最新1.1算法与程序框图-ppt

合集下载

算法与程序框图

算法与程序框图

学习难点:用程序框图清晰表达含有循环结构的算法.
1.1.2 程序框图
例1:任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定.
算法分析:
第一步:判断n是否等于2.
若n=2,则n是质数;
若n>2,则执行第二步.
第二步:依次检验2~(n-1)这些整数是不是n的因素,即是不是整除n的数.若有这样的数,则n不是质数;若没有这样的数,则n是质数.
程序框图:
开始
输入x
x≥0?
输出x

输出-x
结束
返回
作业:
P21页A组T1;
课本P20页练习,
(画出程序框图)
STEP1
STEP2
STEP3
循环结构---在一些算法中,也经常会出现从某处开始,按照一定条件,反复执行某一步骤的情况,这就是循环结构.
反复执行的步个条件下终止循环,这就需要条件结构来作出判断,因此,循环结构中一定包含条件结构.
① ②
第一步:②-①×2得: 5y=3 ③
第二步: 解③得:
第三步: 将 代入①,解得 .
对于一般的二元一次方程组 其中 也可以按照上述步骤求解.
这些步骤就构成了解二元一次方程组的算法,我们可以根据这一算法编制计算机程序,让计算机来解二元一次方程组.
点评: (1)上述算法也是求 的近似值的算法.
计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.
练习一:任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.
算法分析:
输入任意一个正实数r; 计算以r为半径的圆的面积S=πr2; 输出圆的面积.

人教A版高二数学必修三第一章:1.1算法与程序框图

人教A版高二数学必修三第一章:1.1算法与程序框图

输出Sum


结束
i=i+1 Sum=Sum + i
当型结构
i<100? 是
否ቤተ መጻሕፍቲ ባይዱ
i=i+1
Sum=Sum + i
i=i+1
解决方法就是加上一个判断,判断 是否已经加到了100,如果加到了则
Sum=Sum + i
退出,否则继续加。
否 i>=100?
请填上判断的条件。

直到型结构
P11 练习1
开始
输入a
N
a ≥0
Y
输出 |a|=a
输出 |a|=-a
结束
练习2
开始 X1=1 X2=2
m=(x1+x2)/2 N
m*m -3<>0 y
(x1*x1 -3)*(m*m -3) >0
x1=m
x2=m
N |x1 -x2|<0.005 y
m=(x1+x2)/2
输出所求的近似值m 结束
▲下面是关于城市居民生活用水收费的问题
2、写出解不等式 x2 2x 3 0 的一个算法。
§1.1.2 程序框图
1城区一中学生数学模块学 分认定由模块成绩决定,模 块成绩由模块考试成绩和平 时成绩构成,各占50%,若 模块成绩大于或等于60分, 获得2学分,否则不能获得学 分(为0分),设计一算法, 通过考试成绩和平时成绩计 算学分,并画出程序框图
小结:算法具有以下特性:(1)有穷性 (2)确定性
(3)顺序性 (4)不唯一性 (5)普遍性
1
1.5
1.25
1.37 2
图1.1-1
表1-1

第1章 1.1.2 程序框图与算法的基本逻辑结构第3课时 教师配套用书课件(共39张ppt)

第1章 1.1.2   程序框图与算法的基本逻辑结构第3课时 教师配套用书课件(共39张ppt)

明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
填要点、记疑点
2.常见的两种循环结构
名称 直到型 循环结 构 结构图 特征 先执行循环体后判断条件,若不 满足条件则 执行循环体 ,否则
第3课时
终止循环
当型循 环结构
先对条件进行判断,满足时
执行循环体 ,否则 终止循环
明目标、知重点
填要点、记疑点

反思与感悟 变量S作为累加变量,来计算所求数据之 和.当第一个数据送到变量i中时,累加的动作为S=S+i, 即把S的值与变量i的值相加,结果再送到累加变量S中,如 此循环,则可实现数的累加求和.
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
第3课时
探究点二:循环结构的形式
探究点三:程序框图的画法
例3 下面是“二分法”求方程x2-2=0(x>0)的近似解的算法步骤. 第一步,令f(x)=x2-2,给定精确度d. 第二步,确定区间[a,b],满足f(a)f(b)<0. a+b 第三步,取区间中点m= . 2 第四步,若f(a)f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b]. 将新得到的含零点的区间仍记为[a,b]. 第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解; 否则,返回第三步. 请根据以上的算法步骤画出算法的程序框图.
1 2 3 n 跟踪训练1 已知有一列数 , , ,„, ,设计程序框图实现求该数列前20 2 3 4 n+ 1 项的和.
解 算法分析:该列数中每一项的分母是分子数加1,单独观察分子,恰好是

1.1 算法与程序框图

1.1 算法与程序框图

必修(3) 第一章 算法初步1.1 算法与程序框图第一课时 算法的概念一、知识点回顾与讲解1、算法的概念现代意义上的算法,是指可以用计算机来解决某一类问题的程序或步骤,这些程序必须是明确的和有效的,并且能够在有限步之内完成。

此概念明确指出解决某一类问题的程序或步骤往往是相同的,亦即它们的算法可以是相同的,但是我们要知道每一个问题的算法并不是唯一的,可能有很多个,并且这些算法有优劣之分。

2、算法的特征对于某一个问题,找到了它的某种算法是指使用一系列运算规则能在有限步骤内求解某类问题,其中的每条规则必须是明确定义的、可行的,不能含糊其辞,模棱两可,同时应对所有的初始数据(而不仅是某些特殊数值)有效。

正确理解算法的含义,可将算法的特征归纳如下:(1)确定性 算法中的每一个步骤都应是明确的,而不应当模棱两可。

例如,进行四则运算时,“先乘除后加减,有括号的先算括号里面的”,这里的规则就是反常明确的。

(2)有效性 算法中的每一步骤都应当能有效地执行,并得到确定的结果。

例如,若0b =,则执行ab就是无效的。

(3)有限性 一个算法的运算步骤应当是有限的,也就是说,一个算法在执行有限个步骤后,必须结束,即算法应在合理的范围之内。

例如,让计算机执行一个算法需耗时500年,这个算法虽是有限的,但超过了合理的限度,因而它不是一个有效的算法,这里的度,一般由计算机的性能和人们的需要而定。

(4)顺序性 每一个算法从初始步骤开始,都可以分为若干个明确的小步骤,但前一步总是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只能有一个确定的后续。

(5)不唯一性 求解某一个或某一类问题的算法不一定是唯一的,对于同一个或一类问题可以有不同的算法。

例如,求一元二次方程的根就有公式法、消元法等算法。

二、典型例题讲解问题一:正确理解算法的概念和特征 例1、(1)看下面的四段话,其中不是解决问题的算法的是( ) A 、从济南到北京旅游,先坐火车,再坐飞机抵达B 、解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C 、方程210x -=有两个实根D 、求12345++++的值,先计算123+=,再由于336,6410,10515+=+=+=,最终结果为15(2)下面结论中正确的是( ) A 、一个程序的算法步骤是可逆的B 、一个算法可以无止境地进行下去C 、完成一件事的算法有且只有一种D 、设计算法要本着简单方便的原则(3)下列关于算法的描述中正确的是( ) A 、只有数学问题才会有算法B 、算法过程要一步一步执行,每一步都是明确的C 、有的算法可能无结果D 、一个算法执行了一年后才有结果问题二:算法设计(1)解方程或解方程组问题的算法设计例2、(1)写出解方程2560x x -+=的一个算法。

算法与程序框图PPT优秀课件

算法与程序框图PPT优秀课件
《复习课》
算法与程序框图
算法 程序框图
算法的三种基本逻辑 结构和框图表示
顺序结构 条件分支结构
循环结构
算法
可以理解为由基本运算及规定的运 算顺序所构成的完整的解题步骤,或
者看成按照要求设计好的有限的确切
的计算序列,并且这样的步骤或序列
能够一类问题解决.
自然语言、数学语言、形式语言、框图。
程序框图 用一些通用图形符号构成一张图来 表示算法,这种图称作程序框图 (简称框图).
――[阿萨·赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉·海兹利特]
116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯·里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可·汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰·夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯·米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子]

2014年人教A版必修三课件 1.1 算法与程序框图

2014年人教A版必修三课件 1.1 算法与程序框图

“例1” 中判断质数, 把所要除的数都一一列举了; 这个问题中对一般数 n, 就不能一一列举, 我们用变 量表示, 进行循环的运算.
例2. 用二分法设计一个求方程 x2-2=0 (x>0) 的近似解的算法. 分析: 用二分法求近似根, 首先要确定两个值 a, b, 使 f( a)· f(b)<0. 然后取中点 x=m, 若 f(m)=0, 则 x=m 为根. 若 f(m)≠0, 则看 f(a)· f(m)<0 是否成立, 若成立, 则将 m 作为右端点 b, 得到一个含根的区间 [a, b]; 若不成立, 那么定有 f(m)· f(b)<0 成立, 则将 m 作为 左端点 a, 也得到一个含根的区间 [a, b]. 然后判断 |a-b| 是否达到精确度, 如果达到精确 度要求, 取 [a, b] 内的一个数为近似根, 结束算法; 否则, 又取 [a, b] 中点 m, 这样反复进行.
本章内容
1.1 算法与程序框图 1.2 基本算法语句 1.3 算法案例 第一章 小结
1.1 算法与程序框图
1.1.1 算法的概念 1.1.2 程序框图(第一课时) 1.1.2 程序框图(第二课时) 1.1.2 程序框图(第三课时) 复习与提高
1.1.1
算法的概念
返回目录
学习要点
1. 什么是算法? 对于一个需要解决的实际 问题, 如何设计它的算法? 2. 算法在现代科学上有什么意义? 3. 算法有哪些构成形式?
例1. (1) 设计一个算法, 判断 7 是否为质数. (2) 设计一个算法, 判断 35 是否为质数. 分析: 质数是除了 1 和它本身外, 没有其他约数 的整数. 要点: 能被其他数整除, 不是质数; 不能被其他数整除, 是质数. 于是我们就用比 1 大而比 7 小的整数依次去除. 当遇到某一个数能整除 7 时, 即可判定不是质数. 否则继续除下去. 一直到 6 都不能整除 7 时, 则 7 为质数.

人教A版高中数学必修3第一章 算法初步1.1 算法与程序框图课件(7)

人教A版高中数学必修3第一章 算法初步1.1 算法与程序框图课件(7)
精品PPT
练习:
1、下列关于程序框图的说法正确的是 A、程序框图是描述算法的语言
A ( )
B、程序框图可以没有输出框,但必须要有输入框给变量赋值
C、程序框图可以描述算法,但不如自然语言描述算法直观
D、程序框图和流程图不是一个概念
精品PPT
例1.写出求任意两个数的平均数的算法,并
画出程序框图
程序框图
如何计算选手最后得分?
第一步:100+20=120 第二步: 120+30=150 第三步:150-15=135 第四步:135+50=185
如果引入变量S S=100; S=S+20; S=S+30; S=S-15; S=S+50 输出S
可使算法的表示非常简洁。
精品PPT
算法的概念
问题1:结合实际过程,应当如何理解“x=x+20”这样的式子? 问题2:左右两边的x的意义或取值是否一样?能不能消去?
求n除以i的余数r
i的值增加1,仍用i表示
i>n-1或r=0?


顺序结构

r=0?
循环结构 否
N不是质数
N是质数
条件结构
你能说出这三种基本逻辑结构的特点吗? 条件结构与循环结构有什么区别和联系?
精品PPT
1、顺序结构
顺序结构是最简单的算法结构,语句与语句之间,框与 框之间是按从上到下的顺序进行的,它是由若干个依次执行 的处理步骤组成的,它是任何一个算法都离不开的一种基本 算法结构。 顺序结构在程序框图中的体现就是用流程线将程 序框自上而下地连接起来,按顺序执行算法步骤。
精品PPT
探究
如图是求解一元二次方程 的 算法

人教版高中数学必修三课件:1.1.1 算法的概念

人教版高中数学必修三课件:1.1.1 算法的概念
解:b→a→c→d→e
考点类析
例2 写出解方程x2-2x-3=0的一个算法.
解:方法一,算法如下: 第一步,将等号左边因式分解,得(x-3)(x+1)=0①; 第二步,由①式得x-3=0或x+1=0; 第三步,解x-3=0得x=3,解x+1=0得x=-1,即x=3或x=-1.
考点类析
例2 写出解方程x2-2x-3=0的一个算法. 解:方法二,算法如下: 第一步,移项,得x2-2x=3①; 第二步,①式等号两边同时加1并配方,得(x-1)2=4②; 第三步,②式等号两边同时开方,得x-1=±2③; 第四步,解③式得x=3或x=-1.
预习探究
(4)不唯一性:求解某一个问题的算法不一定只有唯一的一个,也可以有不同 的算法,这些算法有繁简、优劣之分. (5)普遍性:很多具体的问题,都可以通过设计合理的算法去解决.
预习探究
知识点三
算法的设计要求
设计算法的要求主要有以下几点: (1)写出的算法必须能解决一类问题,并且能够重复使用; (2)要使算法尽量简单、步骤尽量少; (3)要保证算法的各个步骤有效,计算机能够执行,且在有限步骤后能得到结果.
备课素材
累加、累乘问题的算法 解决一个问题的算法一般不是唯一的,不同的算法有优劣之别,保证得到正 确的结果是对每个算法的最基本的要求.另外,还要求算法的每个步骤都要 易于实现、易于理解,效率要高,通用性要好等.
备课素材
备课素材
[例2] 求1×3×5×7×9×11的值,写出其算法.
解:算法如下:
备课素材
[小结]
知识 1.算法的概念; 2.算法的特性; 3.算法的设计
方法
易错
1.根据具体的问题进行判断,是 给出问题,在书写步骤时,不能

算法与程序框图(精品)

算法与程序框图(精品)
fqszwqm8@
程 序 框 图 算 法 初 步 算 法 语 句 算 法 案 例
顺序结构 条件结构 循环结构
输入语句
知识结构图 框 图
(文)
输出语句
赋值语句 条件语句 循环语句 辗转相除法更相减损术 秦九韶算法 进位制
工序流程图 程序框图
1.通过对解决具体问题的过程与步骤的分析(如二元一次方 程组的求解等问题),体会算法的思想,了解算法的含义. 2.结合熟悉的算法,把握算法的基本思想,学会用自然语言 来描述算法. 3.通过模仿、操作和探索,经历设计程序流程图解决问题的 过程.在具体问题的解决过程中理解程序流程图的三种基本 逻辑结构:顺序结构、条件结构、循环结构. 4.通过实际问题的学习,了解构造算法的基本程序. 5.经历将具体问题的程序流程图转化为程序语句的过程,理 解几种基本算法语句——输入语句、输出语句、赋值语句、 条件语句、循环语句,体会算法的基本思想. 6.通过对辗转相除法与更相减损术、秦九韶算法、进位制等 典型案例的学习,能运用知识解决同类问题.
新课标把算法思想作为构建高中数学课程的 基本线索之一.算法思想是拟定数学问题解决方 案的基础,从而拓展了学生能够解决的实际问题 和数学问题.例如,我们可以利用算法来设计近 似求解方程的步骤,即可用二分法求出方程
x ax b 0, a bx c 0,lg x bx c 0
1.了解算法的含义,了解算法的思想. 2.理解程序框图的三种基本逻辑结构:顺序、 条件分支、循环. 3.理解几种基本算法语句――输入语句、输出 语句、赋值语句、条件语句、循环语句的含义. 4.能运用辗转相除法与更相减损术、秦九韶算 法、进位制等典型的算法知识解决同类问题.
1.(07广东文7、理6)图1是某县参加2007年高考的学生身高条形统计图, 从左到右的各条形图表示学生人数依次记为A1、A2、…A10(如A2表示身高 (单位:cm)在[150,155内的人数]。图2是统计图1中身高在一定范围内 学生人数的一个算法流程图。现要统计身高在160~180cm(含160cm,不含 180cm)的学生人数,那么在流程图中的判断框内应填写的条件是 (A)i<6 (B) i<7 (C) i<8 (D) i<9 A A A A 【解】身高在160~180cm(含160cm,不含180cm)的学生数为 4 5 6 7 , 算法流程图实质上是求和,选C.

第1章 1.1.1 算法的概念 教师配套用书课件(共30张ppt)

第1章 1.1.1   算法的概念 教师配套用书课件(共30张ppt)
反思与感悟 设计一个具体问题的算法,通常按以下步骤: (1)认真分析问题,找出解决此题的一般数学方法; (2)借助有关变量或参数对算法加以表述; (3)将解决问题的过程划分为若干步骤; (4)用简练的语言将这个步骤表示出来.
明目标、知重点 填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
1.1.1
探究点二:算法的步骤设计
思考3 要判断整数89是否为质数,按照例1的思路需用2~88逐一去除89求余数,需要 87个步骤,这些步骤基本是重复操作,如何改进这个算法,减少算法的步骤呢?
答 (1)用i表示2~88中的任意一个整数,并从2开始取数;
探要点、究所然
当堂测、查疑缺
探要点、究所然
1.1.1
探究点二:算法的步骤设计
例2 写出用“二分法”求方程x2-2=0(x>0)的近似解的算法.
解 第一步,令f(x)=x2-2,给定精确度d.
第二步,确定区间[a,b],满足f(a)f(b)<0. a+b 第三步,取区间中点m= . 2
第四步,若f(a)f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得 到的含零点的区间仍记为[a,b].
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
1.1.1
[情境导学]
赵本山和宋丹丹的小品《钟点工》中有这样一个问题:宋丹丹:要把
大象装入冰箱,总共分几步?哈哈哈哈,三步.第一步,把冰箱门打开;第二步, 把大象装进去;第三步,把冰箱门带上.

一个农夫带着一只狼、一只山羊和一篮蔬菜要过河,但只有一条小船PPT完美课件

一个农夫带着一只狼、一只山羊和一篮蔬菜要过河,但只有一条小船PPT完美课件
一个农夫 带着一 只狼、 一只山 羊和一 篮蔬菜 要过河 ,但只 有一条 小船P PT 完美课件
一个农夫 带着一 只狼、 一只山 羊和一 篮蔬菜 要过河 ,但只 有一条 小船P PT 完美课件
例2.写出用“二分法”求方程 x2-2=0(x>0)的 近似解的算法.
一个农夫 带着一 只狼、 一只山 羊和一 篮蔬菜 要过河 ,但只 有一条 小船P PT 完美课件
解方程组
3x-2y=3
2x+y=4
① ②
第一步, 取 a1=3,b1=-2,c1=3,
a2=2,b2=1,c2=4.
第二步,计算
x= b1c2 -b2c1 , y= a 2c1 -a1c 2 .
a 2b1-a1b2
a 2b1 -a1b 2
第三步,给出运算结果.
x= b1c2 -b2c1 a 2b1 -a1b2
【提升总结】
1.算法定义的理解 在数学中,现代意义上的“算法”通常是指可以用 计算机来解决的某一类问题的程序或步骤,这些程 序或步骤必须是明确和有效的,而且能够在有限步 之内完成.
一个农夫 带着一 只狼、 一只山 羊和一 篮蔬菜 要过河 ,但只 有一条 小船P PT 完美课件
一个农夫 带着一 只狼、 一只山 羊和一 篮蔬菜 要过河 ,但只 有一条 小船P PT 完美课件
一个农夫 带着一 只狼、 一只山 羊和一 篮蔬菜 要过河 ,但只 有一条 小船P PT 完美课件
一个农夫 带着一 只狼、 一只山 羊和一 篮蔬菜 要过河 ,但只 有一条 小船P PT 完美课件
第一步,把9枚金币平均分成三组,每组三枚. 第二步,先将其中的两组放在天平的两边,如果天平 不平衡,那么假金币就在轻的那一组;如果天平左 右平衡,则假金币就在未称量的那一组里. 第三步,取出含假币的那一组,从中任取两枚金币放 在天平两边进行称量,如果天平不平衡,则假金币 在轻的那一边;若平衡,则未称的那一枚就是假币.

§1.1.1 算法与程序框图 (共15张PPT)

§1.1.1 算法与程序框图 (共15张PPT)
结束
程序框图中的三种逻辑结构 顺序结构

输入n
i=1
条件结构
R=1? 是 n是质数
n不是质数
d整除n?

循环结构

是 R=0
d<= n-1 且R=0?
i=i+1

例3 已知一个三角形的三边边长分别为2,3,4,利用海伦-秦 九韶公设计一个算法,求出它的面积,画出算法的程序框图。
程序框图
p
开始
234 2
2 1.5 1.5 1.5 1.4375 1.4375 1.421875 1.421875 1.41796875
图1.1-1
实际上,上述步骤就是在求
2 的近似值。
练习
• 任意给定一个正实数,设计一个算法求以 这个数为半径的圆的面积。 • 任意给定一个大于1的正整数n,设计一个 算法求出n的所有的因数。
b2 c1 b1c2 a1b2 a2b1 a1c2 a2 c1 a1b2 a2b1
对于一般的二元一次方程组来说,这些步骤就构成了解 二元一次方程组的算法,我们可以根据这一算法编制计 算机程序,让计算机来解二元一次方程组。
算法这个词出现于12世纪,指的是用阿拉伯数字 进行算术运算的过程。在数学中,算法通常是指 按照一定规则解决某一类问题的明确和有限的步 骤。现在,算法通常可以编成计算机程序,让计 算机执行并解决问题
变式: 设计一个算法,判断35是否为质数
探究:你能写出整数n(n>2)是否为质数? • • • • 第一步,给定大于2的整数n. 第二步,令i=2. 第三步,用i除n,得到余数r. 第四步,判断;“r=0”是否成立. 若是,则n不是质数,结束算法; 否则,将i的值增加1,仍用i表示. 第五步,判断“i>n-1”是否成立. 若是,则n是质数,结束算法; 否则,返回第三步.

高中数学必修三人教B版课件1.1算法与程序框图1.1.2、1.1.3 第2课时

高中数学必修三人教B版课件1.1算法与程序框图1.1.2、1.1.3 第2课时

数 学 必
因此当给出一个自变量 x 的值时,必须先判断 x 的范围,然后确

③ ·
解析式来求函数值.


B

第一章 算法初步
[解析] 算法如下:
S1 输入自变量x的值.
S2 判断x>0是否成立,若成立,计算y=1+x;否
则,执行下一步.
S3 计算y=-x-3.
S4 输出y.
程序框图如图所示.
数 学 必 修 ③ · 人 教 B 版
数 学 必 修 ③ · 人 教 B 版
第一章 算法初步
〔跟踪练习 1〕已知函数 y=x1--1xxx≥ <11 ,设计一个算法,
值,输出对应的函数值,请写出算法步骤,并画出程序框图. 导
[解析] 算法如下:
S1 输入x;
S2 判断x,若x≥1,则y=x-1,否则执行S3;
S3 y=1-x;
数 学
新课标导学
数学
必修③ ·人教B版
第一章
算法初步 1.1.2 程序框图 1.1.3 算法的三种基本逻辑结构和框
第2课时 条件分支结构
1
自主预习
2
互动探究
3
课时作业
第一章 算法初步
自主预习学案
数 学 必 修 ③ · 人 教 B 版
第一章 算法初步
春节期间某服装商品进行团购优惠活动,购买5件或5 元,超过5件时超过的部分每件按8折优惠.若某人购买x件,试 y与购买件数x的关系式,画出算法的程序框图.
数 学 必 修 ③ · 人 教 B 版
第一章 算法初步
1.条件分支结构 在一个算法中,经常会遇到一些条件的判断,算法的流程 ___________有不同的流向,这条种件先作根出据判_断____________执_,行再哪决一 ________________的结构称为条件结构.

程序框图、顺序结构课件算法初步 (27)

程序框图、顺序结构课件算法初步  (27)
栏目 导引
第一章 算法初步
法三:算法如下. 第一步 计算方程的判别式并判断其符号Δ =(-2)2+4×3 =16>0; 第二步 将 a=1,b=-2,c=-3,代入求根公式 x1,x2= -b± 2ba2-4ac,得 x1=3,x2=-1.
栏目 导引
第一章 算法初步
方法归纳 本题体现了算法的不唯一性,比较以上三个算法,可以看出 法三中的算法最简单、步骤最少,并且具有通用性.因此, 在设计算法时,首先考虑是否有公式可用,利用公式解决问 题是最理想的方法;其次要综合各方面的因素,选择一种较 好的算法.
栏目 导引
第一章 算法初步
1.在用二分法求方程零点的算法中,下列说法正确的是( D ) A.这个算法可以求方程所有的零点 B.这个算法可以求任何方程的零点 C.这个算法能求方程所有的近似零点 D.这个算法并不一定能求方程所有的近似零点 解析:二分法求方程零点的算法中,仅能求方程的一些特殊的 近似零点(满足函数零点存在性定理的条件),则D正确.
栏目 导引
第一章 算法初步
非计算类问题的算法设计
请你设计一个算法,找出a,b,c,d四个互不相同 的数中的最小值. [解] 算法如下: 第一步,定义最后求得的最小数为 min,使 min=a. 第二步,如果b<min,则min=b;如果b>min,则 min= 原 min. 第三步,如果c<min,则 min=c;如果c>min,则 min= 原 min. 第四步,如果d<min,则 min=d;如果d>min,则 min= 原 min. 第五步,输出 min,则 min就是a、b、c、d中的最小值.
栏目 导引
第一章 算法初步
(2)已知球的表面积为16π,写出求球的体积的一个算法.
解:法一:第一步,取 S=16π .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我们身边的算法
• 广播操图解是广播操的算法; • 菜谱是做菜的算法; • 歌谱是一首歌曲的算法; • 空调说明书是空调使用的算法等
算法学的发展
• 随着科学技术的日新月异,算法学也得到 了前所未有的发展,现在已经发展到了各个 领域.有遗传算法,排序算法,加密算法,蚁群 算法等,与生物学,计算机科学等有着很广泛 的联系,尤其是在现在的航空航天中,更是有 着更广泛的应用.
将新得到的含零点的仍然记为[a,b] .
第五步, 判断[a,b]的长度是否小于d或者
f(m)是否等于0. 若是,则m是方程的近似
解;否则,返回第三步.
解决问题
当d=0.05时
a 1 1 1.25 1.375 1.375 1.40625 1.40625 1.4140625 1.4140625
b 2 1.5 1.5 1.5 1.4375 1.4375 1.421875 1.421875 1.417969
m 1.5 1.25 1.375 1.4375 1.40625 1.421875 1.4140625 1.41796875 1.41601563
f(m) 0.25 -0.4375 -0.109375 0.06640625 -0.02246094 0.021728516 -0.00042725 0.010635376 0.00510025
d 1 0.5 0.25 0.125 0.0625 0.03125 0.015625 0.0078125 0.00390625
评析:实际上,上述步骤就是在求 2 的近似值.
与一般的解决问题的过程比较,算法有以下特 征:
①设计一个具体问题的算法时,与过去熟悉地 解数学题的过程有直接的联系,但这个过程必 须被分解成若干个明确的步骤,而且这些步骤 必须是有效的.
第一步, 用2除7,得到余数1.因为余数不为0, 所以2不能整除7.
第二步, 用3除7,得到余数1.因为余数不为0, 所以3不能整除7.
第三步, 用4除7,得到余数3.因为余数不为0, 所以4不能整除7.
第四步, 用5除7,得到余数2.因为余数不为0, 所以5不能整除7.
第五步, 用6除7,数.
任意给定一个大于1的整数n,试设计一个程序或步骤
对n是否为质数做出判定.
第一步:判断n是否等于2.若n=2,则n是质数; 若n>2,则执行第二步.
第二步:依次从2~(n-1)检验是不是n的因
数,即整除n的数,若有这样的数,则n不是质 数;若没有这样的数,则n是质数.
•这是判断一个大于1的整数n是否为质数的 最基本算法.
[问题1]请你写出解二元一次方程组的详细求解 过程.
xy35 (1) 2x4y94 (2)
xy35 (1) 解方程 2x4y94 (2)
第一步,由(1)得 x35y (3)
第二步, 将(3)代入(2)得
2 (3 5 y ) 4 y 9 4(4 )
第三步, 解(4)得 y12 (5)
第四步, 将(5)代入(3)得 x23
零点,进而得到零点近似值的方法
叫做二分法.
yx22 (x0)
解决问题
×
第一步, 令 f (x) x2 2.给定精确度d.
第二步, 给定区间[a,b],满足f(a) ·f(b)<0.
第三步,
取中间点 m
a
2
b

第四步, 若f(a) ·f(m) < 0,则含零点的区间为
[a,m];否则,含零点的区间为[m, b].
•用语言描述一个算法,最便捷的方式就是按 解决问题的步骤进行描述.每一步做一件事 情.
应用举例
例2.用二分法设计一个求方程
x2 20 ( x 0)
的近似根的算法.
探究解决
对于区间[a,b ]上连续不断、且
f(a)f(b)<0的函数y=f(x),通过不断地
把函数f(x)的零点所在的区间一分
为二,使区间的两个端点逐步逼近
第五步,
得到方程组的解得
x23 y12
xy35 (1) 解方程 2x4y94 (2)
第一步, ( 1 ) 2 ( 2 ) 得 : - 2 y 2 4( 3 ) 第二步, 解 (3 )得 : y12
第三步, ( 1 ) 4 ( 2 ) 得 :2 x 4 6( 4 )
第四步, 解 (4)得 : x23
应用举例
例1.(2)设计一个算法判断35是否为质数.
第一步, 用2除35,得到余数1.因为余数不为0, 所以2不能整除35.
第二步, 用3除35,得到余数2.因为余数不为0, 所以3不能整除35.
第三步, 用4除35,得到余数3.因为余数不为0, 所以4不能整除7.
第四步, 用5除35,得到余数0.因为余数为0, 所以5能整除35.因此,35不是质数.
很多复杂的运算都是借助计算机和算法 来完成的,在高端科学技术中有着很重要的 地位.
• 科学家王小云主导破解两 大密码算法获百万大奖
• 杨振宁教授 为获得“求 是杰出科学 家奖”的山 东大学特聘 教授王小云 颁发了获奖 证书和奖金 100万元人 民币,表彰 其密码学领 域的杰出成 就。
应用举例
例1.(1)设计一个算法判断7是否为质数.
1.1算法与程序框图ppt
问题的提出
有一个农夫带一条狼狗、一只羊和 一筐白菜过河。如果没有农夫看管,则 狼狗要吃羊,羊要吃白菜。但是船很小, 只够农夫带一样东西过河。问农夫该如 何解此难题?
方法和过程: 1、带羊到对岸,返回;
2、带菜到对岸,并把羊带回; 3、带狼狗到对岸,返回; 4、带羊到对岸。
第五步,
得到方程组的解得
x23 y12
算法的概念:
广义地说:为了解决某一问题而采取的方 法和步骤,就称之为算法。
在数学中,按照一定规则解决某一类问 题的明确和有限的步骤,称为算法。
现在,算法通常可以编成计算机程序, 让计算机执行并解决问题。这些程序或步
骤必须是明确和有效的,而且能够在有限步之 内完成.
没有软件的支持,计算机只是一堆废铁而已;
软件的核心就是算法 !
算法的特征
• 一.确定性:每一步必须有确切的定义。 • 二.有效性:原则上必须能够精确的运行。 • 三.有穷性:一个算法必须保证执行有限步
后结束
算法的优缺点
• 一.缺点:算法一般是机械的,有时需要进行 大量重复的计算.
• 二.优点:算法是一种通法,只要按照步骤去 做,总能得到结果.
相关文档
最新文档