一元二次方程的解法综合练习题及答案
(完整版)一元二次方程解法及其经典练习题
一元二次方程解法及其经典练习题方法一:直接开平方法(依据平方根的定义)平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式一、 用直接开平方法解下列一元二次方程。
1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22=--x方法二:配方法解一元二次方程1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。
2. 配方法解一元二次方程的步骤:(1) (2)(3) 4) (5)二、用配方法解下列一元二次方程。
1、.0662=--y y2、x x 4232=- 39642=-x x 、4、0542=--x x5、01322=-+x x6、07232=-+x x方法三:公式法1.定义:利用求根公式解一元二次方程的方法叫做公式法2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0)解:二次项系数化为1,得 ,移项 ,得 ,配方, 得 ,方程左边写成平方式 ,∵a ≠0,∴4a 2 0,有以下三种情况:(1)当b 2-4ac>0时,=1x , =2x(2)当b 2-4ac=0时,==21x x 。
(3)b 2-4ac<0时,方程根的情况为 。
3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因(1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。
当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根;当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根;当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。
完整版)一元二次方程100道计算题练习(附答案)
完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。
为了方便,我们可以将这些方程按照不同的方法分类。
一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。
根据不同的题目,我们可以选择不同的方法来解决问题。
例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。
将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。
将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。
一元二次方程练习题-含答案(解法20题-题海111题)
一元二次方程练习题-含答案(解法20题-题海111题)经典解法20题(1)(3x+1)^2=7(2)9x^2-24x+16=11(3) (x+3)(x-6)=-8(4) 2x^2+3x=0(5) 6x^2+5x-50=0 (选学)(6)x^2-4x+4=0 (选学)(7)(x-2)^2=4(2x+3)^2(8)y^2+2√2y-4=0(9)(x+1)^2-3(x+1)+2=0(10)x^2+2ax-3a^2=0(a为常数)海量111题1)x^2-9x+8=0(2)x^2+6x-27=0(3)x^2-2x-80=0(4)x^2+10x-200=0(5)x^2-20x+96=0(6)x^2+23x+76=0(7)x^2-25x+154=0(8)x^2-12x-108=0(9)x^2+4x-252=0(10)x^2-11x-102=0(11)x^2+15x-54=0(12)x^2+11x+18=0(13)x^2-9x+20=0(14)x^2+19x+90=0(15)x^2-25x+156=0(16)x^2-22x+57=0(17)x^2-5x-176=0(18)x^2-26x+133=0(19)x^2+10x-11=0(20)x^2-3x-304=0(22)x^2+13x-48=0(23)x^2+5x-176=0(24)x^2+28x+171=0(25)x^2+14x+45=0(26)x^2-9x-136=0(27)x^2-15x-76=0(28)x^2+23x+126=0(29)x^2+9x-70=0(30)x^2-1x-56=0(31)x^2+7x-60=0(32)x^2+10x-39=0(33)x^2+19x+34=0(34)x^2-6x-160=0(35)x^2-6x-55=0(36)x^2-7x-144=0(37)x^2+20x+51=0(38)x^2-9x+14=0(39)x^2-29x+208=0(40)x^2+19x-20=0(41)x^2-13x-48=0(42)x^2+10x+24=0(44)x^2-8x-209=0(45)x^2+23x+90=0(46)x^2+7x+6=0(47)x^2+16x+28=0(48)x^2+5x-50=0(49)x^2+13x-14=0(50)x^2-23x+102=0(51)x^2+5x-176=0(52)x^2-8x-20=0(53)x^2-16x+39=0(54)x^2+32x+240=0(55)x^2+34x+288=0(56)x^2+22x+105=0(57)x^2+19x-20=0(58)x^2-7x+6=0(59)x^2+4x-221=0(60)x^2+6x-91=0(61)x^2+8x+12=0(62)x^2+7x-120=0(63)x^2-18x+17=0(64)x^2+7x-170=0(66)x^2+13x+12=0(67)x^2+24x+119=0(68)x^2+11x-42=0(69)x^20x-289=0(70)x^2+13x+30=0(71)x^2-24x+140=0(72)x^2+4x-60=0(73)x^2+27x+170=0(74)x^2+27x+152=0(75)x^2-2x-99=0(76)x^2+12x+11=0(77)x^2+17x+70=0(78)x^2+20x+19=0(79)x^2-2x-168=0(80)x^2-13x+30=0(81)x^2-10x-119=0(82)x^2+16x-17=0(83)x^2-1x-20=0(84)x^2-2x-288=0(85)x^2-20x+64=0(86)x^2+22x+105=0(88)x^2-4x-285=0(89)x^2+26x+133=0(90)x^2-17x+16=0(91)x^2+3x-4=0(92)x^2-14x+48=0(93)x^2-12x-133=0(94)x^2+5x+4=0(95)x^2+6x-91=0(96)x^2+3x-4=0(97)x^2-13x+12=0(98)x^2+7x-44=0(99)x^2-6x-7=0 (100)x^2-9x-90=0 (101)x^2+17x+72=0 (102)x^2+13x-14=0 (103)x^2+9x-36=0 (104)x^2-9x-90=0 (105)x^2+14x+13=0 (106)x^2-16x+63=0 (107)x^2-15x+44=0 (108)x^2+2x-168=0(110)x^2-6x-55=0 (111)x^2+18x+32=0答案(1)(3x+1)^2=7解:(3x+1)^2=7 ∴(3x+1)^2=7 ∴3x+1=±√7(注意不要丢解) ∴x= (±√7-1)/3(2)9x^2-24x+16=11解:9x^2-24x+16=11 ∴(3x-4)^2=11 ∴3x-4=±√11 ∴x= (±√11+4)/3 ∴原方程的解为x1=(√11+4)/3 x2=(-√11+4)/3(3) (x+3)(x-6)=-8解:(x+3)(x-6)=-8 化简整理得x^2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。
一元二次方程解法及其配套练习答案
一元二次方程解法及其配套练习一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式ax 2+bx+c=0(a ≠0).这种形式叫做一元二次方程的一般形式. 解法一 ——直接开方法适用范围:可解部分一元二次方程例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 解:(2)由已知,得:(x+3)2=2 直接开平方,得:x+3=± 即x+3=,x+3=-所以,方程的两根x 1=-3+,x 2=-3-例2.市政府计划2年内将人均住房面积由现在的10m 2提高到,求每年人均住房面积增长率.解:设每年人均住房面积增长率为x , 则:10(1+x )2= (1+x )2=直接开平方,得1+x=± 即1+x=,1+x=所以,方程的两根是x 1==20%,x 2=因为每年人均住房面积的增长率应为正的,因此,x 2=应舍去. 所以,每年人均住房面积增长率应为20%.例3. 如图,在△ABC 中,∠B=90°,点P 从点B 开始,沿AB 边向点B 以1cm/s•的速度移动,点Q 从点B 开始,沿BC 边向点C 以2cm/s 的速度移动,如果AB=6cm ,BC=12cm ,P 、Q 都从B 点同时出发,几秒后△PBQ 的面积等于8cm 2? 解: 设x 秒后△PBQ 的面积等于8cm 2 则PB=x ,BQ=2x依题意,得:x ·2x=8 x 2=8 根据平方根的意义,得x=±2 即x 1=2,x 2=-2可以验证,2和-2都是方程x ·2x=8的两根,但是移动时间不能是负值.所以2秒后△PBQ 的面积等于8cm 2.例4.某公司一月份营业额为1万元,第一季度总营业额为万元,求该公司二、三月份营业额平均增长率是多少? 分析:设该公司二、三月份营业额平均增长率为x ,•那么二月份的营业额就应该是(1+x ),三月份的营业额是在二月份的基础上再增长的,应是(1+x )2. 解:设该公司二、三月份营业额平均增长率为x . 那么1+(1+x )+(1+x )2=把(1+x )当成一个数,配方得: (1+x+)2=,即(x+)2=2.56 x+=±,即x+=,x+= 方程的根为x 1=10%,x 2= 因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.归纳小结:共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.•我们把这种思想称为“降次转化思想”.由应用直接开平方法解形如x2=p(p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.若p<0则方程无解配套练习题一、选择题1.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-22.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根3.用配方法解方程x2-x+1=0正确的解法是().A.(x-)2=,x=± B.(x-)2=-,原方程无解C.(x-)2=,x1=+,x2= D.(x-)2=1,x1=,x2=-二、填空题1.若8x2-16=0,则x的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.3.如果a、b为实数,满足+b2-12b+36=0,那么ab的值是_______.三、综合提高题1.解关于x的方程(x+m)2=n.2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),•另三边用木栏围成,木栏长40m.(1)鸡场的面积能达到180m2吗?能达到200m吗?(2)鸡场的面积能达到210m2吗?3.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,•并说明你制作的理由吗?解法二——配方法适用范围:可解全部一元二次方程引例:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?列出方程化简后得:x2+6x-16=0x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→ x2+6x+32=16+9左边写成平方形式→(x+3)2=25 降次→x+3=±5 即 x+3=5或x+3=-5解一次方程→x1=2,x2= -8可以验证:x1=2,x2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.配方法解一元二次方程的一般步骤:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.用配方法解一元二次方程小口诀二次系数化为一常数要往右边移一次系数一半方两边加上最相当例1.用配方法解下列关于x的方程(1)x2-8x+1=0 (2)x2-2x-=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略例2.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B•两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,•几秒后△PCQ•的面积为Rt△ACB 面积的一半.分析:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.•根据已知列出等式.解:设x秒后△PCQ的面积为Rt△ACB面积的一半.根据题意,得:(8-x)(6-x)=××8×6整理,得:x2-14x+24=0(x-7)2=25即x1=12,x2=2x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.所以2秒后△PCQ的面积为Rt△ACB面积的一半.例3.解下列方程(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.解:略例4.用配方法解方程(6x+7)2(3x+4)(x+1)=6分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4=(6x+7)+,x+1=(6x+7)-,因此,方程就转化为y•的方程,像这样的转化,我们把它称为换元法.解:设6x+7=y则3x+4=y+,x+1=y-依题意,得:y2(y+)(y-)=6去分母,得:y2(y+1)(y-1)=72y2(y2-1)=72, y4-y2=72(y2-)2=y2-=±y2=9或y2=-8(舍)∴y=±3当y=3时,6x+7=3 6x=-4 x=-当y=-3时,6x+7=-3 6x=-10 x=-所以,原方程的根为x1=-,x2=-例5. 求证:无论y取何值时,代数式-3 y2+8y-6恒小于0.解:略配套练习题一、选择题1.配方法解方程2x2-x-2=0应把它先变形为().A.(x-)2= B.(x-)2=0C.(x-)2= D.(x-)2=2.下列方程中,一定有实数解的是().A.x2+1=0 B.(2x+1)2=0 C.(2x+1)2+3=0 D.(x-a)2=a3.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是().A.1 B.2 C.-1 D.-24.将二次三项式x2-4x+1配方后得().A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-35.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1C.x2+8x+42=1 D.x2-4x+4=-116.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于(). A.1 B.-1 C.1或9 D.-1或9二、填空题1.方程x2+4x-5=0的解是________.2.代数式的值为0,则x的值为________.3.已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为_______,所以求出z的值即为x+y的值,所以x+y的值为______.4.如果x2+4x-5=0,则x=_______.5.无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_______数.6.如果16(x-y)2+40(x-y)+25=0,那么x与y的关系是________.三、综合提高题1.用配方法解方程.(1)9y2-18y-4=0 (2)x2+3=2x2.已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,求这个三角形的周长. 3.如果x2-4x+y2+6y++13=0,求(xy)z的值.4.新华商场销售某种冰箱,每台进货价为2500•元,•市场调研表明:•当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元?5.已知:x2+4x+y2-6y+13=0,求的值.6.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售出2件.①若商场平均每天赢利1200元,每件衬衫应降价多少元?②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案.解法三——公式法适用范围:可解全部一元二次方程首先,要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根1.当Δ=b^2-4ac<0时 x无实数根(初中)2.当Δ=b^2-4ac=0时 x有两个相同的实数根即x1=x23.当Δ=b^2-4ac>0时 x有两个不相同的实数根当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a来求得方程的根求根公式的推导用配方法解方程(1)ax2-7x+3 =0 (2)a x2+bx+3=0(3)如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=,x2=(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax2+bx=-c二次项系数化为1,得x2+x=-配方,得:x2+x+()2=-+()2即(x+)2=∵4a2>0,4a2>0, 当b2-4ac≥0时≥0∴(x+)2=()2直接开平方,得:x+=±即x=∴x1=,x2=由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a、b、c代入式子x=就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。
一元二次方程的解法综合练习题及答案
一元二次方程的解法综合练习题及答案一元二次方程阶段复一元二次方程是指形如ax²+bx+c=0的方程,其中a、b、c 为已知数,且a≠0.在下列方程中,一元二次方程的个数是(B)。
①3x²+7=0②ax²+bx+c=0③(x-2)(x+5)=x²-1④3x²-5=0A.1个B.2个C.3个D.4个一元二次方程的根的判别一、选择题1.一元二次方程x²-ax+1=0的两实数根相等,则a的值为(D)。
A.a=0B.a=2或a=-2C.a=2D.a=2或a=02.已知k≠1,一元二次方程(k-1)x²+kx+1=0有根,则k 的取值范围是(C)。
A.k≠2B.k>2XXX<2且k≠1D.k为一切实数二、填空题1.已知方程x²+px+q=0有两个相等的实数,则p与q的关系是(p²=4q)。
2.不解方程,判定2x²-3=4x的根的情况是(二个相等实根)。
3.已知b≠0,不解方程,试判定关于x的一元二次方程x²-(2a+b)x+(a+ab-2b²)=0的根的情况是(当且仅当a+2b=0时有两个相等的实数根)。
三、综合提高题不解方程,判别关于x的方程x²-2kx+(2k-1)=0的根的情况。
一元二次方程的解法专题训练1、因式分解法①移项:使方程右边为0.②因式分解:将方程左边因式分解;适用能因式分解的情况。
③由A∙B=0,则A=0或B=0,解两个一元一次方程。
2、开平方法x²=a(a≥0)适用无一次项的情况。
x±√a=0,解两个一元一次方程。
3、配方法①移项:左边只留二次项和一次项,右边为常数项(移项要变号)。
②同除:方程两边同除二次项系数(每项都要除)。
③配方:方程两边加上一次项系数一半的平方。
④开平方:注意别忘根号和正负。
⑤解方程:解两个一元一次方程。
一元二次方程的解法练习题(带答案))
【答案】( 1 ) ① ②
(2) (3)
【解析】( 1 ) ( 2 ) 方程 ∴
. . . .
的解为
, .
6
( 3 ) 解方程
得
∴
【标注】【知识点】算式找规律
, .
四、 因式分解法
1. 用因式分解法解方程:
(1)
.
(2)
.
(3)
.
(4)
.
【答案】( 1 ) (2) (3) (4)
,
.
,
.
,
.
,
.
【解析】( 1 ) (2) (3) (4)
3. 阅读材料,解答问题.
阅读材料:为解方程
,我们可以将 视为一个整体,然后设
,则
,原方
程化为
.解得
,
.当 时,
,
∴
;当 时,
,∴
.
∴原方程的解为
,
,
,
.
解答问题:请你仔细阅读上述材料,深刻领会解题过程中所包含的数学思想和方法,然后解方程
.
【答案】
,
.
【解析】 设
,则原方程化为
.
解这个方程,得
,.
当
, ,
. .
【解析】( 1 ) (2)
, ,
. .
【标注】【知识点】公式法求一元二次方程的根
2. 公式法解方程:
(1)
.
(2)
.
(3)
.
【答案】( 1 ) (2) (3)
,
.
,
.
,
.
【标注】【知识点】公式法求一元二次方程的根
3. 在实数范围内因式分解:
初中数学一元二次方程解法练习题(附答案)
初中数学一元二次方程解法练习题 一、单选题1.方程230x -=的根是( )D.3B.2112y ⎛⎫-= ⎪⎝⎭D.21324y ⎛⎫-= ⎪⎝⎭3.用配方法解下列方程,其中应在方程的左右两边同时加上4的是( )A.225x x -=B.245x x +=C.225x x +=D.2245x x -=4.若一元二次方程2x m =有解则m 的取值为( )A.正数B.非负数C.一切实数D.零5.用直接降次的方法解方程22(21)x x -=,做法正确的是( )A.21x x -=B.21x x -=-C.21x x -=±D.212x x -=±6.用配方法解下列方程时,配方正确的是( )A.方程2650x x --=,可化为2(3)4x -=B.方程2220200y y --=,可化为2(1)2020y -=C.方程2890a a ++=,可化为2(4)25a +=D.方程22670x x --=,可化为2323()24x -= 7.若226x x m ++是一个完全平方式,则m 的值是( )A.3B.3-C.3±D.以上都不对8.一元二次方程式2848x x -=可表示成2()48x a b -=+的形式,其中,a b 为整数,求a b +之值为何( )A.20B.12C.12-D.20-9.将代数式245a a +-变形,结果正确的是( )A.2(2)1a +-B.2(2)5a +-C.2(2)4a ++D.2(2)9a +- 二、解答题10.若,,a b c 是ABC △的三边长,且满足2226810500a b c a b c ++---+=.(1)求,,a b c 的值;(2)请判断ABC △的形状.12.小明设计了一个魔术盒,当任意实数对(,)a b 进入其中时,会得到一个新的实数223a b -+.若13.一元二次方程2(6)16x +=可转化为两个一元一次方程,其中一个一元一次方程是64x +=,参考答案1.答案:C解析:230x -=2.答案:B3.答案:B解析:因为方程245x x +=的二次项系数是1,一次项系数4,所以方程两边同时加上一次项系数一半的平方4.故选B.4.答案:B解析:当0m ≥时,一元二次方程2x m =有解.故选B.5.答案:C解析:一元二次方程22(21)x x -=,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即开方得21x x -=,故选C 6.答案:D解析:A 项原式可化为2(3)14x -=;B 项原式可化为2(1)2021y -=;C 项原式可化为2(4)7a +=;D 项正确.故选D.7.答案:C解析:22669x x m x x ++=++29,3m m ∴==±8.答案:A解析:2848x x -=表示成2()48x a b -=+的形式为2(4)64x -=4,16a b ∴==20a b ∴+=,故选A.9.答案:D解析:22245449(2)9a a a a a +-=++-=+-10.答案:(1)2226810500a b c a b c ++---+=,222(69)(816)(1025)0a a b b c c ∴-++-++-+=.222(3)(4)(5)0a b c ∴-+-+-=.222(3)0,(4)0,(5)0a b c -≥-≥-≥,30,40,50a b c ∴-=-=-=,3,4,5a b c ∴===.(2)222534=+,222c a b ∴=+,ABC ∴△是直角三角形.解析:11.答案:1,4- 解析:232x x -=,223x x ∴-=,则22131x x -+=+,即2(1)4x -=,14m n ∴=-=,12.答案:2解析:根据题意得22(2)31x x --+=-,整理得22440,(2)0x x x ++=+=,所以122x x ==-.13.答案:64x +=- 解析:2(6)16x +=,64x ∴+=或64x +=-, ∴另一个一元一次方程是64x +=-14.答案:1233x x ==-, 解析:22909x x -=∴=,,解得1233x x ==-,.。
一元二次方程50题 参考答案与试题解析
一元二次方程参考答案与试题解析一.解答题(共50小题)1.【分析】方程变形后,开方即可求出解.【解答】解:(2x﹣1)2﹣121=0,(2x﹣1)2=121,2x﹣1=±11,2x=±11+1.∴x1=6,x2=﹣5.【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握平方根定义是解本题的关键.2.【分析】根据直接开平方法可以解答此方程.【解答】解:∵(x﹣2)2﹣9=0,∴(x﹣2)2=9,∴x﹣2=±3,∴x﹣2=3或x﹣2=﹣3,解得,x1=5,x2=﹣1.【点评】本题考查解一元二次方程﹣直接开平方法,解答本题的关键是明确解一元二次方程的方法.3.【分析】(1)利用直接开平方法求解可得;(2)先整理为一般式,再利用因式分解法求解可得.【解答】解:(1)∵4(x﹣5)2=16,∴(x﹣5)2=4,∴x﹣5=2或x﹣5=﹣2,解得x1=7,x2=3;(2)将方程整理为一般式,得:x2+2x﹣8=0,∴(x+4)(x﹣2)=0,则x+4=0或x﹣2=0,解得x1=﹣4,x2=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.4.【分析】利用直接开平方法求解可得.【解答】解:∵(x﹣1)2=3,∴x﹣1=±,解得:,.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.5.【分析】首先两边直接开平方可得2x﹣3=±5,再解一元一次方程即可.【解答】解:两边直接开平方得:2x﹣3=±5,则2x﹣3=5,2x﹣3=﹣5,故x=4,x=﹣1.【点评】此题主要考查了直接开平方法解一元一次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.6.【分析】先两边开方得到2x﹣1=±(3﹣x),然后解两个一次方程即可.【解答】解:2x﹣1=±(3﹣x),2x﹣1=3﹣x或2x﹣1=﹣3+x,所以x1=,x2=﹣2.【点评】本题考查了解一元二次方程﹣直接开平方的方法:形如x2=p或(nx+m)2=p (p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.7.【分析】(1)利用直接开平方法求解可得;(2)先将方程整理为一般式,再利用因式分解法求解可得.【解答】解:(1)∵121x2﹣25=0,∴121x2=25,则x2=,∴x1=,x2=﹣;(2)将方程整理为一般式得x2+2x﹣3=0,∴(x﹣1)(x+3)=0,则x﹣1=0或x+3=0,解得x1=1,x2=﹣3.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.8.【分析】先把给出的方程进行整理,再利用直接开方法求出解即可.【解答】解:(y+2)2﹣6=0,(y+2)2=12,y+2=±2,y1=2﹣2,y2=﹣2﹣2.【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握各种解法是解本题的关键.9.【分析】移项后利用直接开平方法求解可得.【解答】解:∵y2﹣4=0,∴y2=4,则y1=2,y2=﹣2.【点评】本题主要考查解一元二次方程﹣直接开平方法,形如x2=p或(nx+m)2=p(p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.10.【分析】(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)(x+1)2=5,x+1=±,解得:x1=﹣1+,x2=﹣1﹣;(2)去分母得:3﹣(x+2)(1﹣x)=x2﹣4,整理得:3+x2+x﹣2=x2﹣4,即x=﹣5,经检验:x=﹣5是原方程的根.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.11.【分析】(1)利用直接开平方法解方程;(2)先去分母,把分式方程化为3+x﹣5(x﹣1)=﹣2x,然后解整式方程后进行检验确定原方程的解.【解答】解:(1)x+1=±2,所以x1=1,x2=﹣3;(2)解方程两边同乘(x﹣1)得3+x﹣5(x﹣1)=﹣2x,解这个方程得x=4.检验:当x=4时,x﹣1≠0,所以x=4是原方程的解.【点评】本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.也考查了解分式方程.12.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程利用完全平方公式变形,开方即可求出解.【解答】解:(1)两边都乘以(x+3)(x﹣1),得:(x﹣1)2﹣2(x+3)=(x﹣1)(x+3),整理得:x2﹣2x+1﹣2x﹣6=x2+2x﹣3解得,x=﹣,检验:当x=﹣时,(x+3)(x﹣1)≠0,所以,原分式方程的解为x=﹣;(2)方程两边同除以2,变形得x2﹣2x=,配方,得x2﹣2x+1=+1,即(x﹣1)2=,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题考查了解分式方程,以及解一元二次方程,熟练掌握运算方法是解本题的关键.13.【分析】(1)先把各二次根式化为最简二次根式,然后进行二次根式的乘法运算即可;(2)利用配方法得到(x﹣2)2=3,然后利用直接开平方法解方程.【解答】解:(1)原式=4﹣2+×3=2+;(2)x2﹣4x=﹣1,x2﹣4x+4=3,(x﹣2)2=3,x﹣2=±,所以x1=2+,x2=2﹣.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了二次根式的混合运算.14.【分析】(1)方程利用配方法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程整理得:x2+4x=1,配方得:x2+4x+4=5,即(x+2)2=5,开方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣;(2)去分母得:2x2﹣x+5=2x2﹣10x,解得:x=﹣,经检验x=﹣是分式方程的解.【点评】此题考查了解一元二次方程﹣配方法,以及解分式方程,熟练掌握各自的解法是解本题的关键.15.【分析】(1)方程利用直接开平方法求出解即可;(2)方程利用配方法求出解即可.【解答】解:(1)方程整理得:x2=9,开方得:x=±3,解得:x1=3,x2=﹣3;(2)方程整理得:x2﹣4x=1,配方得:x2﹣4x+4=5,即(x﹣2)2=5,开方得:x﹣2=±,解得:x1=2+,x2=2﹣.【点评】此题考查了解一元二次方程﹣配方法,以及直接开平方法,熟练掌握各种解法是解本题的关键.16.【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,则x2﹣2x+1=1+1,即(x﹣1)2=2,∴x﹣1=,∴x=1,即x1=1+,x2=1﹣.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.17.【分析】首先展开化为x2﹣6x+9=0,再配方后开方计算即可求解.【解答】解:(x﹣4)(x﹣2)+1=0,方程化为x2﹣6x+9=0,(x﹣3)2=0,解得x1=x2=3.【点评】本题考查了解一元二次方程﹣﹣配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.18.【分析】(1)方程利用配方法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程整理得:x2﹣6x=﹣4,配方得:x2﹣6x+9=5,即(x﹣3)2=5,开方得:x﹣3=±,解得:x1=3+,x2=3﹣;(2)去分母得:5x+10=6x﹣3,解得:x=13,经检验x=13是分式方程的解.【点评】此题考查了解一元二次方程﹣配方法,以及解分式方程,熟练掌握完全平方公式是解本题的关键.19.【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得.【解答】解:∵x2﹣8x+11=0,∴x2﹣8x=﹣11,则x2﹣8x+16=﹣11+16,即(x﹣4)2=5,∴x﹣4=±,∴x=4±.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.【分析】(1)利用配方法求解可得;(2)根据解分式方程的步骤依次计算可得.【解答】解:(1)∵x2﹣8x=﹣1,∴x2﹣8x+16=﹣1+16,即(x﹣4)2=15,则x﹣4=±,∴x=4;(2)两边都乘以x﹣2,得:3+1﹣x=x﹣2,解得x=3,经检验x=3是原分式方程的解.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.【分析】(1)利用解一元二次方程的方法﹣直接开平方法解方程即可;(1)先移项得x2﹣4x=3,再把方程两边加上4得到x2﹣4x+4=3+4,即(x﹣2)2=7,然后利用直接开平方法求解;【解答】解:(1)(2x+3)2=9,∴2x+3=±3,∴2x+3=3或2x+3=﹣3,∴x1=0,x2=﹣3;(2)x2﹣4x﹣3=0,移项得,x2﹣4x=3,方程两边加上4得,x2﹣4x+4=7,配方得,(x﹣2)2=7,∴x﹣2=±,∴x1=2+,x2=2﹣.【点评】本题考查的是一元二次方程的解法,掌握配方法、因式分解法、公式法解一元二次方程的一般步骤是解题的关键.22.【分析】(1)利用配方法求解可得;(2)整理为一般式,再利用因式分解法求解可得.【解答】解:(1)∵x2﹣2x=1,∴x2﹣2x+1=1+1,即(x﹣1)2=2,则x﹣1=±,∴x=1;(2)方程整理为一般式,得:x2﹣4x﹣12=0,∵(x+2)(x﹣6)=0,∴x+2=0或x﹣6=0,解得x=﹣2或x=6.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.23.【分析】利用配方法求解可得.【解答】解:∵2x2﹣4x=8,∴x2﹣2x=4,则x2﹣2x+1=4+1,即(x﹣1)2=5,∴x﹣1=,则x1=+1,x2=+1.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.24.【分析】方程变形后,利用配方法求出解即可.【解答】解:方程变形得:x2﹣4x=5,即x2﹣4x+4=9,变形得:(x﹣2)2=9,开方得:x﹣2=3或x﹣2=﹣3,解得:x1=5,x2=﹣1.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.25.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2+2x=1,配方得:x2+2x+1=2,即(x+1)2=2,开方得:x+1=±,解得:x1=﹣1+,x2=﹣1﹣.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.26.【分析】方程移项后,二次项系数化为1,两个加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.【解答】解:方程移项得:3x2﹣6x=﹣1,即x2﹣2x=﹣,配方得:(x﹣1)2=,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.27.【分析】把常数项2移项后,应该在左右两边同时加上一次项系数﹣5的一半的平方.【解答】解:把方程x2﹣5x+2=0的常数项移到等号的右边,得x2﹣5x=﹣2,方程两边同时加上一次项系数一半的平方,得x2﹣5x+(﹣)2=﹣2+(﹣)2,配方,得(x﹣)2=.开方,得x﹣=±,解得x1=,x2=.【点评】本题考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.28.【分析】先进行移项,然后系数化1,再进行配方,即可求出答案.【解答】解:移项,得2x2﹣3x=﹣1,二次项系数化为1,得x2﹣x=﹣,配方x2﹣x+()2=﹣+()2,(x﹣)2=,由此可得x ﹣=,x 1=1,x 2=.【点评】本题考查了解一元二次方程﹣配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.29.【分析】配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:配方得x 2﹣4x +4=1+4,即(x ﹣2)2=5,开方得x ﹣2=±,∴x 1=2+,x 2=2﹣.【点评】此题考查了配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x 2+px +q =0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax 2+bx +c =0型,方程两边同时除以二次项系数,即化成x 2+px +q =0,然后配方.30.【分析】配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:移项得x 2﹣4x =3,配方得x 2﹣4x +4=3+4,即(x ﹣2)2=,开方得x ﹣2=±,∴x 1=2+,x 2=2﹣.【点评】此题考查了配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x 2+px +q =0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax 2+bx +c =0型,方程两边同时除以二次项系数,即化成x 2+px +q =0,然后配方.31.【分析】先利用配方法将原式化为完全平方的形式,再用直接开平方法解答.【解答】解:原式可化为x2+4x+4﹣7=0即(x+2)2=7,开方得,x+2=±,x1=﹣2+;x2=﹣2﹣.【点评】本题考查了解一元二次方程﹣﹣配方法,熟悉完全平方公式是解题的关键.32.【分析】在本题中,把常数项﹣4移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:由原方程移项,得x2﹣2x=4,等式两边同时加上一次项系数一半的平方,得x2﹣2x+1=5,配方,得(x﹣1)2=5,∴x=1±,∴x1=1+,x2=1﹣.【点评】本题考查了一元二次方程的解法﹣﹣配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.33.【分析】解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.然后利用直接开平方法即可求解.【解答】解:2x2﹣4x﹣1=0x2﹣2x﹣=0x2﹣2x+1=+1(x﹣1)2=∴x1=1+,x2=1﹣.【点评】用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.34.【分析】先将已知方程转化为一般式,然后根据求根公式解答.【解答】解:由原方程,得x2+2x+2=0.这里a=1,b=2,c=2.∵△=b2﹣4ac=(2)2﹣4×1×2=0.∴x==﹣.即x1=x2=﹣.【点评】本题主要考查了解一元二次方程﹣公式法.注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b2﹣4ac≥0.35.【分析】整理后求出b2﹣4ac的值,再代入公式求出即可,也可以用因式分解法求解.【解答】解:方法一、整理得:x2+3x+2=0,b2﹣4ac=32﹣4×1×2=1,x=,x1=﹣1,x2=﹣2;方法二、整理得:x2+3x+2=0,(x+1)(x+2)=0,x+1=0,x+2=0,x1=﹣1,x2=﹣2.【点评】本题考查了解一元二次方程,能熟记公式是解此题的关键.36.【分析】(1)利用配方法求解可得;(2)利用公式法求解可得.【解答】解:(1)∵x2+2x=29,∴x2+2x+1=29+1,即(x+1)2=30,则x+1=±,∴x1=﹣1+,x2=﹣1﹣;(2)∵a=2,b=﹣,c=﹣1,∴△=(﹣)2﹣4×2×(﹣1)=10>0,则x=,即x1=,x2=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.37.【分析】首先找出a、b、c的值,计算根的判别式,进一步利用求根公式求得答案即可.【解答】解:x2+4x﹣5=0,∵a=1,b=4,c=﹣5,∴△=b2﹣4ac=42﹣4×1×(﹣5)=36,则x==,解得x1=﹣5,x2=1.【点评】此题考查用公式法解一元二次方程,掌握用公式法解方程的步骤与方法是解决问题的关键.38.【分析】(1)直接开平方法求解可得;(2)根据公式法求解可得.【解答】解:(1)(x﹣1)2=4,x﹣1=±2,解得x1=﹣1,x2=3;(2)x2﹣x﹣1=0,∵a=1,b=﹣,c=﹣1,∴△=3﹣4×1×(﹣1)=7>0,x=,解得x1=,x2=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.39.【分析】先进行整理,再根据公式法求解可得.【解答】解:x2﹣4=6(x+2).整理得x2﹣6x﹣16=0,∵a=1,b=﹣6,c=﹣16,∴△=36﹣4×1×(﹣16)=100>0,x==3±5,解得x1=﹣2,x2=8.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.40.【分析】(1)利用直接开平方法求解可得;(2)利用配方法求解可得.【解答】解:(1)方程两边除以2,得:(x﹣1)2=9,则x﹣1=3或x﹣1=﹣3,则x1=4,x2=﹣2;(2)原方程可整理为:x2﹣4x﹣1=0,∵a=1,b=﹣4,c=﹣1,∴△=(﹣4)2﹣4×1×(﹣1)=20>0,则x==2,解得:x1=2+,x2=2﹣.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.41.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵a=1,b=﹣4,c=﹣7,∴△=(﹣4)2﹣4×1×(﹣7)=44>0,则x==2,即x1=2+,x2=2﹣;(2)∵3x(2x+1)=2(2x+1),∴3x(2x+1)﹣2(2x+1)=0,则(2x+1)(3x﹣2)=0,∴2x+1=0或3x﹣2=0,解得x1=﹣,x2=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.42.【分析】(1)利用直接开平方法求解可得;(2)整理为一般式,再利用公式法求解可得.【解答】解:(1)∵(x﹣3)2﹣4=0,∴(x﹣3)2=4,则x﹣3=2或x﹣3=﹣2,解得x1=5,x2=1;(2)将方程整理为一般式,得:x2﹣3x﹣1=0,∵a=1,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×1×(﹣1)=13>0,则x=,即x1=,x2=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.43.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵a=1,b=﹣8,c=3,∴△=(﹣8)2﹣4×1×3=52>0,∴x==4,即x1=4+,x2=4﹣;(2)方程整理为一般式,得:2x2﹣7x=0,则x(2x﹣7)=0,∴x=0或2x﹣7=0,解得x1=0,x2=3.5.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.44.【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣2x﹣1=0,∴x2﹣2x=1,则x2﹣2x+1=1+1,即(x﹣1)2=2,∴x﹣1=,∴x=1;(2)∵3x(2x+3)=2(2x+3),∴3x(2x+3)﹣2(2x+3)=0,∴(2x+3)(3x﹣2)=0,则2x+3=0或3x﹣2=0,解得x=﹣或x=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.45.【分析】(1)直接利用配方法解方程得出答案;(2)直接利用提取公因式法解方程进而得出答案.【解答】解:(1)x2﹣6x=﹣7,则x2﹣6x+9=﹣7+9,故(x﹣3)2=2x﹣3=±,解得:x1=3+,x2=3﹣;(2)x(x﹣2)=6﹣3xx(x﹣2)﹣3(2﹣x)=0,(x﹣2)(x+3)=0,则x﹣2=0或x+3=0,解得:x1=2,x2=﹣3.【点评】此题主要考查了配方法以及因式分解法解方程,正确掌握解题方法是解题关键.46.【分析】(1)利用直接开平方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣9=0,∴x2=9,则x1=3,x2=﹣3;(2)∵x2﹣2x﹣3=0,∴(x+1)(x﹣3)=0,则x+1=0或x﹣3=0,解得x1=﹣1,x2=3.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.47.【分析】(1)先整理为一般式,再利用因式分解法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)将方程整理为一般式为5x2﹣4x﹣1=0,则(x﹣1)(5x+1)=0,∴x﹣1=0或5x+1=0,解得x1=1,x2=﹣0.2;(2)∵x(x﹣2)=3x﹣6,∴x(x﹣2)﹣3(x﹣2)=0,则(x﹣2)(x﹣3)=0,∴x﹣2=0或x﹣3=0,解得x1=2,x2=3.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.48.【分析】利用因式分解法或直接开平方法求解可得.【解答】解:方法一:∵(2x+3)2=(x﹣1)2,∴2x+3=x﹣1或2x+3=1﹣x,解得x1=﹣4,x2=﹣.方法二:∵(2x+3)2=(x﹣1)2,∴(2x+3)2﹣(x﹣1)2=0,则(2x+3+x﹣1)(2x+3﹣x+1)=0,∴3x+2=0或x+4=0,解得:x1=﹣4,x2=﹣.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.49.【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2+4x﹣8=0,∴x2+4x=8,则x2+4x+4=8+4,即(x+2)2=12,∴x+2=±2,∴x1=﹣2+2,x2=﹣2﹣2;(2)∵(x﹣3)2=5(x﹣3),∴(x﹣3)2﹣5(x﹣3)=0,则(x﹣3)(x﹣3﹣5)=0,∴x﹣3=0或x﹣8=0,解得x1=3,x2=8.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.50.【分析】(1)先把方程化为整式方程3(x+3)=5(x+1),再解整式方程,然后进行检验确定原方程的解;(2)先把方程化为整式方程5﹣2(x+1)=2x,再解整式方程,然后进行检验确定原方程的解.(3)先利用配方法得到(x﹣2)2=5,然后利用直接开平方法解方程;(4)先把方程化为一般式,然后利用因式分解法解方程.【解答】解:(1)去分母得3(x+3)=5(x+1),解得x=2,经检验,原方程的解为x=2;(2)去分母得5﹣2(x+1)=2x,解得x=,经检验,原方程的解为x=;(3)x2﹣4x+4=5,(x﹣2)2=5,x﹣2=±,所以x1=2+,x2=2﹣;(4)x2+x﹣6=0,(x+3)(x﹣2)=0,x+3=0或x﹣2=0,所以x1=﹣3,x2=2.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法解一元二次方程和解分式方程.。
一元二次方程练习题
一元二次方程解法专题练习题一用适当的方法或按要求解下列一元二次方程:1、x(x+4)=5(x+4)2、(x-2)2=3(x-2)3、x(x﹣1)=2(x+1)(1﹣x)4、2(x﹣3)2=﹣x(3﹣x)5、(2x﹣1)2=(3﹣x)26、3(x ﹣1)2=x(x﹣1)7、x2﹣6x﹣9=0(配方法) 8、3x2=2﹣5x(公式法) 9、x2+2x ﹣1=010、x2-4x+1=0 11、(x﹣1)2﹣2(x﹣1)=15. 12、﹣3x2+4x+1=0.13、2x2+3=7x; 14、(1-2x)2=x2-6x+9. 15、(x﹣1)(x﹣3)=8.16、3x2﹣6x+1=0(用配方法) 17、x(x+4)=8x+12 18、3 y2+4y-4=019、x2﹣2x=2x+1. 20、x(x﹣3)=4x+6. 21、2x2-4x-1=0.22、2x2-5x-3=0. 23、x2-2x-24=0. 24、x2﹣4x+2=025、(x+3)(x-1)=12二、解答题26、已知一元二次方程x2-11x+30=0 的两个解恰好分别是等腰△ABC的底边长和腰长,求△ABC底边上的高.27、已知关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根.28、已知m是方程x2+x-1=0的一个根,求代数式(m+1)2+(m+1)(m-1)的值.29、已知关于x的一元二次方程(a-1)x2-5x+4a-2=0的一个根为x=3.(1)求a的值及方程的另一个根;(2)如果一个等腰三角形(底和腰不相等)的三边长都是这个方程的根,求这个三角形的周长.30、先化简再计算:,其中x是一元二次方程x2﹣2x﹣2=0的正数根.31、先化简,再求值:,其中a是方程x2+4x-3=0的根.32、先化简,再求值:,其中m是方程2x2+4x-1=0的根.33、用配方法证明:(1)a2-a+1的值为正; (2)-9x2+8x-2的值小于0.34、(1)解方程:①x2-6x-4=0;②x2-12x+27=0.(2)直接写出方程(x2-6x-4)(x2-12x+27)=0的解:.35、现定义一种新运算:“※”,使得a※b=4ab(1)求4※7的值;(2)求x※x+2※x﹣2※4=0中x的值;(3)不论x是什么数,总有a※x=x,求a的值.36、阅读下面的例题,解方程(x﹣1)2﹣5|x﹣1|﹣6=0.解方程x2﹣|x|﹣2=0;解:原方程化为|x|2﹣|x|﹣2=0.令y=|x|,原方程化成y2﹣y﹣2=0解得:y1=2y2=﹣1当|x|=2,x=±2;当|x|=﹣1时(不合题意,舍去)∴原方程的解是x1=2,x2=﹣2.37、基本事实:“若ab=0,则a=0或b=0”.一元二次方程x2-x-2=0可通过因式分解化为(x-2)(x+1)=0,由基本事实得x-2=0或x+1=0,即方程的解为x=2或x=-1.(1)试利用上述基本事实,解方程:2x2-x=0:(2)若(x2+y2)(x2+y2-1)-2=0,求x2+y2的值.38、如图,在△ABC中,AB=10,点P从点A开始沿AC边向点C以2m/s的速度匀速移动,同时另一点Q由C点开始以3m/s的速度沿着CB匀速移动,几秒时,△PCQ的面积等于450m2?参考答案1、x(x+4)﹣5(x+4)=0,(x+4)(x﹣5)=0,x+4=0或x﹣5=0,所以x1=﹣4,x2=5.2、略;3、x(x﹣1)=2(x+1)(1﹣x),移项得:x(x﹣1)+2(x+1)(x﹣1)=0,因式分解得:(x﹣1)(x+2x+2)=0,x﹣1=0,或x+2x+2=0,解得:x1=1,x2=﹣.4、2(x﹣3)2﹣x(x﹣3)=0,(x﹣3)(2x﹣6﹣x)=0,x﹣3=0或2x﹣6﹣x=0,所以x1=3,x2=6.5、可用直接开平方6、3(x﹣1)2=x(x﹣1),3(x﹣1)2﹣x(x﹣1)=0,(x﹣1)[3(x﹣1)﹣x]=0,x﹣1=0,3(x﹣1)﹣x=0,x1=1,x2=.7、x2﹣6x+9﹣9=18,x2﹣6x+9=18,(x﹣3)2=18,x﹣3=±3,x 1=3+3,x2=3﹣3;8、∵a=3,b=5,c=﹣2,∵b2﹣4ac=52﹣4×3×(﹣2)=49>0,∴x==,∴x1=﹣2,x2=.9、x2+2x+1=2,(x+1)2=2,x+1=±,所以x 1=﹣1+,x2=﹣1﹣;10、略;11、解:(x﹣1)2﹣2(x﹣1)﹣15=0,[(x﹣1)﹣5][(x﹣1)+3]=0,(x﹣1)﹣5=0或(x﹣1)+3=0,所以x1=﹣6,x2=﹣2.12、﹣3x2+4x+1=0,3x2﹣4x﹣1=0,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,x=,x1=,x2=.13、x1=,x2=3.14、因式分解,得(1-2x)2=(x-3)2.开平方,得1-2x=x-3或1-2x=-(x-3).解得x1=,x2=-2.15、x2﹣4x﹣5=0,(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=﹣1.16、3x2﹣6x+1=0,3x2﹣6x=﹣1,x2﹣2x=﹣,x2﹣2x+1=﹣+1,(x﹣1)2=,x﹣1=,x1=1+,x2=1﹣;17、x1=-2,x2=6;18、19、原方程化为:x2﹣4x=1配方,得x2﹣4x+4=1+4整理,得(x﹣2)2=5∴x﹣2=,即x 1=2,x2=2.20、【解答】解:x2﹣7x﹣6=0,△=(﹣7)2﹣4×1×(﹣6)=73,x=,所以x1=,x2=.21、∵a=2,b=-4,c=-1,b2-4ac=(-4)2-4×2×(-1)=16+8=24,∴x==.∴x1=,x2=.22、x2-x=,x2-x+=.(x-)2=.x-=±.∴x1=3,x2=-.23、.移项,得x2-2x=24.配方,得x2-2x+1=24+1,即(x-1)2=25.开方,得x -1=±5.∴x1=6,x2=-4.24、方程整理得:x2﹣4x=﹣2,配方得:x2﹣4x+4=2,即(x﹣2)2=2,开方得:x﹣2=±,解得:x 1=2+,x2=2﹣;25、26、4或。
一元二次方程的解法综合练习题
一元二次方程的解法综合练习1、一元二次方程的解法分别有___________,____________,____________,____________。
2、一元二次方程的一般形式_______________,其解为_______________。
3、总结:(1)公式法求解步骤:把一元二次方程化成一般形式,然后计算判别式△=b 2-4ac 的值,当b 2-4ac≥0时,把各项系 数a, b, c 的值代入求根公式x=[-b ±√(b 2-4ac)]/(2a) , (b 2-4ac≥0)就可得到方程的根。
(2)配方法求解步骤①用配方法解方程ax 2+bx+c=0 (a≠0) ②先将常数c 移到方程右边:ax 2+bx=-c ③将二次项系数化为1:ac x a b x -=+2④方程两边分别加上一次项系数的一半的平方:222)2()2(aba c ab x a b x +-=++⑤方程左边成为一个完全平方式:2224ac4-)2ab a b x =+( ⑥当b 2-4ac≥0时,a 2ac 4-22b a b x ±=+可得:a2ac4-2b b x ±-=总结:方程有根的条件(3)直接开方法求解步骤用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为n m ±=x(4)因式分解法求解步骤 把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一 次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方 程的两个根。
这种解一元二次方程的方法叫做因式分解法。
4、方程的根与系数的关系: (1)(2)两根21x x 、的和与积的关系:5、十字相乘法分解因式:练习:1.利用直接开平方法解下列方程(1) 4(x-3)2=25 (2) 024)2x 3(2=-+2.利用因式分解法解下列方程(1) x 2 (2) 3(1)33x x x +=+3.利用配方法解下列方程 (1) 21302x x ++= (2)012632=--x x4.利用公式法解下列方程(1)322-=-x x (2)3x 2-5(2x+1)=05.选用适当的方法解下列方程(1) x (x +1)-5x =0 (2)5x 2 — 52=0(3)7x=4x 2+2 (4)22(21)9(3)x x +=-(5)2(x -3) 2=x 2-9 (6)(x +1) 2=4x(7)8)2(=+x x (8)()()0165852=+-+-x x(9)())3(21+=+x x x (10)(1-3y )2+2(3y -1)=01、公式法解方程:⑴2x2-8x+5=0 ⑵3x2+7x+1=0 ⑶x2-6x+7=0⑷x2+5x+1=0 ⑸4x2-9x+3=0 ⑹x2+9x+3=02、配方法解方程⑴3x2-4x-2=0 ⑵x2-6x=1 ⑶4x2-9x=-3⑷x2+9x=3 ⑸x2-5x=-1 ⑹6x2-8x+1=03、用直接开方法⑴(x-2)2=9 ⑵9x2-24x+16=11 ⑶4x2-12x=11⑷(x+4)2.+8=9 ⑸8x2=24 ⑹(2x-3)2=164、因式分解法⑴(x+2)2=3x+6 ⑵-2x 2+13x-15=0 ⑶2x 2+3x=0⑷(x+3)(x-6)=-8 ⑸4(x-3)2=x(x-3) ⑹x 2-3x-4=05、用适当方法计算1、052222=--x x 2、8452=-x x3、0152=+-x x4、()()2232-=-x x x5、272=-x x6、x 2+3x -4=0一元二次方程单元测试一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。
一元二次方程练习题及答案
一元二次方程练习题及答案一元二次方程是初中数学中的重要内容,也是高中数学中的基础知识。
掌握一元二次方程的解法对于学生来说至关重要。
本文将介绍一些一元二次方程的练习题及其答案,帮助读者更好地理解和掌握这一知识点。
一、基础练习题1. 解方程:x^2 - 5x + 6 = 0解答:首先,我们可以尝试因式分解来解这个方程。
将方程因式分解为(x - 2)(x - 3) = 0,得到两个解:x = 2和x = 3。
2. 解方程:2x^2 + 3x - 2 = 0解答:这个方程无法直接因式分解,我们可以使用求根公式来解。
根据求根公式x = (-b ± √(b^2 - 4ac)) / 2a,代入a = 2,b = 3,c = -2,得到两个解:x = 0.5和x = -2。
3. 解方程:3x^2 + 7x + 2 = 0解答:这个方程也无法直接因式分解,我们继续使用求根公式。
代入a = 3,b = 7,c = 2,得到两个解:x = -0.333和x = -2。
二、进阶练习题1. 解方程:4x^2 - 12x + 9 = 0解答:这个方程看起来可以因式分解,但是我们发现无法找到两个数相乘为9且相加为-12的情况。
因此,我们需要使用求根公式。
代入a = 4,b = -12,c = 9,得到两个解:x = 1.5和x = 1.5。
2. 解方程:x^2 + 4 = 4x解答:将方程移项得到x^2 - 4x + 4 = 0。
这个方程可以因式分解为(x - 2)^2 =0,得到一个解x = 2。
3. 解方程:2x^2 - 5x + 2 = 0解答:这个方程无法直接因式分解,我们使用求根公式。
代入a = 2,b = -5,c = 2,得到两个解:x = 0.5和x = 2。
三、挑战练习题1. 解方程:x^2 + 2x + 1 = 0解答:这个方程可以因式分解为(x + 1)^2 = 0,得到一个解x = -1。
2. 解方程:3x^2 + 2x + 1 = 0解答:这个方程无法直接因式分解,我们使用求根公式。
中考数学专题复习一元二次方程组的综合题附答案
中考数学专题复习一元二次方程组的综合题附答案一、一元二次方程1.李明准备进行如下操作实验,把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48 cm2,你认为他的说法正确吗?请说明理由.【答案】 (1) 李明应该把铁丝剪成12 cm和28 cm的两段;(2) 李明的说法正确,理由见解析.【解析】试题分析:(1)设剪成的较短的这段为xcm,较长的这段就为(40﹣x)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58cm2建立方程求出其解即可;(2)设剪成的较短的这段为mcm,较长的这段就为(40﹣m)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48cm2建立方程,如果方程有解就说明李明的说法错误,否则正确.试题解析:设其中一段的长度为cm,两个正方形面积之和为cm2,则,(其中),当时,,解这个方程,得,,∴应将之剪成12cm和28cm 的两段;(2)两正方形面积之和为48时,,,∵,∴该方程无实数解,也就是不可能使得两正方形面积之和为48cm2,李明的说法正确.考点:1.一元二次方程的应用;2.几何图形问题.2.解方程:(2x+1)2=2x+1.【答案】x=0或x=1 2 .【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.试题解析:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x(2x+1)=0,则x=0或2x+1=0,解得:x=0或x=﹣12.3.解方程:x 2-2x =2x +1.【答案】x 1=2,x 2=2 【解析】试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据求根公式2b x a-=求解即可.试题解析:方程化为x 2-4x -1=0. ∵b 2-4ac =(-4)2-4×1×(-1)=20,∴x =,∴x 1=2,x 2=24.已知关于x 的一元二次方程(x ﹣3)(x ﹣4)﹣m 2=0. (1)求证:对任意实数m ,方程总有2个不相等的实数根; (2)若方程的一个根是2,求m 的值及方程的另一个根.【答案】(1)证明见解析;(2)m 的值为,方程的另一个根是5. 【解析】 【分析】(1)先把方程化为一般式,利用根的判别式△=b 2-4ac 证明判断即可;(2)根据方程的根,利用代入法即可求解m 的值,然后还原方程求出另一个解即可. 【详解】 (1)证明:∵(x ﹣3)(x ﹣4)﹣m 2=0, ∴x 2﹣7x+12﹣m 2=0,∴△=(﹣7)2﹣4(12﹣m 2)=1+4m 2, ∵m 2≥0, ∴△>0,∴对任意实数m ,方程总有2个不相等的实数根; (2)解:∵方程的一个根是2, ∴4﹣14+12﹣m 2=0,解得m=±,∴原方程为x 2﹣7x+10=0,解得x=2或x=5,即m 的值为±,方程的另一个根是5.【点睛】此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.当△=b 2-4ac >0时,方程有两个不相等的实数根; 当△=b 2-4ac=0时,方程有两个相等的实数根;当△=b2-4ac<0时,方程没有实数根. 5.解方程:(3x+1)2=9x+3.【答案】x1=﹣13,x2=23.【解析】试题分析:利用因式分解法解一元二次方程即可.试题解析:方程整理得:(3x+1)2﹣3(3x+1)=0,分解因式得:(3x+1)(3x+1﹣3)=0,可得3x+1=0或3x﹣2=0,解得:x1=﹣13,x2=23.点睛:此题主要考查了一元二次方程的解法,解题关键是认真观察一元二次方程的特点,然后再从一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法中合理选择即可.6.∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m吨(或水费是按y=1.7x来计算的),五月份用水量超过m吨(或水费是按来计算的)则有151=1.7×80+(80-m)×即m2-80m+1500=0解得m1=30,m2=50.又∵四月份用水量为35吨,m1=30<35,∴m1=30舍去.∴m=50【解析】7.已知为正整数,二次方程的两根为,求下式的值:【答案】【解析】由韦达定理,有,.于是,对正整数,有原式=8.已知关于x 的一元二次方程()220x m x m -++=(m 为常数)(1)求证:不论m 为何值,方程总有两个不相等的实数根; (2)若方程有一个根是2,求m 的值及方程的另一个根. 【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0. 【解析】 【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根; (2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可. 【详解】 (1)证明:△=(m+2)2−4×1⋅m=m 2+4, ∵无论m 为何值时m 2≥0, ∴m 2+4≥4>0, 即△>0,所以无论m 为何值,方程总有两个不相等的实数根. (2)设方程的另一个根为t ,()220x m x m -++=根据题意得2+t=21m + ,2t=m , 解得t=0, 所以m=0,即m 的值为0,方程的另一个根为0. 【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.9.已知1x 、2x 是关于x 的方程222(1)50x m x m -+++=的两个不相等的实数根. (1)求实数m 的取值范围;(2)已知等腰ABC ∆的一边长为7,若1x 、2x 恰好是ABC ∆另外两边长,求这个三角形的周长.【答案】(1)m>2; (2)17 【解析】试题分析:(1)由根的判别式即可得;(2)由题意得出方程的另一根为7,将x =7代入求出x 的值,再根据三角形三边之间的关系判断即可得.试题解析:解:(1)由题意得△=4(m +1)2﹣4(m 2+5)=8m -16>0,解得:m >2;(2)由题意,∵x 1≠x 2时,∴只能取x 1=7或x 2=7,即7是方程的一个根,将x =7代入得:49﹣14(m +1)+m 2+5=0,解得:m =4或m =10.当m =4时,方程的另一个根为3,此时三角形三边分别为7、7、3,周长为17; 当m =10时,方程的另一个根为15,此时不能构成三角形; 故三角形的周长为17.点睛:本题主要考查判别式、三角形三边之间的关系,熟练掌握韦达定理是解题的关键.10.校园空地上有一面墙,长度为20m ,用长为32m 的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m 2的矩形花圃吗?若能,请举例说明;若不能,请说明理由. (2)若篱笆再增加4m ,围成的矩形花圃面积能达到170m 2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m ,围成的矩形花圃面积不能达到170m 2. 【解析】 【分析】(1)假设能,设AB 的长度为x 米,则BC 的长度为(32﹣2x )米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB 的长度为y 米,则BC 的长度为(36﹣2y )米,再根据矩形面积公式列方程,求得方程无解,即假设不成立. 【详解】(1)假设能,设AB 的长度为x 米,则BC 的长度为(32﹣2x )米, 根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.11.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.12.重庆市旅游文化商店自制了一款文化衫,每件成本价为20元,每天销售150件: (1)若要每天的利润不低于2250元,则销售单价至少为多少元?(2)为了回馈广大游客,同时也为了提高这种文化衫的认知度,商店决定在“五一”节当天开展促销活动,若销售单价在(1)中的最低销售价的基础上再降低m%,则日销售量可以在150件基础上增加m 件,结果当天的销售额达到5670元;要使销售量尽可能大,求出m 的值.【答案】(1)销售单价至少为35元;(2)m=16. 【解析】试题分析:(1)根据利润的公式列出方程,再求解即可; (2)销售价为原销售价×(1﹣m%),销售量为(150+m ),列出方程求解即可.试题解析:(1)设销售单价至少为x 元,根据题意列方程得,150(x ﹣20)=2250, 解得x=35,答:销售单价至少为35元;(2)由题意得:35×(1﹣m%)(150+m )=5670,150+m ﹣150×m%﹣m%×m=162,m ﹣m 2=12,60m ﹣3m 2=192, m 2﹣20m+64=0, m 1=4,m 2=16, ∵要使销售量尽可能大, ∴m=16.【考点】一元二次方程的应用;一元一次不等式的应用.13.已知:关于x 的一元二次方程221(1)204x m x m +++-=.(1)若此方程有两个实数根,求没m 的最小整数值; (2)若此方程的两个实数根为1x ,2x ,且满足22211221184x x x m x +=--,求m 的值. 【答案】(1)-4;(2)m=3 【解析】 【分析】(1)利用根的判别式的意义得到△≥0,然后解不等式得到m 的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到12(1)x x m +=-+,212124x x m =-,然后解关于m 的一元二次方程,即可确定m 的值. 【详解】解:(1)∵221(1)204x m x m +++-=有两个实数根,∴221(1)41(2)04m m ∆=+-⨯⨯-≥, ∴290m +≥, ∴92m ≥-; ∴m 的最小整数值为:4m =-;(2)由根与系数的关系得:12(1)x x m +=-+,212124x x m =-, 由22212121184x x x x m ++=-得: ()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭∴22150m m +-=, 解得:3m =或5m =-;∵92m ≥-, ∴3m =.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,则12bx x a +=-,12c x x a=.也考查了根的判别式.解题的关键是熟练掌握根与系数的关系和根的判别式.14.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售. 【解析】 【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折. 【详解】(1)设每千克茶叶应降价x 元.根据题意,得: (400﹣x ﹣240)(200+10x×40)=41600. 化简,得:x 2﹣10x +240=0.解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80%400⨯=. 答:该店应按原售价的8折出售. 【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.15.今年以来猪肉价格不断走高,引起了民众与区政府的高度关注,当市场猪肉的平均价格每 千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至 11月 10 日,猪排骨价格不断走高,11 月 10 日比年初价格上涨了 75%.今年 11 月 10 日某市 民于 A 超市购买 5 千克猪排骨花费 350 元. (1)A 超市 11 月排骨的进货价为年初排骨售价的32倍,按 11 月 10 日价格出售,平均一天能销售出 100 千克,超市统计发现:若排骨的售价每千克下降 1 元,其日销售量就增加 20千克,超市为了实现销售排骨每天有 1000 元的利润,为了尽可能让顾客优惠应该将排骨的 售价定位为每千克多少元?(2)11 月 11 日,区政府决定投入储备猪肉并规定排骨在 11 月 10 日售价的基础上下调 a %出售,A 超市按规定价出售一批储备排骨,该超市在非储备排骨的价格不变情况下,该天的两种猪排骨总销量比 11 月 10 日增加了 a %,且储备排骨的销量占总销量的57,两种排骨销售的总金额比 11 月 10 日提高了128a %,求 a 的值. 【答案】(1)售价为每千克65元;(2)a =35. 【解析】 【分析】(1)先根据题意计算出11月10的售价和11月的进货价,设每千克降价x 元,则每千克的利润为10-x 元,日销量为100+20x 千克,根据销量×单利润=总利润列出方程求解,并根据为了尽可能让顾客优惠,对所得的解筛选;(2)根据销售总金额=储备排骨销售单价×储备排骨销售数量+非储备排骨销售单价×非储备排骨销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论. 【详解】解:(1)11月10日的售价为350÷5=70元/千克 年初的售价为:350÷5÷175%=40元/千克, 11月的进货价为: 340602?元/千克设每千克降价x 元,则每千克的利润为70-60-x=10-x 元,日销量为100+20x 千克 则(10020)(10)1000x x +-=, 解得10x =,25x =因为为了尽可能让顾客优惠,所以降价5元,则售价为每千克65元. (2)根据题意可得52170(1%)100(1%)70100(1%)701001%7728a a a a ⎛⎫-++⨯+=⨯+ ⎪⎝⎭解得135a =,20a =(舍去) 所以a =35. 【点睛】本题考查一元二次方程的应用,(1)中理清销售量随着单价的变化而变化的数量关系是解题关键;(2)中在求解时有些难度,可先设令%a t =,解方程求出t 后再求a 的值.。
中考数学 一元二次方程 综合题含详细答案
【解析】
【分析】
分为两种情况:当x≥10时,原方程化为x2﹣x=0,当x<10时,原方程化为x2+x﹣20=0,分别求出方程的解即可.
【详解】
当x≥10时,原方程化为x2﹣x+10﹣10=0,解得x1=0(不合题意,舍去),x2=1(不合题意,舍去);
当x<10时,原方程化为x2+x﹣20=0,解得x3=4,x4=﹣5,
【详解】
解: 依题意得 ,
,
又 ,
的取值范围是 且 ;
解:不存在符合条件的实数 ,使方程的两个实数根之和等于两实数根之积的算术平方根,
理由是:设方程 的两根分别为 , ,
由根与系数的关系有: ,
又因为方程的两个实数根之和等于两实数根之积的算术平方根,
,
,
由 知, ,且 ,
不符合题意,
因此不存在符合条件的实数 ,使方程的两个实数根之和等于两实数根之积的算术平方根.
(2)如图③,在3×1×1个小立方块组成的长方体中,棱AB上共有1+2+3= =6条线段,棱AC,AD上分别只有1条线段,则图中长方体的个数为6×1×1=6.
(3)依此类推,如图④,在a×1×1个小立方块组成的长方体中,棱AB上共有1+2+…+a= 线段,棱AC,AD上分别只有1条线段,则图中长方体的个数为______.
【点睛】
本题重点考查了一元二次方程的根的判别式和根与系数的关系。
6.(问题)如图①,在a×b×c(长×宽×高,其中a,b,c为正整数)个小立方块组成的长方体中,长方体的个数是多少?
(探究)
探究一:
(1)如图②,在2×1×1个小立方块组成的长方体中,棱AB上共有1+2= =3条线段,棱AC,AD上分别只有1条线段,则图中长方体的个数为3×1×1=3.
一元二次方程练习题-含答案(解法20题-题海111题)
经典解法20题(1)(3x+1)^2=7(2)9x^2-24x+16=11(3) (x+3)(x-6)=-8(4) 2x^2+3x=0(5) 6x^2+5x-50=0 (选学)(6)x^2-4x+4=0 (选学)(7)(x-2)^2=4(2x+3)^2(8)y^2+2√2y-4=0(9)(x+1)^2-3(x+1)+2=0(10)x^2+2ax-3a^2=0(a为常数)(11)2x^2+7x=4.(12)x^2-1=2 x (13)x^2 + 6x+5=0(14) x ^2-4x+ 3=0(15)7x^2 -4x-3 =0(16)x ^2-6x+9 =0(17)x²+8x+16=9(18)(x²-5)²=16(19)x(x+2)=x(3-x)+1(20) 6x^2+x-2=0海量111题1)x^2-9x+8=0(2)x^2+6x-27=0(3)x^2-2x-80=0(4)x^2+10x-200=0(5)x^2-20x+96=0(6)x^2+23x+76=0(7)x^2-25x+154=0(8)x^2-12x-108=0(9)x^2+4x-252=0(10)x^2-11x-102=0(11)x^2+15x-54=0(12)x^2+11x+18=0(13)x^2-9x+20=0(14)x^2+19x+90=0(15)x^2-25x+156=0(16)x^2-22x+57=0(17)x^2-5x-176=0(18)x^2-26x+133=0(19)x^2+10x-11=0(20)x^2-3x-304=0(21)x^2+13x-140=0(23)x^2+5x-176=0(24)x^2+28x+171=0(25)x^2+14x+45=0(26)x^2-9x-136=0(27)x^2-15x-76=0(28)x^2+23x+126=0(29)x^2+9x-70=0(30)x^2-1x-56=0(31)x^2+7x-60=0(32)x^2+10x-39=0(33)x^2+19x+34=0(34)x^2-6x-160=0(35)x^2-6x-55=0(36)x^2-7x-144=0(37)x^2+20x+51=0(38)x^2-9x+14=0(39)x^2-29x+208=0(40)x^2+19x-20=0(41)x^2-13x-48=0(42)x^2+10x+24=0(43)x^2+28x+180=0(45)x^2+23x+90=0(46)x^2+7x+6=0(47)x^2+16x+28=0(48)x^2+5x-50=0(49)x^2+13x-14=0(50)x^2-23x+102=0(51)x^2+5x-176=0(52)x^2-8x-20=0(53)x^2-16x+39=0(54)x^2+32x+240=0(55)x^2+34x+288=0(56)x^2+22x+105=0(57)x^2+19x-20=0(58)x^2-7x+6=0(59)x^2+4x-221=0(60)x^2+6x-91=0(61)x^2+8x+12=0(62)x^2+7x-120=0(63)x^2-18x+17=0(64)x^2+7x-170=0(65)x^2+6x+8=0(67)x^2+24x+119=0(68)x^2+11x-42=0(69)x^20x-289=0(70)x^2+13x+30=0(71)x^2-24x+140=0(72)x^2+4x-60=0(73)x^2+27x+170=0(74)x^2+27x+152=0(75)x^2-2x-99=0(76)x^2+12x+11=0(77)x^2+17x+70=0(78)x^2+20x+19=0(79)x^2-2x-168=0(80)x^2-13x+30=0(81)x^2-10x-119=0(82)x^2+16x-17=0(83)x^2-1x-20=0(84)x^2-2x-288=0(85)x^2-20x+64=0(86)x^2+22x+105=0(87)x^2+13x+12=0(89)x^2+26x+133=0(90)x^2-17x+16=0(91)x^2+3x-4=0(92)x^2-14x+48=0(93)x^2-12x-133=0(94)x^2+5x+4=0(95)x^2+6x-91=0(96)x^2+3x-4=0(97)x^2-13x+12=0(98)x^2+7x-44=0(99)x^2-6x-7=0 (100)x^2-9x-90=0 (101)x^2+17x+72=0 (102)x^2+13x-14=0 (103)x^2+9x-36=0 (104)x^2-9x-90=0 (105)x^2+14x+13=0 (106)x^2-16x+63=0 (107)x^2-15x+44=0 (108)x^2+2x-168=0 (109)x^2-6x-216=0(111)x^2+18x+32=0答案(1)(3x+1)^2=7解:(3x+1)^2=7 ∴(3x+1)^2=7 ∴3x+1=±√7(注意不要丢解) ∴x= (±√7-1)/3(2)9x^2-24x+16=11解:9x^2-24x+16=11 ∴(3x-4)^2=11 ∴3x-4=±√11 ∴x= (±√11+4)/3 ∴原方程的解为x1=(√11+4)/3 x2=(-√11+4)/3(3) (x+3)(x-6)=-8解:(x+3)(x-6)=-8 化简整理得x^2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程之概念
一、选择题
1.在下列方程中,一元二次方程的个数是().
①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5
x
=0
A.1个B.2个C.3个D.4个
2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为().A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,6
3.px2-3x+p2-q=0是关于x的一元二次方程,则().
A.p=1 B.p>0 C.p≠0 D.p为任意实数
二、填空题
1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.2.一元二次方程的一般形式是__________.
3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.
三、综合提高题
1.a满足什么条件时,关于x的方程a(x2+x)x-(x+1)是一元二次方程?
2.关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么?
一元二次方程之根
一、选择题
1.方程x(x-1)=2的两根为().
A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=2
2.方程ax(x-b)+(b-x)=0的根是().
A.x1=b,x2=a B.x1=b,x2=1
a
C.x1=a,x2=
1
a
D.x1=a2,x2=b2
3.已知x=-1是方程ax2+bx+c=0的根(b≠0)().
A.1 B.-1 C.0 D.2
二、填空题
1.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________.2.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.
3.方程(x+1)2x(x+1)=0,那么方程的根x1=______;x2=________.
三、综合提高题
1.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值.
2.如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.
一元二次方程之根的判别
一、选择题
1.一元二次方程x2-ax+1=0的两实数根相等,则a的值为().
A.a=0 B.a=2或a=-2
C.a=2 D.a=2或a=0
2.已知k≠1,一元二次方程(k-1)x2+kx+1=0有根,则k的取值范围是().
A.k≠2 B.k>2 C.k<2且k≠1 D.k为一切实数
二、填空题
1.已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________.
2.不解方程,判定2x2-3=4x的根的情况是______(•填“二个不等实根”或“二个相等实根或没有实根”).
3.已知b≠0,不解方程,试判定关于x的一元二次方程x2-(2a+b)x+(a+ab-2b2)•=0的根的情况是________.
三、综合提高题
1.不解方程,试判定下列方程根的情况.
(1)2+5x=3x2(2)x2-(+4=0
2.当c<0时,判别方程x2+bx+c=0的根的情况.
3.不解方程,判别关于x的方程x2-2kx+(2k-1)=0的根的情况.
4.某集团公司为适应市场竞争,赶超世界先进水平,每年将销售总额的8%作为新产品开发研究资金,该集团2000年投入新产品开发研究资金为4000万元,2002年销售总额为7.2亿元,求该集团2000年到2002年的年销售总额的平均增长率.
一元二次方程解法
1、利用因式分解法解下列方程
(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+
x 2-23x+3=0 ()()0165852
=+---x x
2、利用开平方法解下列方程
51)12(212=-y 4(x-3)2=25 24)23(2=+x
3、利用配方法解下列方程
25220x x -+= 012632
=--x x
7x=4x 2+2 01072=+-x x
4、利用公式法解下列方程
-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0
39922=--x x
课后练习
1、方程2x2-3x+1=0化为(x+a)2=b的形式,正确的是 ( )
A、
2
3
16
2
x
⎛⎫
-=
⎪
⎝⎭
B、
2
31
2
416
x
⎛⎫
-=
⎪
⎝⎭
C、
2
31
416
x
⎛⎫
-=
⎪
⎝⎭
D、以上都不对
2、用__________________法解方程(x-2)2=4比较简便。
3、一元二次方程x2-ax+6=0, 配方后为(x-3)2=3, 则a=______________.
4、解方程(x+a)2=b得()
A、x=-a
B、x=±
C、当b≥0时,x=-a
D、当a≥0时,x=a
5、已知关于x的方程(a2-1)x2+(1-a)x+a-2=0,下列结论正确的是()
A、当a≠±1时,原方程是一元二次方程。
B、当a≠1时,原方程是一元二次方程。
C、当a≠-1时,原方程是一元二次方程。
D、原方程是一元二次方程。
6、代数式x2 +2x +3 的最______(填“大”或者“小”)值为__________
7、关于x的方程(m-1)x2+(m+1)x+3m-1=0,当m_________时,是一元一次方程;当m_________时,是一元二次方程.
8、方程(2x-1)(x+1)=1化成一般形式是_______,其中二次项系数是______,一次项系数是______。
9、下列方程是一元二次方程的是()
A、1
x
-x2+5=0 B、x(x+1)=x2-3 C、3x2+y-1=0 D、
2
21
3
x+
=
31
5
x-
10、方程x2-8x+5=0的左边配成完全平方式后所得的方程是()
A、(x-6)2=11
B、(x-4)2=11
C、(x-4)2=21
D、以上答案都不对
11、关于x的一元二次方程(m-2)x2+(2m—1)x+m2—4=0的一个根是0,则m 的值是()
A、 2
B、—2
C、2或者—2
D、1 2
12、要使代数式
2
2
23
1
x x
x
--
-
的值等于0,则x等于()
A 、1
B 、-1
C 、3
D 、3或-1 13、解方程:(1) 2x 2+5x-3=0。
(2) (3—x )2+x 2 = 9。
14、x 为何值时,代数式x 2-13x+12的值与代数式-4x 2+18的值相等?
15、已知1—3是方程x 2—2x+c=0的一个根,求方程的另一个根及c 的值。
16、三角形两边长分别是6和8,第三边长是x 2-16x+60=0的一个实数根,求该三
角形的第三条边长和周长。
17、选用适当的方法解下列方程
(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=
2
1302x x ++
= 4
)
2)(1(13)1(+-=
-+x x x x
2)2)(113(=--x x x (x +1)-5x =0. 3x (x -3) =2(x -1) (x +1)
)4(5)4(2+=+x x x x 4)1(2=+ 22)21()3(x x -=+
31022=-x x (x+5)2=16 2(2x -1)-x (1-2x )=0
5x 2 - 8(3 -x )2 –72=0 3x(x+2)=5(x+2) x 2+ 2x + 3=0
x 2+ 6x -5=0 -3x 2+22x -24=0 x 2-2x -1 =0
2x 2+3x+1=0 3x 2+2x -1 =0 5x 2-3x+2 =0
7x 2-4x -3 =0 -x 2-x+12 =0 ()()2
4330x x x -+-=
22
(32)(23)x x -=- x 2
-2x-4=0 (x+1)(x+8)=-12
3x 2+8 x -3=0 (3x +2)(x +3)=x +14 (1-3y )2+2(3y -1)=0。