金属切削过程基本知识
金属切削加工的基本知识
进给速度vf是单位时间内刀具对工件沿进给方
向的相对位移,单位是mm/s或mm/min。
进给量f是工件或刀具每回转一周时两者沿进
给运动方向的相对位移,单位是mm/r。
二者关系:
vf=f×n
切 削 用 量 三 要 素
(3)背吃刀量 工件上已加工表面和待加工表面间的垂直距 离,单位为mm。 外圆柱表面车削的深度可用下式计算: ap=(dw-dm)/2 mm 对于钻孔工作 ap=dm/2 mm 上两式中 dm——已加工表面直径(mm) dw—— 待加工表面直径(mm)
(3)金刚石
是目前人工制造出的最硬的物质,分天然和人造两种。
特点:
耐磨性好,可用于加工硬质合金、陶瓷、高硅铝合金及耐磨塑料等高硬度、
高耐磨的材料;
其热稳定性差, 强度低、脆性大、对振动敏感,只宜微量切削; 与铁有极强的化学亲合力,不适于加工黑金属。
(4)立方氮化硼
由软的立方氮化硼在高温高压下加入催化剂转变而成。
切 削 层 横 截 面 要 素
由切削刃正在切削的这一层金属叫作切削层。切削层的 截面尺寸称为切削层参数。它决定了刀具切削部分所承受的 负荷和切屑尺寸的大小,通常在基面Pr内度量。 1. 切削厚度 ac (λs= 0)
ac= f sinκr
2. 切削宽度 aw
aw= ap/sinκr
3. 切削层面积 Ac ( κr = 0)
特点:Leabharlann 有很高的硬度及耐磨性; 热稳定性好,可用来加工高温合金; 化学惰性大,可用与加工淬硬钢及冷硬铸铁; 有良好的导热性、较低的摩擦系数。
第二节 金属切削过程中的基本规律
一、切削变形
1.变形区的划分
金属切削加工的基础知识
n——主运动每分钟的往复次数,单位 str/min。
(2) 进给量 f
表示进给运动速度大小的方法有三种,即进给速度 vf,进给量 f,每齿进给量 fz。 进给速度 vf 是指切削刃上选定点相对于工件的瞬时进给运动速度。单位为 mm/s。 进给量 f 是指主运动每转一转,或一个双行程,工件或刀具在进给运动方向上的相对位移量。
程中它的面积逐渐扩大。
过渡表面:工件上由切削刃形成的那部分表面,又称加工表
面。它在主运动的下一转里被切除,或者由下一切削刃切除(多齿 图 1-5 工件的加工表面和被吃刀量 刀具)。
单位为 mm/r 或 mm/str。
每齿进给量 fz 是指多齿刀具每转一齿,工件和刀具在进给运动方向上的相对位移量。单位为 mm/z。
(3) 背吃刀量 ap
切削过程中,通常会在工件上形成三个表面,如图 1-5 所示。
待加工表面:工件上即将被切除的的表面。在切削过程中它
的面积不断减少,直至全部切去。
已加工表面:工件上刀具切削后形成的新鲜表面。在切削过
v
d wn 60 1000
(m/s)
(1-1)
式中:dw——完成主运动的刀具或者工件的最大直径,单位 mm。 n ——主运动的转速,单位 r/min。
当主运动为往复运动时(如刨削),则切削速度为往复运动的平均速度。
v
2Ln 60 1000
(m/s)
(1-2)
式中:L——往复运动的形成长度,单位 mm。
常用的金属切削加工方法有:车削、铣削、刨削、磨削、钻削、镗削、拉削等。
1.1 工件表面的形成方法及所需的成形运动
任何零件的表面都可以看作由若干个基本表面按照一定的关系组合而成。如图 1-1 所示机器零 件上常用的典型表面有:平面、圆柱面、圆锥面和各种成形表面。
金属切削的基础知识
切削过程: 三个变形区
(1)第一变形区
(2)第二变形区: (3)第三变形区:
制造技术
切屑种类:
1)带状切屑
外形连绵不断,与前刀 面接触的面很光滑,背面呈毛 茸状。用较大前角、较高的切 削速度和较小的进给量切削塑 性材料时,容易得到带状切屑。
制造技术
2)崩碎切屑 切削铸铁等脆性材料
制造技术
二、切削热的传散
在一般干切削的情况下,大部分的切削热由切屑传散出 去,其次由工件和刀具传散,而周围介质传散出去的热量很 少。但各种传散热量的比例,随着工件材料、刀具材料、切 削用量、刀具角度及切削方式等切削条件的不同而异。 切削热传散给切削及周围介质,对切削加工没有影响, 且传散得越多越好。 切削热传散给刀具切削部分,使刀具磨损加快,缩短刀 具的使用寿命;切削热传散给工件,影响工件的加工精度和 表面质量。 为了减小切削热对工件加工质量的不良影响,可采取的 两方面工艺措施:一是减小工件材料的变形抗力和摩擦阻力, 降低功率消耗和减少切削热;二是要加速切削热的传散,以 降低切削温度。
面粗糙度;严重时,会引起崩刀打刀,加速刀具的磨损。 二、表层材质变化
1.加工硬化
加工硬化是指在切削过程中,工件已加工表面受刀刃和后 面的挤压和摩擦而产生塑性变形,使表层组织发生变化,硬度 显著提高的现象。硬化层深度可达到0.02~0.03mm,表层硬度 约为工件材料的1.2~2倍。
制造技术
对加工硬化的影响因素:刀具几何参数、切削条件、工件
制造技术
2.润滑作用 金属切削加工液(简称切削液)在切削过程中的润滑作用, 可以减小前刀面与切屑,后刀面与已加工表面间的摩擦,形成部 分润滑膜,从而减小切削力、摩擦和功率消耗,降低刀具与工件 坯料摩擦部位的表面温度和刀具磨损,改善工件材料的切削加工 性能。在磨削过程中,加入磨削液后,磨削液渗入砂轮磨粒-工 件及磨粒-磨屑之间形成润滑膜,使界面间的摩擦减小,防止磨 粒切削刃磨损和粘附切屑,从而减小磨削力和摩擦热,提高砂轮 耐用度以及工件表面质量。 3.清洗和排屑作用 在金属切削过程中,要求切削液有良好的清洗作用。除去生 成切屑、磨屑以及铁粉、油污和砂粒,防止机床和工件、刀具的 沾污,使刀具或砂轮的切削刃口保持锋利,不致影响切削效果。 对于油基切削油,粘度越低,清洗能力越强,尤其是含有煤油、 柴油等轻组份的切削油,渗透性和清洗性能就越好。含有表面活 性剂的水基切削液,清洗效果较好,因为它能在表面上形成吸附
第十七章 金属切削加工基础知识
图17-17 刀具磨损的三个阶段
• 第五节
工件材料的切削加工性
• 一、 衡量工件材料切削加工性的指标 • 由于切削加工性是对材料多方面的综合评价,所以很难用一个简单的 物理量来精确规定和测量。在生产和实验中,常取某一项指标来反映 材料切削加工性的某一具体方面,最常用的是vT和Kr。 • vT——指在一定的切削条件下,当刀具的寿命为T分钟时,切削某种材 料所允许的最大的切削速度。vT越高,表示材料的切削加工性越好。 通常取T=60min,则vT可写作v60。 • Kr——称为相对加工性,一般以正火状态45钢的v60为基准,写作 (v60),然后将其它各种材料的v60与之相比所得的比值。当Kr>1时, 表示该材料比45钢容易切削。反之,则比45钢难切削。常用工件材料 的相对加工性可分为八级,见表17-2。
• 五、切削热与切削温度 • 1.切削热的来源: • ⑴是正在加工和已加工表面所发生的弹性和塑性变形而产生的大量的热, 是切削热的主要来源; • ⑵是切屑与刀具前刀面之间的摩擦产生的热; • ⑶是工件与刀具后刀面之间的摩擦产生的热。切削时所消耗的功约有98% -99%转换为切削热。 • 2.切削温度 • 切削温度过高,会使刀头软化,磨损加剧,寿命下降;工件和刀具受热膨 胀,会导致工件精度超差影响加工精度,特别是在加工细长轴、薄壁套时, 更应注意热变形的影响。 ⑴ • 在生产实践中,为了有效地降低切削温度,常应用切削液,切削液能带走 大量的热,对降低切削温度的效果显著,同时还能起到润滑、清洗和防锈的 作用。常见的切削液有: • ⑴切削油 主要是各种矿物油、动植物油和加入油性、极压添加剂的混 合油。其润滑性能好,但冷却性能较差,主要用来减少磨损和降低工件的表 面粗糙度,一般用于低速精加工,如铣削加工和齿轮加工等。 • ⑵水溶液 主要成分是水并加入防锈剂、表面活性剂或油性添加剂。其 热导率高、流动性好,主要起冷却作用,同时还具有防锈、清洗等作用。 • ⑶乳化液 由乳化油加水稀释而成,呈乳白色或半透明状,有良好的流 动性和冷却作用,是应用最广泛的切削液。低浓度的乳化液用于粗车、磨削。 高浓度乳化液用于精车、钻孔和铣削等。在乳化液中加入硫、磷等有机化合 物,可提高润滑性。适用于螺纹、齿轮等精加工。
金属切削过程的基础知识
1. 切削运动
金属切削机床的基本运动有直线运动和回转运动。依其 作用不同,可把切削运动分为主运动与进给运动。
(1)主运动
主运动是切除多余金属层以形成工件要求的形状、尺寸 精度及表面质量所必须的基本运动,是速度最高、消耗功率 最大的运动。这种运动在切削过程中只能有一个。车削的主 运动是工件的回转运动。
前角γ0e和工作后角αoe都与其标注前
角γo和标注后角αo不同,它们之间的 关系见下式:
vc
第一节 基本概念
γ oe γ o η ;α oe α o η
η称为合成切削速度角,是 主运动方向与切削速度方向 的夹角:
tanη vf f
vc π d
vc
第一节 基本概念
(2)纵车
当考虑进给运动后,切削刃上选定点的运动轨迹是一螺旋线,这时的切削 平面Pse是过选定点与螺旋面相切的平面,刀具工作角度的参考系(Pse、Pre) 倾斜了一个角η,则工作进给剖面内的工作角度为:
第一节 基本概念
(1)前刀面
切屑流经的表面称为前刀面,记为Ar。
(2)后刀面
后刀面分为主后刀面和副后刀面。与工 件上加工表面相对的表面称为主后刀面,记 为Aa。与工件上已加工表面相对的表面称为 副后刀面,记为Aa’。
(3)切削刃 前刀面与主后刀面的交线,称
为主切削刃,用以完成主要切除 工作,记作S;前刀面与副后刀 面的交线,称为副切削刃,辅助 参与形成己加工表面,记作S’。 (4)刀尖
切削主运动和进绘运动的合成称合成切削运动,亦即刀具切削刃上某一点
相对工件的运动,其大小与方向用合成速度向量 ve 表示。
ve vc v f
第一节 基本概念
2. 切削用量三要素
金属切削加工的基本知识
第一章金属切削加工的根本学问教学方法导入课:金属切削加工,通常又称为机械加工,是通过刀具与工件之间的相对运动,从毛坯上切除多余的金属,从而获得合格零件的加工方法。
切削加工的根本形式有:车、铣、刨、磨、钻等,包括钳工加工〔錾、锉、锯、刮削、钻孔、铰孔、攻丝、套丝等〕一般状况下,通过铸造、锻造、焊接及轧制的型材毛坯精度低和外表粗糙度大,必需进展切削加工才能成为零件。
本章主要介绍金属切削加工中的根本规律和现象。
讲授课:第一节金属切削加工的根本概念一、切削运动和切削要素1、切削运动切削运动是为了形成工件所必需的刀具和工件之间的相对运动。
切削运动按其作用不同,分为主运动和进给运动。
(1)主运动是切削运动中速度最高、消耗功率最大的运动;一般切削运动中,主运动只有一个。
各种机械加工的主运动:车削:工件的旋转铣削:铣刀的旋转刨削:刨刀〔牛头刨〕或工件〔龙门刨〕的往复直线运动钻削:刀具〔钻床上〕或工件〔车床上〕的旋转。
(2)进给运动是使的切削层金属不断地投入切削,从而切出整个外表的运动;进给运动可以是一个或多个。
各种机械加工的进给运动:车削:刀具的移动铣削:工件的移动钻孔:钻头沿轴向移动内外圆磨削:工件旋转和移动切削加工过程中,为实现机械化和自动化,提高效率,除切削运动外,还需要关心运动。
如切入运动,空程运动,分度转位运动、送夹料运动及机床掌握运动等。
切削过程中形成三个外表:待加工外表、加工外表、已加工外表2、切削要素包括切削用量和切削层横截面要素。
(1)切削用量三要素1)切削速度v是主运动的线速度〔m/s 或m/min 〕a = d w旋转主运动:2) 进给速度 v f 或进给量 fv f :单位时间内刀具对工件沿进给方向的相对位移〔 mm/s或 mm/min 〕进给量 f :工件或刀具每转一周,刀具对工件沿进给方向的相对位移。
〔mm/r 〕切削时间 t = L/v f = L/nf3〕背吃刀量 a p 〔切削深度〕工件已加工外表和待加工外表的垂直距离〔mm 〕 教学方法 外圆车削: - d p 2钻孔: a = d mp 2合成切削运动 :v e = v +v f 〔向量的关系〕(2) 切削层横截面要素切削层是指刀具与工件相对移动一个进给量时,相邻两个加工外表之间的金属层,切削层的轴向剖面称为切削层横截面。
金属切削过程与刀具的基本知识
金属切削过程与刀具的基本知识金属切削是一种将金属材料通过切削刀具的作用使其达到需要形状和尺寸的工艺。
金属切削工艺是机械加工的主要方法之一,广泛应用于制造业的各个领域。
本文将详细介绍金属切削过程与刀具的基本知识。
一、金属切削过程启动阶段是切削过程开始时,切削速度较低,金属会发生初步塑性变形。
切削力和切削温度相对较低。
稳定阶段是切削速度逐渐增加,形成连续的切屑,金属在切削面产生变形,切削力和切削温度达到稳定状态。
断裂阶段是切削过程接近结束时,切削力和切削温度急剧增大,金属开始断裂,切削面出现划痕。
切削过程中,切削力对刀具与工件的影响很大。
切削力的大小与切削速度、前进速度、切削深度等因素有关。
合理控制切削力可以延长刀具的使用寿命,提高切削效率。
切削温度是切削过程中的另一个重要参数。
切削温度的高低对刀具寿命和加工精度有很大影响。
高温会使刀具磨损加剧,降低其硬度和强度,导致切削质量下降。
切削速度是切削过程中的重要参数之一,它直接影响到切削效率和切削质量。
切削速度越高,切削效率越高,但也会引起刀具温度升高,容易引发刀具的磨损和断裂。
切削速度的选择要根据工件材料的硬度、刀具材料的性能及切削条件等因素进行合理搭配。
刀具是进行金属切削的工具,它的质量和性能直接影响到切削过程的效果。
下面介绍几个关于刀具的基本知识。
1.刀具的结构:刀具通常由刀柄、刀片和刀片夹持装置组成。
刀柄是刀具的主体部分,可以用来固定和传递力量。
刀片是刀具的工作部分,负责进行金属切削。
夹持装置用来固定刀片在刀柄上。
2.刀具材料:刀具材料通常需要具备高硬度、高强度、耐磨性、耐高温性、抗断裂性等特性。
常见的刀具材料有硬质合金、高速钢、陶瓷、CBN、PCD等。
3.刀片的形状:刀片的形状多样,常见的有直刃刀片、弧形刀片、切槽刀片、钻孔刀片等。
刀片的形状要根据具体的切削任务选择,以提高切削效果。
4.刀具寿命:刀具寿命是指刀具从开始使用到不能继续使用的总时间。
金属切削加工的基本知识
金属切削加工的基本知识金属切削加工是一种高精度、高效率的加工工艺,广泛应用于制造各种金属零件和工业产品。
本文将介绍一些关于金属切削加工的基本知识,包括加工原理、常用工具、加工过程和注意事项等。
1. 加工原理金属切削加工的原理是利用旋转的刀具在金属工件上切削,将金属切屑削除,以达到加工精度和表面质量的要求。
切削加工一般分为转动切削和直线切削两种方式。
转动切削是指刀具绕底线旋转,如车削、铣削、钻削等。
直线切削是指刀具相对于工件作直线运动,如镗孔、拉铣、拉削等。
2. 常用工具金属切削加工的常用工具包括车刀、铣刀、钻头、工具刀、镗刀、拉削刀等。
车刀和铣刀是常见的切削工具,通常由切刃、切削角、刃倾角、切刃宽度等部分组成。
钻头是专门用于钻孔的工具,通常用来钻圆形孔和通孔。
工具刀是用于切削轻质材料、薄板和半成品的工具,镗刀是用于镗孔的工具,拉削刀则是用于削成品的工具。
3. 加工过程金属切削加工的加工过程分为粗加工、半精加工和精加工三个阶段。
粗加工是指在尺寸留出一定的余量后,利用粗加工刀具先将工件上的金属材料削除,以达到快速加工的目的。
半精加工要求切削刃的精度和表面质量比粗加工更高一些,工件尺寸也更加接近目标尺寸。
精加工则是最后通过切削刃对工件进行微调,以达到期望的尺寸和表面精度要求。
4. 注意事项金属切削加工需要注意安全,因为在加工过程中可能会飞溅出热的金属屑、润滑剂和冷却液。
所以在切削加工时需要戴好防护眼镜、手套等个人防护用具。
此外,还要注意刀具的选择、加工参数的调整、加工尺寸的测量等方面,以确保加工质量和效率。
金属切削的基础知识
金属切削的基础知识金属切削是一种通过切削工具在金属工件上施加力量,使其产生剪切应力,从而剥离所需形状的金属层的加工方法。
它是目前最常用和广泛应用的金属加工方式之一。
以下是金属切削的基础知识:1. 切削工具:切削工具通常由硬质材料制成,如高速钢、硬质合金等。
常见的切削工具包括刀片、钻头、铣刀等。
刀具的选择根据加工材料、加工形状和加工质量要求等因素进行。
2. 切削速度:切削速度是指在单位时间内切削刀具工作部分对工件的相对运动速度。
它是影响切削加工效果和刀具寿命的重要因素。
通常以米每分钟(m/min)作为单位。
3. 进给速度:进给速度是指切削刀具沿工件表面移动的速度。
它决定了每分钟进给长度。
进给速度的选择需要考虑切削深度、加工精度和刀具强度等因素。
4. 切削深度:切削深度是指切削刀具在每次切削中从工件表面剥离金属的厚度。
切削深度越大,切削力也会增加,刀具磨损加剧。
因此,切削深度的选择要根据材料性质、刀具强度和加工要求等综合考虑。
5. 切削力:切削力是指在切削过程中作用在切削刀具上的力。
它是切削加工过程中的重要力学参数,会影响刀具的磨损和加工精度。
切削力的大小与切削厚度、切削速度、切削角度和材料硬度等因素密切相关。
6. 刀具磨损:切削刀具在切削过程中会不可避免地发生磨损。
刀具磨损会使切削力增加、切削质量下降,并且降低了刀具的寿命。
因此,定期更换和修磨切削刀具是保证加工质量和生产效率的重要措施。
7. 切削液:切削液是指在金属切削过程中加入的一种液体。
它主要用于降低切削温度、润滑切削表面、冲洗切削区域,以减少金属切削时产生的摩擦和热量。
良好的切削液选择能够有效地提高加工质量和刀具寿命。
金属切削是工业生产中广泛应用的加工方式之一,掌握金属切削的基础知识对于提高加工质量、降低生产成本具有重要意义。
因此,对于从事金属加工的工作者来说,了解切削工具、切削速度、进给速度、切削深度、切削力、刀具磨损以及切削液等基础知识是十分必要的。
第十七章 金属切削加工基础知识
图17-15 切削合力与分力
(1)主切削力Fc 垂直于基面且与切削主运动速度方向一致。机床动 力的主要依据。消耗功率95%以上。 (2)背向力Fp 在基面内,与切削进给速度方向垂直。易使工件变 2 形,同时还会引起振动,使工件的表面粗糙度值增大。 (3)进给力Ff 在基面内,与进给速度方向平行。是验证进给系统 零件强度和刚度的依据。 (17-6) 由图17-15可知 F2=F2c+ F2p+ F2f 2. 影响切削力的大小的因素: 影响切削力的大小的因素: (1)工件材料的影响 )工件材料的影响:一般材料的强度、硬度愈高,韧性、塑性愈好, 愈难切削,切削力也愈大。 (2)切削用量的影响:当ap和f增加时,切削力也增大。在车削加工时, )切削用量的影响: 当ap加大一倍,Fc也增大一倍;而f加大一倍,Fc只增大68%~86%,因 此,从切削力角度考虑,加大进给量比加大背吃刀量有利。 (3)刀具几何参数的影响 前角和后角对切削力的影响最大。 ) 前角愈大切屑变形小,切削力也小。 后角愈大,刀具后刀面与工件加工表面间的摩擦愈小。 改变主偏角的大小,可以改变轴向力与径向力的比例(特别是加工细长工 件时,经常采用较大的主偏角以使径向力减小)
• 二、影响材料切削加工性的因素 • 1.影响工件材料切削性能的主要因素 • (1)硬度、强度 一般来讲,材料的硬度、强度愈高,则切削力愈大, 消耗切削功率愈多,切削温度愈高,刀具磨损愈快,因此,其切削加 工性差。 • (2)塑性 材料的塑性愈大,则切削变形愈大,刀具容易发生磨损。 在较低的切削速度下加工塑性材料还容易出现积屑瘤使加工表面粗糙 度值增大,且断屑困难,故切削加工性不好。但材料塑性太差时,得 到崩碎切屑,切削力和切削热集中在切削刃附近,刀具易产生崩刃, 加工性也较差。 • (3)另外,材料的热导率、化学成分、金相组织等都对材料的切削加 工性有一定的影响。 • 2.改善材料切削加工性的主要措施 • (1)调整材料的化学成分 在钢中加入S、P、Pb、Ca等元素能起 到一定的润滑作用并增加材料的热脆性,从而改善其切削加工性。 • (2)对工件材料进行适当的热处理 利用热处理可改善低碳钢和高 碳钢的切削加工性。例如,对低碳钢和进行正火处理,或降低塑性, 提高硬度,使其切削加工性得到改善。对高碳钢和工具钢进行球化退 火,使网状、片状的渗碳体组织球状渗碳体,降低了材料的硬度,使 切削加工较易进行。对于出现白口组织的铸件,可在950~1000℃下 进行长时间退火,降低硬度, 达到改善切削加工性的目的。
金属工艺学第一章 金属切削基础知识
主要的影响因素
切削速度 (切中碳钢) <5m/min不产生 5~50m/min形成
控 制 措 降低塑性 施
(正火、调质)
>100 m/min不形成 选用低速或高速
冷却润滑条件
300~500oC最易产 生 >500oC趋于消失
选用切削液
第三节 金属切削过程
三、切削力与切削功率
1、切削力的构成与分解
切削力的来源
热处理变形 不需要
用途
各种刀片
1200
(12~14)
高硬度钢材 精加工
人造金刚石
HV10000 (硬质合金为 HV1300~1800)
700~800
不宜加工钢铁材 料
第二节 刀具材料及刀具构造
三、刀具角度
各种刀具的切削部分形状
第二节 刀具材料及刀具构造
二、刀具角度
1、车刀切削部分的组成
三面
两刃 一尖
(2)作用 ①冷却 ②润滑
第三节 金属切削过程
五、刀具磨损和刀具耐用度
1、刀具磨损形式
(1)前刀面磨损 (2)后刀面磨损 (通常以后刀面磨损值VB表示刀具磨损程度) (3)前后刀面同时磨损
2、刀具磨损过程:
前面磨损、后面磨损、前后面同时磨损 。 刀具磨损过程: 初期磨损阶段、正常磨损阶段、急剧磨损阶段
刀尖高低对刀具工作角度的影响
车刀刀杆安装偏斜对刀具角度的影响
② 进给运动的影响
第二节 刀具材料及刀具构造
三、刀具结构
刀具的结构形式很多,有整体式、焊接式、机夹 不重磨式等。
目前一般整体式的多为高速钢车刀,其结构简单, 制造、使用都方便。而对于贵重刀具材料,如硬质合 金等,可采用焊接式或机夹不重磨式。焊接式车刀结 构简单、紧凑、刚性好,可磨出各种所需角度,应用 广泛。
金属切削加工基本知识
一、刀具材料
1.刀具材料应具备的性能
(1) 硬度 刀具切削部分的硬度,必须高于工件材料的硬度才能切下切屑。 一般其常用硬度要求在HRC60以上。 (2) 强度和冲击韧性 在切削力作用下工作的刀具,必须具有足够的抗弯 强度。刀具在切削时会承受较大的冲击载荷和振动,因此必须具备足够 的韧性。 (3) 耐磨性 为保持刀刃的锋利,刀具材料应具有较好的耐磨性。一般来 说,材料的硬度越高.耐磨性则越好。 (4) 红硬性 由于切削区的温度较高.因此刀具材料要有在高温下仍能保 持高硬度的性能,这种性能称为红硬性或热硬性。 (5) 工艺性 为了便于刀具的制造和刃磨.刀具材料应具有良好的切削加 工性和可磨削性,以及良好的热处理性能。
图4—5刀具几何角度
(3)刀具几何角度的选择及其对切削加工的影响 前角(γo)
前角大,刀具锋利,切削层的塑性变形和摩擦阻力减小,切削力和切 削热降低。但前角过大会使切削刃强度减弱,散热条件变差,刀具寿命下 降,甚至会造成崩刃。前角的大小选择原则:
1)工件材料的强度、硬度低,塑性好,应取较大前角;加工脆 性材料,应取较小前角:加工特硬材料,应取负前角。 2)高速钢刀具可取较大前角;硬质合金刀具应取较小前角。 3)精加工应取较大前角;粗加工或断续切削应取较小前角。
金属切削过程与刀具的基本知识
0
γ
0
′
α0′
A
κ
κ r′
r
f
A向
ε
r
λ
s
图2-50 车刀的主要角度
42
5) 刃倾角λ
s
在切削平面中测量,主切削刃与基面的夹角。
υ
c
刀尖为切削刃最高点时为 正,反之为负。
刃倾角可控制切屑流出方 向和刀头强度。
刃倾角一般 –50 ~ 50 主切削刃
刃倾角λ
s
基面投影线
43
1.1.2刀具角度
20
1.1.2刀具角度
刀具切削部分的组成
(3)副后刀面:刀具上与工件已加工表面相对的表面。 (4)主切削刃:前刀面与主后刀面的交线,它完成主要的切削 工作。
21
1.1.2刀具角度
刀具切削部分的组成
(5)副切削刃:前刀面与副后刀面的交线,它配合主切削刃
完成切削工作,并最终形成已加工表面。
(6)刀尖:连接主切削刃和副切削刃的一段刀刃,它可以是 小的直线段或圆弧.
正交平面 Po 前刀面 A 基面 Pr 切削平面 Ps 主切削刃 副切削刃 主后刀面
正交平面参考系
32
3.其它刀具标注参考系
(1)法平面pn与法平面参考系
1)法平面 刃的平面 通过切削刃上选定点并垂直于切削
2)法平面参考系 pr 、 ps 、pn 组成的参考系。 (图1-4) 刀具角度标注见图1-5。
1.1.2刀具角度 1)前角γ 0
基面投影线
υ
c
前刀面投影线
前角γ
0
37
1.1.2刀具角度
刀具标注角度
1)前角γo 在正交平面内测量, 是前刀面与基面的夹角 。前刀面在基面之下γo 定为正值;前刀面在基 面之上时γo定为负值。 γo 影 响 切 削 难 易 程 度 。增大前角可使刀具锋 利,切削轻快。但前角 过大,刀刃和刀尖强度 下降,刀具导热体积减 小,影响刀具寿命。
机械制造技术-金属切削过程基本知识
图(b), 刀具的背棱顶在已加工表面上, 切削刃无法
刀 切入, 切削条件被破坏。可见, 在这种场合下, 只考虑
具 工 作
主运动的假定条件是不合适的, 还必须考虑进给运动 速度的影响, 也就是必须考虑合成切削运动方向来确
角 度
定刀具工作角度的参考系;
的 参 考
图(c), 刀具后刀面与已加工表面全面接触, 摩擦严 重。
度 的
刀具标注角度
参 考
的参考系的形成
系 如右图动画所示,
由基面、切削平
面、主剖面等平
面构成了主剖面
参考系。
(1)基面Pr
通过切削刃选定点, 垂直于假定主运动方向
的平面。
刀
通常, 基面应平行或垂直于刀具上便于制造、
具 标
刃磨和测量的某一安装定位平面或轴线。
注 角
例如, 图示为普通车刀或刨刀的基面, 它平行
Pr-Ps组成的一个
正交的主剖面参
刀 考系, 这是目前生
具 标
产中最常用的刀
注 角
具标注角度参考
度 的
系。图中同时也
参 考
表示了一个由Pn-
系 Pr- Ps 组成的法
剖面参考系。在
实际使用时一般
是分别使用某一
(5)进给剖面 Pf 和背平面Pp及其
组成的进给、背平面参考系
进给剖面Pf是通过切削刃选定
度 的
于刀具底面。钻头、铣刀和丝锥等旋转类刀具,
参 考
其切削刃各点的旋转运动(即主运动)方向, 都垂
系 直于通过该点并包含刀具旋转轴线的平面, 故其
基面Pr就是刀具的轴向剖面。
(2)切削平面 Ps
通过切削刃选定点, 与主切削刃相切, 并垂直