高三数学第一轮复习教学案
高三数学高考第一轮复习计划(10篇)
高三数学高考第一轮复习计划(10篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高三数学高考第一轮复习计划(10篇)2023高三数学高考第一轮复习计划(10篇)如何规划好数学第一轮的高考复习计划呢?制定详细的复习计划,学生需要好好把握做好复习计划,复习并不是某种意义上的“炒冷饭”,而是“温故而知新”。
高三数学一轮复习精品教案1:线面、面面平行的判定与性质教学设计
9.4直线、平面平行的判定与性质1.直线与平面平行的判定定理和性质定理文字语言图形语言 符号语言判定定理平面外一条直线与这个平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)⎭⎪⎬⎪⎫l ∥a a ⊂αl ⊄α l ∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)⎭⎪⎬⎪⎫l ∥αl ⊂βα∩β=b l ∥b 2.平面与平面平行的判定定理和性质定理文字语言 图形语言 符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)⎭⎪⎬⎪⎫a ∥βb ∥βa ∩b =P a ⊂αb ⊂αα∥β 性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行⎭⎪⎬⎪⎫α∥βα∩γ=a β∩γ=b a ∥b1.直线与平面平行的判定中易忽视“线在面内”这一关键条件. 2.面面平行的判定中易忽视“面内两条相交线”这一条件.3.如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,实质上也可以相交.『试一试』1.下列说法中正确的是________(填序号).①一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行;④如果直线l 和平面α平行,那么过平面α内一点和直线l 平行的直线在α内.『解析』由线面平行的性质定理知①④正确;由直线与平面平行的定义知②正确;③错误,因为经过一点可作一直线与已知直线平行,而经过这条直线可作无数个平面.『答案』①②④2.设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,且m ⊥α,则l ⊥α; ②若m ∥l ,且m ∥α,则l ∥α;③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=m ,β∩γ=l ,γ∩α=n ,且n ∥β,则l ∥m . 其中正确命题的个数是________.『解析』易知①正确;②错误,l 与α的具体关系不能确定;③错误,以墙角为例即可说明;④正确,可以以三棱柱为例说明.『答案』21.转化与化归思想——平行问题中的转化关系2.判断线面平行的两种常用方法面面平行判定的落脚点是线面平行,因此掌握线面平行的判定方法是必要的,判定线面平行的两种方法:(1)利用线面平行的判定定理;(2)利用面面平行的性质,即当两平面平行时,其中一平面内的任一直线平行于另一平面.『练一练』1.a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,现给出四个命题 ①⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β ②⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β③⎭⎪⎬⎪⎫α∥c a ∥c ⇒a ∥α ④⎭⎪⎬⎪⎫a ∥γα∥γ⇒α∥a其中正确的命题是________(填序号).『解析』②正确.①错在α与β可能相交.③④错在a 可能在α内. 『答案』②2.如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件______时,有MN ∥平面B 1BDD 1.『解析』由平面HNF ∥平面B 1BDD 1知,当M 点满足在线段FH 上有MN ∥平面B 1BDD 1.『答案』M ∈线段FH考点一线面平行、面面平行的基本问题1.有互不相同的直线m ,n ,l 和平面α,β,给出下列四个命题: ①若m ⊂α,l ∩α=A ,A ∉m ,则l 与m 不共面;②若m ,l 是异面直线,l ∥α,m ∥α,且n ⊥l ,n ⊥m ,则n ⊥α; ③若m ,n 是相交直线,m ⊂α,m ∥β,n ⊂α,n ∥β,则α∥β; ④若l ∥α,m ∥β,α∥β,则l ∥m . 其中真命题有________个.『解析』由异面直线的判定定理,易知①是真命题;由线面平行的性质知,存在直线l ′⊂α,m ′⊂α,使得l ∥l ′,m ∥m ′,∵m ,l 是异面直线,∴l ′与m ′是相交直线,又n ⊥l ,n ⊥m ,∴n ⊥l ′,n ⊥m ′,故n ⊥α,②是真命题;由线面平行的性质和判定知③是真命题;满足条件l ∥α,m ∥β,α∥β的直线m ,l 或相交或平行或异面,故④是假命题.『答案』32.(2014·济宁模拟)过三棱柱ABC A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1 平行的直线共有________条.『解析』过三棱柱ABC A 1B 1C 1的任意两条棱的中点作直线,记AC ,BC ,A 1C 1,B 1C 1的中点分别为E ,F ,E 1,F 1,则直线EF ,E 1F 1,EE 1,FF 1,E 1F ,EF 1均与平面ABB 1A 1平行,故符合题意的直线共6条.『答案』6『备课札记』『类题通法』解决有关线面平行、面面平行的基本问题要注意(1)判定定理与性质定理中易忽视的条件,如线面平行的判定定理中条件线在面外易忽视.(2)结合题意构造或绘制图形,结合图形作出判断. (3)举反例否定结论或用反证法推断命题是否正确.考点二直线与平面平行的判定与性质『典例』 (2013·新课标卷Ⅱ)如图,直三棱柱ABC A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C A 1DE 的体积. 『解』 (1)证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连结DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD . (2)因为ABC A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC =CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =22得∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3, 故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D . 所以VC A 1DE =13×12×6×3×2=1.『备课札记』在本例条件下,线段BC 1上是否存在一点M 使得DM ∥平面A 1ACC 1? 解:存在.当M 为BC 1的中点时成立. 证明如下:连结DM ,在△ABC 1中, D ,M 分别为AB ,BC 1的中点 ∵DM 綊12AC 1,又DM ⊄平面A 1ACC 1AC 1⊂平面A 1ACC 1,∴DM ∥平面A 1ACC 1.『类题通法』证明线面平行的关键点及探求线线平行的方法(1)证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线; (2)利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行;(3)注意说明已知的直线不在平面内,即三个条件缺一不可. 『针对训练』如图,已知四棱锥P ABCD 的底面为直角梯形,AB ∥CD ,∠DAB =90°,P A ⊥底面ABCD ,且P A =AD =DC =12AB =1,M 是PB 的中点.(1)求证:AM =CM ;(2)若N 是PC 的中点,求证:DN ∥平面AMC .证明:(1)∵在直角梯形ABCD 中,AD =DC =12AB =1,∴AC =2,BC =2,∴BC ⊥AC ,又P A ⊥平面ABCD ,BC ⊂平面ABCD , ∴BC ⊥P A ,又P A ∩AC =A , ∴BC ⊥平面P AC ,∴BC ⊥PC .在Rt △P AB 中,M 为PB 的中点,则AM =12PB ,在Rt △PBC 中,M 为PB 的中点, 则CM =12PB ,∴AM =CM .(2)如图,连结DB 交AC 于点F , ∵DC 綊12AB ,∴DF =12FB .取PM 的中点G ,连结DG ,FM , 则DG ∥FM ,又DG ⊄平面AMC ,FM ⊂平面AMC , ∴DG ∥平面AMC .连结GN ,则GN ∥MC ,GN ⊄平面AMC , MC ⊂平面AMC . ∴GN ∥平面AMC , 又GN ∩DG =G ,∴平面DNG ∥平面AMC , 又DN ⊂平面DNG ,∴DN ∥平面AMC .考点三平面与平面平行的判定与性质『典例』 (2013·陕西高考)如图,四棱柱ABCD A 1B 1C 1D 1的底面ABCD 是正方形,O 是底面中心, A 1O ⊥底面ABCD ,AB =AA 1= 2.(1)证明:平面 A 1BD ∥平面CD 1B 1; (2)求三棱柱ABD A 1B 1D 1的体积. 『解』 (1)证明:由题设知,BB 1綊DD 1, ∴四边形BB 1D 1D 是平行四边形, ∴BD ∥B 1D 1. 又BD 平面CD 1B 1, ∴BD ∥平面CD 1B 1. ∵A 1D 1綊B 1C 1綊BC ,∴四边形A 1BCD 1是平行四边形, ∴A 1B ∥D 1C . 又A 1B 平面CD 1B 1, ∴A 1B ∥平面CD 1B 1. 又∵BD ∩A 1B =B , ∴平面A 1BD ∥平面CD 1B 1. (2)∵A 1O ⊥平面ABCD ,∴A 1O 是三棱柱ABD A 1B 1D 1的高. 又∵AO =12AC =1,AA 1=2,∴A 1O =AA 21-OA 2=1.又∵S △ABD =12×2×2=1,∴VABD A 1B 1D 1=S △ABD ×A 1O =1.『备课札记』『类题通法』判断面面平行的常用方法(1)利用面面平行的判定定理;(2)面面平行的传递性(α∥β,β∥γ⇒α∥γ);(3)利用线面垂直的性质(l⊥α,l⊥β⇒α∥β).『针对训练』如图,在直四棱柱ABCD A1B1C1D1中,底面是正方形,E,F,G分别是棱B1B,D1D,DA的中点.求证:(1)平面AD1E∥平面BGF;(2)D1E⊥AC.证明:(1)∵E,F分别是B1B和D1D的中点,∴D1F綊BE.∴四边形BED1F是平行四边形,∴D1E∥BF;又∵D1E⊄平面BGF,BF⊂平面BGF,∴D1E∥平面BGF.∵FG是△DAD1的中位线,∴FG∥AD1;又AD1⊄平面BGF,FG⊂平面BGF,∴AD1∥平面BGF.又∵AD1∩D1E=D1,∴平面AD1E∥平面BGF.(2)连结BD,B1D1,∵底面是正方形,∴AC⊥BD.∵D1D⊥AC,D1D∩BD=D,∴AC⊥平面BDD1B1.∵D1E⊂平面BDD1B1,∴D1E⊥AC.『课堂练通考点』1.已知直线a,b,平面α,则以下三个命题:①若a∥b,b⊂α,则a∥α;②若a∥b,a∥α,则b∥α;③若a∥α,b∥α,则a∥b.其中真命题的个数是________.『解析』对于①,若a ∥b ,b ⊂α,则应有a ∥α或a ⊂α,所以①不正确;对于②,若a ∥b ,a ∥α,则应有b ∥α或b ⊂α,因此②不正确;对于③,若a ∥α,b ∥α,则应有a ∥b 或a 与b 相交或a 与b 异面,因此③是假命题.综上,在空间中,以上三个命题都是假命题.『答案』02.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是________.『解析』对于图形①,平面MNP 与AB 所在的对角面平行,即可得到AB ∥平面MNP ;对于图形④,AB ∥PN ,即可得到AB ∥平面MNP ;图形②③无论用定义还是判定定理都无法证明线面平行.『答案』①④3.(2014·南京学情调研)已知α,β为两个不同的平面,m ,n 为两条不同的直线, 下列命题:(1)若m ∥n ,n ∥α,则m ∥α; (2)若m ⊥α,m ⊥β,则α∥β;(3)若α∩β=n ,m ∥α,m ∥β,则m ∥n ; (4)若α⊥β,m ⊥α,n ⊥β,则m ⊥n . 其中是真命题的是________(填序号).『解析』对于(1),由m ∥n ,n ∥α得m ∥α或m ⊂α,故(1)错误;根据空间中直线与平面的平行、垂直关系进行一一判断.『答案』(2)(3)(4)4.如图所示,在四面体ABCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.『解析』连结AM 并延长,交CD 于E ,连结BN ,并延长交CD 于F ,由重心性质可知,E ,F 重合为一点,且该点为CD 的中点E ,由EM MA =EN NB =12,得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD .『答案』平面ABC、平面ABD5.如图,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明:(1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC.∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形.∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG.∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.。
高三数学一轮复习教学设计
高三数学一轮复习教学设计一、教学任务及对象1、教学任务本教学设计针对的是高三数学一轮复习。
在这一阶段,学生已经完成了高中数学的全部课程,教学任务是在有限的时间内,帮助学生系统地回顾和巩固数学知识,强化解题技能,提高分析问题和解决问题的能力,为高考做好全面准备。
复习内容涵盖《高中数学课程标准》要求的所有知识点,包括但不限于函数与极限、导数与微分、积分、立体几何、解析几何、数列、概率统计等。
2、教学对象教学对象为即将参加高考的高三学生。
他们具备一定的数学基础和逻辑思维能力,但在数学知识的深度和广度、解题技巧方面存在差异。
此外,由于面临高考的压力,学生在心理上可能存在不同程度的焦虑和紧张。
因此,在教学过程中,需要关注学生的个体差异,采取有针对性的教学策略,同时注重缓解学生的心理压力,帮助他们建立自信,以积极的态度迎接高考。
二、教学目标1、知识与技能(1)掌握高中数学课程标准要求的所有核心概念、性质、定理、公式,并能够熟练运用。
(2)提高数学运算速度和准确性,培养解题技巧,形成解题策略。
(3)具备较强的数学思维能力,能够运用逻辑推理、空间想象、数据分析等方法解决数学问题。
(4)灵活运用数学知识解决实际问题,提高数学应用能力。
2、过程与方法(1)培养学生自主学习和合作学习的能力,让学生在复习过程中学会总结、归纳、提炼知识点。
(2)通过问题驱动法、案例分析、小组讨论等形式,引导学生主动探索、发现数学规律,提高解决问题的能力。
(3)采用变式教学、一题多解等方法,培养学生的发散性思维和创新意识。
(4)结合现代信息技术,如多媒体教学、网络资源等,丰富教学手段,提高教学效果。
3、情感,态度与价值观(1)激发学生学习数学的兴趣,培养他们积极、主动、持久的学习态度。
(2)引导学生树立正确的数学观念,认识到数学在科学技术、社会发展中的重要作用,增强学习数学的使命感和责任感。
(3)通过数学学习,培养学生严谨、求实的科学态度,提高他们的逻辑思维能力和批判性思维。
高三新数学第一轮复习教案
高三新数学第一轮复习教案—数列概念及等差数列一.课标要求:1.数列的概念和简单表示法;通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图像、通项公式),了解数列是一种特殊函数;2.通过实例,理解等差数列的概念,探索并掌握等差数列的通项公式与前n 项和的公式; 3.能在具体的问题情境中,发现数列的等差关系,并能用有关知识解决相应的问题。
体会等差数列与一次函数的关系。
二.命题走向数列在历年高考都占有很重要的地位,一般情况下都是一至二个客观性题目和一个解答题。
对于本将来讲,客观性题目主要考察数列、等差数列的概念、性质、通项公式、前n 项和公式等基本知识和基本性质的灵活应用,对基本的计算技能要求比较高。
预测07年高考:1.题型既有灵活考察基础知识的选择、填空,又有关于数列推导能力或解决生产、生活中的实际问题的解答题;2.知识交汇的题目一般是数列与函数、不等式、解析几何、应用问题联系的综合题,还可能涉及部分考察证明的推理题。
三.要点精讲1.数列的概念(1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。
记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ;数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。
(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
例如,数列①的通项公式是n a = n (n ≤7,n N +∈),数列②的通项公式是n a = 1n(n N +∈)。
说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;② 同一个数列的通项公式的形式不一定唯一。
例如,n a = (1)n-=1,21()1,2n k k Z n k-=-⎧∈⎨+=⎩; ③不是每个数列都有通项公式。
高中一轮复习教案数学
高中一轮复习教案数学第一课:函数及其性质
1.1 函数的定义和性质
概念:函数的定义和表示方法
性质:单调性、奇偶性、周期性等
1.2 函数的基本变换
平移、翻转、缩放等基本函数的变换方法
例题:给出函数图像,要求根据变换规律求新函数的图像1.3 复合函数
概念:复合函数的定义和计算方法
例题:计算复合函数的值,并分析其性质
1.4 反函数
概念:反函数的存在条件及求解方法
例题:给定函数,求其反函数,并验证是否合理
第二课:三角函数及其应用
2.1 三角函数的概念与性质
正弦、余弦、正切等三角函数的定义和性质
例题:解三角函数方程,证明恒等式等
2.2 三角函数的图像与变换
三角函数的图像特征及平移、翻转、缩放等变换规律
例题:给定函数图像,要求根据变换规律求新函数的图像2.3 三角函数的应用
三角函数在几何、物理等领域的应用
例题:实际问题中的三角函数应用
第三课:导数与微分
3.1 导数的概念与性质
导数的定义、导数与函数图像的关系等基本性质
例题:求函数的导数,研究导数的性质
3.2 导数的计算
常见函数的导数计算方法
例题:计算给定函数的导数,并分析其变化规律
3.3 微分的应用
微分的定义及在近似计算、最值问题等方面的应用
例题:利用微分求函数的极值点,解几何问题等
以上是高中数学一轮复习的教案范本,希望对你的备考有所帮助。
祝你取得优异的成绩!。
高三数学第一轮复习教案(学生版)
题型1:比较大小
例1.设 ,试比较A=1+a2与B= 的大小。
变式训练:(2010西城二模)若 ,则下列不等式中正确的是( )
A. B. C. D.
题型2:取值范围
题型2:确定取值范围
例2.若 满足 ,求 的取值范围
解:
变式训练:已知-1<a+b<3且2<a-b<4,求2a+3b的取值范围.
一、知识梳理:
1.两实数大小的比较原理:
(差值比较原理)
(1)a-b>0 a>b;
(2)a-b=0 a=b;
(3)a-b<0 a<b.
特别提示(1)在实际问题中a,b可以是含未知数的代数式;
(2)提供了比较两个实数(代数式)大小的方法,也是利用比较法证明不等式的原理。
2.不等式的基本性质:
(1)a>b ________b<a.
推论:a>b>0 ________________- > (n∈N,n>1);
推论:a>b>0 _____________________-an>bn(n∈N,n>1).
(5)a>b,ab>0 _____________ < ,
特别提示:(1)性质5不能弱化条件得a>b < ;
(2)不等式的性质从形式上可分两类:一类是“ ”型;另一类是“ ”型.要注意二者的区别.
⑤若a>b,c>d能否能判定a-c>b-d?
⑥若a>b,c>d,cd≠0是否有
⑦若a>b,c>d是否有a-c>b-d?
⑧若a>b>0,d>c>0是否有
⑨若a>b,ab<0,是否有
⑩若a<b<0是否有(a)a3<b3;(b)a2>b2.
高三数学第一轮复习教案
高三数学第一轮复习教案作为一位杰出的教职工,常常需要用到教案,教案有助于学生知道并掌控系统的知识。
教案要怎么写呢?这里给大家分享一些关于高三数学第一轮复习教案,方便大家学习。
高三数学第一轮复习教案教学准备教学目标数列求和的综合运用教学重难点数列求和的综合运用教学进程典例分析3.数列{an}的前n项和Sn=n2-7n-8,(1)求{an}的通项公式(2)求{|an|}的前n项和Tn4.等差数列{an}的公差为,S100=145,则a1+a3+a5+…+a99=5.已知方程(___2-2___+m)(___2-2___+n)=0的四个根组成一个首项为的等差数列,则|m-n|=6.数列{an}是等差数列,且a1=2,a1+a2+a3=12(1)求{an}的通项公式(2)令bn=an___n,求数列{bn}前n项和公式7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数8.在等差数列{an}中,a1=20,前n项和为Sn,且S10=S15,求当n为何值时,Sn有值,并求出它的值.已知数列{an},an∈N______,Sn=(an+2)2(1)求证{an}是等差数列(2)若bn=an-30,求数列{bn}前n项的最小值0.已知f(___)=___2-2(n+1)___+n2+5n-7(n∈N______)(1)设f(___)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列(2设f(___)的图象的顶点到___轴的距离构成数列{dn},求数列{dn}的前n项和sn.11.购买一件售价为5000元的商品,采取分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每个月利息按复利运算(上月利息要计入下月本金),那么每期应对款多少?(精确到1元)12.某商品在最近100天内的价格f(t)与时间t的函数关系式是f(t)=销售量g(t)与时间t的函数关系是g(t)=-t/3+109/3(0≤t≤100)求这种商品的日销售额的值注:对于分段函数型的运用题,应注意对变量___的取值区间的讨论;求函数的值,应分别求出函数在各段中的值,通过比较,肯定值高三数学复习计划一、背景分析最近3年高考数学命题很安稳,坚持了稳中求改、稳中创新的原则。
高三数学一轮复习教学计划
高三数学一轮复习教学计划(精选10篇)什么是教学安排?教学安排(课程安排)是课程设置的整体规划,它规定不同课程类型相互结构的方式,也规定了不同课程在管理学习方式的要求及其所占比例,同时,对学校的教学、生产劳动、课外活动等作出全面支配,详细规定了学校应设置的学科、课程开设的依次及课时安排,并对学期、学年、假期进行划分。
高三数学一轮复习教学安排(精选10篇)时间是箭,去来迅疾,为了以后教学质量不断提高,不如为接下来的教学做个教学安排吧。
信任写教学安排是一个让很多人都头痛的事情,下面是我收集整理的高三数学一轮复习教学安排(精选10篇),欢迎大家借鉴与参考,希望对大家有所帮助。
高三数学一轮复习教学安排1一、指导思想:加强学习、更新观念,确立新课程标准的基本理念,坚决不移地实施以培育学生创新意识,探究意识和实践实力为重心的素养教化,转变教研理念,改进教研方法,优化教研模式,主动探究在新课程改革背景下中学数学教学工作新体系二、工作目标:本学期是高三一轮复习的主要时间,在本学期的教学活动中,老师要狠抓备课,坚持说课,多参与听评课活动,为学生基础学问的扎实驾驭做出自己的贡献。
三、工作措施:1、狠抓集体备课,深化教材探讨。
2、各数学老师仔细拟定教学安排和辅导学生安排。
在教学中,要特殊重视对学生的学习方法指导和良好习惯培育,激励学生大胆创新,不卑视、压制、挖苦学生。
3、抓好学习,更新观念,各老师留意学习2006届《考纲》,依据改变刚好驾驭教学方向,把握高考的命题特点。
4、探讨学情,盯紧层面生。
各老师要多与层面生交谈,了解其学习状态。
层面生的辅导与试卷的批改要刚好到位。
四、详细支配:本备课组重点探讨开放题,应用题教学中学生创新实力培育的探讨与探究。
紧扣考纲,立足双基,编织网络,夯实基础,总结规律,不断提高运算实力,逻辑思维实力,空间想象实力,学习实力,探究实力,创新实力。
高三数学一轮复习教学安排2一、数学的“双基”是指数学的基础学问、基本技能和数学思想方法。
高三一轮复习教案
高三一轮复习教案(全套68个)第一部分力学§1. 力一、力重力和弹力二、摩擦力三、共点力的合成与分解四、物体的受力分析五、物体的平衡六、解答平衡问题时常用的数学方法七、利用整体法和隔离法求解平衡问题八、平衡中的临界、极值问题§2. 物体的运动一、直线运动的基本概念二、匀变速直线运动规律三、自由落体与竖直上抛运动四、直线运动的图象五、追及与相遇问题§3. 牛顿运动定律一、牛顿第一运动定律二、牛顿第二定律三、牛顿第二定律应用(已知受力求运动)四、牛顿第二定律应用(已知运动求力)五、牛顿第二定律应用(超重和失重问题)§4. 曲线运动万有引力定律一、曲线运动二、平抛运动三、平抛运动实验与应用四、匀速圆周运动五、圆周运动动力学六、万有引力定律§5. 动量一、冲量和动量二、动量定理三、动量守恒定律四、动量守恒定律的应用§6. 机械能一、功和功率二、动能定理三、机械能守恒定律四、功能关系五、综合复习(2课时)§7. 机械振动和机械波一、简谐运动二、典型的简谐运动三、受迫振动与共振四、机械波五、振动图象和波的图象声波第二部分热学§1. 分子动理论热和功一、分子动理论二、物体的内能热和功§2.气体、固体和液体的性质一、气体的体积、压强、温度间的关系二、固体和液体的性质第三部分电磁学§1. 电场一、库仑定律二、电场的性质三、带电粒子在电场中的运动四、电容器§2. 恒定电流一、基本概念二、串、并联与混联电路三、闭合电路欧姆定律§3.磁场一、基本概念二、安培力(磁场对电流的作用力)三、洛伦兹力四、带电粒子在混合场中的运动§4.电磁感应一、电磁感应现象二、楞次定律(2课时)三、法拉第电磁感应定律(2课时)§5.交变电流电磁场和电磁波一、正弦交变电流(2课时)二、电磁场和电磁波第四部分光学§1.几何光学一、光的直线传播二、反射平面镜成像三、折射与全反射§2.光的本性一、光的波动性二、光的粒子性三、光的波粒二象性第五部分原子物理学§1.原子和原子核一、原子模型二、天然放射现象三、核反应四、核能第一部分力学§1. 力一、力重力和弹力目的要求:理解力的概念、弄清重力、弹力,会利用胡克定律进行计算知识要点:1、力:是物体对物体的作用(1)施力物体与受力物体是同时存在、同时消失的;(2)力的大小、方向、作用点称为力的三要素;(3)力的分类:根据产生力的原因即根据力的性质命名有重力、弹力、分子力、电场力、磁场力等;根据力的作用效果命名即效果力如拉力、压力、向心力、回复力等。
高三数学第一轮复习计划高三数学第一轮教学计划(3篇)
高三数学第一轮复习计划高三数学第一轮教学计划(3篇)有关高三数学第一轮复习规划(精)一高三数学教学要以《全日制一般高级中学教科书》以学生的进展为本,全面复习并落实根底学问、根本技能、根本数学思想和方法,为学生进一步学习打下坚实的根底。
要坚持以人为本,强化质量的意识,务实标准求创新,科学合作求进展。
二、教学建议1、仔细学习《考试说明》,讨论高考试题,把握高考新动向,有的放矢,提高复习课的效率。
准时把握高考新动向,理解高考对教学的导向,以利于我们精确地把握教学的重、难点,有针对性地选配例题,优化教学设计,提高我们的复习质量。
留意20xx年高考的导向:注意力量考察,能阅读、理解对问题进展陈述的材料;能综合应用所学数学学问、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述;能选择有效的方法和手段对新奇的信息、情境和设问进展独立的思索与探究,使问题得到解决。
高考试题无论是小题还是大题,都从不同的角度,不同的层次表达出这种力量的要求和对教学的导向。
这就要求我们在日常教学的每一个环节都要有目的地关注学生力量培育,真正提高学生的数学素养。
2、充分调动学生学习积极性,增加学生学习的自信念。
敬重学生的身心进展规律,做好高三复习的发动工作,调动学生学习积极性,因材施教,帮忙学生树立学习的自信性。
3、注意学法指导,提高学生学习效率。
教师要针对学生的详细状况,进展复习的学法指导,使学生养成良好的学习习惯,提高复习的效率,让学生养成反思的习惯;养成学生擅长结合图形直观思维的习惯;养成学生表述标准,根据解答题的必要步骤和书写格式答题的习惯等。
4、高度重视根底学问、根本技能和根本方法的复习。
要重视根底学问、根本技能和根本方法的落实,守住底线,这是复习的根本要求。
为此教师要了解学生,精确定位。
精选、精编例题、习题,强调根底性、典型性,留意参考教材内容和考试说明的范围和要求,做到不偏、不漏、不怪,进展有针对性的训练。
高三数学第一轮复习教学计划
高三数学第一轮复习教学计划高三数学第一轮复习教学计划范文(通用5篇)时间过得太快,让人猝不及防,教学工作者们又将迎来新的教学目标,让我们对今后的教学工作做个计划吧。
如何把教学计划写出新花样呢?下面是小编为大家收集的高三数学第一轮复习教学计划范文(通用5篇),欢迎大家分享。
高三数学第一轮复习教学计划1一、夯实基础。
今年高考数学试题的一个显著特点是注重基础。
扎实的数学基础是成功解题的关键,从学生反馈来看,平时学习成绩不错但得分不高的主要原因不在于难题没做好,而在于基本概念不清,基本运算不准,基本方法不熟,解题过程不规范,结果“难题做不了,基础题又没做好”,因此在第一轮复习中,我们将格外突出基本概念、基础运算、基本方法,具体做法如下:1、注重课本的基础作用和考试说明的导向作用;2、加强主干知识的生成,重视知识的交汇点;3、培养逻辑思维能力、直觉思维、规范解题习惯;4、加强反思,完善复习方法。
二、解决好课内课外关系。
课内:(1)例题讲解前,留给学生思考时间;讲解中,让学生陈述不同解题思路,对于解题过程中的闪光之处或不足之处进行褒扬或纠正;讲解后,对解法进行总结。
对题目尽量做到一题多解,一题多用。
一题多解的题目让学生领会不同方法的优劣,一题多用的题目让学生领会知识间的联系。
(2)学生作业和考试中出现的错误,不但指出错误之处,更要引导学生寻根问底,使学生找出错误的真正原因。
(3)每节课留5-10分钟让学生疏理本节知识,理解本节内容。
课外:(1)除了正常每天布置适量作业外,另外布置一两道中档偏上的题目,给学有余力的学生做到拔尖补差。
(2)加强重点生中的缺腿生的辅导工作:①判作业时对缺腿生面批面改;②指出知识的疏漏,学法的不正;③每周5天集中辅导,对普遍问题讲解。
三、强化学生“参与”“合作”。
1、多让学生板演,对于有些章节知识,选择六至八道,按难易程度分别让不同程度的学生板演,下面的学生尽量独自完成,无法独立解决的可以相互讨论。
高三数学第一轮复习教案
集合的性质: ①任何一个集合是它本身的子集,记为
A A;
②空集是任何集合的子集,记为
A;
③空集是任何非空集合的真子集;
如果 A B ,同时 B A ,那么 A = B. 如果 A B, B C,那么 A C .
[ 注 ] :① Z= { 整数 } (√) Z ={ 全体整数 } (3)
②已知集合 S 中 A的补集是一个有限集,则集合 则 CsA= {0} )
命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。
构成复合命题的形式: p 或 q( 记作“ p∨ q” ) ; p 且 q( 记作“ p∧ q” ) ;非 p( 记
作“┑ q” ) 。
3、“或”、 “且”、 “非”的真值判断 ( 1)“非 p”形式复合命题的真假与 F 的真假相 反; ( 2)“ p 且 q”形式复合命题当 P 与 q 同为真时 为真,其他情况时为假; ( 3)“ p 或 q”形式复合命题当 p 与 q 同为假时 为假,其他情况时为真.
高考数学总复习教案及知识点
第一章 - 集合
考试内容: 集合、 子集、 补集、 交集、 并集. 逻辑联结词. 四种命题. 充分条件和必要条件. 考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包 含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充 分条件、必要条件及充要条件的意义.
( 1)根的“零分布”:根据判别式和韦达定理分析列式解之
.
( 2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之
.
第三讲,简易逻辑及命题
高三数学一轮复习精品教案――数列
城东蜊市阳光实验学校2021届高三数学一轮复习精品教案――数列〔附高考预测〕一、本章知识构造: 二、重点知识回忆 1.数列的概念及表示方法〔1〕定义:按照一定顺序排列着的一列数.〔2〕表示方法:列表法、解析法〔通项公式法和递推公式法〕、图象法.〔3〕分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列.〔4〕n a 与n S 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥.2.等差数列和等比数列的比较〔1〕定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2项起每一项与它前一项的比等于同一常数〔不为0〕的数列叫做等比数列. 〔2〕递推公式:110n n n n a a d a a q q n *++-==≠∈N ,·,,.〔3〕通项公式:111(1)n n n a a n d a a q n -*=+-=∈N ,,.〔4〕性质等差数列的主要性质:①单调性:0d ≥时为递增数列,0d ≤时为递减数列,0d =时为常数列.②假设m n p q +=+,那么()m n p q a a a a m n p q *+=+∈N ,,,.特别地,当2m n p +=时,有2m n p a a a +=.③()()nm a a n m d m n *-=-∈N ,.④232k k k k k S S S S S --,,,…成等差数列.等比数列的主要性质:①单调性:当1001a q <⎧⎨<<⎩,或者者101a q >⎧⎨>⎩时,为递增数列;当101a q <⎧⎨>⎩,,,或者者1001a q >⎧⎨<<⎩时,为递减数列;当0q <时,为摆动数列;当1q =时,为常数列.②假设m n p q +=+,那么()m n p q a a a a m n p q *=∈N ··,,,.特别地,假设2m n p +=,那么2m n p a a a =·.③(0)n m nma q m n q a -*=∈≠N ,,. ④232k kk k k S S S S S --,,,…,当1q ≠-时为等比数列;当1q =-时,假设k 为偶数,不是等比数列.假设k 为奇数,是公比为1-的等比数列.三、考点剖析考点一:等差、等比数列的概念与性质 例1.〔2021模拟〕数列.12}{2n n S n a nn -=项和的前〔1〕求数列}{n a 的通项公式;〔2〕求数列.|}{|n n T n a 项和的前解:〔1〕当111112,1211=-⨯===S a n时;、当.213])1()1(12[)12(,2221n n n n n S S a n n n n -=-----=-=≥-时,.213111的形式也符合n a -=.213}{,n a a n n -=的通项公式为数列所以、〔2〕令.6,,0213*≤∈≥-=n n n a n 解得又N当2212112||||||,6n n S a a a a a a T n n n n n -==+++=+++=≤ 时;当||||||||||,67621n n a a a a a T n++++++=> 时综上,⎪⎩⎪⎨⎧>+-≤-=.6,7212,6,1222n n n n n n T n点评:此题考察了数列的前n 项与数列的通项公式之间的关系,特别要注意n =1时情况,在解题时经常会忘记。
上海高三数学复习第一轮教案rar5篇1
上海高三数学复习第一轮教案rar5篇编写教案要依据教学大纲和教科书。
从学生实际状况启程,细心设计。
今日我在这里整理了一些上海高三数学复习第一轮教案rar5篇最新,我们一起来看看吧!上海高三数学复习第一轮教案rar1中学数学必修4教案学案教学目标1.理解平面对量的根本概念和几何表示、向量相等的含义;驾驭向量加减法和数乘运算,驾驭其几何意义;理解向量共线定理2.了解向量的线性运算性质及其几何意义;会用向量的几何表示及其代数运算、三角形法那么、平行四边形法那么解决有关问题教学重难点向量的有关概念与线性运算教学过程设计(教法、学法、课练、作业)个人主页一、学问回忆1.以下算式中不正确的.是( )A. BC D2.确定正方形ABCD边长为1,, , 那么+ + 的模=( )A.0B.3C.D.3.确定向量, 满意:,那么=( )A.1B.C.D.4.在平行四边形ABCD中,, , ,M为BC的中点,那么= (用, 表示)二、例题讲解例1设是两个不共线的向量,确定=2 + , = +3 , =2 - .假设A,B,D三点共线,求的值.例2在梯形ABCD中,E,F分别是腰AB,DC的三等分点,且, 求例3设O是平面上必须点,A,B,C是平面上不共线的三点,动点P满意, .求点P的轨迹,并判定P的轨迹通过下述哪必须点:①△ABC的外心; ②△ABC的内心;③△ABC的重心; ④△ABC的垂心.三、小结四、训练练习见练习纸教后感上海高三数学复习第一轮教案rar2中学数学必修教案一、教学过程1.复习。
反函数的概念、反函数求法、互为反函数的函数定义域值域的关系。
求出函数y=x3的反函数。
2.新课。
先让学生用几何画板画出y=x3的图象,学生纷纷动手,很快画出了函数的图象。
有局部学生发出了“咦”的一声,因为他们得到了如下的图象(图1):老师在画出上述图象的学生中选定生1,将他的屏幕内容通过教学系统放到其他同学的屏幕上,很快有学生作出反响。
高三数学教学计划(通用11篇)
高三数学教学方案〔通用11篇〕高三数学教学方案〔通用11篇〕高三数学教学方案篇1高三数学第一轮复习以抓根底,练根本功〔主要是解题根本功〕为主,注重对知识的梳理,数学方法的养成,使学生对整个高中数学知识、方法和思想有个完好的认识,形成网络。
在本轮复习中应对高中数学的所有考点,涉及的解题方法进展全面的复习,使学生对每个知识点掌握到位,对数学概念的内涵和外延,公式定理的适用范围有着本质、透彻的理解,使学生实在掌握数学根本知识,根本技能和根本的数学思想方法,对根本的解题方法〔解题方法的培养、训练要注重通性通法,淡化特殊技巧〕能运用自如,做到稳扎稳打,根底过关,结实。
高三数学第二轮复习以专题复习、专题训练为主,注重学生数学才能与思维程度的养成,使学生在解题方法,解题技能上到达运用自如的境界。
本轮复习中对高中数学重点内容要加深加难,重点培养学生解活题、较难题、难题的才能。
专题复习既要按章节进展,又要按题型进展,按章节进展内容如下:函数与导数、数列〔特别是递推数列〕与极限、三角函数与平面向量、不等式、直线与圆锥曲线〔注意圆锥曲线与向量的结合〕、立体几何、概率与统计。
按题型进展内容如下:选择题解法训练,填空题解法训练,解答题解法训练,特别要注重解答题训练的质量。
本轮复习应多在知识网络的交汇处选题,强调学科内的小综合,加强对知识交汇点问题的训练,到达培养学生整合知识,能综合地运用整个高中数学思想方法解题的才能之目的。
高三数学第三轮复习以强化训练、查漏补缺为主。
在本轮复习中,让学生多做模拟题,强化做题的速度与质量。
同时针对第一轮、第二轮的缺乏进展查漏补缺,特别是在第一轮、第二轮大多数学生做不出来的题目在本轮复习中可集中让学生重做,解决学生在前面复习中暴露的问题。
详细措施建议如下:一、处理好课本与资料的关系对资料精讲,用好用巧,但不被资料束缚手脚,牵着鼻子走,不仅教师认真钻研资料,更要引导学生在复习课本的根底上认真钻研资料,用活用巧。
江苏省郑梁梅高级中学高三第一轮复习教学案-命题及其关系
江苏省郑梁梅高级中学高三数学第一轮复习教学案主备人:刘崇林 做题人:卢成富 审核人:朱从顺课题: 命题及其关系一、课标要求:了解命题的逆命题、否命题与逆否命题的意义,会分析四种命题之间的关系.二、知识与方法回顾:1、命题:2、四种命题之间的关系3、化归思想:互为逆否的两个命题是等价的(同真同假)。
因此证明一个命题的真假,也可以转化为证明它的逆否命题的真假4、反证法:用反证法证明一个命题的步骤是:(1)否定结论;(2)导出矛盾;(3)肯定结论。
三、基础训练:1、判断下列语句是不是命题,如果是命题,指出是真命题还是假命题.(1)若△ABC 与△A 1B 1C 1的三边对应相等,则它们是全等三角形;(2)若直线a // b ,则直线a 与b 无公共点;(3)6是方程(x -5)(x ―6)=0的一个解;2、已知M ,N 为两个集合,下列命题中,真命题是 ( )A .若M N ⊆,则M N M =IB .若M N N =I ,则M N ⊆C .若M N ⊆,则M N M =UD .若M N N =U ,则N M ⊆3、已知命题“若﹁p 则q ” 是真命题,则下列命题中一定是真命题的为 ( )A .若p 则﹁qB .若q 则﹁pC .若﹁q 则pD .若﹁q 则﹁p4、命题“△ABC 中,若∠C = 90°,则△ABC 是直角三角形”的否命题是 .四、例题讲解例1 下列语句中,是命题的个数为 ( )①空集是任何集合的子集;②把门关上;③垂直于同一条直线的两条直线不一定平行;④偶数一定是自然数吗?⑤地球是太阳的一颗行星;⑥0∈N ;A .2B .3C .4D .5变式:判断下列语句是不是命题:(1是无理数; ( )(2)一个正整数不是质数就是合数; ( )(3)x R ∀∈,都有x 2+x +1 > 0. ( )例2 写出下列命题“如果一个四边形是正方形,那么它的四条边都相等”的逆命题、否命题与逆否命题,并分别判断其真假:例3 把下列命题改写成 “若p 则q ”的形式,并写出它们的逆命题、否命题与逆否命题,同时指出它们的真假:(1)两个全等三角形的三边对应相等; (2)当2x =时,2320x x -+=;例4 已知函数()f x 是R 上的增函数,如果对于任意的,a b R ∈,都有 ()()()()f a f b f a f b +≥-+-,求证:0a b +≥.五、课堂练习1、给出四个命题:①命题“若p ,则q ”与命题“若﹁q ,则﹁p ”互为逆否命题;②“矩形的对角线相等”的否定为假命题;③命题“{1,2}∅⊆或2{1,2}∉”为真命题;④命题“若22am bm <,则a b <”的否命题,其中真命题的个数为 ( )A .1B .2C .3D .42、,m n 是空间两条不同的直线,,αβ是空间两个不同的平面,有下列四个命题: ①,//,//m n m n αβαβ⊥⇒⊥;②,,////m m n n ααββ⊥⊥⇒;③,,//,//m n m n αβαβ⊥⇒⊥;④,//,//m m n n ααββ⊥⇒⊥,其中真命题的序号是 ( )A .①②B .③④C .②③D .①④六、课堂小结:七、教学后记:江苏省郑梁梅高级中学高三数学作业高三 班 学号 姓名 日期: 月 日1、下列命题:①若220x y +≠,则,x y 不全为零;② “正多边形都相似”的否命题;③ 若1a >,则22(1)30ax a x a -+++>的解集为R ;④“若a 是有理数,则a 是无理数”的逆否命题,其中正确的个数是 ( )A .1B .2C .3D .42、用反证法证明命题:“如果整系数一元二次方程20(0)ax bx c a ++=≠有有理根,那么,,a b c 中至少有一个偶数”,下列假设正确的是 ( ) A .假设,,a b c 都是偶数 B .假设,,a b c 都不是偶数C .假设,,a b c 中至多有一个是偶数D .假设,,a b c 中至多有两个是偶数3、 若命题p 的否命题是r ,命题r 的逆命题是s ,则s 是p 的逆命题e 的 ( )A .逆否命题B .逆命题C .否命题D .原命题 4、 下列各命题中,真命题是 ( )A .若AB =∅I ,则A =∅或B =∅B .两条对角线相等的四边形是正方形C .若A B U =U (U 为全集),则A U =或B U =D .如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补5、有下列四个命题:①“若1xy =,则x,y 互为倒数”的逆命题;②“全等三角形的周长相等”的否命题;③“若A B B =U ,则A B ⊆”的逆否命题;④“若1b ≤-,则方程2220x bx b b -++=有实根”的否命题,其中真命题的序号是 ( )A .①②B .②③C .①③D .③④6、已知,,a b c 都是正实数,则三个数111,,a b c b c a+++的值 ( ) A .都大于2 B .至少有一个不大于2 C .都小于2 D .至少有一个不小于2 7、命题“△ABC 中,若∠C = 90°,则222c a b =+”的逆否命题是 ;8、命题“若a b >,则221a b>-”的否命题是 ;9、写出命题:“若0c >,则函数2y x x c =+-的图象与x 轴有两个交点”的逆否命题,判断其真假,并说明理由;10、已知,,x y z 均为实数,且2222,2,2236a x y b y z c z x πππ=-+=-+=-+,求证:,,a b c 中至少有一个大于0;11、设有两个命题:①关于x 的不等式2250x ax ++>对一切x R ∈恒成立;②函数()(52)x f x a =-在R 上是减函数,若它们都是真命题,求实数a 的取值范围.。
新课标人教版高三数学第一轮复习全套教学案
新课标人教版高三数学第一轮复习全套教学案引言本教学案旨在帮助高三学生进行数学第一轮复,以应对新课标人教版高考数学考试。
以下是教学案的详细内容。
目标1. 复并巩固高三数学的核心知识点。
2. 提供高质量的练题和解析,以帮助学生熟悉考试形式和题型,提高解题能力。
3. 培养学生的数学思维和分析能力,以便他们能够在考试中灵活应用知识。
教学内容教学内容主要包括以下部分:1. 数系与代数- 实数与复数- 集合与命题- 数列与数列极限- 等差数列与等比数列2. 函数与方程- 函数与方程基本概念- 一次函数与二次函数- 指数与对数- 三角函数与三角方程3. 解析几何与向量- 平面与空间几何- 二次曲线与常平面- 直线与平面的位置关系- 向量与向量运算4. 概率与统计- 随机事件与概率- 离散型随机变量与连续型随机变量- 统计与抽样调查- 相关与回归分析教学方法为了最有效地进行数学复,我们将采用以下教学方法:1. 系统性研究:按照教学内容的顺序进行研究,逐步巩固知识点。
2. 理论与实践相结合:注重理论知识的讲解,并提供大量的练题和解析,以帮助学生巩固理论知识并提高解题能力。
3. 互动教学:鼓励学生积极参与课堂讨论和提问,激发学生的研究兴趣和数学思维。
4. 小组合作研究:安排学生进行小组合作研究,提倡彼此讨论和合作解题,培养学生的团队合作精神和交流能力。
教学评估为了评估学生的研究效果和掌握程度,我们将采用以下评估方法:1. 阶段性测试:安排定期的阶段性测试,检验学生对各个知识点的理解和掌握情况。
2. 作业批改:及时批改学生的作业,给予针对性的指导和建议。
3. 课堂互动评估:评估学生在课堂上的积极参与程度和表现。
4. 模拟考试:进行模拟考试,让学生体验真实考试环境,以便他们熟悉考试形式和提高应试能力。
结语通过本教学案的实施,相信学生们在第一轮数学复习中将取得良好的成绩。
希望学生们能够认真学习、勤于练习,并与老师和同学们积极合作,共同进步。
高三数学第一轮复习的教学计划(5篇)
高三数学第一轮复习的教学计划(5篇)高三数学第一轮复习的教学规划1一、背景分析近几年来的高考数学试题逐步做到科学化、标准化,坚持了稳中求改、稳中创新的原则。
考试题不但坚持了考察全面、比例适当,布局合理的特点,也突出表达了变学问立意为力量立意这一举措。
更加注意考察学生进入高校学习所需的根本数学素养,这些变化应引起我们在教学中的关注和重视。
二、指导思想在全面推行素养教育的背景下,努力提高课堂复习效率是高三数学复习的重要任务。
通过复习,让学生在数学学习过程中,更好地学会从事社会生产和进一步学习所必需的数学根底学问,从而培育学生思维力量,激发学生学习数学的兴趣,使学生树立学好数学的信念。
教师要在教学过程中不断了解新的教学信息,更新教育观念,探求新的教学模式,加强教改力度,精确把握课程标准和考试说明的各项根本要求,立足根本学问、根本技能、根本思想和根本方法教学,针对学生实际,指导学法,着力培育学生的创新力量和运用数学的意识和力量。
三、目标要求第一轮复习要结合高考考点,紧扣教材,以加强双基教学为主线,以提高学生力量为目标,加强学生对学问的理解、联系、应用,同时结合高考题型强化训练,提高学生的解题力量。
为此,我们确立了一轮复习的总体目标:通过梳理考点,培育学生分析问题、解决问题的力量;使学生养成思索严谨、分析条理、解答正确、书写标准的良好习惯,为二轮复习乃至高考奠定坚实的根底。
详细要求如下:1、第一轮复习必需面对全体学生,降低复习起点,在夯实双基的前提下,注意培育学生的力量,包括:空间想象、抽象概括、推理论证、运算求解、数据处理等根本力量。
提高学生对实际问题的阅读理解、思索推断力量;以及数学地提出、分析和解决问题(包括简洁的实际问题)的力量,数学表达和沟通的力量,进展独立猎取数学学问的力量。
复习教学要充分考虑到本班学生的实际水平,坚决反对脱离学生实际的任意拔高和只抓几个“优等生”放弃大局部“中等生”的不良做法,不做或少做无效劳动,加大分层教学和个别指导的力度,狠抓复习的针对性、实效性,提高复习效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天印中学2010届高三数学第一轮复习教学案 主备人:李松 2009-12-1立体几何2)
课题:线面平行与面面平行(B 级)
【教学目标】
1. 掌握直线与平面平行,判定定理和性质定理,并能运用它们进行论证和解决有关问题;
2. 掌握平面与平面平行,判定定理和性质定理,并能运用它们进行论证和解决有关问题。
〖走进课本〗——知识整理
1.直线与平面的位置关系有 ; ; 三种
2.直线与平面平行的判定定理:
用符号表示为
3.直线与平面平行的性质定理:
用符号表示为
4.两个平面平行的判定定理
有符号表示为
5.两个平面平行的性质定理
有符号表示为
〖基础训练〗——提神醒脑
1.直线a ⊥平面α,直线α||b ,则a 与b 的关系是( )
A.b a ||
B. b a ⊥
C. b a ,一定异面
D. b a ,一定相交
2.如果直线a 平行于平面α,则( )
A.平面α内有且只有一条直线与a 平行;
B. 平面α内无数条直线与a 平行;
C. 平面α内不存在与a 垂直的直线;
D. 平面α内有且只有一条直线与a 垂直;
3.若直线a 与平面α内无数条直线平行,则a 与α的位置关系是( )
A.α||a
B. α⊂a
C.α||a 或α⊂a
D. α⊄a
4.已知直线b a ,和平面α,那么b a ||的一个必要不充分的条件是( )
A.α||a ,α||b
B. α⊥a ,α⊥b
C. α⊂b 且α||a
D. b a ,与α成等角
5.以下六个命题:其中正确命题的序号是
①两个平面分别与第三个平面相交所得的两条交线平行,则这两个平面平行;
②平行于同一条直线的两个平面平行;
③平行于同一平面的两个平面平行;
④一个平面内的两相交直线与另一个平面内的两条相交直线分别平行,则这两个平面平行; ⑤与同一条直线成等角的两个平面平行;
⑥一个平面上不共线三点到另一平面的距离相等,则这两个平面平行;
6.若βα,表示平面,b a ,表示直线,则α||a 的一个充分条件是
A. βα⊥ ,且β⊥a
B. b =⋂βα ,且b a ||
C. b a || ,且α||b
D. βα|| ,且β⊂a
7.设m ,n 是平面α 内的两条不同直线,1l ,2l 是平面β 内的两条相交直线,则α// β的 一个充分而不必要条件是
A.m // β 且1l // α
B. m // 1l 且n // l 2
C. m // β 且n // β
D. m // β且n // l 2
8.设r ,,βα为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题:
①若γβγα⊥⊥,,则βα||;②若ββαα||,||,,n m n m ⊂⊂,则βα||;③若βα||,α⊂l ,则β||l ;④若n m l =⋂=⋂=⋂αγγββα,,m l ||,,则n m ||,其中正确命题的个数是
(A )1个 (B )2个 (C )3个 (D )4个
9.已知n m ,是两条不重合的直线,r ,,βα是三个两两不重合的平面。
给出下列四个命题:其中真命题是
①若βα⊥⊥m m ,,则βα||; ②若γβγα⊥⊥,,则βα||; ③若n m n m ||,,βα⊂⊂,则βα||;
④若n m ,是异面直线,αββα||,,||,n n m m ⊂⊂,则βα||
〖典例探究〗——整合思维、整顿习惯
例1. 已知:如图,ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM
上取一点G ,过G 和AP 作平面交平面BDM 于GH 。
求证:GH AP ||
D P
B C
M
G
H
例2. 如图,在长方体ABCD- A 1B 1C 1D 1中,E 、P 分别是BC 、A 1D 1的中点,M 、N 分别是AE 、CD 1的中点,求证:MN//面ADD 1A 1
例 3.如图平面内两正方体ABCD 与ABEF ,点M 、N 分别在对角线AC 、FB 上,且NB FN MC AM ::=,沿AB 折成二面角, (1)证明:折叠后CBE MN 平面//;
(2)若3:2:=MC AM ,在线段AB 上是否存在一点G ,使平面CBE MGN 平面//?若存在试确定点G 的位置。
〖归纳总结〗——固本清源
〖精彩回放〗——自我欣赏
1.能保证直线||a 平面α的条件是( )
A. b a b ||,α⊂
B. b a b a ||,,αα⊂⊄
C.c b b a a c b ||,||,||,α⊂
D. BD AC b D b C B A b =∈∈∈∈⊂,,,,,ααα
2.平面α∥平面β的一个充分条件是( )
A .存在一条直线a a ααβ,∥,∥
B .存在一条直线a a a αβ⊂,,∥
C .存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥
D .存在两条异面直线a b a a b αβα⊂,,,∥,∥β⊂b ,
3.如图,G F E ,,分别是四面体ABCD 棱BC ,DA CD ,的中点,则此四面体中与过G F E ,,的截面平行的棱的条数是( )
A. 0
B. 1
C. 2
D. 3 F D
A
B
G
E
4.已知b a ,为不垂直的异面直线,α是一个平面,则b a ,在α上的射影有可能是:(1)两条平行直线;(2)两条互相垂直的直线;(3)同一条直线;(4)一条直线及其外一点。
在上面结论中,正确结论的编号是_______________.(写出所有正确结论的编号)
5.已知平面βα||,直线α⊂a ,点β∈P ,则平面β内过点P 的直线中( )
(A) 不存在与a 平行的直线 (B) 不一定存在与a 平行的直线
(C) 有且只有一条与a 平行的直线 (D) 有无数条与a 平行的直线
6.βα,是两个不同的平面,b a ,是两条不同的直线。
给出四个论断:(1);b =⋂βα(2);
β⊂a (3)b a ||;(4)α||a 。
以其中三个论断为条件,余下一个论断为结论,写出你认为正确的命题____________(写出一个就可以)
7. 如图,点P 是平面ABC 外一点,,,E F O 分别为PA ,PB ,AC 的中点, G 是OC 的中点,证明://FG 平面BOE。