求轨迹方程的常用方法(例题及变式)

合集下载

轨迹方程的五种求法例题

轨迹方程的五种求法例题

动点轨迹方程的求法一、直接法按求动点轨迹方程的一般步骤求;其过程是建系设点;列出几何等式;坐标代换;化简整理;主要用于动点具有的几何条件比较明显时.例1已知直角坐标平面上点Q 2;0和圆C :122=+y x ;动点M 到圆C 的切线长与MQ 的比等于常数()0>λλ如图;求动点M 的轨迹方程;说明它表示什么曲线. 解析:设Mx ;y ;直线MN 切圆C 于N ;则有λ=MQ MN ;即λ=-MQ ON MO 22;λ=+--+2222)2(1y x y x .整理得0)41(4)1()1(222222=++--+-λλλλx y x ;这就是动点M 的轨迹方程.若1=λ;方程化为45=x ;它表示过点)0,45(和x 轴垂直的一条直线;若λ≠1;方程化为2222222)1(3112-+=+-λλλλy x )-(;它表示以)0,12(22-λλ为圆心;13122-+λλ为半径的圆.二、代入法若动点Mx;y 依赖已知曲线上的动点N 而运动;则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件;从而求得动点M 的轨迹方程;此法称为代入法;一般用于两个或两个以上动点的情况.例2 已知抛物线12+=x y ;定点A 3;1;B 为抛物线上任意一点;点P 在线段AB 上;且有BP :PA =1:2;当点B 在抛物线上变动时;求点P 的轨迹方程;并指出这个轨迹为哪种曲线.解析:设),(),,(11y x B y x P ;由题设;P 分线段AB 的比2==PBAP λ;∴ .2121,212311++=++=y y x x 解得2123,232311-=-=y y x x .又点B 在抛物线12+=x y 上;其坐标适合抛物线方程;∴ .1)2323()2123(2+-=-x y 整理得点P 的轨迹方程为),31(32)31(2-=-x y 其轨迹为抛物线. 三、定义法若动点运动的规律满足某种曲线的定义;则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程;在高考中常填空、选择题的形式出现.例3 若动圆与圆4)2(22=++y x 外切且与直线x =2相切;则动圆圆心的轨迹方程是A 012122=+-x yB 012122=-+x yC 082=+x yD 082=-x y解析:如图;设动圆圆心为M ;由题意;动点M 到定圆圆心-2;0的距离等于它到定直线x =4的距离;故所求轨迹是以-2;0为焦点;直线x =4为准线的抛物线;并且p =6;顶点是1;0;开口向左;所以方程是)1(122--=x y .选B .例4 一动圆与两圆122=+y x 和012822=+-+x y x 都外切;则动圆圆心轨迹为 A 抛物线 B 圆 C 双曲线的一支 D 椭圆解析:如图;设动圆圆心为M ;半径为r ;则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1;由双曲线定义知;其轨迹是以O 、C 为焦点的双曲线的左支;选C .四、参数法若动点Px ;y 的坐标x 与y 之间的关系不易直接找到;而动点变化受到另一变量的制约;则可求出x 、y 关于另一变量的参数方程;再化为普通方程.例5设椭圆中心为原点O ;一个焦点为F 0;1;长轴和短轴的长度之比为t .1求椭圆的方程;2设经过原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q ;点P 在该直线上;且12-=t t OQ OP ;当t 变化时;求点P 的轨迹方程;并说明轨迹是什么图形. 解析:1设所求椭圆方程为).0(12222>>b a b x a y =+由题意得⎪⎩⎪⎨⎧==-,,122t b a b a 解得 ⎪⎪⎩⎪⎪⎨⎧-=-=.11.122222t b t t a 所以椭圆方程为222222)1()1(t y t x t t =-+-.2设点),,(),,(11y x Q y x P 解方程组⎩⎨⎧==-+-,,)1()1(1122122122tx y t y t x t t 得⎪⎪⎩⎪⎪⎨⎧-=-=.)1(2,)1(212121t t y t x 由12-=t t OQ OP 和1x x OQ OP =得⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,2,2,2222t y t x t y t x 或 其中t >1.消去t ;得点P 轨迹方程为)22(222>=x y x 和)22(222-<-=x y x .其轨迹为抛物线y x 222=在直线22=x 右侧的部分和抛物线y x 222-=在直线22-=x 在侧的部分. 五、交轨法一般用于求二动曲线交点的轨迹方程.其过程是选出一个适当的参数;求出二动曲线的方程或动点坐标适合的含参数的等式;再消去参数;即得所求动点轨迹的方程.例6 已知两点)2,0(),2,2(Q P -以及一条直线ι:y =x ;设长为2的线段AB 在直线λ上移动;求直线PA 和QB 交点M 的轨迹方程.解析:PA 和QB 的交点Mx ;y 随A 、B 的移动而变化;故可设)1,1(),,(++t t B t t A ;则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t ;得.082222=+-+-y x y x 当t =-2;或t =-1时;PA 与QB 的交点坐标也满足上式;所以点M 的轨迹方程是.0822222=+--+-y x x y x以上是求动点轨迹方程的主要方法;也是常用方法;如果动点的运动和角度有明显的关系;还可考虑用复数法或极坐标法求轨迹方程.但无论用何方法;都要注意所求轨迹方程中变量的取值范围.。

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标〔x ,y 〕表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f 〔t 〕, y =g 〔t 〕,进而通过消参化为轨迹的普通方程F 〔x ,y 〕=0。

4. 代入法〔相关点法〕:如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,〔该点坐标满足某已知曲线方程〕,则可以设出P 〔x ,y 〕,用〔x ,y 〕表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用。

一:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为〔-4,0〕,〔4,0〕,C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,假设b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。

轨迹方程的求法

轨迹方程的求法

当动点所满足的几何条件能直接用其坐标代入时, 可用直接法.
待定系数法 已知曲线的类型和位置,可设出曲线方程,利用待 定系数法求解.
定义法
分析题设几何条件,根据圆锥曲线的定义,判断 轨迹是何种类型的曲线,直接求出该曲线的方程.
代入法
(相关点法)
当所求动点的运动很明显地依赖于一已知曲线上 的动点的运动时,可利用代入法,其关键是找出两 动点的坐标的关系,这要充分利用题中的几何条件.
【例题3】
已知圆A:(x+2)2+y2=1与点A(-2,0),B(2,0), 分别求出满足下列条件的动点P的轨迹方程. (1)△PAB的周长为10; (2)圆P与圆A外切,且点B在动圆P上(P为动圆圆心); (3)圆P与圆A外切且与直线x=1相切(P为动圆圆心).
【分析】(1)根据题意,先找出等价条件,再根据
3.如何合理引参? 五类参数:点坐标,斜率,比例,角度,长度等
-2.5
2.线 段AB长 为2a,两 个 端 点A和B分 别 在x轴
和y轴 上 滑 动,点P在AB上,且 满 足PA BP,
P
求 点P的 轨 迹 方 程.
A
-10
-5
M
P
N
1
2
8
6
4
B
2
O
x2 y2 a2
-2
-4
-6
五、参数法
如果轨迹动点P(x,y)的坐标之间的关系不易找 到,也没有相关点可用时,可先考虑将x、y用一 个或几个参数来表示,消去参数得轨迹方程.参数 法中常选角、斜率等为参数.
y
x o
复习回顾
求动点轨迹方程的基本步骤是什么?
(1)建系: 建立直角坐标系; (2)设点: 设所求动点P(x,y); (3)列式: 根据条件列出动点P满足的关系式; (4)化简: 化简方程; (5)检验:检验所得方程的纯粹性和完备性,

高考动点轨迹方程的常用求法含练习题及答案

高考动点轨迹方程的常用求法含练习题及答案

轨迹方程的经典求法一、定义法:运用有关曲线的定义求轨迹方程.例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,那么有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆, 其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 二、直接法:直接根据等量关系式建立方程.例1:点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,那么点P 的轨迹是〔 〕 A .圆 B .椭圆 C .双曲线 D .抛物线解析:由题知(2)PA x y =---,,(3)PB x y =--,,由2PA PB x =·,得22(2)(3)x x y x ---+=,即26y x =+,P ∴点轨迹为抛物线.应选D .三、代入法:此方法适用于动点随曲线上点的变化而变化的轨迹问题.例3:△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.四、待定系数法:当曲线的形状时,一般可用待定系数法解决.例5:A ,B ,D 三点不在一条直线上,且(20)A -,,(20)B ,,2AD =,1()2AE AB AD =+.〔1〕求E 点轨迹方程;〔2〕过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:〔1〕设()E x y ,,由1()2AE AB AD =+知E 为BD 中点,易知(222)D x y -,.又2AD =,那么22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; 〔2〕设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切,2211k k =+∴,解得33k =±. 将33y =±(2)x +代入椭圆方程并整理,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴, 又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.五、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量〔参数〕,把x ,y 联系起来 例4:线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使其满足4OPOP '=·,求直线AP 与A P ''的交点M 的轨迹方程.解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系.设点(0)(0)P t t ≠,, 那么由题意,得40P t ⎛⎫' ⎪⎝⎭,.由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta =+=--,.两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变.配套训练一、选择题1.椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2.设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,那么直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y xD.14922=-x y 二、填空题3.△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,那么动点A 的轨迹方程为_________.4.高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),那么地面观测两旗杆顶端仰角相等的点的轨迹方程是_________.三、解答题5.A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6.双曲线2222by a x =1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q的交点为Q ,求Q 点的轨迹方程.7.双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案配套训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆.答案:A2.解析:设交点P (x ,y 〕,A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a , ∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-. 答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y 〕,依题意有2222)5(3)5(5y x y x +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0)6.解:设P (x 0,y 0〕(x ≠±a ),Q (x ,y ).∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2,即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),那么Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),那么A 1P 的方程为:y =)(11m x mx y ++① A 2Q 的方程为:y =-)(11m x mx y --② ①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0〕,Q (x 1,y 1),F 1(-c ,0),F 2(c ,0). |F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,那么(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。

高考数学专题复习——轨迹方程的几种常见求法

高考数学专题复习——轨迹方程的几种常见求法

2008届高考数学专题复习——轨迹方程的几种常见求法1直接法:把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。

设点。

列式。

化简。

说明等【例1】 已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线.解:建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0). 设M (x ,y )是轨迹上任意一点. 则由题设,得||||MB MA =λ,坐标代入, 得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴).(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0.点M 的轨迹是以 (-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆.【例2】某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?(直接法)解:设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. 【例3】 双曲线的两焦点分别是1F 、2F ,其中1F 是抛物线1)1(412++-=x y 的焦点,两点A (-3,2)、B (1,2)都在该双曲线上.(1)求点1F 的坐标;(2)求点2F 的轨迹方程,并指出其轨迹表示的曲线.解:(1)由1)1(412++-=x y 得)1(4)1(2--=+y x ,焦点1F (-1,0). (2)因为A 、B 在双曲线上,所以||||||||||||2121BF BF AF AF -=-,|||22||||22|22BF AF -=-.①若||22||2222BF AF -=-,则||||22BF AF =,点2F 的轨迹是线段AB 的垂直平分线,且当y =0时,1F 与2F 重合;当y =4时,A 、B 均在双曲线的虚轴上. 故此时2F 的轨迹方程为x =-1(y ≠0,y ≠4).②若22||||2222-=-BF AF ,则24||||22=+BF AF ,此时,2F 的轨迹是以A 、B 为焦点,22=a ,2=c ,中心为(-1,2)的椭圆,其方程为14)2(8)1(22=-++y x ,(y ≠0,y ≠4) 故2F 的轨迹是直线x =-1或椭圆4)2(8)1(22-++y x 1=,除去两点(-1,0)、(-1,4) 【例4】 已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||⋅=⋅ (1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入).2,5(),5(12,0)2()5()2(),14(444424:).24,14(4),1(12:).24,14(,242,0484,4)1(2).2,1(,14)2,()2(222222221222----=+=+--++---+=++--+=--=--+∴-===-+-=-=-∴==过定点即化简得方程为则直线得代入同理可设直线可得由得代入的方程为设直线的坐标为点得代入将x k ky y x k y k k x kk k k k y DE k k E x y x ky AE k kD k y y ky k y x y x k y AD A m x y m A ),1,(21212,2,0)2(24),(),,(,,14)2,()3(212211222211112≠=--⋅--∴=⋅=+-+⎪⎩⎪⎨⎧=+=+===x x x y x y k k b x kb x k xy b kx y y x E y x D b kx y DE m x y m A AE AD 得由的方程为设直线得代入将)2,1(,,),2,1(,2)1(22).2,1(,2)1(22).2().2(,)2(,)2(2,02)2())(22()2(,2222212212212122211--∴+-=-+=+=-=---+=-+=+=-=-±=∴-±=∴-==--=+=--+++-+-∴+=+=定点为舍去不合过定点得代入将过定点得代入将代入化简得将且x k k kx y b kx y k b x k k kx y b kx y k b k b k b k b k b x x k kb x x b x x k kb x x k bkx y b kx y2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.例1设Q是圆x2+y2=4上动点另点A(0)。

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的六种求法整顿求轨迹方程是高考中罕有的一类问题.本文对曲线方程轨迹的求法做一归纳,供同窗们参考.求轨迹方程的一般办法:1.直译法:假如动点P的活动纪律是否合乎我们熟知的某些曲线的界说难以断定,但点P知足的等量关系易于树立,则可以先暗示出点P所知足的几何上的等量关系,再用点P的坐标(x,y)暗示该等量关系式,即可得到轨迹方程.2.界说法:假如动点P的活动纪律合乎我们已知的某种曲线(如圆.椭圆.双曲线.抛物线)的界说,则可先设出轨迹方程,再依据已知前提,待定方程中的常数,即可得到轨迹方程3. 参数法:假如采取直译法求轨迹方程难以奏效,则可追求引动员点P活动的某个几何量t,以此量作为参变数,分离树立P 点坐标x,y与该参数t的函数关系x=f(t), y=g(t),进而经由过程消参化为轨迹的通俗方程F(x,y)=0.4. 代入法(相干点法):假如动点P的活动是由别的某一点P'的活动激发的,而该点的活动纪律已知,(该点坐标知足某已知曲线方程),则可以设出P(x,y),用(x,y)暗示出相干点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程.5.交轨法:在求动点轨迹时,有时会消失请求两动曲线交点的轨迹问题,这种问题平日经由过程解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用. 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等一.直接法把标题中的等量关系直接转化为关于x,y,的方程根本步调是:建系.设点.列式.化简.解释等,圆锥曲线尺度方程的推导. 1. 已知点(20)(30)A B -,,,,动点()P x y ,知足2PA PB x =·,求点P 的轨迹.26y x =+,2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且知足.||||CB PB BC PC ⋅=⋅(1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE,且AD⊥AE,断定:直线DE 是否过定点?试证实你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD,AE,且AD,AE 的斜率k1.k2知足k1·k2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入二.界说法应用所学过的圆的界说.椭圆的界说.双曲线的界说.抛物线的界说直接写出所求的动点的轨迹方程,这种办法叫做界说法.这种办法请求题设中有定点与定直线及两定点距离之和或差为定值的前提,或应用平面几何常识剖析得出这些前提.1. 若动圆与圆4)2(22=++y x 外切且与直线x=2相切,则动圆圆心的轨迹方程是解:如图,设动圆圆心为M,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x=4的距离,故所求轨迹是以(-2,0)为核心,直线x=4为准线的抛物线,并且p=6,极点是(1,0),启齿向左,所以方程是)1(122--=x y .选(B ).2.一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为解:如图,设动圆圆心为M,半径为r,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线界说知,其轨迹是以O.C 为核心的双曲线的左支3.在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.解:以线段BC 地点直线为x 轴,线段BC 的中垂线为y 轴树立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=. M ∴点的轨迹是认为B C ,核心的椭圆,个中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 留意:求轨迹方程时要留意轨迹的纯粹性与完整性.4.设Q 是圆x2+y2=4上动点另点A (3.0).线段AQ 的垂直等分线l 交半径OQ 于点P(见图2-45),当Q 点在圆周上活动时,求点P 的轨迹方程.解:衔接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ 上.∴|PO|+|PQ|=2.由椭圆界说可知:P 点轨迹是以O.A 为核心的椭圆.5.已知ΔABC中,A,B,C 所对应的边为a,b,c,且a>c>b,a,c,b 成等差数列,|AB|=2,求极点C 的轨迹方程 解:|BC|+|CA|=4>2,由椭圆的界说可知,点C 的轨迹是以A.B 为核心的椭圆,其长轴为4,焦距为2, 短轴长为23,∴椭圆方程为13422=+y x , 又a>b, ∴点C 在y 轴左侧,必有x<0,而C 点在x 轴上时不克不及组成三角形,故x≠─2,是以点C 的轨迹方程是:13422=+y x (─2<x<0) 点评:本题在求出了方程今后评论辩论x 的取值规模,现实上就是斟酌前提的须要性6.一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心M 的轨迹方程,并解释它是什么样的曲线.解析:(法一)设动圆圆心为(,)M x y ,半径为R ,设已知圆的圆心分离为1O .2O ,将圆方程分离配方得:22(3)4x y ++=,22(3)100x y -+=,当M 与1O 相切时,有1||2O M R =+①当M 与2O 相切时,有2||10O M R =-②将①②两式的双方分离相加,得21||||12O M O M +=, 即2222(3)(3)12x y x y +++-+=③移项再双方分离平方得:222(3)12x y x ++=+④双方再平方得:22341080x y +-=,整顿得2213627x y +=, 所以,动圆圆心的轨迹方程是2213627x y +=,轨迹是椭圆. (法二)由解法一可得方程2222(3)(3)12x y x y +++-+=, 由以上方程知,动圆圆心(,)M x y 到点1(3,0)O -和2(3,0)O 的距离和是常数12,所以点M 的轨迹是核心为1(3,0)O -.2(3,0)O ,长轴长等于12的椭圆,并且椭圆的中间在坐标原点,核心在x 轴上,∴26c =,212a =,∴3c =,6a =,∴236927b =-=,∴圆心轨迹方程为2213627x y +=. 三.相干点法此办法实用于动点随已知曲线上点的变更而变更的轨迹问题. 若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0.y0可用x.y 暗示,则将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程.这种办法称为相干点法(或代换法).x y 1O 2O P1.已知抛物线y2=x+1,定点A(3,1).B 为抛物线上随意率性一点,点P 在线段AB 上,且有BP∶PA=1∶2,当B 点在抛物线上变动时,求点P 的轨迹方程.剖析解:设点P(x,y),且设点B(x0,y0)∵BP∶PA=1∶2,且P 为线段AB 的内分点.2.双曲线2219x y -=有动点P ,12,F F 曲直线的两个核心,求12PF F ∆的重心M 的轨迹方程.解:设,P M 点坐标各为11(,),(,)P x y M x y ,∴在已知双曲线方程中3,1a b ==,∴9110c =+=∴已知双曲线两核心为12(10,0),(10,0)F F -,∵12PF F ∆消失,∴10y ≠ 由三角形重心坐标公式有11(10)10003x x y y ⎧+-+=⎪⎪⎨++⎪=⎪⎩,即1133x x y y =⎧⎨=⎩ . ∵10y ≠,∴0y ≠.3.已知点P 在双曲线上,将上面成果代入已知曲线方程,有22(3)(3)1(0)9x y y -=≠ 即所求重心M 的轨迹方程为:2291(0)x y y -=≠.4.(上海,3)设P 为双曲线-42x y2=1上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是.解析:设P (x0,y0) ∴M(x,y ) ∴2,200y y x x ==∴2x=x0,2y =y0∴442x -4y2=1⇒x2-4y2=15.已知△ABC 的极点(30)(10)B C -,,,,极点A 在抛物线2y x =上活动,求ABC △的重心G 的轨迹方程.解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠. 四.参数法假如不轻易直接找出动点的坐标之间的关系,可斟酌借助中央变量(参数),把x,y 接洽起来.若动点P (x,y )的坐标x 与y 之间的关系不轻易直接找到,而动点变更受到另一变量的制约,则可求出x.y 关于另一变量的参数方程,再化为通俗方程.1.已知线段2AA a '=,直线l 垂直等分AA '于O ,在l 上取两点P P ',,使有向线段OP OP ',知足4OP OP '=·,求直线AP 与A P ''的交点M 的轨迹方程. 解:如图2,以线段AA '地点直线为x 轴,以线段AA '的中垂线为y 轴树立直角坐标系.设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,. 由点斜式得直线AP A P '',的方程分离为4()()t y x a y x a a ta =+=--,. 两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,症结有两点:一是选参,轻易暗示出动点;二是消参,消参的门路灵巧多变.2.设椭圆中间为原点O,一个核心为F (0,1),长轴和短轴的长度之比为t .(1)求椭圆的方程;(2)设经由原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q,点P 在该直线上,且12-=t t OQ OP,当t 变更时,求点P 的轨迹方程,并解释轨迹是什么图形.解:(1)设所求椭圆方程为).0(12222>>b a b x a y =+由题意得⎪⎩⎪⎨⎧==-,,122t b a b a 解得 ⎪⎪⎩⎪⎪⎨⎧-=-=.11.122222t b t t a 所以椭圆方程为222222)1()1(t y t x t t =-+-.(2)设点),,(),,(11y x Q y x P 解方程组⎩⎨⎧==-+-,,)1()1(1122122122tx y t y t x t t 得 ⎪⎪⎩⎪⎪⎨⎧-=-=.)1(2,)1(212121t t y t x 由12-=t t OQ OP 和1x x OQ OP =得⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,2,2,2222t y t x t y t x 或 个中t >1.消去t,得点P 轨迹方程为)22(222>=x y x 和)22(222-<-=x y x .其轨迹为抛物线y x 222=在直线22=x 右侧的部分和抛物线y x 222-=在直线22-=x 在侧的部分.3.已知双曲线2222n y m x -=1(m >0,n >0)的极点为A1.A2,与y 轴平行的直线l 交双曲线于点P.Q 求直线A1P 与A2Q 交点M 的轨迹方程; 解设P 点的坐标为(x1,y1),则Q 点坐标为(x1,-y1),又有A1(-m,0),A2(m,0),则A1P 的方程为y=)(11m x mx y ++① A2Q 的方程为y=-)(11m x mx y --② ①×②得y2=-)(2222121m x m x y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即 代入③并整顿得2222n y m x +=1此即为M 的轨迹方程4.设点A 和B 为抛物线 y2=4px(p >0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M 的轨迹方程,并解释它暗示什么曲线 解法一设A(x1,y1),B(x2,y2),M(x,y) (x≠0)直线AB 的方程为x=my+a由OM⊥AB,得m=-y x 由y2=4px 及x=my+a,消去x,得y2-4pmy -4pa=0所以y1y2=-4pa, x1x2=22122()(4)y y a p = 所以,由OA⊥OB,得x1x2 =-y1y2所以244a pa a p =⇒=故x=my+4p,用m=-y x代入,得x2+y2-4px=0(x≠0)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点 解法二设OA 的方程为y kx =,代入y2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y2=4px 得2(2,2)B pk pk -∴AB 的方程为2(2)1k y x p k=--,过定点(2,0)N p , 由OM⊥AB,得M 在以ON 为直径的圆上(O 点除外)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点 解法三设M(x,y) (x≠0),OA 的方程为y kx =,代入y2=4px 得222(,)p p A k k 则OB 的方程为1y x k =-,代入y2=4px 得2(2,2)B pk pk -由OM⊥AB,得M 既在以OA 为直径的圆222220p p x y x y k k+--=……①上, 又在以OB 为直径的圆222220x y pk x pky +-+=……②上(O 点除外),①2k ⨯+②得 x2+y2-4px=0(x≠0)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点5.过点A (-1,0),斜率为k 的直线l 与抛物线C :y2=4x 交于P,Q 两点.若曲线C 的核心F 与P,Q,R 三点按如图次序组成平行四边形PFQR,求点R 的轨迹方程;解:请求点R 的轨迹方程,留意到点R 的活动是由直线l 的活动所引起的,是以可以寻找点R 的横.纵坐标与直线l 的斜率k 的关系.然而,点R 与直线l 并没有直接接洽.与l 有直接接洽的是点P.Q,经由过程平行四边形将P.Q.R 这三点接洽起来就成为解题的症结.由已知:(1)l y k x =+,代入抛物线C :y2=4x 的方程,消x 得:204k y y k -+=∵C l P 直线交抛物线于两点.Q∴20410k k ⎧≠⎪⎨⎪∆=->⎩解得1001k k -<<<<或设1122(,),(,),(,)P x y Q x y R x y ,M 是PQ 的中点,则由韦达定理可知:122,2M y y y k+==将其代入直线l的方程,得2212M M x k y k ⎧=-⎪⎪⎨⎪=⎪⎩∵四边形PFQR 是平行四边形, ∴RF 中点也是PQ 中点M .∴242342M F Mx x x k y y k ⎧=-=-⎪⎪⎨⎪==⎪⎩又(1,0)(0,1)k ∈-⋃∴(1,)M x ∈+∞.∴点R 的轨迹方程为.1),3(42>+=x x y6.垂直于y 轴的直线与y 轴及抛物线y2=2(x –1)分离交于点A 和点P,点B 在y 轴上且点A 分OB 的比为1:2,求线段PB 中点的轨迹方程解:点参数法 设A(0,t),B(0,3t),则P(t2/2 +1, t),设Q(x,y),则有⎪⎪⎩⎪⎪⎨⎧=+=+=+=t tt y t t x 223)2(4121222,消去t 得:y2=16(x –21) 点评:本题采取点参数,即点的坐标作为参数在求轨迹方程时应剖析动点活动的原因,找出影响动点的身分,据此恰当地选择参数7.过双曲线C :x2─y2/3=1的左核心F 作直线l 与双曲线交于点P.Q,以OP.OQ 为邻边作平行四边形OPMQ,求M 的轨迹方程解:k 参数法 当直线l 的斜率k 消失时,取k 为参数,树立点M 轨迹的参数方程设M(x,y),P(x1,y1), Q(x2,y2),PQ 的中点N(x0,y0), l:y=k(x+2), 代入双曲线方程化简得:(3─k2)x2─4k2x─4k2─3=0,依题意k≠3,∴3─k2≠0,x1+x2=4k2/(3─k2), ∴x=2x0=x1+x2=4k2/(3─k2),y=2y0=2k(x0+2)=12k/(3─k2),∴⎪⎪⎩⎪⎪⎨⎧-=-=22231234k k y k k x , 消去k 并整顿,得点M 的轨迹方程为:1124)2(22=-+y x 当k 不消失时,点M(─4,0)在上述方程的曲线上,故点M 的轨迹方程为:点评:本题用斜率作为参数,即k 参数法,k 是经常应用的参数设点P.Q 的坐标,但没有求出P.Q 的坐标,而是用韦达定理求x1+x2,y1+y2,从整体上行止理,是处懂得析几何分解题的罕有技能8.(06辽宁,20)已知点11(,)A x y ,22(,)B x y 12(0)x x ≠是抛物线22(0)y px p =>上的两个动点,O 是坐标原点,向量OA ,OB 知足OA OB OA OB +=-.设圆C 的方程为(I) 证实线段AB 是圆C 的直径;(II)当圆C 的圆心到直线X2Y=0的距离的最小值为5时,求p 的值.解析:(I)证实1:22,()()OA OB OA OB OA OB OA OB +=-∴+=- 整顿得:0OA OB ⋅=12120x x y y ∴⋅+⋅=设M(x,y)是以线段AB 为直径的圆上的随意率性一点,则0MA MB ⋅= 即1212()()()()0x x x x y y y y --+--=整顿得:221212()()0x y x x x y y y +-+-+= 故线段AB 是圆C 的直径(II)解法1:设圆C 的圆心为C(x,y),则又因12120x x y y ⋅+⋅=1212x x y y ∴⋅=-⋅22121224y y y y p∴-⋅= 所以圆心的轨迹方程为222y px p =- 设圆心C 到直线x2y=0的距离为d,则当y=p 时,d=2p ∴=.五.交轨法一般用于求二动曲线交点的轨迹方程.其进程是选出一个恰当的参数,求出二动曲线的方程或动点坐标合适的含参数的等式,再消去参数,即得所求动点轨迹的方程.1. 已知两点)2,0(),2,2(Q P -以及一条直线ι:y=x,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点M (x,y )随 A.B 的移动而变更,故可设)1,1(),,(++t t B t t A ,则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t,得.082222=+-+-y x y x 当t=-2,或t=-1时,PA 与QB 的交点坐标也知足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x以上是求动点轨迹方程的重要办法,也是经常应用办法,假如动点的活动和角度有显著的关系,还可斟酌用复数法或极坐标法求轨迹方程.但无论用何办法,都要留意所求轨迹方程中变量的取值规模.2.自抛物线y2=2x 上随意率性一点P 向其准线l 引垂线,垂足为Q,贯穿连接极点O 与P 的直线和贯穿连接核心F 与Q 的直线交于R 点,求R 点的轨迹方程.解:设P (x1,y1).R (x,y ),则Q (-21,y1).F (21,0),∴OP 的方程为y=11x y x,①FQ 的方程为y=-y1(x -21).②由①②得x1=xx 212-,y1=xy 212-,代入y2=2x,可得y2=-2x2+x.六.待定系数法当曲线(圆.椭圆.双曲线以及抛物线)的外形已知时,一般可用待定系数法解决.1.已知A,B,D三点不在一条直线上,且(20)A -,,(20)B ,,2AD =,1()2AE AB AD =+.(1)求E 点轨迹方程;(2)过A 作直线交认为A B ,核心的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设()E x y ,,由1()2AE AB AD =+知E 为BD 中点,易知(222)D x y -,.又2AD =,则22(222)(2)4x y -++=.即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切, 2211k k =+∴,解得33k =±. 将33y =±(2)x +代入椭圆方程并整顿,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴,又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.2.已知圆C1的方程为(x -2)2+(y -1)2=320,椭圆C2的方程为2222by ax +=1(a >b >0),C2的离心率为22,假如C1与C2订交于A.B 两点,且线段AB 恰为圆C1的直径,求直线AB 的方程和椭圆C2的方程..解:由e=22,可设椭圆方程为22222b y b x +=1,又设A(x1,y1).B(x2,y2),则x1+x2=4,y1+y2=2, 又2222222212212,12by bx by bx +=+=1,两式相减,得22221222212by y bx x -+-=0,2121x x y y --=-1,故直线AB 的方程为y=-x+3,代入椭圆方程得3x2-12x+18-2b2=0. 有Δ=24b2-72>0,又|AB|=3204)(221221=-+x x x x ,得3209722422=-⋅b ,解得b2=8.故所求椭圆方程为81622y x +=1.3.已知直线1+-=x y 与椭圆)0(12222>>=+b a by a x 订交于A.B 两点,且线段AB 的中点在直线02:=-y x l 上.(1)求此椭圆的离心率;(2 )若椭圆的右核心关于直线l 的对称点的在圆422=+y x 上,求此椭圆的方程. 讲授:(1)设A.B 两点的坐标分离为⎪⎩⎪⎨⎧=++-=11).,(),,(22222211b y ax x y y x B y x A ,则由得02)(2222222=-+-+b a a x a x b a , 依据韦达定理,得∴线段AB的中点坐标为(222222,ba b b a a ++).由已知得2222222222222)(22,02c a c a b a ba b b a a =∴-==∴=+-+ 故椭圆的离心率为22=e .(2)由(1)知,c b =从而椭圆的右核心坐标为),0,(b F 设)0,(b F 关于直线2:=-y x l 的对称点为,02221210),,(000000=⨯-+-=⋅--yb x b x y y x 且则解得b y b x 545300==且由已知得 4,4)54()53(,42222020=∴=+∴=+b b b y x故所求的椭圆方程为14822=+y x .。

求轨迹方程常用方法

求轨迹方程常用方法

求轨迹方程的常用方法求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法. 求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.一、直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.例1:线段AB 的长等于2a ,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点P 的轨迹方程?解 设M 点的坐标为),(y x ,在直角三角形AOB 中,OM=,22121a a AB =⨯= 22222,a y x a y x =+=+∴M 点的轨迹是以O 为圆心,a 为半径的圆周.1.在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。

解:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的中点O为坐标原点,过O 与AB 垂直的直线为y 轴(如图).则有A (,0)a -,B (,0)a 。

设动点C 为(,)x y ,∵222||||||AC BC AB +=,∴2224a +=,即222x y a +=.由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点, 故所求方程为222x y a +=(x a ≠±)。

2.过点P (2,4)作两条互相垂直的直线12l l ,,若1l 交x 轴于A 点,2l 交y 轴于B 点,求线段AB 的中点M 的轨迹方程。

解:设M x y (,),连结MP ,则2002A x B y (,),(,),∵12l l ⊥,∴△PAB 为直角三角形,||21||AB MP ,=由直角三角形的性质2222)2()2(·21)4()2(y x y x +=-+-∴ 化简,得250x y +-=,即M 的轨迹方程250x y +-=。

二、定义法 若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线等),可用定义直接探求.例2.若动点M 到点A(2,0)-距离为3,求动点M 的轨迹方程。

几种常见求轨迹方程的方法

几种常见求轨迹方程的方法

几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1:(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:设弦的中点为M(x,y),连结OM,则OM⊥AM.∵kOM·kAM=-1,其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.直平分线l交半径OQ于点P,当Q点在圆周上运动时,求点P的轨迹方程.分析:∵点P在AQ的垂直平分线上,∴|PQ|=|PA|.又P在半径OQ上.∴|PO|+|PQ|=R,即|PO|+|PA|=R.故P点到两定点距离之和是定值,可用椭圆定义写出P点的轨迹方程.解:连接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ上.∴|PO|+|PQ|=2.由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.3.相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.分析:P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系.解:设点P(x,y),且设点B(x0,y0) ∵BP∶PA=1∶2,且P为线段AB 的内分点.4.待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y 轴上,所以可设双曲线方ax2-4b2x+a2b2=0 ∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b2x+a2b2=0应有等根.∴△=1664-4Q4b2=0,即a2=2b.(以下由学生完成) 由弦长公式得:即a2b2=4b2-a2.。

求轨迹方程的常用方法及例题

求轨迹方程的常用方法及例题

求解轨迹方程的常用方法主要有以下几种:
参数方程法:通过引入参数,将轨迹上的点的坐标表示为参数的函数形式,然后通过给定参数的取值范围,确定轨迹上的点的位置关系。

隐式方程法:将轨迹方程中的自变量与因变量通过一个方程联系起来,形成一个隐式方程,然后通过对方程进行求解和化简,得到轨迹的几何性质。

极坐标方程法:对于某些曲线,使用极坐标系可以更方便地描述其轨迹。

通过将轨迹上的点的极坐标表示,可以得到轨迹的极坐标方程。

下面是一个例题:
例题:求解椭圆的轨迹方程。

解答:椭圆是一个平面上的闭合曲线,其定义特点是到两个焦点的距离之和恒定。

我们可以使用参数方程法来求解椭圆的轨迹方程。

假设椭圆的焦点为F1和F2,长轴长度为2a,短轴长度为2b。

取参数θ,定义点P在椭圆上的坐标为(x, y)。

那么根据椭圆的定义,可以得到以下参数方程:
x = a * cos(θ) y = b * sin(θ)
其中,θ的取值范围为0到2π。

通过给定θ的取值范围,我们可以得到椭圆上的点的坐标关系。

进一步化简参数方程,可以得到椭圆的隐式方程:
(x^2 / a^2) + (y^2 / b^2) = 1
这就是椭圆的轨迹方程,其中a和b分别为椭圆的长轴和短轴长度。

以上是求解轨迹方程的常用方法和一个椭圆轨迹方程的例题。

根据具体的问题和曲线类型,选择合适的方法进行求解和推导。

求轨迹方程的常见方法

求轨迹方程的常见方法

求轨迹方程的常见方法由运动轨迹求方程是解析几何的一类重要问题,下面谈谈求轨迹方程的几种常用方法。

一、直接法建立适当的座标系后,设动点为,根据几何条件寻求之间的关係式。

例1 已知动点m到椭圆的右焦点的距离与到直线x=6的距离相等,求点m的轨迹方程。

变式:已知点m与椭圆的左焦点和右焦点的距离之比为,求点m的轨迹方程。

变式2:在三角形abc中,b(-6,0), c(-6,0),直线ab,ac斜率乘积为,求顶点a的轨迹。

说明:求轨迹需要说明是什幺曲线并指出曲线的位置与大小,求轨迹方程怎不必说明。

二、定义法由题设所给动点满足的几何条件,经过化简变形,可以看出动点满足圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程。

例2 已知圆的圆心为m1,圆的圆心为m2,一动圆与这两个圆外切,求动圆圆心p的轨迹方程。

解:设动圆的半径为r,由两圆外切的条件可得:,。

∴动圆圆心p的轨迹是以m1、m2为焦点的双曲线的右支,c=4,a=2,b2=12。

故所求轨迹方程为。

三、待定係数法由题意可知曲线型别,将方程设成该曲线方程的一般形式,利用题设所给条件求得所需的待定係数,进而求得轨迹方程。

例3 已知双曲线中心在原点且一个焦点为f(,0),直线y=x-1与其相交于m、n两点,mn中点的横座标为,求此双曲线方程。

解:设双曲线方程为。

将y=x-1代入方程整理得。

由韦达定理得。

又有,联立方程组,解得。

∴此双曲线的方程为。

四、引数法选取适当的引数,分别用参数列示动点座标,得到动点轨迹的引数方程,再消去引数,从而得到动点轨迹的普通方程。

例4 过原点作直线l和抛物线交于a、b两点,求线段ab的中点m的轨迹方程。

解:由题意分析知直线l的斜率一定存在,设直线l的方程y=kx。

把它代入抛物线方程,得。

因为直线和抛物线相交,所以△>0,解得。

设a(),b(),m(x,y),由韦达定理得。

由消去k得。

又,所以。

轨迹方程的求法及典型例题含答案

轨迹方程的求法及典型例题含答案

轨迹方程的求法及典型例题(含答案) 轨迹方程是描述一条曲线在平面上的运动轨迹的方程。

在二维平面上,轨迹方程通常由一元二次方程、三角函数方程等形式表示。

在三维空间中,轨迹方程可能会更加复杂,可以由参数方程或参数化表示。

一、轨迹方程的求解方法:1. 根据题目给出的条件,确定轨迹上的点的特点或特殊性质。

2. 将轨迹上的点的坐标表示为一般形式。

3. 将坐标表示代入到方程中,消去多余的变量,得到轨迹方程。

二、典型例题及其解答:【例题1】已知点P(x,y)到坐标原点O的距离为定值d,求点P的轨迹方程。

解答:1. 设点P(x,y)的坐标表示为一般形式。

2. 根据题目给出的条件,根据勾股定理,可以得到点P到原点O的距离公式:d = √(x^2 + y^2)3. 将坐标表示代入到距离公式中,得到轨迹方程:d^2 = x^2 + y^2【例题2】已知点P(x,y)到直线Ax+By+C=0的距离为定值d,求点P的轨迹方程。

解答:1. 设点P(x,y)的坐标表示为一般形式。

2. 根据题目给出的条件,点P到直线Ax+By+C=0的距离公式为:d = |Ax+By+C| / √(A^2 + B^2)3. 将点P的坐标表示代入到距离公式中,得到轨迹方程:(Ax+By+C)^2 = d^2(A^2 + B^2)【例题3】已知点P(x,y)满足|x|+|y|=a,求点P的轨迹方程。

解答:1. 设点P(x,y)的坐标表示为一般形式。

2. 根据题目给出的条件,可以得到两种情况下的轨迹方程:当x≥0,y≥0时,有x+y=a,即y=a-x;当x≥0,y<0时,有x-y=a,即y=x-a;当x<0,y≥0时,有-x+y=a,即y=a+x;当x<0,y<0时,有-x-y=a,即y=-a-x。

3. 将上述四种情况合并,得到轨迹方程:|x|+|y|=a【例题4】已知点P(x,y)满足y = a(x^2 + b),求点P的轨迹方程。

求点的轨迹方程的六种常见方法

求点的轨迹方程的六种常见方法
定义法
• 若题设有动点到两点的距离之和或差为定值等条件 时,可以利用圆锥曲线的定义直接写出所求动点的 轨迹方程。此类问题相对也非常简单,因此单独出 现的可能性也很小,可能作为一个中间步骤出现。
• 以下举一个例子说明:
1.定义法
【例1】在ΔABC中,已知BC=a,当动点A满足条件sinC-sinB= 1 sinA时, 2
• 以下举个例子说明:
3.相关点法
【例4】过双曲线x2-y2=1 上一点Q引直线x+y=2的垂线,垂足为N,求 线段QN的中点P的轨迹方程.
解:设点P,Q的坐标分别为P(x,y),Q(u,v),则N点坐标为(2x-u,2y-v).
点N在直线x+y=2上,
2x-u+2y-v=2 ①
又PQ垂直于直线x+y=2, 所以 y u 1,即x-y+v-u=0 ②
P
y B
解法二:点差法 连PO交CB于G.
设P(x,xy1)2,+G2y(x120=,y40), C(x1,y1),B(x2,y2),则 A C
x22+2y22=4 作差,得(x2-x1) (x2+x1)+
(y2-y1)
(y2+y1)=0
G o
x
即x0+y0k=0
3k 2
又k= y0 x0 3
设双曲线方程为:x 2 m2
-
y2 n2
=1,则2m=AB-AC=
a ,所以m= 2
a ,m2 = a2 ,
4
16
又n2 =c2 -m2 =(
a )2- a2 2 16
=
3a 2 16
,故动点A的轨迹方成为:x a
2 2

轨迹方程求法及经典例题汇总

轨迹方程求法及经典例题汇总

轨迹方程求法及经典例题汇总一、轨迹为圆的例题:1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程:必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为21,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论)2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆1)1(22=++y x 上运动,求AB 的中点M 的轨迹。

(2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。

(1)求圆心的P 的轨迹方程;(2)若P 点到直线x y =的距离为22,求圆P 的方程。

如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x-4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动.设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x ,代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程.在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8. (1) 求动圆圆心的轨迹C 的方程;(2) 已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点Q P ,,若x 轴是PBQ ∠的角平分线,证明直线l 过定点。

求动点的轨迹方程(方法例题习题答案)

求动点的轨迹方程(方法例题习题答案)

求动点的轨迹方程〔例题,习题与答案〕在中学数学教学和高考数学考试中,求动点轨迹的方程和曲线的方程是一个难点和重点内容〔求轨迹方程和求曲线方程的区别主要在于:求轨迹方程时,题目中没有直接告知轨迹的形状类型;而求曲线的方程时,题目中明确告知动点轨迹的形状类型〕。

求动点轨迹方程的常用方法有:直接法、定义法、相关点法、参数法与交轨法等;求曲线的方程常用“待定系数法〞。

求动点轨迹的常用方法动点P 的轨迹方程是指点P 的坐标〔*,y 〕满足的关系式。

1. 直接法〔1〕依题意,列出动点满足的几何等量关系;〔2〕将几何等量关系转化为点的坐标满足的代数方程。

例题直角坐标平面上点Q 〔2,0〕和圆C :122=+y x ,动点M 到圆C 的切线长等与MQ ,求动点M 的轨迹方程,说明它表示什么曲线. 解:设动点M(*,y),直线MN 切圆C 于N 。

依题意:MN MQ =,即22MN MQ = 而222NO MO MN-=,所以(*-2)2+y 2=*2+y 2-1化简得:*=45。

动点M 的轨迹是一条直线。

2. 定义法分析图形的几何性质得出动点所满足的几何条件,由动点满足的几何条件可以判断出动点的轨迹满足圆〔或椭圆、双曲线、抛物线〕的定义。

依题意求出曲线的相关参数,进一步写出轨迹方程。

例题:动圆M 过定点P 〔-4,0〕,且与圆C :0822=-+x y x 相切,求动圆圆心M 的轨迹方程。

解:设M(*,y),动圆M的半径为r 。

假设圆M 与圆C 相外切,则有 ∣MC ∣=r +4 假设圆M 与圆C 相内切,则有 ∣MC ∣=r-4 而∣MP ∣=r, 所以∣MC ∣-∣MP ∣=±4动点M 到两定点P(-4,0),C(4,0)的距离差的绝对值为4,所以动点M 的轨迹为双曲线。

其中a=2, c=4。

动点的轨迹方程为:3. 相关点法假设动点P(*,y)随曲线上的点Q(*0,y 0)的变动而变动,且*0、y 0可用*、y 表示,则将Q 点坐标表达式代入曲线方程,即得点P 的轨迹方程。

求轨迹方程的常用方法及试

求轨迹方程的常用方法及试

求轨迹方程的常用方法及试————————————————————————————————作者:————————————————————————————————日期:求轨迹方程的常用方法一、求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律, 即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通 方程。

3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解(即以 该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解(即轨迹上的某些点未能用所求的方程表示)。

出现增解则要舍去,出现丢解,则需补充。

检验方法:研究运动中的特殊情形或极端情形。

一般画出所求轨迹,这样更易于检查是否有不合题意的部分或漏掉的部分。

二、常用方法及例题1.用定义法求曲线轨迹(也叫待定系数法)如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。

【点评】熟悉一些基本曲线的定义是用定义法求曲线方程的关键。

(1) 圆:到定点的距离等于定长(2) 椭圆:到两定点的距离之和为常数(大于两定点的距离) (3) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) (4) 抛物线:到定点与定直线距离相等例1:已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。

【解析】由,sin 45sin sin C A B =+可知1045==+c a b ,即10||||=+BC AC ,满足椭圆的定义。

令椭圆方程为12'22'2=+by ax ,则34,5'''=⇒==b c a ,则轨迹方程为192522=+y x ()5±≠x ,图形为椭圆(不含左,右顶点)。

求轨迹方程的常用对策计划例题及变式

求轨迹方程的常用对策计划例题及变式

可编辑可修改求轨迹方程的常用方法:题型一 直接法此法是求轨迹方程最根本的方法, 根据所满足的几何条件,将几何条件{M|P(M)}直接翻译成x,y 的形式f(x,y)0,然后进行等价变换,化简f(x,y)0,要注意轨迹方程的纯粹性和完备性,即曲线上没有坐标不满足方程的点,也就是说曲线上所有的点适合这个条件而毫无例外〔纯粹性〕;反之,适合条件的所有点都在曲线上而毫无遗漏〔完备性〕 。

例1 过点A(2,3)任作互相垂直的两直线 AM 和AN ,分别交x,y 轴于点M,N ,求线段MN 中点P 的轨迹方程。

解:设P 点坐标为P(x,y),由中点坐标公式及M,N 在轴上得M(0,2y),N(2x,0)(x,y R) AM AN k AM k AN 132y31),化简得4x6y13 0(x1)2x21(x23)它也满足方程4x6y13 当x1时,M(0,3),N(2,0),此时MN 的中点P(1,,2所以中点P 的轨迹方程为4x6y130。

变式1动点M(x,y)到直线l:x4的距离是它到点 N(1,0)的距离的2倍。

1〕求动点M 的轨迹C 的方程;2〕过点P(0,3)的直线m与轨迹C交于A,B两点。

假设A是PB的中点,求直线m的斜率。

题型二定义法圆锥曲线定义所包含的几何意义十分重要,应特别重视利用圆锥曲线的定义解题,包括用定义法求轨迹方程。

1可编辑可修改例2 动圆M过定点P( 4,0),且与圆C:x2y28x 0相切,求动圆圆心M的轨迹方程。

解:根据题意||MC||MP||4,说明点M到定点C、P的距离之差的绝对值为定值,故点M的轨迹是双曲线。

2a4a2,c4b c2a212故动圆圆心M的轨迹方程为x2y21412变式2在△ABC中,BC24,AC,AB上的两条中线长度之和为39,求△ABC的重心的轨迹方程.解:以线段BC所在直线为x轴,线段BC的中垂线为y轴建立直角坐标系,如图1,M为重心,那么有BMCM226.393∴M点的轨迹是以B,C为焦点的椭圆,其中c12,a13.∴b a2c25.∴所求△ABC的重心的轨迹方程为x2y2)1691(y25题型三相关点法此法的特点是动点M(x,y)的坐标取决于曲线C上的点(x',y')的坐标,可先用x,y来表示x',y',再代入曲线C的方程f(x,y) 0,即得点M的轨迹方程。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求轨迹方程的常用方法:
题型一 直接法
此法是求轨迹方程最基本的方法,根据所满足的几何条件,将几何条件)}(|{M P M 直接翻译成y x ,的形式0),(=y x f ,然后进行等价变换,化简0),(=y x f ,要注意轨迹方程的纯粹性和完备性,即曲线上没有坐标不满足方程的点,也就是说曲线上所有的点适合这个条件而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性)。

例1 过点)3,2(A 任作互相垂直的两直线AM 和AN ,分别交y x ,轴于点N M ,,求线段MN 中点P 的轨迹方程。

解:设P 点坐标为),(y x P ,由中点坐标公式及N M ,在轴上得)2,0(y M ,)0,2(x N ),(R y x ∈ ∴12
0322230-=--⋅--y x )1(≠x ,化简得01364=-+y x )1(≠x 当1=x 时,)3,0(M ,)0,2(N ,此时MN 的中点)2
3,1(P 它也满足方程01364=-+y x ,所以中点P 的轨迹方程为01364=-+y x 。

变式1
已知动点(,)M x y 到直线:4l x =的距离是它到点(1,0)N 的距离的2倍。

(1) 求动点M 的轨迹C 的方程;
(2) 过点(0,3)P 的直线m 与轨迹C 交于,A B 两点。

若A 是PB 的中点,求直线m 的斜
率。

题型二 定义法
圆锥曲线定义所包含的几何意义十分重要,应特别重视利用圆锥曲线的定义解题,包括用定义法求轨迹方程。

例2 动圆M 过定点)0,4(-P ,且与圆08:2
2=-+x y x C 相切,求动圆圆心M 的轨迹方程。

解:根据题意4||||||=-MP MC ,说明点M 到定点P C 、的距离之差的绝对值为定值,故点M 的轨迹是双曲线。

∴2=a ,4=c 故动圆圆心M 的轨迹方程为112
42
2=-y x 变式2
在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,
求ABC △的重心的轨迹方程.
解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有239263
BM CM +=⨯=. M ∴点的轨迹是以B C ,为焦点的椭圆,
其中1213c a ==,
.5b =∴.
∴所求ABC △的重心的轨迹方程为22
1(0)16925
x y y +=≠ 题型三 相关点法
此法的特点是动点),(y x M 的坐标取决于已知曲线C 上的点)','(y x 的坐标,可先用y x ,来表示','y x ,再代入曲线C 的方程0),(=y x f ,即得点M 的轨迹方程。

例3 如图,从双曲线122=-y x 上一点Q 引直线2=+y x 的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程
分析:从题意看动点P 的相关点是Q ,Q 在双曲线上运动,所以本题适合用相关点法。

解:设动点P 的坐标为),(y x ,点Q 的坐标为),(11y x ,则点N 的坐标为)2,2(11y y x x -- N 在直线2=+y x 上,
∴22211=-+-y y x x …①
又 P Q 垂直于直线2=+y x , ∴11
1=--x x y y ,即011=-+-x y y x …② 由①②解得⎪⎪⎩
⎪⎪⎨⎧-+=-+=123211212311y x y y x x …③ 又点Q 在双曲线122=-y x 上,∴12
121=-y x …④ ③代入④,得动点P 的轨迹方程为0122222
2=-+--y x y x
变式3已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程.
解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩
,,00323x x y y =+⎧⎨=⎩, ①∴. ②
又00()A x y ,∵在抛物线2y x =上,200
y x =∴. ③ 将①,②代入③,得23(32)(0)y x y =+≠, 即所求曲线方程是2434(0)3
y x x y =++≠. 题型四 参数法
选取适当的参数,分别用参数表示动点坐标y x ,,得出轨迹的参数方程,消去参数,即得其普通方程,选参数时必须首先充分考虑到制约动点的各种因素,然后在选取合适的参数,因为参数不同,会导致运算量的不同,常见的参数有截距、角度、斜率、线段长度等。

例4已知线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使有向线段OP OP ',
满足4OP
OP '=·,求直线AP 与A P ''的交点M 的轨迹方程. 解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系. 设点(0)(0)P t t ≠,,
则由题意,得40P t ⎛⎫' ⎪⎝⎭
,. 由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta
=+=--,. 两式相乘,消去t ,得222244(0)x a y a y +=≠.
这就是所求点M 的轨迹方程.
变式4设椭圆方程为142
2
=+y x ,过点)1,0(M 的直线l 交椭圆于点B A ,,O 是坐标原点,l 上的动点P 满足)(21OB OA OP +=,点N 的坐标为)2
1,21(,当l 绕点N 旋转时,求: (1)动点P 的轨迹方程;(2)||的最小值与最大值.
分析:(1)设出直线l 的方程,与椭圆方程联立,求出2121,y y x x ++,进而表示出点P 坐标,用消参法求轨迹方程;(2)将||NP 表示成变量x 的二次函数。

解:(1)法一:直线l 过点)1,0(M ,当l 的斜率存在时,设其斜率为k ,则l 的方程为1+=kx y 。

设),(11y x A ,),(22y x B ,由题设可列方程为
⎪⎩
⎪⎨⎧=++=1412
2y x kx y 将①代入②并化简得:032)4(2
2=-++kx x k , 所以⎪⎪⎩
⎪⎪⎨⎧+=++-=+2212
2148
42k y y k k x x 于是)(21OB OA OP +=)2,2(2121y y x x ++=)44,4(22k
k k ++-= 设点P 的坐标为),(y x ,则
消去参数k 得0422=-+y y x …③
当直线l 的斜率不存在时,B A ,的中点坐标为原点)0,0(,也满足方程③, 所以点P 的轨迹方程为0422=-+y y x 。

法二:设点P 的坐标为),(y x ,因),(11y x A ,),(22y x B 在椭圆上,所以 ⎪⎪⎩
⎪⎪⎨⎧=+=+141422222121y x y x ④—⑤得:0)(4
122212
221=-+-y y x x 所以0))((41))((21212121=-++-+y y y y x x x x 当21x x ≠时,有0)(412
1212121=--+++x x y y y y x x …⑥ 并且⎪⎪⎪⎩
⎪⎪⎪⎨⎧--=-+=+=21212121122x x y y x y y y y x x x …⑦ 将⑦代入⑥并整理得042
2=-+y y x …⑧
① ② ④ ⑤
当21x x =时,点B A ,的坐标分别为)2,0(、)2,0(-,
这时点P 的坐标为)0,0(,也满足⑧,所以点P 的轨迹方程为14
1
)21(1612
2
=-+y x 。

(2)由点P 的轨迹方程知1612≤x ,即4
141≤≤-x 所以222)21()21(||-+-=y x 22441)21(x x -+-=12
7)61(32++-=x , 故当41=x 时,||取得最小值,最小值为41; 故当6
1-=x 时,||NP 取得最小值,最小值为621;。

相关文档
最新文档