蛋白质的分离纯化方法一
蛋白质的纯化方法
蛋白质纯化的方法蛋白质的分离纯化方法很多,主要有:(一)根据蛋白质溶解度不同的分离方法1、蛋白质的盐析中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。
盐析时若溶液pH在蛋白质等电点则效果更好。
由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。
影响盐析的因素有:(1)温度:除对温度敏感的蛋白质在低温(4度)操作外,一般可在室温中进行。
一般温度低蛋白质溶介度降低。
但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25度)比0度时溶解度低,更容易盐析。
(2)pH值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低。
(3)蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象)。
因此在盐析前血清要加等量生理盐水稀释,使蛋白质含量在2.5-3.0%。
蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等。
其中应用最多的硫酸铵,它的优点是温度系数小而溶解度大(25度时饱和溶液为4.1M,即767克/升;0度时饱和溶解度为3.9M,即676克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性。
硫酸铵溶液的pH常在4.5-5.5之间,当用其他pH值进行盐析时,需用硫酸或氨水调节。
蛋白质在用盐析沉淀分离后,需要将蛋白质中的盐除去,常用的办法是透析,即把蛋白质溶液装入秀析袋内(常用的是玻璃纸),用缓冲液进行透析,并不断的更换缓冲液,因透析所需时间较长,所以最好在低温中进行。
蛋白质分离纯化的步骤
蛋白质分离纯化的一般程序可分为以下几个步骤:(一)材料的预处理及细胞破碎分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。
所以要采用适当的方法将组织和细胞破碎。
常用的破碎组织细胞的方法有:1. 机械破碎法这种方法是利用机械力的剪切作用,使细胞破碎。
常用设备有,高速组织捣碎机、匀浆器、研钵等。
2. 渗透破碎法这种方法是在低渗条件使细胞溶胀而破碎。
3. 反复冻融法生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。
这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。
4. 超声波法使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。
5. 酶法如用溶菌酶破坏微生物细胞等。
(二) 蛋白质的抽提通常选择适当的缓冲液溶剂把蛋白质提取出来。
抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。
如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100等),使膜结构破坏,利于蛋白质与膜分离。
在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。
(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。
比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。
常用的有下列几种方法:1. 等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。
2. 盐析法不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。
被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。
3. 有机溶剂沉淀法中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。
能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。
此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。
由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。
蛋白质的分离纯化方法
1、透析和超过滤 w利用蛋白质分子不能透过半透膜将其 与小分子物质分开 w半透膜为玻璃纸或纤维素材料
加
压
血液透析
血液
透析液
小分子溶出 小分子被带出
透析机
利用蛋白质分子不能穿越半透膜的性质,将蛋白提取液置 于透析袋中,透析袋置于纯水,蒸馏水,或缓冲液中,蛋白质 溶液中的小分子物质穿越半透膜,从而实现纯化蛋白质的 目的.
• 从离心管底部钻空,分段收集 样品,实现蛋白质分离
3、凝胶过滤
凝胶一般由葡聚糖制 成,含有很多微孔
小分子蛋白质进入微 孔内,因而滞流时间长
大分子蛋白质不能进 入微孔而径直流出
3、凝胶过滤
(二)利用溶解度差别的纯化方法
1.等电点沉淀 调整溶液pH 不同蛋白在各自 pI处依次沉淀
2.盐溶和盐析 3.有机溶剂分级分离法
w降低介电常数 w争夺水化膜
等电聚焦电泳
双向电泳
(三)利用电荷差异
离子交换层析 蛋白质按照在相应pH条
件下所带电荷的不同而 以不同的速率向下移动 带有更多负电荷的蛋白 质以更快的速率被洗脱 分段收集渗出液,实现蛋 白质的分离
(四)利用对配体的特异生物学 亲和力的纯化方法
具有பைடு நூலகம்强的专一性
亲和色谱颗粒
利用压力或离心力,强 行使水或其他小分子 溶质透过半透膜,而使 蛋白质留在膜上,以达 到纯化的目的(脱盐和 浓缩)
2、密度梯度离心
• 将蔗糖溶液加入离心管中进行 离心建立蔗糖梯度
• 仔细将蛋白质样品(混合物)加 入蔗糖梯度的顶端,再次离心 沉降
• 当蛋白质达到和自己相同的密 度梯度时停止移动
• 于是在不同的蔗糖梯度中存在 的蛋白质不同
蛋白质纯化方法总结
分离纯化某一特定蛋白质的一般程序可以分为前处理、粗分级、细分级三步。
1.前处理:分离纯化某种蛋白质,首先要把蛋白质从原来的组织或细胞中以溶解的状态释放出来并保持原来的天然状态(如果做不到呢?比如蛋白以包涵体形式存在),不丢失生物活性。
为此,动物材料应先提出结缔组织和脂肪组织,种子材料应先去壳甚至去种皮以免手单宁等物质的污染,油料种子最好先用低沸点(为什么呢)的有机溶剂如乙醚等脱脂。
然后根据不同的情况,选择适当的方法,将组织和细胞破碎。
动物组织和细胞可用电动捣碎机或匀浆机破碎或用超声波处理破碎。
植物组织和细胞由于具有纤维素、半纤维素和果胶等物质组成的细胞壁,一般需要用石英砂或玻璃粉和适当的提取液一起研磨的方法或用纤维素酶处理也能达到目的。
细菌细胞的破碎比较麻烦,因为整个细菌细胞壁的骨架实际上是一个借共价键连接而成的肽聚糖囊状大分子,非常坚韧。
破碎细菌细胞壁的常用方法有超声波破碎,与砂研磨、高压挤压或溶菌酶处理等。
组织和细胞破碎后,选择适当的缓冲液把所要的蛋白提取出来。
细胞碎片等不溶物用离心或过滤的方法除去。
如果所要的蛋白主要集中在某一细胞组分,如细胞核、染色体、核糖体或可溶性细胞质等,则可利用差速离心的方法将它们分开,收集该细胞组分作为下步纯化的材料。
如果碰上所要蛋白是与细胞膜或膜质细胞器结合的,则必须利用超声波或去污剂使膜结构解聚,然后用适当介质提取。
2. 粗分级分离:当蛋白质提取液(有时还杂有核酸、多糖之类)获得后,选用一套适当的方法,将所要的蛋白与其他杂蛋白分离开来。
一般这一步的分离用盐析、等电点沉淀和有机溶剂分级分离等方法。
这些方法的特点是简便、处理量大,既能除去大量杂质,又能浓缩蛋白溶液。
有些蛋白提取液体积较大,又不适于用沉淀或盐析法浓缩,则可采用超过滤、凝胶过滤、冷冻真空干燥或其他方法进行浓缩。
3.细分级分离:样品经粗分级分离以后,一般体积较小,杂蛋白大部分已被除去。
进一步纯化,一般使用层析法包括凝胶过滤、离子交换层析、吸附层析以及亲和层析等。
蛋白纯化方法
蛋白纯化方法一、离心。
离心是一种常用的蛋白纯化方法,它利用蛋白质在不同离心速度下沉降速度的差异来分离蛋白。
通过逐步调整离心速度和时间,可以将混合物中的不同颗粒分离开来,从而得到目标蛋白的富集样品。
离心方法操作简单,适用于大多数蛋白质的初步富集。
二、凝胶过滤层析。
凝胶过滤层析是一种分子大小分离的方法,通过在凝胶柱中筛选不同大小的蛋白质分子,实现蛋白的分离和纯化。
这种方法操作简便,分离效果好,适用于大多数蛋白质的纯化。
三、离子交换层析。
离子交换层析是一种利用蛋白质表面电荷差异进行分离的方法。
在离子交换柱中,蛋白质会根据其表面电荷与离子交换树脂发生相互作用,从而实现蛋白质的分离和纯化。
这种方法操作简单,分离效果好,适用于具有不同电荷特性的蛋白质。
四、亲和层析。
亲和层析是一种利用蛋白质与亲和层析介质之间特异性结合进行分离的方法。
通过选择合适的亲和层析介质,可以实现对特定蛋白质的高效分离和纯化。
这种方法操作简单,适用于特定蛋白质的纯化。
五、逆流层析。
逆流层析是一种利用蛋白质与逆流层析介质之间的亲和性进行分离的方法。
通过逆流层析柱中的逆流洗脱,可以实现对蛋白质的高效分离和纯化。
这种方法操作简单,适用于特定蛋白质的纯化。
总结。
蛋白纯化是生物化学研究中不可或缺的重要步骤,选择合适的纯化方法对于获得高纯度的蛋白样品至关重要。
本文介绍了几种常用的蛋白纯化方法,包括离心、凝胶过滤层析、离子交换层析、亲和层析和逆流层析,希望能为您的实验提供一些参考。
在实际操作中,需要根据目标蛋白的特性和实验要求选择合适的纯化方法,并结合实际情况进行优化,以获得高质量的蛋白样品。
祝您的实验顺利,取得理想的结果!。
蛋白质纯化技术的研究进展
蛋白质纯化技术的研究进展近年来,蛋白质纯化技术发展迅猛,涌现出了许多新的方法和工具。
蛋白质的纯化是各种生物科学研究中关键的一步,因为只有纯化的蛋白质才可以用于研究其功能和结构。
本文将回顾当前蛋白质纯化技术的研究进展,包括分子筛、多价亲和柱、高效液相色谱、凝胶过滤、离子交换柱和疏水相互作用柱。
一、分子筛技术分子筛技术利用的是蛋白质在不同化合物中的分子大小和形状差异,将目标蛋白从混合物中分离出来。
这种方法的优点是可以同时纯化多种蛋白质且简单快速,但是分子筛技术无法完全分离出不同分子量相似的蛋白质。
二、多价亲和柱技术多价亲和柱技术基于特定蛋白质与生物分子之间的认识,设计出针对特定蛋白的亲和柱,使蛋白质与某一物质具有特异结合能力。
这种方法的优点是比较具有选择性和敏感性,但是多价亲和柱的制备比较困难且昂贵。
三、高效液相色谱技术高效液相色谱技术是目前最常用的蛋白质分离纯化方法之一。
其原理是利用在特定条件下,样品中各种蛋白质在固定相上的作用力、大小和亲水性等性质进行分离。
这种方法具有分离能力高、选择性强和操作简单等优点,但是一些难于分离的蛋白质需要采用较高的分离条件。
四、凝胶过滤技术凝胶过滤技术是基于蛋白质的分子质量大小分离的原理,通过效应缝隙分离蛋白质混合物。
凝胶过滤技术具有操作简便、选择性特别高和可重复性好等优点。
其缺点,是止于瞬时分子质量的分辨率,通量低和密度模拟问题等。
五、离子交换柱技术离子交换柱技术是所谓的“阴离子交换纯化”或“阳离子交换纯化”。
该方法依靠不同的离子交换柱,将带不同电荷的蛋白质分离出来。
在离子交换柱技术中,这种纯化技术性能极为多样,离子交换柱依据其阳(阳离子交换柱)或阴交换作用(阴交换柱)来分离分子中的有机离子,依据的是样品分子的电极性和交换剂的“固定性”电荷。
六、疏水相互作用柱疏水相互作用柱技术是基于蛋白质表面的疏水和亲水性,将蛋白质分为两种类,一种为其表面的疏水面积大且固定较强的疏水性蛋白,而另一种则为亲水性较强的蛋白。
蛋白质纯化常用方法
蛋白质纯化常用方法蛋白质纯化是一种分离高纯度蛋白质的过程,可用于研究物种的功能和结构。
蛋白质纯化可以是一个繁琐的过程,通常需要多步骤的分离和纯化。
以下是一些常见的蛋白质纯化方法。
一、离心分离离心分离是根据蛋白质的分子量和密度差异来分离不同的成分。
高速离心法可分离细胞质组分、胞器、膜蛋白和核酸等。
低速离心法可从混合物中净化纤维蛋白、酶、酰化酶等。
二、盐析盐析是将溶液中的蛋白质与一定饱和度的盐混合后,通过离子间作用而使蛋白质发生沉淀的过程。
盐的浓度、pH值、离子类型和温度等因素会影响到沉淀的生成和纯度。
盐析也可以通过凝胶过滤或离子交换等方法来提高效果和纯度。
三、凝胶柱层析凝胶柱层析是一种将混合物缓慢地通过一个由多种凝胶材料组成的列的过程。
该列可根据蛋白质大小、电荷、亲疏水性等特性进行选择。
通过这种方法,可以净化蛋白质并快速消除杂质、缓解蛋白结构等。
四、亲和层析亲和层析是一种利用配体与蛋白质间的特定的结合进行选择性分离的技术。
配体通常被共价结合在凝胶上, 一些常见的配体包括金属离子、抗体和亲和素等。
通过这种方法,可以高效且选择性地纯化蛋白质,并减少染料、盐和杂质的存在。
五、电泳电泳是根据蛋白质的电荷大小将充电的蛋白质分离开的过程。
根据电泳类型不同,可以区分不同细胞蛋白、酶、抗体等。
蛋白质电泳在生物化学实验室中广泛应用,是一种可视化分离的传统方法。
六、共沉淀共沉淀是基于化合物的亲和性,在溶液中同时存在的两种蛋白质之间发生非共价结合的过程。
通过共沉淀获得的纯化蛋白质收率较高但一般会伴随着蛋白质活性的损失。
总之,纯化蛋白质的过程需要结合样品的特性和分离纯化方式的优点和局限性,选择合适的技术来获得高纯度和活性的蛋白质。
重组蛋白质的分离纯化 (1)
重组蛋白质的分离纯化摘要:90年代以来基因重组技术得到很大的发展,基因工程产品的分离纯化的成本约占其全部成本的60%~80%,因此重组蛋白的分离纯化技术越来越重要。
本文主要介绍了沉淀、液液萃取、层析等常用分离重组蛋白方法的原理及应用,旨在为开展蛋白质的制备及其应用研究提供理论依据。
关键词:重组蛋白质;分离;纯化;沉淀;液液萃取;层析;包涵体随着基因重组技术的发展,出现了很多基因工程产品,而作为基因工程技术的下游工程中的基因重组蛋白的分离纯化技术越来越显示其重要性。
据有人统计,基因工程产品的分离纯化成本约占到其全部成本的60%~80%[1]。
由此可见产品的分离纯化是获得目的产物的关键一步,也是比较困难的一步,它标志着生物产业的高低。
纯化重组蛋白质和普通蛋白质的不同就在于要选择合适的表达系统,因为表达系统决定了细胞培养过程中产物的性质以及可能产生的杂蛋白,而纯化重组蛋白质的主要目的是去除杂蛋白质,通常对一种重组蛋白质的纯化会采用多个系统[2]。
但是重组蛋白有几种不同的表达形式,如细胞外的分泌表达;细胞内可溶性表达以及包涵体形式的存在,因此对于重组蛋白的纯化要依据其表达形式的不同,采取不同的纯化工艺。
与传统方式相似,重组蛋白的分离纯化也是利用其物理和化学性质的差异,即以分子的大小、形状、溶解度、等电点、亲疏水性以及与其它分子的亲和性等性质建立起来的。
目前主要的纯化方法有浓缩沉淀法,层析和电泳技术。
重组蛋白质在分离纯化的过程中,必须维持一定的浓度和生物活性形式,以及防止被降解。
因此从生物体中有效分离纯化重组蛋白质一直是个难题。
90 年代以来,国内外许多科学工作者在蛋白质分离纯化技术和工艺上进行了大量的研制和开发,将原有的纯化技术水平提高到一个新的高度。
本文将简单介绍一些传统的分离纯化方法,并介绍近10 年来重组蛋白分离纯化中的新进展和一些新出现的技术。
1 沉淀分离技术1.1 盐析法其原理是蛋白质在高浓度盐溶液中,随着盐浓度的逐渐增加,由于蛋白质水化膜被破坏、溶解度下降而从溶液中沉淀出来。
分离纯化蛋白质的方法
分离纯化蛋白质的方法
分离纯化蛋白质的方法有多种,常用的方法包括:亲和层析、凝胶过滤色谱、离子交换色谱、逆流层析、尺寸排除层析、亲和吸附等。
1. 亲和层析:利用目标蛋白与某种特定配体的特异性结合,将目标蛋白与其他非特异结合的蛋白质分离开。
2. 凝胶过滤色谱:通过选择性大小排除来分离蛋白质。
较大的蛋白质无法进入凝胶孔道,较小的蛋白质可以顺利通过凝胶,实现分离纯化。
3. 离子交换色谱:通过蛋白质与离子交换基质之间的电荷作用进行分离。
离子与蛋白质的电荷性质决定了它们在离子交换基质上的吸附和洗脱特性。
4. 逆流层析:利用生物化学吸附系数的差异分离纯化蛋白质,结合了某种特定的结合物质与逆流洗脱的过程。
5. 尺寸排除层析:根据蛋白质的大小或分子量差异进行分离纯化,较大的蛋白质会直接通过层析柱,较小的蛋白质则会在柱中留下并延时流出。
6. 亲和吸附:利用蛋白质与特定亲和配体之间的特异性结合进行分离纯化。
这种方法具有高选择性和高效率。
这些方法可以单独使用,也可以联合使用,根据目标蛋白质的特性和需求来选择合适的分离纯化方法。
蛋白质的分离纯化方法
蛋白质的分离纯化方法2.1根据分子大小不同进行分离纯化蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白质和小分子物质分开,并使蛋白质混合物也得到分离。
根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。
透析和超滤是分离蛋白质时常用的方法。
透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。
超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。
这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。
它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。
由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。
所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。
当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。
例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。
使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。
常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。
可以根据所需密度和渗透压的范围选择合适的密度梯度。
密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。
蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。
凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。
凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。
蛋白质分离纯化常用哪些方法
蛋白质分离纯化常用哪些方法
蛋白质分离纯化方法有:
1、沉淀,
2、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。
根据支撑物不同,有薄膜电泳、凝胶电泳等。
3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。
4、层析: a.离子交换层析,利用蛋白质的两性游离性质,在某一特定PH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。
如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。
b.分子筛,又称凝胶过滤。
小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能时入孔内而径直流出。
5、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。
不同蛋白质其密度与形态各不相同而分开。
标注:发布时请加上“文章来源:莱特莱德”,否则视为侵权。
谢谢!。
分离纯化蛋白质的方法及原理
分离纯化蛋白质的方法及原理分离纯化蛋白质是生物化学和分子生物学研究中的重要步骤。
蛋白质的分离与纯化可以使我们更好地理解蛋白质的结构和功能,并为进一步的研究提供可靠的蛋白质样本。
下面将介绍一些常见的蛋白质分离和纯化方法及其原理。
1.存活细胞提取法:这种方法是从细胞中提取蛋白质。
先将细胞破碎,然后通过离心等手段去除细胞碎片和细胞器,留下蛋白质溶液。
使用该方法分离的蛋白质包括细胞质蛋白、细胞膜蛋白等。
2.柱层析法:柱层析法是一种广泛应用的蛋白质分离方法。
它主要依据蛋白质的性质(如分子质量、电荷、亲水性等)在各种填料(如离子交换、凝胶透析、亲和层析等)上的差异进行选择性分离。
原理是根据蛋白质与填料之间的相互作用,通过溶液通过填料层析柱时,不同蛋白质以不同速率在填料间扩散,并在填料内发生各种相互作用,从而实现蛋白质的分离。
该方法可同时分离多个蛋白质,并制备高纯度的蛋白质。
3.电泳法:电泳法是根据蛋白质在电场中的迁移速率、电荷性质和分子大小等特征进行分离的方法。
常见的电泳方法包括SDS-、等电聚焦电泳、二维电泳等。
其中,SDS-是最常用的蛋白质分离方法之一,它通过SDS(十二烷基硫酸钠)使蛋白质变成带负电荷的复合物,继而在电场作用下,按照蛋白质的分子质量大小进行分离。
4.超滤法:超滤法是根据不同分子量的蛋白质在超滤膜上的渗透性差异进行分离。
超滤分离可以根据孔隙的大小将不同分子量的蛋白质阻滞,有效地去除较小分子量的杂质,得到目标蛋白质的高纯度。
5.亲和层析法:亲和层析法是通过目标蛋白质与配体之间的特异性结合进行分离的方法。
配体可以是特定的抗体、金属离子、凝胶颗粒等。
原理是通过将配体共价结合到固定相上,然后将蛋白质样品溶液通过,使目标蛋白质与配体发生特异性结合,其他非特异性结合的蛋白质被洗脱,最后目标蛋白质被洗出。
6.上下层析法:上下层析法是一种根据沉降速度差异进行分离的方法。
利用离心过程中不同蛋白质溶液中蛋白质的不同沉降速度将蛋白质分离。
四种蛋白纯化的有效方法
四种蛋白纯化的有效方法四种蛋白纯化的有效方法在进行蛋白质研究和酶工程等领域的实验过程中,常常需要将目标蛋白从复杂的混合物中纯化出来。
蛋白纯化的目的是获取高纯度的目标蛋白样品,以便进一步进行结构和功能研究。
然而,由于蛋白质的复杂性以及其在混合物中的低浓度,蛋白纯化常常面临一系列的挑战。
为了克服这些挑战,科学家们开发了多种蛋白纯化的方法。
在本文中,我们将介绍四种常见而高效的蛋白纯化方法,并探讨其原理和适用性。
1. 亲和层析法:亲和层析法是一种利用目标蛋白与配体之间的特异性结合进行纯化的方法。
这种方法基于目标蛋白与配体之间的亲和力,通过设计具有高亲和性的配体来选择性地结合目标蛋白。
在实验中,我们可以将配体固定于固相材料上,例如琼脂糖或石蜡烃树脂,并将载有目标蛋白的混合物与这些固定化的亲和基质进行接触。
随后,非特异性蛋白质被洗脱,而目标蛋白则被保留下来。
目标蛋白可以通过改变条件(例如改变pH值或添加竞争性配体)来洗脱。
亲和层析法的优点在于具有高选择性和高纯度的优势。
然而,由于亲和剂的设计和合成需要具有相关专业知识,并且选择适当的配体是关键。
亲和层析法在不同的纯化过程中的适用性会有所不同。
2. 凝胶过滤层析法(Gel Filtration Chromatography):凝胶过滤层析法是通过分子量的差异将混合物中的蛋白质分离的一种方法。
凝胶过滤层析法是利用凝胶材料,例如琼脂糖或琼脂糖-聚丙烯酰胺凝胶,通过分子在凝胶孔隙中的渗透性而将蛋白分离开来。
较大的蛋白分子无法进入凝胶孔隙,因此会在凝胶的表面留下。
较小的蛋白分子则能够渗透进入凝胶孔隙中,因此会相对于较大的蛋白分子更早地溢出。
凝胶过滤层析法的优点在于操作简单、速度快,且可以对蛋白进行某种程度的分离。
然而,该方法的分离效果受到蛋白质在凝胶中的体积效应的限制,因此对于体积较大的蛋白分子,凝胶过滤层析可能无法实现理想的分离效果。
3. 离子交换层析法:离子交换层析法是一种基于蛋白与离子交换材料之间的电荷相互作用进行纯化的方法。
蛋白质的分离纯化技术
蛋白质的分离纯化技术1、根据蛋白质带电性质不同的分离技术1.1离子交换层析以离子交换剂作为柱填充物,在中性条件下,根据由于蛋白质和多肽的带电性不同而引起的离子交换亲和力的不同而得到分离。
其可分为阳离子柱和阴离子柱两大类, 还有一些新型树脂,如大孔型树脂、均孔型树脂、离子交换纤维素、葡聚糖凝胶琼脂糖凝胶树脂等。
离子交换剂有阳离子交换剂和阴离子交换剂。
当被分离的蛋白质溶液流经离子交换层析柱时,带有与离子交换剂可交换基团相同电荷的蛋白质被吸附在离子交换剂上,带同种净电荷越多,吸附力越强。
随后用改变pH或离子强度的办法将吸附的蛋白质按吸附能力从小到大的顺序先后洗脱下来。
1.2电泳法电泳为带电粒子在电场中向与其自身所带电荷相反的电极方向移动的现象。
蛋白质混合样品经过电泳后,被分离的各蛋白质组分的电泳迁移率互不相同,由各蛋白质组分所带的静电荷以及分子大小和形状的不同而达到分离。
现在常用的聚丙烯酰胺凝胶电泳(PAGE),可以因不同蛋白质所带电荷的差异和大小差异高分辨率地分离或分析蛋白质。
在PAGE系统中加入十二烷基磺酸钠(SDS),可以消除蛋白质所带电荷的差异,构成的SDS-PAGE系统是测定蛋白质的相对分子质量最常用的方法。
2、根据蛋白质溶解度不同的分离技术2.1蛋白质的盐析蛋白质在低盐浓度下的溶解度随着盐溶液浓度升高而增加,此称盐溶;当盐浓度不断上升时,蛋白质的溶解度又以不同程度下降并先后析出,此称盐析,从而达到分离纯化的效果。
2.2有机溶剂沉淀法有机溶剂能降低溶液的介电常数,从而增加蛋白质分子上不同电荷的引力,导致溶解度的降低;另有机溶剂与水的作用,能破坏蛋白质的水化膜,故蛋白质在一定浓度的有机溶剂中便沉淀析出。
近年来的研究认为,有机溶剂可能破坏某种键如氢键,使空间结构发生变化,致使一些原来包在内部的疏水集团暴露于表面并与有机溶剂的疏水基团结合形成疏水层,从而使蛋白质沉淀。
利用不同蛋白质在不同浓度的有机溶剂中的溶解度差异而分离的方法即为有机溶剂沉淀法。
蛋白质的分离纯化方法-改
蛋白质多肽的分离纯化方法2.1根据分子大小不同进行分离纯化蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白质和小分子物质分开,并使蛋白质混合物也得到离。
根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。
透析和超滤是分离蛋白质时常用的方法。
透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。
超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。
这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。
它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。
由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。
所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果。
离心常用密度梯度(区带)离心。
常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。
可以根据所需密度和渗透压的范围选择合适的密度梯度。
凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。
凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。
目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。
凝胶过滤在目标蛋白的提取过程中也被用来除去与目标蛋白分子量差异大的杂蛋白小分子的杂质。
2.2 根据溶解度不同进行分离纯化影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。
但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。
蛋白质分离与纯化的方法
蛋白质分离与纯化的方法一、蛋白质的粗分离破碎细胞后,所得的蛋白质混合液中除含有目的蛋白质外,还含有其他蛋白质、脂类、多糖及核酸等成分,利用简易、快速的方法除去这些杂质即为蛋白质的粗分离。
(一)盐析法蛋白质在低盐浓度下其溶解度随盐浓度的增加而增加,此现象为盐溶。
但随着盐浓度的继续升高,蛋白质的溶解度又会以不同程度下降,并先后析出,此现象为盐析。
此现象是由于当水中加入少量盐类时,盐离子与水分子对蛋白质分子上的极性基团产生影响,使其溶解度增大。
但当盐浓度增加到一定程度时,蛋白质所带的电荷被大量中和,水化膜被破坏,分子间相互聚集,而发生沉淀析出。
因此,可根据不同蛋白质在一定浓度的盐溶液中溶解度降低的程度不同,而将各种蛋白质彼此分离。
常用的中性盐有硫酸铵、硫酸钠、氯化钠等。
(二)有机溶剂分段沉淀法通过有机溶剂降低溶液的介电常数,破坏蛋白质的水化膜,导致溶解度的降低而发生沉淀析出,利用不同蛋白质在不同浓度的有机溶剂中的溶解度存在差异而分离的方法,称为有机溶剂分段沉淀法。
常用的有机溶剂有乙醇、丙酮、甲醇等。
(三)超速离心法超速离心法是利用物质的沉降系数、质量浮力等方面的差异,用强离心力使其分离的技术。
蛋白质在高达5000kg的重力作用下,在溶液中逐渐沉淀,直至其浮力与离心所产生的力相等,才停止沉降。
不同蛋白质其密度与形态各不相同,故应用离心的方法可将它们分开。
二、蛋白质的细分离待提纯的样品经过破碎及粗分离后,还难以达到纯品的要求时,则需进一步对其进行纯化处理。
(一)透析法利用蛋白质不能通过半透膜这一性质将大分子量蛋白质与小分子量化合物分开。
用具有超小微孔的膜制成透析袋,微孔可允许分子量为10000以下的化合物通过。
将蛋白质混合物装入袋中,再置于水中,则小分子物质如矿物质(无机盐)、单糖等可透过薄膜,不断更换袋外的水,可把袋内小分子物质全部去尽。
如在袋外放吸水剂,同时还可将袋内的水分去尽。
(二)层析法1.凝胶过滤层析凝胶过滤层析又称分子筛层析,是利用分子量的差异使物质彼此分离的方法。
蛋白质分离纯化步骤
一、蛋白质分离纯化的一般原则大多数蛋白质在组织细胞中都是和核酸等生物分子结合在一起,而且每种类型的细胞都含有成千上万种不同的蛋白质。
许多蛋白质在结构、性质上有许多相似之处,所以蛋白质的分离提纯是一项复杂的工作。
到目前为止,还没有一套现成的方法能把任何一种蛋白质从复杂的混合物中提取出来。
但是对于任何一种蛋白质都有可能选择一种较合适的分离纯化程序以获得高纯度的制品。
且分离的关键步骤、基本手段还是共同的。
蛋白质提纯的目的是增加产品的纯度和产量,同时又要保持和提高产品的生物活性。
因此,要分离纯化某一种蛋白质,首先应选择一种含目的蛋白质较丰富的材料。
其次,应设法避免蛋白质变性,以制备有活性的蛋白质。
对于大多数蛋白质来说,纯化操作都是在0~4℃的低温下进行的。
同时也应避免过酸、过碱的条件以及剧烈的搅拌和振荡。
另外,还要设法除去变性的蛋白质和其它杂蛋白,从而达到增加纯度和提高产量的目的。
二、分离纯化蛋白质的一般程序分离纯化蛋白质的一般程序可分为以下几个步骤:(一)材料的预处理及细胞破碎分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。
所以要采用适当的方法将组织和细胞破碎。
常用的破碎组织细胞的方法有:1. 机械破碎法这种方法是利用机械力的剪切作用,使细胞破碎。
常用设备有,高速组织捣碎机、匀浆器、研钵等。
2. 渗透破碎法这种方法是在低渗条件使细胞溶胀而破碎。
3. 反复冻融法生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。
这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。
4. 超声波法使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。
5. 酶法如用溶菌酶破坏微生物细胞等。
(二) 蛋白质的抽提通常选择适当的缓冲液溶剂把蛋白质提取出来。
抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。
如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100等),使膜结构破坏,利于蛋白质与膜分离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
楚雄师范学院化学与生命科学系
范树国
2.聚丙烯酰胺凝胶电泳(PAGE)
3.毛细管电泳
楚雄师范学院化学与生命科学系
范树国
4.等电聚焦电泳
等电聚焦电泳法测定蛋白质pI
5.SDS-PAGE
6.离子交换层析
离子交换纤维素: 离子交换交联葡聚糖:兼有分子筛效应 离子交换交联琼脂糖:
楚雄师范学院化学与生命科学系
楚雄师范学院化学与生命科学系
范树国
普通电泳、等电聚焦、 双向电泳、脉冲电泳、 毛细管电泳 从电泳结果分:自由界 面电泳、区带电泳、盘 状电泳 从装置上分: 圆盘电 泳(柱状)、水平板电 泳、垂直板电泳。 从支持物分: 自由界 面电泳、纸电泳(或薄 膜电泳)、凝胶电 泳( PAGE ,琼脂糖胶, 淀粉胶等)
沉降的速度与颗粒的重量、密度和形状有关。离心后按其沉降 的速度不同,彼此分开形成区带。再进行光学定位,针刺或冰 冻切片采样分析。
蔗糖密度梯度
聚蔗糖密度梯度
楚雄师范学院化学与生命科学系
范树国
3.凝胶过滤
交联葡聚糖(Sephadex);聚丙烯酰胺凝胶(Bio-Gel P );琼脂糖凝胶(Sepharose,Bio-Gel A)
稳定蛋白质胶体溶液的主要因素 ①蛋白质表面极性基团形成的水化膜将蛋白质颗粒彼此隔开, 不会互相碰撞凝聚而沉淀。 ②两性电解质非等电状态时,带同种电荷,互相排斥不致聚集 而沉淀。
一旦电荷被中和或水化膜被破坏,蛋白质颗粒聚集,便从溶液 中析出沉淀。
楚雄师范学院化学与生命科学系
范树国
(二)蛋白质的沉淀
①盐析法 向蛋白质溶液中加入大量的中性盐[(NH4)2SO4、 Na2SO4、NaCl],使蛋白质脱去水化层而聚集沉淀。 ②有机溶剂沉淀法 破坏水化膜,降低介电常数。 ③重金属盐沉淀 pH大于等电点时,蛋白质带负电荷,可与 重金属离子(Hg2+. Pb2+. Cu2+ 等)结成不溶性沉淀 ④生物碱试剂和某些酸类沉淀法 pH小于等电点时,蛋白质 带正电荷,易与生物碱试剂和酸类的负离子生成不溶性沉淀。 生物碱试剂:是指能引起生物碱沉淀的一类试剂,单宁酸、 苦味酸、钨酸。酸 类:三氯乙酸、磺基水杨酸。 ⑤加热变性沉淀 往往是不可逆的。
楚雄师范学院化学与生命科学系
范树国
交联葡聚糖(Sephadex)
楚雄师范学院化学与生命科学系
范树国
(二)利用溶解度差别的纯化方法
1.等电点沉淀和pH控制
在等电点条件下,蛋白质 的电导性、溶解度最小, 粘度最大。
在 pI 时,分子电荷为零, 蛋白质分子间的静电排斥 消失,从而蛋白质出现聚 集沉淀。
天然球状蛋白质的可解离基团大部分可被滴定,而某些天 然蛋白质中有一部分可解离基团由于埋藏在分子内部或参 与氢键形成而不能解离。
等电点:在某一pH,它所带的正电荷与负电荷相等。蛋白 质的等电点和它所含的酸性氨基酸残基和碱性氨基酸残基 的比例有关。 等离子点:没有其它盐类干扰时,蛋白质质子供体解离出 的质子数与质子受体结合的质子数相等时的pH值称等离子 点,是每种蛋白质的特征常数。
楚雄师范学院化学与生命科学系 范树国
(二)渗透压法测定相对分子量
用半透膜将蛋白质溶液与纯水隔开,当渗透达平衡时,测 定其渗透压,计算分子量:
Mr =
c→0 c
lim π
RT
C:浓度(g/m3) R:气体常数(8.314J/(K· mol)) T:绝对温度(K) :以大气压表示的渗透压(N/m2)
四、蛋白质分离纯化的一般原则
纯化的实质:增加制品(preparation)的纯度或比活性。 ①蛋白与非蛋白分开,②蛋白质之间分开 一般程序:前处理、粗分级、细分级、浓缩与保存
楚雄师范学院化学与生命科学系
范树国
前 处 理
生物组织
破碎、溶 解、差速离心
无细胞提取液
粗 分 离
选择性沉淀法
离子交 换层析 疏水 层析 吸附 层析
(三)蛋白质的扩散和扩散系数
扩散:由于浓度差引起的溶质分子的净迁移。扩散的热 力学驱动力是熵的增加。 扩散系数 D:等于当浓度梯度为一个单位时,在一秒钟 内通过1cm2面积所扩散的溶质量。 扩散系数随Mr的增加而降低,但对Mr的变化不敏感。对 球形的大分子来说,扩散系数与Mr的立方根成反比。
楚雄师范学院化学与生命科学系
大多数蛋白质在低温下比较稳定,因此蛋白质的分级分离操 作一般都在0℃或更低的温度下进行。
楚雄师范学院化学与生命科学系
范树国
(三)根据电荷不同的纯化方法
1.电泳
在外电场的作用下,带电颗粒,例如不处于等电状态的蛋 白质分子,将向着与其电性相反的电极移动,这种现象称 电泳(electrophoresis)或离子泳(ionphoresis)。 电泳不仅是分离蛋白质混合物和鉴定蛋白质纯度的重要于 段,而且也是研究蛋白质性质很有用的一种物理化学方法。
3、细分级(fine fractionation) ①透析除盐 ②sephdex G-25凝胶过滤除盐 ★层析法:凝胶过滤层析、离子交换层析、吸附层析、亲和层 析、疏水层析(反相HPLC) ★电泳法:自由界面电泳、区带电泳(凝胶电泳、滤纸和薄膜 电泳、粉末电泳、细丝电泳等)、盘状电泳、等电聚焦、双向 电泳 ★密度梯度离心
楚雄师范学院化学与生命科学系
范树国
楚雄师范学院化学与生命科学系
范树国
楚雄师范学院化学与生命科学系
范树国
(二)纯度鉴定(均一性)
基本手段:电泳分析:单条带。 N端测定:1种N端氨基酸。 选用手段:沉降分析、溶解度分析、结晶分析(能结晶的一般 比较纯,具有活性) 其它鉴定工作: 1.分子量的测定; 2.等电点测定; 3.N-末端AA测定; 4.C-末端AA的测定(肼解法); 5.分子中糖链:①血球凝集反应;②糖蛋白电泳(甲苯胺兰、 R山兰、schiff试剂);③糖组分分析(层析、液相色谱) 6.含脂成分:苏丹黑预染、电泳。 7.光吸收:全波长扫描。找出它的吸收峰位置和最大吸收值。 8.AA组分分析。
③如果提取膜蛋白: 超声波或去污剂使膜解聚,然后用适当的介质提取。
楚雄师范学院化学与生命科学系 范树国
2、粗分级(rough fractionation) 一般用选择性沉淀法。 ①(NH4)2SO4分级沉淀法(盐析) ②等电点选择性沉淀法 ③有机溶剂分级沉淀法 ④热处理选择性沉淀法 ⑤生物碱或三氯乙酸选择性沉淀法
水溶性非离子聚合物如聚乙二醇(PEG)也能引起蛋白质沉淀。 聚乙二醇的主要作用可能是脱去蛋白质的水化层。聚乙二醇与蛋 白质亲水基团发生相互作用并在空间上阻碍蛋白质与水相接近。 蛋白质在聚乙二酵中的溶解度明显地依赖于聚乙二醇的分子量。
4.温度对蛋白质溶解度的影响
在一定的温度范围内,大部分球状蛋白质的溶解度随温度升 高而增加。
范树国
(四)沉降分析法测定相对分子量
楚雄师范学院化学与生命科学系
范树国
1.沉降速率法
楚雄师范学院化学与生命科学系
范树国
2.沉降平衡法
楚雄师范学院化学与生命科学系
范树国
(五)凝胶过滤法测定蛋白质相对分子量
(六)SDS聚丙烯酰胺凝胶电泳法测定相对分子量
三、蛋白质的胶体性质与蛋白质的沉淀
(一)蛋白质的胶体性质
五、蛋白质的分离纯化方法
(一)根据分子大小不同的纯化方法
1.透析和超滤
透析:半透膜阻留蛋白质分子,而让小的溶质分子和水通 过,以除去蛋白质溶液中小分子(盐、低分子酸等)。
超滤:施以一定的压力
使小分子溶质通过半透
膜,而按半透膜的筛孔 大小截留相应的蛋白质 分子
楚雄师范学院化学与生命科学系
范树国
2.密度梯度(区带)离心
第七章 蛋白质的分离、纯化与表征
一、蛋白质的酸碱性质 二、蛋白质分子的大小与形状
三、蛋白质的胶体性质与蛋白质的沉淀
四、蛋白质分离纯化的一般原则 五、蛋白质的分离纯化方法
六、蛋白质的含量测定与纯度鉴定
一、蛋白质的酸碱性质
蛋白质是一类两性电解质,能与酸或碱发生作用。在蛋白 质分子中,可解离基团主要是侧链基团,及少数 N 端 -NH2 和C端-COOH。
电泳
凝胶 过滤
亲和 层析
细 分 离 精制后的蛋白质
1、前处理: ①将组织和细胞破碎 动物组织和细胞:电动捣碎机(waring blender) 匀浆器(homogenizer) 超声波处理(ultrasonication) 植物组织和细胞:石英砂+提取液,研磨 纤维素酶处理 细菌: 超声波震荡、与砂研磨、高压挤压、溶菌 酶处理(分解肽聚糖) ②差速离心法收集细胞的某一组分(differential centrifugation): 在不同离心力下沉降的细胞组分
楚雄师范学院化学与生命科学系
范树国
六、蛋白质的含量测定与纯度鉴定
(一)蛋白质含量测定
总蛋白含量分析: 凯氏定氮法、Folin-酚法(Lowry法)、双缩脲法、考马斯 亮蓝法、紫外吸收法。 特定蛋白组分的含量分析: 酶和激素等:酶活性或激素活性表示(比活性) 其它蛋白:抗原抗体反应(western blot)
4、浓缩与保存 浓缩方法: 保存方法: ①晶体保存: 结晶过程本身也伴随着一定程度的提纯。能否结晶不仅是纯 度 的一个指标,也是判断制品是否有活性的指标。纯度越高, 溶液越浓,越容易结晶。 结晶方法:使溶液略处于过饱和状态。降低温度、盐析、加 有机溶剂、调节pH、接入晶种。 ②冻干粉保存: ③溶液保存: 加入抗冻剂(50%甘油)后-20~-70℃保存。
洗脱: 低盐高pH
非离子型去污剂(triton x-100) 脂肪醇(丁醇、乙二醇)
(五)利用对配体的特异生物学亲和力的纯 化方法
配基: 酶的底物、辅酶、抑制剂、 效应物及其结构类似物, 激素与受体蛋白,抗原与 抗体,生物素与亲和素 (抗亲和素蛋白),凝集 素。 免疫亲和层析 凝集素亲和层析 金属螯和层析 染料配体层析