数,则b 的值为 ( ) A .1- B .0 C .1 D .无法确定7.设三次函数)(x f 的导函数为)(x f ',函数()y x f x '=⋅的图象如下图所示,则( )A .()f x 的极大值为(3)f ,极小值为(3)f -1()f x 2()f x3()f xOxy 32.521.510.50.512112345yB .)(x f 的极大值为)3(f ,极小值为)3(-fC .)(x f 的极大值为)3(-f ,极小值为)3(fD .)(x f 的极大值为)3(-f ,极小值为)3(f8.若函数3()1f x x x =-+在区间(,)a b (,a b 是整数,且1b a -=)上有一个零点,则a b +的值为 ( ) A .3B .2-C .2D .3-9.如右图所示的方格纸中有定点 O P Q E F G H ,,,,,,,则OP OQ += ( ) A .FO B .OGC .OHD .EO10. 若函数()() y f x x R =∈满足()()2f x f x +=且[]1,1x ∈-时,()21f x x =-;函数()lg g x x = ,则函数()()()h x f x g x =-在区间[]5,5-内的零点的个数为A .10B .8C .5D .4二、填空题(本大题共5小题,每小题5分,满分25分.) 11.已知()x f x xe =,则(1)f '=12.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =,B =600,则sin C = _________13.已知1||=a ,2||=b ,()a b a +⊥,则a 与b 夹角为 14.已知定义在R 上的函数()f x 对任意实数x 均有1(2)()2f x f x +=-,且()f x 在区间[]0,2上有表达式2()2f x x x =-+,则函数)(x f 在区间[3,2]--上的表达式为()f x =_______________15.已知,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若11,3,cos 2a b B ===,则sin A =三、解答题:本大题共6小题,满分75分.解答须写出文字说明、证明过程和演算步骤.F EPGOQH16.(本小题满分12分)已知向量(2,1)a =--,(1,)b x =-. (1)若//a b ,求x 的值; (2)若a b ⊥,求x 的值. 17.(本小题满分12分) 已知函数1()2sin()36f x x π=-,R x ∈(1)求()f π的值; (2)设,[0,]2παβ∈,10(3)213f πα+=,6(32)5f βπ+= 求cos()αβ+的值.18.(本小题满分12分)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1) 求a 的值;(2) 若该商品的成本为3元/千克, 试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大. 19.(本小题满分12分)已知函数2()2cos3sin 2xf x x =-. (1)求函数()f x 的最小正周期和值域; (2)若α为第二象限角,且1()33f πα-=,求cos 21tan αα-的值.20.(本小题满分13分) 已知()fx 是二次函数,不等式()0f x <的解集是()05,,且()f x 在点()()11f ,处的切线与直线610x y ++=平行. (1)求()fx 的解析式;(2)是否存在t ∈N *,使得方程()370fx x+=在区间()1t t ,+内有两个不等的实数 根?若存在,求出t 的值;若不存在,说明理由.21.(本小题满分14分)已知函数322()4361f x x tx t x t =+-+-,其中0t >. (1)求()f x 的单调区间;(2)证明:对任意的(0,)t ∈+∞,()f x 在区间(0,1)内均存在零点.三、解答题(本大题共6小题,解答应写出文字说明、证明过程或演算步骤)高三数学(文科)答题卷 (时间:120分钟 满分:150分)一、选择题(本题共10个小题,每小题5分)题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(本大题共5小题,每小题5分)11、________ 12、________ 13、 _ 14、 __15、 _ 16.(本小题12分) 17.(本小题12分)18.(本小题12分)学校__________________班级_______________姓名_____________________座号__________成绩___________…………………密……………………封……………………装……………………订……………………线………………………19.(本小题12分)20.(本小题13分)21.(本小题14分)参考答案1.(C ) 2.(B ) 3.(A ) 4.(A ) 5.(C )6.(B )7.(A )8.(D ) 9.(A) 10.(B)11、2e ; 12、1; 13、23π; 14、()4(2)(4)f x x x =-++; 15、1216、(1)∵//a b ,∴(2)()(1)10x -⋅---⋅=,解得12λ=-.……………6分 (2)a b ⊥, ∴0a b ⋅=,即(2)1(1)()0x -⋅+-⋅-=,解得2λ=.……………12分17、解:(1)()2sin()2sin 1366f ππππ=-==.……………5分(2)因10(3)2sin 213f παα+==,∴5sin 13α=,∵[0,]2πα∈,∴12cos 13α=;…8分6(32)2sin()2cos 25f πβπββ+=+==,∴3cos 5β=,∵[0,]2πβ∈,∴4sin 5β=;……11分∴1235416cos()cos cos sin sin 13513565αβαβαβ+=-=⨯-⨯=. ……………12分 18 解:(1)因为5x =时11y =,所以10112a+=,故2a =;……………5分(2)由(1)知该商品每日的销售量2210(6)3y x x =+--,所以商场每日销售该商品所获得的利润:222()(3)[10(6)]210(3)(6),363f x x x x x x x =-+-=+--<<-;……… 8分2()10[(6)2(3)(6)]f x x x x '=-+--30(6)(4xx =-- 令()0f x '=,得4x =……………10分函数()f x 在(3,4)上递增,在(4,6)上递减,所以当4x =时函数()f x 取得最大值(4)42f =.……………12分19解:(1)因为 ()1cos 3sin f x x x =+- 12cos()3x π=++, ……………4分所以函数()f x 的周期为2π,值域为[1,3]-. ……………………6分 (2)因为 1()33f πα-=,所以 112cos =3α+,即1cos 3α=-. …………8分因为 22cos 2cos sin cos sin 1tan cos ααααααα-=--cos (cos sin )ααα=+ 2cos cos sin ααα=+, 因为α为第二象限角, 所以 22sin 3α=. ……………………10分所以cos 21221221tan 999αα-=-=-. ……………………12分20(1)解法1:∵()f x 是二次函数,不等式()0f x <的解集是()05,,∴可设()()5fx ax x =-,0a >. …………… 1分∴25f x ax a /()=-. …………… 2分 ∵函数()fx 在点()()11f ,处的切线与直线610x y ++=平行,∴()16f /=-. …………… 3分∴256a a -=-,解得2a =. …………… 4分 ∴()()225210fx x x x x =-=-. …………… 5分解法2:设()2fx ax bx c =++, ∵不等式()0fx <的解集是()05,,∴方程20ax bx c ++=的两根为05,.∴02550c a b ,=+=. ① …………… 2分 ∵2f x ax b /()=+. 又函数()fx 在点()()11f ,处的切线与直线610x y ++=平行,∴()16f /=-.∴26a b +=-. ② …………… 3分由①②,解得2a =,10b =-. …………… 4分 ∴()2210fx x x =-. …………… 5分(2)解:由(1)知,方程()370fx x+=等价于方程32210370x x -+=. …………… 6分设()h x=3221037x x -+,则()()26202310hx x x x x /=-=-. …………… 7分当1003x ,⎛⎫∈ ⎪⎝⎭时,()0h x /<,函数()h x 在1003,⎛⎫ ⎪⎝⎭上单调递减; ……… 8分 当103x ,⎛⎫∈+∞⎪⎝⎭时,()0h x />,函数()h x 在103,⎛⎫+∞ ⎪⎝⎭上单调递增. … 9分 ∵()()1013100450327h h h ,,⎛⎫=>=-<=>⎪⎝⎭, …………… 12分 ∴方程()0h x=在区间1033,⎛⎫ ⎪⎝⎭,1043,⎛⎫⎪⎝⎭内分别有唯一实数根,在区间()03,,()4,+∞内没有实数根.∴存在唯一的自然数3t =,使得方程()370fx x+=在区间()1t t ,+内有且只有两个不等的实数根. …………… 13分21.解:(1)22()1266f t x tx t '=+- ……………………3分 ∵0t >,则2tt -<,……………………4分 当x 变化时,()f x ',()f x 的变化情况如下表:x(,)t -∞--t (,)2t t -2t (,)2t+∞ ()f x ' + 0 - 0 + ()f x∴()f x 的单调递增区间是(,)t -∞-,(,)2t +∞,()f x 的单调递减区间是(,)2t t - ……8分(2)证明:由(1)可知,当0t >时,()f x 在(0,)2t 内的单调递减,在(,)2t +∞内单调递增,以下分两种情况讨论:① 当12t≥,即2t ≥时,()f x 在(0,1)内单调递减, (0)10f t =->,2(1)643644230f t t =-++≤-⨯+⨯+<…………………10分 所以对任意[2,)t ∈+∞,()f x 在区间(0,1)内均存在零点。
2022届宁夏银川一中高三上学期第二次月考数学(文)试题解析.docx
银川一中2022届高三年级第二次月考文科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3. 考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有 一项是符合题目要求的.1.集合尸={1,2}的真子集的个数是( )A. 7B. 3C. 4D. 8【答案】B 【解析】根据真子集个数的计算方法,求得正确选项. 解:集合尸有两个元素,所以真子集个数为22-1 = 3. 故选:B2 复数 z =「r ,贝01 |z| =()2-1A.季B. 1C. ^5D. 5【答案】A 【解析】3.已知命题p:3xeR,sinx<l ;命题V XG R ,此21,则下列命题中为真命题的是()A . PE【答案】A【解析】 由正弦函数的有界性确定命题P 的真假性,由指数函数的知识确定命题0的真假性,由此确定正确选项.D.利用复数除法运算化简z,由此求得|z|.故选:A解:由于sin0=0,所以命题。
为真命题;由于y = e'在R上为增函数,国20,所以e w>e°=l,所以命题0为真命题;所以PE 为真命题,-P^<3 > 一i(pvg)为假命题.故选:A.4.已知等比数{qj满足%。
7=3。
4。
3,则数列{%}的公比0=()1 1A. 2B. —C. 3D.—3 2【答案】C【解析】根据题意代入等比数列通项公式可得a-" =3a;q\化简即可得解.解:由题意可得。
「苛=3。
含5,可得0 = 3.故选:Cx<45.若x, y满足约束条件< 2x + y>10,则z = x—v的最大值为()y<4A. -1B. 0C. 2D. 10【答案】C【解析】作出可行域,作出目标函数对应的直线,平移该直线得最优解.解:作出可行域,如图△A3C内部(含边界),作直线l:x-y=O, 在直线x-V = z中-z是直线的纵截距,向下平移时纵截距减小,z增大.因此平移直线Z,当Z过A(4,2)时,z = x-y = 2为最大值.故选:C.y A【答案】B【解析】7通过平方将原式变形得到2sinacosa =-—,再结合正弦二倍角公式即可求解.94构轧因为sin a-cos a =—,32 2 1所以两边平方得sin a-2sinacosa + cos a -一,9又因为sin? + cos2 a =1,77所以一2sinocosa = —,艮|12sinacosa =——,9 97所以sin 2a = 2sin a cos a = ~—故选:B7.己知函数/(x) = 2',在[1,9]上随机取一个实数则使得/(x0)<8成立的概率为( )1 1 1 2A. —B. —C. —D.—8 4 3 3【答案】B【解析】首先求不等式的解集,再根据区间长度,求几何概型的概率.解:由/(x0)<8,得2改<8,解得x0<3,在区间[1,9〕上随机取一实数知则实数%满足不等式a _i i/U)<8的概率为P = o.9— 1 4故选:B8.下列不等式恒成立的是( )A. a-+b- < 2abB. a2+b2 > -labC. a + b> -2^\ab\D. a + b< 2^|tzZ?|【答案】B【解析】由基本不等式,可判定A不正确;由a2 +b2 +2ab = (a + by>Q ,可判定B正确;根据特例,可判定C、D 不正确;解:由基本不等式可知a2+b2>2ab>故A不正确;由a2 +b2 > —lab > 可得a2 +b2 + 2ab > 0 > 即(a + Z?)2 > 0 恒成立,故B 正确;当a = -l,b = -l时,不等式不成立,故C不正确;当a = O,b = 1时,不等式不成立,故D不正确.故选:B.9.在数列{%}中,弓=上,。
2024-2025学年宁夏银川一中高三上学期第二次月考数学试题及答案
银川一中2025届高三年级第二次月考数 学 试 卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题(共8小题,满分40分,每小题5分)1. 设集合{}1,4A =,{}240B x x x m =-+=,若{}1A B ⋂=,则集合B =( )A. {}1,3-B. {}1,3 C. {}1,0 D. {}1,52. 已知函数()10,()31x f x a a a -=>≠-恒过定点(),M m n ,则函数1()n g x m x +=+的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是()A b a c a-<+ B. 2c ab< C.c c b a> D. b c a c <4. 已知函数()f x 及其导函数(f x '的定义域均为R ,且()1f x '+为奇函数,则( )A. ()10f = B. ()20f '=C. ()()02f f = D. ()()02f f '='5. 如图为函数()y f x =在[]6,6-上的图像,则()f x 的解析式只可能是( ).A. ())ln cos f x x x=+ B. ())ln sin f x x x=+C. ())ln cos f x x x=- D. ())ln sin f x x x=.6. 当[]0,2πx ∈时,曲线cos y x =与π2cos 36y x ⎛⎫=- ⎪⎝⎭交点的个数为( )A. 3 B. 4C. 5D. 67. 已知3,24ππα⎛⎫∈ ⎪⎝⎭,π1πtan tan 424αα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则21sin 24cos αα-=()A. 6+B. 6-C. 17+D. 17-8. 已知(),()f x g x 是定义域为R 函数,且()f x 是奇函数,()g x 是偶函数,满足2()()2f x g x ax x +=++,若对任意的1212x x <<<,都有g (x 1)−g (x 2)x 1−x 2>−5成立,则实数a 的取值范围是( )A [)0,∞+ B. 5,4∞⎡⎫-+⎪⎢⎣⎭ C. 5,4∞⎛⎫-+ ⎪⎝⎭ D. 5,04⎡⎤-⎢⎥⎣⎦二.多项选择题(共3小题,满分18分,每小题6分)9. 下列说法正确的是( )A. 函数()2f x x =+与()2g x =是同一个函数B. 若函数()f x 的定义域为[]0,3,则函数(3)f x 的定义域为[]0,1C. 已知命题p :0x ∀>,20x ≥,则命题p 的否定为0x ∃>,20x <D. 定义在R 上的偶函数()f x 满足()(2)0f x f x --=,则函数()f x 的周期为210. 已知函数()πsin 24f x x ⎛⎫=+ ⎪⎝⎭,则下列说法正确的是( )A.π2是函数()f x 的周期B. 函数()f x 在区间π0,6⎛⎫⎪⎝⎭上单调递增C. 函数()f x 的图象可由函数sin 2y x =向左平移π8个单位长度得到()πsin 24f x x ⎛⎫=+ ⎪⎝⎭D. 函数()f x 对称轴方程为()ππZ 48k x k =-∈11. 已知函数()323f x ax ax b =-+,其中实数0,a b >∈R ,则下列结论正确的是( )A. ()f x 在()0,∞+上单调递增的.的B. 当()f x 有且仅有3个零点时,b 的取值范围是()0,4a C. 若直线l 与曲线()y f x =有3个不同的交点()()()112233,,,,,A x y B x y C x y ,且AB AC =,则1233x x x ++=D. 当56a b a <<时,过点()2,P a 可以作曲线()y f x =的3条切线三、填空题(共3小题,满分15分,每小题5分)12. 已知函数2()()f x x x a =+在1x =处有极小值,则实数a =______.13. 已知函数y =f (x )为奇函数,且最大值为1,则函数()21y f x =+的最大值和最小值的和为__________.14. 在三角函数部分,我们研究过二倍角公式2cos 22cos 1x x =-,我们还可以用类似方式继续得到三倍角公式.根据你的研究结果解决如下问题:在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若π3A ≤,3cos 4cos 3cos 0C A A +-=,则()14tan tan A B A +-的取值范围是________.四、解答题(共5小题,满分77分.解答应写出文字说明、证明过程或演算步骤.)15. 已知函数()cos ex xf x =.(1)讨论函数()f x 在区间()0,π上的单调性;(2)若存在0π0,2x ⎡⎤∈⎢⎥⎣⎦,使得00()0f x x λ-≤成立,求实数λ的取值范围.16. 如图,AB 是半圆ACB 的直径,O 为AB 中点,,2OC AB AB ⊥=,直线BD AB ⊥,点P 为 BC上一动点(包括,B C 两点),Q 与P 关于直线OC 对称,记,,POB PF BD F θ∠=⊥为垂足,,PE AB E ⊥为垂足.(1)记 CP的长度为1l ,线段PF 长度为2l ,试将12L l l =+表示为θ的函数,并判断其单调性;(2)记扇形POQ 的面积为1S ,四边形PEBF 面积为2S ,求12S S S =+的值域.17. 已知函数π()2sin()(0,||)2f x x ωϕωϕ=+><,再从条件①,条件②,条件③这三个条件中选择两个作为一组已知条件,使()f x 的解析式唯一确定.条件①:(0)0f =;条件②:若12()2,()2f x f x ==-,且12x x -的最小值为π2;条件③:()f x 图象的一条对称轴为π4x =-.(1)求()f x 的解析式;(2)设函数()()(6g x f x f x π=++,若π0,2α⎛⎫∈ ⎪⎝⎭,且()2g α=,求π()224f α-的值.18. 已知函数(1)()ln 1a x f x x x -=-+.(1)当2a =时,求函数()f x 在点(1,(1))f 处切线方程;(2)若函数()f x 在区间(0,)+∞上单调递增,求实数a 的取值范围;(3)讨论函数()f x 的零点个数.19. 定义:如果函数()f x 在定义域内,存在极大值()1f x 和极小值()2f x ,且存在一个常数k ,使()()()1212f x f x k x x -=-成立,则称函数()f x 为极值可差比函数,常数k 称为该函数的极值差比系数.已知函数()1ln f x x a x=--.(1)当52a =时,判断()f x 是否为极值可差比函数,并说明理由;(2)是否存在a 使()f x 的极值差比系数为2a -?若存在,求出a 的值;若不存在,请说明理由;(352a ≤≤,求()f x 的极值差比系数的取值范围.的银川一中2025届高三年级第二次月考数 学 试 卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题(共8小题,满分40分,每小题5分)1. 设集合{}1,4A =,{}240B x x x m =-+=,若{}1A B ⋂=,则集合B =( )A. {}1,3-B. {}1,3 C. {}1,0 D. {}1,5【答案】B 【解析】【分析】根据交集结果知1B ∈,将x =1代入方程求出m ,再求集合B 即可.【详解】由{}1A B ⋂=可知:21403m m -+=⇒=,当3m =时,2430x x -+=,解得:x =1或3x =,即{}1,3B =.故选:B2. 已知函数()10,()31x f x a a a -=>≠-恒过定点(),M m n ,则函数1()n g x m x +=+的图象不经过( )A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】D 【解析】【分析】利用指数函数的性质求解.【详解】01a = ,1()3x f x a-∴=-恒过定点()1,2-,1m ∴=,2n =-,11(1)1g x x x-=++=∴,其图象如图所示,因此不经过第四象限,故选:D .3. 已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A. b a c a -<+B. 2c ab< C.c c b a> D. b c a c <【答案】D 【解析】【分析】由数轴知0c b a <<< ,不妨取=3,2,1c b a -=-=-检验选项得解.【详解】由数轴知0c b a <<< ,不妨取=3,2,1c b a -=-=-,对于A ,2121-+>-- ,∴ 不成立.对于B ,2(3)(2)(1)->-- ,∴ 不成立.对于C , 3231-<---,∴ 不成立.对于D ,(3)1(3)2-<´--´- ,因此成立. 故选:D .【点睛】利用不等式性质比较大小.要注意不等式性质成立的前提条件.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.4. 已知函数()f x 及其导函数()f x '的定义域均为R ,且()1f x '+为奇函数,则( )A. ()10f = B. ()20f '=C. ()()02f f = D. ()()02f f '='【答案】C 【解析】【分析】取()1f x x '+=,()212f x x x c =-+,逐项判断.【详解】解:因为函数()f x 及其导函数()f x '的定义域均为R ,且()1f x '+为奇函数,所以不妨设()1f x x '+=,则()1f x x '=-,()()21,01f f '='=-,故BD 错误;取()212f x x x c =-+,则()()()11,022f c f f c =-==,故A 错误,C 正确,故选:C5. 如图为函数()y f x =在[]6,6-上的图像,则()f x 的解析式只可能是( ).A. ())ln cos f x x x=+ B. ())lnsin f x x x=+C. ())ln cos f x x x=- D. ())ln sin f x x x=【答案】A 【解析】【分析】判断函数的奇偶性,结合函数在给定区间上的符号,利用排除法求解即可.【详解】对于B.()f x 的定义域为R,且())sin()f x x x -=--)sin )sin ()x x x x f x =--==,故()f x 为偶函数;对于D.()f x 的定义域为R,且())sin()f x x x -=+-)sin )sin ()x x x x f x =-+=-=,故()f x 为偶函数;由图象,可知()y f x =奇函数,故排除B 、D ;对于C.当π02x <<时,由22221(1)21x x x x =+<+=++,可知01x <<,则)0x <,而cos 0x >,此时()0f x <,故排除D ;故选:A.6. 当[]0,2πx ∈时,曲线cos y x =与π2cos 36y x ⎛⎫=- ⎪⎝⎭交点的个数为( )A. 3 B. 4C. 5D. 6【答案】D【解析】为【分析】分别画出cos y x =与π2cos 36y x ⎛⎫=-⎪⎝⎭在[]0,2π上的函数图象,根据图象判断即可.【详解】cos y x =与π2cos 36y x ⎛⎫=-⎪⎝⎭在[]0,2π上的函数图象如图所示,由图象可知,两个函数图象交点的个数为6个.故选:D.7. 已知3,24ππα⎛⎫∈ ⎪⎝⎭,π1πtan tan 424αα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则21sin 24cos αα-=()A. 6+B. 6-C. 17+D. 17-【答案】A 【解析】tan α,然后结合二倍角公式及同角基本关系对所求式子进行化简,即可求解.【详解】因为3,24ππα⎛⎫∈ ⎪⎝⎭,π1πtan tan 424αα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以1tan 11tan 1tan 21tan αααα+-=⨯-+,tan 1α<-,解得tan 3α=--或tan 3α=-+(舍),则()222221sin 2sin cos 2sin cos 1tan 2tan 14cos 4cos 4ααααααααα-+-==-+()()2211tan 131644α----=+==故选:A.8. 已知(),()f x g x 是定义域为R 的函数,且()f x 是奇函数,()g x 是偶函数,满足2()()2f x g x ax x +=++,若对任意的1212x x <<<,都有()()12125g x g x x x ->--成立,则实数a 的取值范围是( )A. [)0,∞+ B. 5,4∞⎡⎫-+⎪⎢⎣⎭ C. 5,4∞⎛⎫-+ ⎪⎝⎭ D. 5,04⎡⎤-⎢⎥⎣⎦【答案】B 【解析】【分析】根据奇偶函数构造方程组求出()g x 的解析式,再根据题意得到()232h x ax x =++在()1,2x ∈单调递增,分类讨论即可求解.【详解】由题意可得()()22f x g x ax x -+-=-+,因为()f x 是奇函数,()g x 是偶函数,所以()()22f x g x ax x -+=-+,联立()()()()2222f xg x ax x f x g x ax x ⎧+=++⎪⎨-+=-+⎪⎩,解得()22g x ax =+,又因为对于任意的1212x x <<<,都有()()12125g x g x x x ->--成立,所以()()121255g x g x x x -<-+,即()()112255g x x g x x +<+成立,构造()()2552h x g x x ax x =+=++,所以由上述过程可得()252h x ax x =++在()1,2x ∈单调递增,若0a <,则对称轴0522x a =-≥,解得5<04a -≤;若0a =,则()52h x x =+在()1,2x ∈单调递增,满足题意;若a >0,则对称轴0512x a=-≤恒成立;综上,5,4a ∞⎡⎫∈-+⎪⎢⎣⎭.故选:B二.多项选择题(共3小题,满分18分,每小题6分)9. 下列说法正确的是( )A. 函数()2f x x =+与()2g x =是同一个函数B. 若函数()f x 的定义域为[]0,3,则函数(3)f x 的定义域为[]0,1C. 已知命题p :0x ∀>,20x ≥,则命题p 的否定为0x ∃>,20x <D. 定义在R 上的偶函数()f x 满足()(2)0f x f x --=,则函数()f x 的周期为2【答案】BCD 【解析】【分析】A 选项,两函数定义域不同;B 选项,令033x ≤≤,求出01x ≤≤,得到函数定义域;C 选项,全称量词命题的否定是特称量词命题,把任意改为存在,把结论否定;D 选项,根据函数为偶函数得到f (−x )=f (x ),故()(2)f x f x -=-,得到函数周期.【详解】A 选项,()2f x x =+的定义域为R ,令20x +≥,解得2x ≥-,故()2g x =的定义域为2x ≥-,定义域不同,A 错误;B 选项,令033x ≤≤,解得01x ≤≤,故函数(3)f x 的定义域为[]0,1,B 正确;C 选项,命题p 的否定为0x ∃>,20x <,C 正确;D 选项,()f x 偶函数,故f (−x )=f (x ),又()(2)f x f x =-,故()(2)f x f x -=-,则函数()f x 的周期为2,D 正确.故选:BCD10. 已知函数()sin 2f x x ⎛= ⎝)A.π2是函数()f x 的周期B. 函数()f x 在区间π0,6⎛⎫⎪⎝⎭上单调递增C. 函数()f x 的图象可由函数sin 2y x =向左平移π8个单位长度得到()πsin 24f x x ⎛⎫=+ ⎪⎝⎭D. 函数()f x 的对称轴方程为()ππZ 48k x k =-∈【答案】ACD 【解析】【分析】利用三角函数图象与性质逐一判断选项即可.【详解】因为()πππsin 2πsin 2244f x x x f x ⎛⎫⎛⎫⎛⎫+=++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以π2是函数()f x 的周期,故A 为的正确;∵π0,6x ⎛⎫∈ ⎪⎝⎭,∴ππ7π2,4412u x ⎛⎫=+∈ ⎪⎝⎭,又sin sin y u u ==在π7π,412⎛⎫⎪⎝⎭上不单调,故B 错误;∵函数sin 2y x =向左平移π8个单位长度得到ππsin 2sin 284x x ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,故C 正确;令2π4π2k x +=,得()ππZ 48k x k =-∈,故D 正确,故选:ACD .11. 已知函数()323f x ax ax b =-+,其中实数0,a b >∈R ,则下列结论正确的是( )A. ()f x 在()0,∞+上单调递增B. 当()f x 有且仅有3个零点时,b 的取值范围是()0,4a C. 若直线l 与曲线()y f x =有3个不同的交点()()()112233,,,,,A x y B x y C x y ,且AB AC =,则1233x x x ++=D. 当56a b a <<时,过点()2,P a 可以作曲线()y f x =的3条切线【答案】BCD 【解析】【分析】选项A 根据导函数及0a 可判断单调性;选项B 根据极大值极小值可得;选项C 由三次函数对称中心可得;选项D ,先求过点P 的切线方程,将切线个数转化为()322912g x ax ax ax a =-++与y b=图象交点个数,进而可得.【详解】选项A :由题意可得()()236=32f x ax ax ax x ='--,令()0f x '=解得0x =或2x =,因为0a >,所以令f ′(x )>0解得0x <或2x >,令f ′(x )<0解得02x <<,故()f x 在区间(),0∞-或()2,∞+上单调递增,在(0,2)上单调递减,故A 错误,选项B :要使()f x 有且仅有3个零点时,只需()()0020f f ⎧>⎪⎨<⎪⎩即08120b a a b >⎧⎨-+<⎩,解得04b a <<,故B正确;选项C :若直线l 与曲线y =f (x )有3个不同的交点()()()112233,,,,,A x y B x y C x y ,且AB AC =,则点A 是三次函数()f x 的对称中心,设()()236h x f x ax ax ==-',则()66h x ax a '=-,令()0h x '=,得1x =,故()f x 的对称中心为(1,f (1)),123133x x x x ++==,故C 正确;选项D :()236f x ax ax '=-,设切点为()32000,3C x ax ax b -+,所以在点C 处的切线方程为:()()()3220000336y ax ax b ax ax x x --+=--,又因为切线过点()2,P a ,所以()()()32200003362a ax ax b ax ax x --+=--,解得320002912ax ax ax a b -++=,令()322912,g x ax ax ax a y b =-++=,过点()2,P a 可以作曲线y =f (x )的切线条数可转化为y =g (x )与y b =图象交点个数,()()()261812612g x ax ax a a x x =-+=--',因为0a >,所以()0g x '>得1x <或2x >,()0g x '<得12x <<,则()g x 在(),1∞-,()2,∞+上单调递增,在()1,2上单调递减,且()16g a =,()25g a =,()g x 图象如图所示,所以当56a b a <<时,y =g (x )与y b =图象有3个交点,即过点()2,P a 可以作曲线y =f (x )的3条切线,故D 正确,故选:BCD三、填空题(共3小题,满分15分,每小题5分)12. 已知函数2()()f x x x a =+在1x =处有极小值,则实数a =______.【答案】1-【解析】【分析】通过对函数()f x 求导,根据函数()f x 在1x =处有极小值,可知()0f x '=,解得a 的值,再验证即可求出a 的值.【详解】因为2()()f x x x a =+,所以22322()(2)2f x x x ax a x ax a x =++=++,所以22()34f x x ax a '=++,而函数2()()f x x x a =+在1x =处有极小值,所以()10f '=,故2340a a ++=,解得11a =-或23a =-,当23a =-时,()23129f x x x =-+',令f ′(x )<0,()1,3x ∈,令f ′(x )>0,()(),13,x ∞∞∈-⋃+,故此时()f x 在()(),1,3,∞∞-+上单调递增,在()1,3上单调递减,此时()f x 在1x =处有极大值,不符合题意,排除,当11a =-时,()2341f x x x '=-+,令f ′(x )<0,1,13x ⎛⎫∈ ⎪⎝⎭,令f ′(x )>0,()1,1,3x ∞∞⎛⎫∈-⋃+ ⎪⎝⎭,故此时()f x 在()1,,1,3∞∞⎛⎫-+ ⎪⎝⎭上单调递增,在1,13⎛⎫ ⎪⎝⎭上单调递减,此时()f x 在1x =处有极小值,符合题意,故答案为:1-.13. 已知函数y =f (x )为奇函数,且最大值为1,则函数()21y f x =+的最大值和最小值的和为__________.【答案】2【解析】【分析】根据奇函数的性质求解即可.【详解】奇函数如果存在最值,则最大值和最小值之和为0,所以函数()f x 最大值和最小值之和为0,则函数()21y f x =+的最大值和最小值之和为2.故答案为:2.14. 在三角函数部分,我们研究过二倍角公式2cos 22cos 1x x =-,我们还可以用类似方式继续得到三倍角公式.根据你的研究结果解决如下问题:在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若π3A ≤,3cos 4cos 3cos 0C A A +-=,则()14tan tan A B A +-的取值范围是________.【答案】⎫⎪⎪⎭【解析】【分析】利用32A A A =+,再根据整体思想将()cos3cos 2A A A =+转化为两角和的余弦值化简,再利用诱导公式可得2B A =,根据锐角三角形性质可得A 取值范围,从而得tan A 的取值范围,代入()14tan tan A B A +-化简即可得出结论.【详解】三倍角公式:()cos3cos 2cos 2cos sin 2sin A A A A A A A =+=-()()222cos 1cos 21cos cos A A A A =---34cos 3cos A A =-,因为3cos 4cos 3cos C A A +-=,所以cos cos30C A +=.故()cos cos30cos cos3cos π3π32C A C A A C A B A +=⇒=-=-⇒=-⇒=,△ABC 为锐角三角形,故π0,2π02,2π0π3,2A A A ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩解得ππ64A <<,tan 1A <<,()114tan 4tan tan tan A A B A A ⎫+=+∈⎪⎪-⎭.故答案为:⎫⎪⎪⎭四、解答题(共5小题,满分77分.解答应写出文字说明、证明过程或演算步骤.)15 已知函数()cos e xxf x =.(1)讨论函数()f x 在区间()0,π上的单调性;(2)若存在0π0,2x ⎡⎤∈⎢⎥⎣⎦,使得00()0f x x λ-≤成立,求实数λ的取值范围.【答案】(1)()f x 在3π0,4⎛⎫ ⎪⎝⎭上单调递减,在3π,π4⎛⎫⎪⎝⎭上单调递增; (2)[)0,∞+【解析】【分析】(1)求导,即可根据导函数的正负求解,(2)将问题转化为存在0π0,2x ⎡⎤∈⎢⎥⎣⎦,000cos 0e x x x λ-≤成立,构造函数()cos π0e 2x x g x x x ⎛⎫=<≤ ⎪⎝⎭,求导得函数的最值即可求解.【小问1详解】()sin cos π0e 4x x x f x x +⎛⎫=-=+= ⎪⎝⎭',解得ππ4x k k =-+∈Z ,,因为x ∈(0,π),所以3π4x =,当()3π0,04x f x ⎛⎫∈< '⎪⎝⎭,,当x ∈π,f ′(x )>0,所以()f x 在3π0,4⎛⎫ ⎪⎝⎭上单调递减,在3π,π4⎛⎫⎪⎝⎭上单调递增;【小问2详解】()()00000cos 00ex x f x x f x x λλ-≤⇒=-≤,当00x =时,由0cos 0ex x x λ-≤可得10≤不成立,当0π0,2x ⎛⎤∈ ⎥⎝⎦时,000cos e x x x λ≥,令()()2cos πsin cos cos 00e 2ex xx x x x x xg x x g x x x ---⎛⎫=<≤=< ⎪⎝⎭',恒成立,.故()g x 在π0,2x ⎛⎤∈ ⎥⎝⎦单调递减,所以()min π02g x g λ⎛⎫≥==⎪⎝⎭,所以λ的取值范围为[)0,∞+.16. 如图,AB 是半圆ACB 的直径,O 为AB 中点,,2OC AB AB ⊥=,直线BD AB ⊥,点P 为 BC上一动点(包括,B C 两点),Q 与P 关于直线OC 对称,记,,POB PF BD F θ∠=⊥为垂足,,PE AB E ⊥为垂足.(1)记 CP的长度为1l ,线段PF 长度为2l ,试将12L l l =+表示为θ的函数,并判断其单调性;(2)记扇形POQ 的面积为1S ,四边形PEBF 面积为2S ,求12S S S =+的值域.【答案】(1)12π1cos 2L l l θθ=+=-+在π0,2θ⎡⎤∈⎢⎥⎣⎦上单调递减(2)S 的值域为ππ62⎡⎤+⎢⎥⎣⎦【解析】【分析】(1)由题意得π0,2θ⎡⎤∈⎢⎥⎣⎦,根据扇形弧长公式求得1l ,再得PF 长度为2l ,从而得12L l l =+,利用导数判断其单调性;(2)根据扇形面积公式得1S ,再得四边形PEBF 面积为2S ,从而得12S S S =+,求导确定单调性极值与最值即可12S S S =+的函数.【小问1详解】因POB θ∠=,则由题意知π0,2θ⎡⎤∈⎢⎥⎣⎦,由题意可得,π2COP θ∠=-,圆半径为1,所以1π2l θ=-,又21cos l PF OB OE θ==-=-,所以12ππ1cos ,022L l l θθθ=+=-+-<<,则1sin 0L θ=-'+<恒成立,所以12π1cos 2L l l θθ=+=-+-在π0,2θ⎡⎤∈⎢⎥⎣⎦上单调递减.【小问2详解】由题意可得211ππ21222S θθ⎛⎫=⨯-⨯=- ⎪⎝⎭,因为,PF BD PE AB ⊥⊥,所以四边形PEBF 为矩形,于是()2sin 1cos S PE BE θθ=⋅=-,所以()12πsin 1cos 2S S S θθθ=+=-+-,其中π0,2θ⎡⎤∈⎢⎥⎣⎦,求导得()()1cos 1cos sin sin 1cos cos 2cos 12cos S θθθθθθθθ=-+-+⋅=-+-=-',令0S '=得1cos 2θ=,即π3θ=,则可得如下表格:θ0π0,3⎛⎫ ⎪⎝⎭π3ππ,32⎛⎫ ⎪⎝⎭π2S '-0+Sπ2极小值1由表可知当π3θ=时,min π6S S ==+极小值,max π2S =,所以S 的值域为ππ62⎡⎤⎢⎥⎣⎦.17. 已知函数π()2sin()(0,||)2f x x ωϕωϕ=+><,再从条件①,条件②,条件③这三个条件中选择两个作为一组已知条件,使()f x 的解析式唯一确定.条件①:(0)0f =;条件②:若12()2,()2f x f x ==-,且12x x -的最小值为π2;条件③:()f x 图象的一条对称轴为π4x =-.(1)求()f x 的解析式;(2)设函数()()(6g x f x f x π=++,若π0,2α⎛⎫∈ ⎪⎝⎭,且()2g α=,求π()224f α-的值.【答案】(1)所选条件见解析,()2sin2f x x =;(2)【解析】【分析】(1)根据条件结合三角函数图象性质即可求解;(2)利用三角恒等变换和配凑角即可求解.【小问1详解】选择条件①②:由条件①()00f =,所以2sin 0ϕ=,解得π,Z k k ϕ=∈,又π2ϕ<,所以0ϕ=,由条件②得π22T =,得πT =,所以2π2Tω==,所以()2sin2f x x =;选择条件①③:由条件①()00f =,所以2sin 0ϕ=,解得π,Z k k ϕ=∈,又π2ϕ<,所以0ϕ=.由条件③,得ππ(π+,Z 42k k ω⨯-=∈,解得42,Z k k ω=--∈,所以()f x 的解析式不唯一,不合题意;选择条件②③:由条件②得π22T =,得πT =,所以2π2Tω==,所以()()2sin 2f x x ϕ=+,又()f x 图象的一条对称轴为π4x =-,所以ππ2()π+,Z 42k k ϕ⨯-+=∈,解得()1πk ϕ=+,又π2ϕ<,所以0ϕ=,所以()2sin2f x x =;【小问2详解】解:由题意得()π2sin22sin(23g x x x =++ππ2sin22sin 2cos2cos 2sin 33x x x =++3sin22x x=+π)6x =+,因为()2g α=,所以π6α+=,即π3sin 65α⎛⎫+= ⎪⎝⎭,又π0,2α⎛⎫∈ ⎪⎝⎭,所以ππ2π(,663α+∈,若ππ2π[,623α+∈,则πsin()6α+∈,又π3sin 65α⎛⎫+=< ⎪⎝⎭,所以πππ(,)662α+∈,因为22ππsin (cos (166αα+++=,所以π4cos()65α+=±,又πππ(,662α+∈,所以π4cos(65α+=,所以ππ()2sin 2()224224f αα-=-π2sin()12α=-ππ2sin[(]64α=+-ππππ2sin()cos 2cos()sin6464αα=+-+=18. 已知函数(1)()ln 1a x f x x x -=-+.(1)当2a =时,求函数()f x 在点(1,(1))f 处的切线方程;(2)若函数()f x 在区间(0,)+∞上单调递增,求实数a 的取值范围;(3)讨论函数()f x 的零点个数.【答案】(1)0y =; (2)(],2∞-;(3)2a ≤时,()f x 有1个零点,2a >时,()f x 有3个零点【解析】【分析】(1)由导数法求切线即可;(2)函数()f x 在区间(0,)+∞上单调递增等价于()212()01af x x x '=-≥+在(0,)+∞上恒成立,即()2111222x x a xx+≤=++在(0,)+∞上恒成立,由均值不等式求1122x x ++最小值即可;(3)当2a ≤,由(2)中()f x 在区间(0,)+∞上单调递增可得()f x 有1个零点,当2a >,由导数法讨论()f x 的单调性,再结合零点存在定理判断即可.【小问1详解】()ln f x x a =-,()()()22222112()11x a x a f x x x x x --+'=-=++,(1)0f =,当2a =时,()214(1)01f x x '=-=+,故函数()f x 在点(1,(1))f 处的切线方程为0y =;【小问2详解】函数()f x 在区间(0,)+∞上单调递增等价于()212()01a f x x x '=-≥+在(0,)+∞上恒成立,即()2111222x x a xx+≤=++在(0,)+∞上恒成立,∵111222x x ++≥=,当且仅当122x x =即1x =时成立,故实数a 的取值范围为(],2-∞;【小问3详解】由(2)得,当2a ≤,函数()f x 在区间(0,)+∞上单调递增,又(1)0f =,故()f x 有1个零点;当2a >,令()2()221g x x a x =--+,由()0g x =得,11x a =--,21x a =-,()10,1x ==,()21,x =++∞,由二次函数性质,在()10,x 上,()0g x >,()0f x '>;在()12,x x 上,()0g x <,()0f x '<;在()2,x +∞,()0g x >,()0f x '>,∴()f x 在()10,x ,()2,x +∞单调递增,在()12,x x 单调递减,又(1)0f =,∴()10f x >,()20f x <,又(e )0e 12aa a f =>+,e (e )210e 1a a a f a -⎛⎫=-< ⎪+⎝⎭,所以存在唯一的()()()3141252e ,,,,,e a a x x x x x x x -∈∈∈,使得()()()3450f x f x f x ===,即()f x 有3个零点.【点睛】(1)含参不等式恒成立问题,一般通过构造函数解决.一般将参数分离出来,用导数法讨论不含参数部分的最值;或者包含参数一起,用导数法对参数分类讨论.当参数不能分离出来时,也可尝试将不等式左右变形成一致形式,即可将该形式构造成函数,通过导数法.(2)含参函数零点个数问题,i. 一般对参数分类讨论,利用导数研究函数的单调性,结合函数图象与零点存在定理判断;ii. 将参数分离出来,用导数法讨论不含参数部分的单调性,由数形结合,转化成两个图象交点的问题;19. 定义:如果函数()f x 在定义域内,存在极大值()1f x 和极小值()2f x ,且存在一个常数k ,使()()()1212f x f x k x x -=-成立,则称函数()f x 为极值可差比函数,常数k 称为该函数的极值差比系数.已知函数()1ln f x x a x x =--.(1)当52a =时,判断()f x 是否为极值可差比函数,并说明理由;(2)是否存在a 使()f x 的极值差比系数为2a -?若存在,求出a 的值;若不存在,请说明理由;(352a ≤≤,求()f x 的极值差比系数的取值范围.【答案】(1)()f x 是极值可差比函数,理由见解析;(2)不存在a 使()f x 的极值差比系数为2a -,理由见解析;(3)102ln2,23ln23⎡⎤--⎢⎥⎣⎦.【解析】【分析】(1)利用函数的导函数求出单调区间,由此得出极大值与极小值,由“极值可差比函数”的定义,求出极值差比系数k 的值,这样的值存在即可判断.(2)反证法,假设存在这样的a ,又“极值可差比函数”的定义列出等量关系,证明无解即可.(3)由(2)得到参数a 与极值点的关系式,对关系式进行转化,得出相应函数,利用导函数求出单调性即可得出函数取值范围.【小问1详解】当52a =时,()15ln (0)2f x x x x x =-->,所以()()()2221215122x x f x x x x-='-=+-,当()10,2,2x ∞⎛⎫∈⋃+ ⎪⎝⎭时,f ′(x )>0;当1,22x ⎛⎫∈ ⎪⎝⎭时,f ′(x )<0,所以()f x 在10,2⎛⎫ ⎪⎝⎭和()2,∞+上单调递增,在1,22⎛⎫ ⎪⎝⎭上单调递减,所以()f x 极大值为153ln2222f ⎛⎫=-⎪⎝⎭,极小值为()352ln222f =-,所以()110122ln22232f f ⎛⎫⎛⎫⎛⎫-=-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,因此()f x 是极值可差比函数.【小问2详解】()f x 的定义域为()()210,,1a f x x x ∞+=+-',即()221x ax f x x -+'=,假设存在a ,使得()f x 的极值差比系数为2a -,则12,x x 是方程210x ax -+=的两个不等正实根,21212Δ401a x x ax x ⎧=->⎪+=⎨⎪=⎩,解得2a >,不妨设12x x <,则21x >,由于()()1211221211ln ln f x f x x a x x a x x x ⎛⎫-=----- ⎪⎝⎭的()11212211ln x x x a x x x ⎛⎫=-+- ⎪⎝⎭()()11121221222ln 2ln ,x x a x x a x x x x x x ⎛⎫=--=-- ⎪-⎝⎭所以112222ln x a a x x x -=--,从而11221ln 1x x x x =-,得()22212ln 0,*x x x --=令()()2222121(1)2ln (1),0x x x g x x x x g x x x x-+-=-->==>',所以()g x 在(1,+∞)上单调递增,有()()10g x g >=,因此()*式无解,即不存在a 使()f x 的极值差比系数为2a -.【小问3详解】由(2)知极值差比系数为11222ln x a x x x --,即1211222ln x x x x x x +--,不妨设120x x <<,令()12,0,1x t t x =∈,极值差比系数可化为12ln 1t t t +--,()2122121221122x x x x a t x x x x t+==++=++,52a ≤≤,解得1142t ≤≤,令()()212ln 1112ln ,142(1)t t t t p t t t p t t t +-+⎛⎫=-≤≤= '⎪--⎝⎭,设()()2221121212ln 1,14t t h t t t t h t t t t t --⎛⎫=+-≤≤=--= ⎪'⎝⎭22(1)0t t-=-≤所以()h t 在1,14⎡⎤⎢⎥⎣⎦上单调递减,当1,14t ⎡⎤∈⎢⎥⎣⎦时,()()1102h t h h ⎛⎫≥>= ⎪⎝⎭,从而()0p t '>,所以()p t 在11,42⎡⎤⎢⎥⎣⎦上单调递增,所以()1142p p t p ⎛⎫⎛⎫≤≤ ⎪ ⎪⎝⎭⎝⎭,即()102ln223ln23p t -≤≤-.故()f x 的极值差比系数的取值范围为102ln2,23ln23⎡⎤--⎢⎥⎣⎦.【点睛】思路点睛:合理利用导函数和“极值可差比函数”定义,在(2)利用极值点的性质找到几个变量间的基本关系,利用函数单调性判断方程无解。
【解析】天津市天津一中2013届高三上学期第二次月考数学文试题
天津一中2012-2013学年高三年级第二月考数学试卷(文)一、选择题(每小题5分,共40分) 1.如果复数212aii++的实部和虚部互为相反数,那么实数a 等于A B .2 C .-23 D .23【答案】D 【解析】2(2)(12)22(4)22412(12)(12)555ai ai i a a i a a i i i i ++-++-+-===+++-,因为实部和虚部为相反数,则有224=055a a +-+,解得23a =,选D. 2. 设,m n 是两条不同的直线,γβα、、是三个不同的平面.给出下列四个命题:①若m ⊥α,//n α,则m n ⊥;②若γβγα⊥⊥,,则βα//;③若//,//m n αα,则//m n ;④若//,//,m αββγα⊥,则m γ⊥.其中正确命题的序号是 A . ①和② B . ②和③ C .③和④ D .①和④ 【答案】D【解析】根据线面垂直的性质可知①正确。
②中两个平面αβ,不一定平行,所以错误。
③平行于同一个平面的直线可能会相交或异面,所以错误。
④正确。
3. 在正三棱锥P ABC -中,,D E 分别是,AB AC 的中点,有下列三个论断:①PB AC ⊥;②AC //平面PDE ;③AB ⊥平面PDE ,其中正确论断的个数为 ( ) A .3个 B .2个 C .1个 D .0个【答案】C【解析】过P 做PO ABC ⊥于O ,则PO AC ⊥,又正三角形中BE AC ⊥,所以AC PBE ⊥,AC PB ⊥所以①正确,②错误。
因为AB 与AC 相交,所以③不正确,所以正确的论断有1个,选C. 4. 数列{n a }中,12,111+==+n n a a a 且,则{n a }的通项为 ( )【答案】A【解析】由121n n a a +=+得11222(1)n n n a a a ++=+=+,所以数列{1}n a +是以2q =为公比,首项为112a +=的等比数列,所以11222n n n a -+=⨯=,所以21n n a =-,选A.5.在ABC ∆中,若cos 4cos 3A bB a ==,则ABC ∆是 A .等腰或直角三角形 B .等腰三角形 C .直角三角形D .钝角三角【答案】C 【解析】由cos 4cos 3A b B a ==和正弦定理可得cos sin cos sin A BB A=,即sin cos sin cos A A B B =,所以sin 2sin 2A B =,所以22A B =或22A B π=-,即A B =或2A B π+=,即2C π=。
高三第二次月考(数学)试题含答案
高三第二次月考(数学)(考试总分:150 分)一、 单选题 (本题共计12小题,总分60分) 1.(5分)1.如果复数21iz =-+,则 A .z 的共轭复数为1i + B .z 的实部为1 C .2z =D .z 的虚部为1-2.(5分)2.已知集合{}0 1 2A =,,,集合{}|2B x x =>,则A B ⋂= A .{}2B .{}0 1 2,,C .{}|2x x >D .∅3.(5分)3.不等式组220y x y ≤⎧⎨-+≥⎩,表示的平面区域是图中的( )A .B .C .D .4.(5分)4.已知集合{}3,M a =,{}22,3,2N a a =--,若M N ⊆,则实数a 的值是( ) A .±1B .1或2C .2D .±1或25.(5分)5.在一次投篮训练中,某队员连续投篮两次.设命题p 是“第一次投中”,q 是“第二次投中”,则命题“两次都没有投中目标”可表示为 A .()p q ⌝∧ B .()()p q ⌝∧⌝C .p q ∧D .()()p q ⌝∨⌝6.(5分)6.下列说法中正确的是( )A .若0a b <<,则a b >B .若a b >,则11a b< C .若a b >,则22ac bc > D .若ac bc >,则a b >7.(5分)7.关于x 的不等式20ax bx c ++<的解集为()3,1-,则不等式20bx ax c ++<的解集为( ) A .()1,2?B .()1,2-C .3,12⎛⎫- ⎪⎝⎭D .1,12⎛⎫- ⎪⎝⎭8.(5分)8.的一个必要不充分条件是A .-1<<6B .C .D .9.(5分)9.若不等式2(1)(1)20m x m x -+-+>的解集是R ,则m 的范围是A .[1,9)B .(1,9)C .(,1](9,)-∞⋃+∞D .(,1)(9,)-∞⋃+∞10.(5分)10.在下列函数中,最小值是2的函数是( )A .()1f x x x=+ B .1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭ C .()223f x x =+D .()42x xf x e e =+- 11.(5分)11.已知命题p :“[]x 0,1∀∈,x a e ≥”,命题q :“x R ∀∈,2x 4x a 0++≠”,若命题p q ∧¬是真命题,则实数a 的取值范围是( )A .[]1,4B .[]e,4C .()4,∞+D .(],1∞-12.(5分)12.以下有关命题的说法错误的是A .“03x <<”是“11x -<”的必要不充分条件B .命题“若2x ≠或3y ≠,则5x y +≠”的否命题为真命题C .若p q ∨是真命题,则p q ∧也是真命题D .对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∀∈,均有210x x ++≥二、 填空题 (本题共计4小题,总分20分)13.(5分)13.若变量x 、y 满足约束条件12x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,则2z x y =+的最大值为________.14.(5分)14.已知0x >,0y >,且21x y +=,则112x y+的最小值是______.15.(5分)15.当x∈(1,3)时,不等式x 2+mx+4<0恒成立,则m 的取值范围是 .16.(5分)16.已知命题p :24x -≤≤,命题q :实数x 满足()20x m m -≤>,若p⌝是q ⌝的必要不充分条件,则实数m 的取值范围是________.三、 解答题 (本题共计6小题,总分70分) 17.(10分)17.(10分)解下列关于x 的不等式:(1)(2)1(3)x x x x +-≥-;(2)2112x x +≤+ 18.(12分)18.(12分)已知集合{}2|514A x y x x ==--,集合,集合.(1)求∁R (A ∪B); (2)若,求实数m 的取值范围.19.(12分)19.(12分)已知命题p :2,10x R ax ax ∀∈++>,命题:213q a -<.(1)若命题p 是真命题,求实数a 的取值范围;(2)若p ∨q 是真命题,p ∧q 是假命题,求实数a 的取值范围.20.(12分)20.(12分)当0x >时,解关于x 的不等式2(1)0()aax a a R x-++≥∈ 21.(12分)21. (12分)设函数()12f x x m x =+--.(1)若1m =,求函数()f x 的值域; (2)若1m =-,求不等式()3f x x >的解集.22.(12分)22.(12分)在直角坐标系xOy 中,曲线C 的参数方程为3cos 23sin x y αα=⎧⎨=+⎩(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 224πρθ⎛⎫-= ⎪⎝⎭(1)求C 与l 的直角坐标方程;(2)若直线l 与曲线C 交于M ,N 两点,点(2,2)P -,求11||||PM PN +的值答案一、 单选题 (本题共计12小题,总分60分) 1.(5分)D 2.(5分)D 3.(5分)C 4.(5分)B 5.(5分)B 6.(5分)A 7.(5分)C 8.(5分)A 9.(5分)A 10.(5分)D 11.(5分)B 12.(5分)C二、 填空题 (本题共计4小题,总分20分) 13.(5分)13. 3【详解】画出可行域和目标函数,如图所示:2z x y =+,则2y x z =-+,z 表示直线在y 轴的截距, 根据图像知:当1x y ==时,函数有最大值为3. 故答案为:3.14.(5分)14.4【详解】由题意,知0x >,0y >,且21x y +=,则111122()()222422222y x y xx y x y x y x y x y+=+=++≥+⋅=+, 当且仅当22y x x y =,即11,24x y ==时等号成立, 所以112x y +的最小值是4.故答案为:4.15.(5分)15.(﹣∞,﹣5].【详解】利用函数f (x )=x 2+mx+4的图象,∈x∈(1,3)时,不等式x 2+mx+4<0恒成立, ∈,即,解得m≤﹣5.∈m 的取值范围是(﹣∞,﹣5]. 故答案为(﹣∞,﹣5].16.(5分)故答案为:[4,)+∞.三、 解答题 (本题共计6小题,总分70分)17.(10分)17.(1)[)1,1,2⎛⎤-∞-+∞ ⎥⎝⎦;(2){}|21x x -<≤【详解】(1)原不等式可化为2210x x --≥,即()()2110x x +-≥, 解得12x ≤-或1≥x ,所以原不等式的解集为[)1,1,2⎛⎤-∞-+∞ ⎥⎝⎦.(2)不等式2112x x +≤+可化为102x x -≤+,等价于(1)(2)020x x x -+≤⎧⎨+≠⎩, 解得212x x -≤≤⎧⎨≠-⎩,所以不等式的解集为{}|21x x -<≤.18.(12分)18.(1)(2,7)-;(2)2m <或6m ≥.(注意书写形式)试题解析:(1)25140x x --≥72x x ∴≥≤-或 ∈又()27120,43,4,3x x x B --->∴-<<-=--(][),27,A B ∴⋃=-∞-⋃+∞ ()()2,7R C A B ∴⋃=-(2) ∈ ∈. ∈,,∈.∈,则或.∈.综上,或19.(12分)19.(1) [)0,4 (2) ()[)1,02,4-【详解】根据复合命题真假,讨论p 真q 假,p 假q 真两种情况下a 的取值范围. (1)命题p 是真命题时,21>0ax ax ++在R 范围内恒成立, ∈∈当0a =时,有10≥恒成立;∈当0a ≠时,有2040a a a >⎧⎨∆=-<⎩,解得:04a <<; ∈a 的取值范围为:[)0,4.(2)∈p q ∨是真命题,p q ∧是假命题,∈p ,q 中一个为真命题,一个为假命题, 由q 为真时得由213a -<,解得1a 2-<<,故:∈p 真q 假时,有041a a ≤<⎧⎨≤-⎩或042a a ≤<⎧⎨≥⎩,解得:24a ≤<;∈p 假q 真时,有012a a <⎧⎨-<<⎩或412a a ≥⎧⎨-<<⎩,解得:10a -<<;∈a 的取值范围为:()[)1,02,4-.20.(12分)20.【详解】∈0x >故原不等式等价于()()()221010ax a x a ax x a -++≥⇔--≥当0a ≤时,10ax 恒成立此时不等式解集为 Φ ; 当0a >时,由()()10ax x a --=,有1x x a a==或,则 当01a <<时,解集为:(]10,,a a ⎡⎫⋃+∞⎪⎢⎣⎭当1a =时,解集为R +;当1a >时,解集为:[)10,,a a ⎛⎤⋃+∞ ⎥⎝⎦21.(12分)21.(1)[3,3]-(2)(),1-∞详解:(1)当1m =时,()12f x x x =+--3,121,123,2x x x x -≤-⎧⎪=--<≤⎨⎪>⎩,当12x -<≤时,3213x -≤-<,∈函数值域为[3,3]-.(2)当1m =-时,不等式()f x 即123x x x +-->.∈当1x <-时,得123x x x ---->,解得15x <,所以1x <-;∈当12x -≤<时,得123x x x +-+>,解得1x <,所以11x -≤<; ∈当2x ≥时,得123x x x ++->,解得1x <-,所以无解; 综上所述,原不等式的解集为(),1-∞.22.(12分)22.(1)22(2)9x y +-=,40x y -+=;(2. 【详解】解:(1)因为曲线C 的参数方程为3cos 23sin x y αα=⎧⎨=+⎩(α为参数),所以其直角坐标方程为22(2)9x y +-=,∈直线l的极坐标方程为sin 4πρθ⎛⎫-= ⎪⎝⎭∈sin cos 4ρθρθ-=,∈其直角坐标方程为40x y -+=;(2)直线l 过点(2,2)P -且参数方程可表示为222x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),代入曲线C的方程,得250t --=,则12t t +=125t t =-,∈121211||||t t PM PN t t -+==。
吉林省松原市长岭县第二中学2024-2025学年高三上学期第二次月考数学试卷
吉林省松原市长岭县第二中学2024-2025学年高三上学期第二次月考数学试卷一、单选题1.设集合{4}A x x *=∈<N ∣,{0,1,2}B =,则图中阴影部分表示的集合为()A .{}1,2B .{}0,1,2,3C .{}0,3D .{}32.设x ∈R ,向量(),1a x =,()4,b x = .下列说法正确的是()A .a b ⊥是0x =的充分不必要条件B .a b ⊥是0x =的必要不充分条件C .//a b是2x =的充分不必要条件D .//a b是2x =的必要不充分条件3.已知向量,a b 满足(1,2)a =,||3b = ,()1a a b ⋅-=- ,则|2|a b -= ()A .17B .5C .D 4.已知3ππ,2α⎛⎫∈ ⎪⎝⎭,且3cos 2sin 1αα-=,则()A .2cos(π)3α-=-B .2sin(π)3α-=C .πcos 23α⎛⎫+=-⎪⎝⎭D .πsin 23α⎛⎫+=-⎪⎝⎭5.函数()23cos 22x xf x x x +=-的部分图象大致为()A .B .C .D .6.已知函数24()(R)1f x x x =∈+,若等比数列{}n a 满足120201a a =,则20201()i i f a ==∑()A .1010B .2020C .4040D .80807.设a ,b ,c 均为正数,且212log log a a ⎛⎫= ⎪⎝⎭,1122log log b b ⎛⎫= ⎪⎝⎭,()122log log c c =,则a ,b ,c 的大小关系为()A .c a b>>B .c b a>>C .b c a>>D .b a c>>8.瑞士数学家欧拉于1748年提出了著名的欧拉公式:i e cos isin x x x =+,其中e 是自然对数的底数,i 是虚数单位.根据欧拉公式,下列选项正确的是()A .πi e 1=B .πi 3e 的虚部为i 2C .复数π4e 在复平面内对应的点位于第二象限D .()πi i2e e θθ-∈R 的最大值为2二、多选题9.已知函数()sin f x x =,()cos g x x =,则下列结论正确的有()A .函数()()f x yg x =是定义域为R 的奇函数B .函数()()y f x g x =的最小正周期为2πC .函数()()y f x g x =-的所有零点构成的集合为ππ,4x x k k ⎧⎫=+∈⎨⎬⎩⎭ZD .函数()()y f x g x =+在ππ,44⎡⎤-⎢⎥⎣⎦上是增函数10.已知点P 在ABC V 所在的平面内,R λ∈,则下列命题正确的是()A .若PA PB PB PC PC PA ⋅=⋅=⋅,且2AB AC ⋅= ,则2AP AC ⋅= B .若()()0PA PB AB PB PC BC +⋅=+⋅=,则PA PB PC== C .若sin sin AB AC AP AB B AC C λ⎛⎫ ⎪=+ ⎪⎝⎭,则动点P 的轨迹经过ABC V 的内心D .若1122cos cos AP AB AC AB B AC C λλ⎛⎫⎛⎫⎪ ⎪=+⋅++⋅ ⎪⎪⎝⎭⎝⎭,则动点P 的轨迹经过ABC V 的外心11.英国著名物理学家牛顿用“作切线”的方法求函数零点.如图,在横坐标为1x 的点处作()f x 的切线,切线与x 轴交点的横坐标为2x ;用2x 代替1x 重复上面的过程得到3x ;一直下去,得到数列{}n x ,这个数列叫做牛顿数列.若函数()26f x x x =--,2ln3n n n x a x +=-且11a =,3n x >,数列的前n 项和为n S ,则下列说法正确的是()A .21621n n n x x x ++=-B .()()()()()()12341123f x f x f x x x f x f x f x =--'''-C .数列是递减数列D .2025202521S =-三、填空题12.已知复数z 满足1i 5z =-,则z =.13.已知数列{}n a 的前n 项和为n S ,且满足223n n S +=-,则该数列的通项公式为.14.已知向量,a b 的夹角为2π3,且6a = ,4b = ,则a 在b 方向上的投影向量为.四、解答题15.已知等差数列的公差1d =,等比数列的公比为2q =,若1是11,a b 的等比中项,设向量12(,)a a a = ,12(,)b b b = ,且5a b ⋅=.(1)求数列,的通项公式;(2)设22log n an n c b =,求数列{}n c 的前n 项和n T .16.在锐角ABC V 中,,,A B C 的对边分别为,,a b c,且cos sin 0c B B a b --=.(1)求角C 的大小;(2)求cos cos cos A B C ++的取值范围.17.已知M ,N 分别为函数()()()**cos N ,N ,0πf x A x A ωϕωϕ=+∈∈<<图象上相邻的最高点和最低点,MN =,将函数()f x 的图象向左平移π6个单位长度后得到函数()g x 的图象,()g x 为奇函数.(1)求函数()f x 的解析式;(2)在ABC V 中,角,,A B C 的对边分别为,,a b c,若π214f C ⎛⎫+=- ⎪⎝⎭,c =,sin 2sin A B =,求ABC V 的面积.18.已知函数1()e xx f x +=.(1)求函数()f x 的极值;(2)求证:当(0,)x ∈+∞时,21()12f x x >-+;(3)若函数5()()202g f a x x x =-+不具有单调性,求实数a 的取值范围.19.在一个由n 个数()1,2,,,2n n n ∈≥N 构成的排列12n j j j 中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序,一个排列中逆序的总数就称为这个排列的逆序数.排列12n j j j 的逆序数记为()12n T j j j .例如2431中,21,43,41,31是逆序,因此()24314T =.(1)计算(45321)T ;(2)设数列满足()()1453213412n n a a T T +=⋅-,132a =,求的通项公式;(3)设排列12(,3)n j j j n n ∈≥N 满足1(2,3,,1)i j n i i n =+-=- ,11j =,n j n =,()12n n b T j j j = ,12(3)20.01n n c n b +=≥+,证明:342n c c c +++< .。
重庆市巴蜀中学 高三10月月考数学(文)试题
重庆巴蜀中学 高三第二次月考数学(文)试题卷一、选择题(本大题共12题,每题5分,共计60分)1、已知集合U={1,2,3,4,5,6},A={2,3,5},B={1,3,4,6},则集合AC U B=( )A 、{3}B 、{2,5}C 、{1,4,6}D 、{2,3,5} 2、下列函数中,既是奇函数又是周期为π的周期函数的是( ) A 、y=|tanx| B 、y=sin(2x+3π) C 、y=cos2x D 、y= sinxcosx 3、已知命题p: y=sin(2x+3π)的图像关于(−6π,0)对称;命题q:若2a <2b,则lga<lgb 。
则下列命题中正确的是( )A 、p ∧qB 、¬p ∧qC 、p ∧¬qD 、¬p ∨q 4、在ΔABC 中,若(tanB+tanC)=tanBtanC −1,则sin2A=( )A 、−2 B、2 3 C 、−12 D 、125、“0<a<4”是“命题‘∀x ∈R ,不等式x 2+ax+a ≥0成立’为真命题”的 ( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件6、已知函数f (x)= 6x−log 2x ,在下列区间中,函数f (x)的零点所在区间为( )A 、(0,1)B 、(1,2)C 、(2,4)D 、(4,+∞)7、要得到函数y=sin(x+6π)的图像,只需要将函数y=cosx 的图像( ) A 、向左平移3π个单位 B 、向左平移6π个单位C 、向右平移3π个单位D 、向右平移6π个单位8、已知角α的终边上有一点P(1,3),则的值为( )A 、−25 B 、−45 C 、−47D 、−4 9、一艘海轮从A 处出发,以每小时40海里的速度沿东偏南50o 的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是东偏南20o ,在B 处观察灯塔,其方向是北偏东65o ,那么B 、C 两点间的距离是( ) A 、10海里 B 、10海里 C 、20里 D 、20海里10、已知()f x 是定义在 R 上周期为 2 的奇函数,当x ∈(0,1 )时,()f x =3x−1,则f (log 35)=( )A 、45 B 、−45 C 、4 D 、4911、已知函数f (x)在实数集R 上具有下列性质:①f (x+2)=−f (x);②f (x+1)是偶函数;③当x 1≠x 2∈[1,3]时,(f (x 2)−f (x 1))(x 2−x 1)<0,则f (2011),f (2012),f (2013)的大小关系为( )A 、f (2011)> f (2012)> f (2013)B 、f (2012)> f (2011)> f (2013)C 、f (2013)>f (2011)>f (2012)D 、f (2013)> f (2012)>f (2011)12、已知函数f (x)=2mx 3−3nx 2+10(m>0)有且仅有两个不同的零点,则lg 2m+lg 2n 的最小值为 ( )A 、B 、19C 、D 、二、填空题(本大题共4题,每题5分,共计20分)13、曲线y=e x在点(0,1)处的切线方程为_________________ 14、函数y=sin2x −cos2x,x ∈[0,2π]的值域为____________ 15、在ΔABC 中,3sinA=4sinB=6sinC ,则cosB=____________ 16、已知函数f(x)=| x −1|+1和g(x)=(a>0),若对任意x 1∈[0,2],存在x 2∈[1,2]使得g (x 2)≥f (x 1),则实数a 的取值范围为____________ 三、解答题17(本小题满分12分)已知函数()f x = | x +1|−|2x −1|。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三第二次月考 文科数学试卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的4个选项中,只有1项是符合题目要求的。
)1.已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则()()=A C B B C A u u ( ) A .∅ B .{}|0x x ≤ C .{}|1x x >- D .{}|01x x x >≤-或 2.已知各项均为正数的等比数列{a n }中,lg(a 3·a 8·a 13)=6,则a 1·a 15的值为( )A.100B.1 000C.10000D.103.设集合⎭⎬⎫⎩⎨⎧∈==Z n n x x M ,3sin π,则满足条件M P =⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-23,23 的集合P 的个数是( )A .1个B .2个C .4个D .8个 4.命题:“若220a b +=,(a , b ∈R ),则a=b=0”的逆否命题是( )A .若a ≠b ≠0(a , b ∈R ),则22a b +≠0 B.若a=b ≠0(a , b ∈R ),则22a b +≠0C .若a ≠0且b ≠0(a ,b ∈R ),则22a b +≠0 D.若a ≠0或b ≠0(a,b ∈R ),则22a b +≠5.函数1)(2++=x ax x f 有极大值的充要条件是( )A .0a <B .0a ≤C .0a >D .0a ≥ 6.根据表格中的数据,可以判定方程20xe x --=的一个根所在的区间为( )A . (2,3)7.已知⎨⎧-∈+=)0,1[1)(2x x x f ,则下列函数的图象错误..的是 ( )8.若数列{}n a 满足11221,2,(3)n n n a a a a n a --===≥,则17a 等于 ( ) A .1 B .2 C .12D .9872- A .f (x -1)的图象 B .f (-x )的图象 C .f (︱x ︱)的图象 D . ︱f (x )︱的图象9. 已知数列{a n }满足a 0=1,a n =a 0+a 1+a 2+…+a n-1(n≥1),则当n≥1时,a n 等于( )A.n2 B.2)1(+n n C. 12-n D. 12-n10.若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()3x f x g x -=,则有( )A .(0)(2)(3)g f f <<B .(0)(3)(2)g f f <<C .(2)(0)(3)f g f <<D . (2)(3)(0)f f g <<11.数列1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n-1,…的前n 项和S n >1020,那么n 的最小值是 ( )A 、7B 、8C 、9D 、1012.定义域为R 的函数0)()(,2,12|,2|lg )(2=+⎩⎨⎧=≠-=x bf x f x x x x x f 的方程若关于恰有5个不同的实数解)(,,,,,5422154321x x x x x f x x x x x ++++则等于( )A .0B .221gC .231gD .1二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上。
) 13.由a 1=1,a n +1=13+n na a 给出的数列{a n }的第34项是_ ______。
14.若关于x 的方程20x x a -+=和()20x x b a b -+=≠的四个根可组成首项为41的等差数列,则a b +的值是 . 15.设A=),(21a a ,B=⎪⎪⎭⎫⎝⎛21b b ,记A ☉B=max {}2211,b a b a ,若A=)1,1(+-x x ,B=⎪⎪⎭⎫⎝⎛-21x ,且A ☉B=1-x ,则x 的取值范围为 。
16.给出下列四个命题:①函数)4(log )(221x x f -=是减函数的区间为(0,2);②函数)0(2>=-x y x的反函数是)10(log 2<<-=x x y ;③若函数)lg()(2a ax x x f -+=的定义域是R ,则4-≤a 或0≥a ;④若()f x 的值域为()0,2,则()(2007)1g x f x =--的值域为()1,1-.其中所有正确命题的序号是奉新一中2009届高三第二次月考文科数学试卷答题卡一.选择题二.填空题13. 14.15. 16.三、解答题(本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤。
) 17.(本小题满分12分)已知p :方程=)(x f 012=++mx x 有两个不等的负实根,q :方程01)2(442=+-+x m x 无实根. 若p 或q 为真,p 且q 为假.求实数m 的取值范围;班级: 姓名: 学号 装 订 线18. (本小题满分12分)某市2008年底有住房面积1200万平方米,计划从2009年起,每年拆除20万平方米的旧住房. 假定该市每年新建住房面积是上年年底住房面积的5%. (1)分别求2009年底和2010年底的住房面积;(2)求2028年底的住房面积.(计算结果以万平方米为单位,且精确到0.01.其中786.205.1,653.205.1,527.205.1212019===)19. (本小题满分12分)设函数2()(0),f x ax bx c a =++≠曲线)(x f y =通过点(0,32+a ),且在点(-1,f (-1))处的切线垂直于y 轴.(1)用a 分别表示b 和c ;(2)当[]1,+∈a a x 时,求)(x f 的最大值。
20.(本小题满分12分)已知在数列{}n a 中,11,,2+=n n a a a 是方程02)322(1212=++++-++n n n x n b x (*∈N n )的两根。
(1)求数列{}n a 的通项公式; (2)设n n b b b s +++= 21,求S 10的值.21.(本小题满分12分)已知函数()f x 和()g x 的图象关于原点对称,且2()2f x x x =+.(Ⅰ)求函数()g x 的解析式; (Ⅱ)解不等式()()|1|g x f x x ≥--; (Ⅲ)若x x g x xf x h 311)(34)(32)(-+=是否存在最小的正整数k ,使得不等式1993)(-≤k x h 对于]3,1[-∈x 恒成立?如果存在,请求出最小的正整数k ;如果不存在,请说明理由;22.(本小题满分14分)已知数列{}n a 满足a a =1,1(46)41021n n n a n a n ++++=+(n *∈N ).(Ⅰ)判断数列221n a n +⎧⎫⎨⎬+⎩⎭是否为等比数列?若不是,请说明理由;若是,试求出通项n a ;(Ⅱ)如果1a =时,数列{}n a 的前n 项和为n S ,试求出n S ,并证明1≥n s (n *∈N ).奉新一中2009届高三第二次月考文科数学试卷答案一.选择题 DCCDA CDCCA DC 二.填空题 13.1001 14.7231 15.]21,21[+- 16。
②④ 三、解答题(本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤。
) 17.(本小题满分12分)已知p :方程=)(x f 012=++mx x 有两个不等的负实根,q :方程01)2(442=+-+x m x 无实根. 若p 或q 为真,p 且q 为假.求实数m 的取值范围;解:由题意,p , q 中有且仅有一为真,一为假。
p 真⇔⎪⎩⎪⎨⎧>=<-=+>∆01002121x x m x x ⇔m >2, q 真⇔∆<0⇔1<m <3。
若p 假q 真,则⎩⎨⎧<<≤31,2m m ⇔1<m ≤2; 若p 真q 假,则⎩⎨⎧≥≤>312m m m 或⇔m ≥3。
综上所述:m ∈(1,2]∪[3,+∞).18. (本小题满分12分)某市2008年底有住房面积1200万平方米,计划从2009年起,每年拆除20万平方米的旧住房. 假定该市每年新建住房面积是上年年底住房面积的5%. (1)分别求2009年底和2010年底的住房面积;(2)求2028年底的住房面积.(计算结果以万平方米为单位,且精确到0.01.其中786.205.1,653.205.1,527.205.1212019===)[解](1)2009年底的住房面积为124020%)51(1200=-+(万平方米),2010年底的住房面积为 128220%)51(20%)51(12002=-+-+(万平方米) 答:2009年底的住房面积为1240万平方米,2010年底的住房面积约为1282万平方米. …… 6分 (2)2028年底的住房面积为20%)51(20%)51(20%)51(20%)51(1200181920-+--+-+-+64.252205.0105.120%)51(12002020≈-⨯-+=(万平方米)答: 2028年底的住房面积约为2522.64万平方米. …… 12分19. (本小题满分12分)设函数2()(0),f x ax bx c a =++≠曲线y =f (x )通过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴.(1)用a 分别表示b 和c ;(2)当[]1,+∈a a x 时,求)(x f 的最大值。
解:(1)因为2(),()2.f x ax bx c f x ax b '=++=+所以 又因为曲线()y f x =通过点(0,2a +3), 故(0)23,(0),2 3.f a f c c a =+==+而从而 又曲线()y f x =在(-1,f (-1))处的切线垂直于y 轴,故(1)0,f '-= 即-2a +b =0,因此b=2a …6分 (2)[]1,,3)1()(2+∈+++=a a x a x a x f当2-≤a 时,3543)2()1()(232max +++=+++=+=a a a a a a a f x f 当12-≤<-a 时,3)1()(max +=-=a f x f当01<<-a 时,3223)1()()(232max +++=+++==a a a a a a a f x f 当0>a 时,3543)2()1()(232max +++=+++=+=a a a a a a a f x f … 12分20.(本小题满分12分)已知在数列{}n a 中,11,,2+=n n a a a 是方程02)322(1212=++++-++n n n x n b x (*∈N n )的两根。