合金元素在钢中的主要作用
合金元素在钢中的主要作用
合金元素在钢中的主要作用合金元素是指将两种或多种金属或非金属加入到基本金属中,以改变其物理、化学和机械性能的材料。
钢是一种合金,其中含有一定比例的碳和其他合金元素。
合金元素在钢中起到了重要的作用,使钢具有不同的特性和适用性。
首先,合金元素可以改变钢的力学性能。
例如,添加镍和铬可以增强钢的抗拉强度和硬度,使其具有更好的耐磨性和耐腐蚀性。
钴和钨的添加可以增强钢的抗磨性和高温强度,使其适用于高温工作环境。
钛和铌的加入可以改善钢的焊接性能,使其具有更好的可塑性和可加工性。
其次,合金元素可以改变钢的化学性质。
例如,锰的添加可以提高钢的硬化性能,促进碳的溶解和扩散。
磷和硫的加入可以改善钢的冷加工性能,使其具有更好的可塑性和可加工性。
硅的加入可以提高钢的热导率和抗腐蚀性能。
通过调整合金元素的含量和比例,可以满足不同要求的钢的化学性质。
此外,合金元素还可以改变钢的热性能。
例如,添加铝和钛可以提高钢的氧化稳定性,使其在高温环境下具有更好的耐热性。
镍和铜的加入可以改善钢的导热性能,在高温下具有更好的热传导性能。
铍和银的添加可以提高钢的导电性能,使其适用于电气工程。
同时,合金元素还可以改变钢的结构和相变性。
例如,钼和钒的加入可以改善钢的定向结构,提高其强度和塑性。
锑和铅的添加可以促进钢的相变行为,改善其物理性能。
通过对合金元素的选择和控制,可以调节钢的晶粒尺寸、晶界强度和晶界活性,从而改善钢的内部结构和力学性能。
综上所述,合金元素在钢中起着重要的作用,通过调节它们的含量和比例,可以改变钢的力学性能、化学性质、热性能和结构性能,使钢具有更好的性能和适用性。
合理的合金设计和控制是制造高品质钢材的关键。
第七章 合金元素在钢中作用
4.常用钢种
40 40 4ZSiMn 低淬透性合金调质钢 Cr、 MnB、 38 40 中淬透性合金调质钢 CrMoAl、 CrNi 高淬透性合金调质钢 CrMnMo、 Cr Ni4WA 40 25 2
四、合金弹簧钢
1.弹簧性能特点
要求必须具有高的弹性极限,高的屈 要求必须具有高的弹性极限, 强比(Gs/50)高的疲劳强度( 强比(Gs/50)高的疲劳强度(尤其 是缺口疲劳强度) 是缺口疲劳强度)及足够韧性。
4.合金元素对M相变温度也有影响 4.合金元素对M
大多数合金元素使Ms点下降 大多数合金元素使Ms点下降
第二节 合金钢的分类与编号
一、合金钢分类 通用分类方法有 : 1.按合金元素的质量分数 2.按合金元素的种类分:铬钢、锰钢、铬镍 按合金元素的种类分:铬钢、锰钢、 钢、硅锰钼钒钢等 3.按主要用途分
建 筑 及 工 程 用 结 构 钢 结构钢 机 械 制 造 用 结 构 钢 工 具 钢 特 殊 性 能 钢
二、合金钢的牌号
命名原则:由钢中碳的质量分数、 命名原则:由钢中碳的质量分数、 合金元素的种类和质量分数的组合 来表示。 来表示。当钢中合金元素的平均质 量分数<1.5%钢号中只标出元素符 量分数<1.5%钢号中只标出元素符 不标明元素的平均质量分数。 号,不标明元素的平均质量分数。 >1.5%、2.5%、3.5%在元素符 当>1.5%、2.5%、3.5%在元素符 号的后面相应标出2 ……。 号的后面相应标出2、3、4……。
例:20crMnTi钢制造汽车变速箱 20crMnTi钢制造汽车变速箱 齿轮工艺路线: 齿轮工艺路线: 锻造 正火 加工齿形 局部镀 铜(防渗碳) 渗碳 防渗碳) 预冷淬火+ 预冷淬火+ 低温回火 喷丸 磨齿 20crMnTi汽车变速齿轮热处理工 20crMnTi汽车变速齿轮热处理工 艺曲线及显微组织与力学性能。 艺曲线及显微组织与力学性能。
合金元素对钢的影响和作用
合金元素对钢的影响和作用合金元素是指将两种或多种化学元素合成钢材中的一种。
合金元素可以对钢的性能和特性产生重要的影响。
以下是一些常见的合金元素对钢的影响和作用。
1.碳(C):碳是最常见的钢合金元素,可以增加钢的硬度和强度。
高碳钢通常用于制作切削工具和机械零件。
2.硅(Si):硅在钢中起着脱氧剂的作用,帮助去除钢中的氧气。
它还可以提高钢的抗氧化和耐腐蚀性能。
3.锰(Mn):锰可以提高钢的强度和韧性。
它还可以增加钢的冷加工硬化性能和耐磨性。
4.磷(P):磷可以改善钢的加工性能和机械性能。
在一些应用中,高磷钢可用于制造高速工具钢。
5.硫(S):硫在钢中具有良好的切削性能。
但过多的硫会降低钢的塑性和韧性。
6.镍(Ni):镍可以提高钢的强度和韧性,同时还可以提高钢的耐腐蚀性能。
高镍不锈钢常用于制造化工设备和船舶。
7.铬(Cr):铬可以增加钢的硬度、强度和耐腐蚀性能。
不锈钢中通常含有较高比例的铬。
8.钼(Mo):钼可以提高钢的硬度、强度和热稳定性。
它经常用于制造高温和高压应用的钢材。
9.钛(Ti):钛可以提高钢的耐热性和耐腐蚀性能。
它常用于制造航空和航天等高强度应用的钢材。
10.铌(Nb):铌可以提高钢的强度和耐腐蚀性能。
它常用于制造高温和高强度应用的钢材。
11.钒(V):钒可以提高钢的硬度、强度和耐磨性。
它常用于制造工具钢和汽车零件。
除了上述合金元素,还有其他一些可以用作合金的元素,如铜、锡、铝等。
不同的合金元素的添加可以根据特定的应用要求来设计钢材的成分。
通过合理地选择和控制合金元素的含量,可以实现特定性能和特性的钢材。
根据使用环境和功能要求,可以定制不同的合金化钢材,以满足各种工业和商业需求。
总结起来,合金元素对钢的影响和作用可以包括提高钢的硬度、强度、韧性、耐腐蚀性、耐磨性、耐热性和加工性能等。
不同元素的添加会产生不同的效果,因此在钢材的设计和生产过程中,必须仔细考虑合金元素的选择和控制。
这样可以生产出具有特定性能和特性的钢材,满足各种应用的需求。
§5—1合金元素在钢中的主要作用
§5—1合金元素在钢中的主要作用
1、促进钢的淬火性能:钢中的淬火性能是指钢在加热和冷却过程中的组织性能。
合金元素的存在有助于提高钢的淬火性能,使钢在冷却过程中有助于形成好的晶体结构。
2、提高钢的硬度:合金元素加入钢中有助于提高钢的屈服强度、抗拉强度和硬度,硬度在一定程度上取决于合金元素的类别和数量。
3、增加钢的韧性:经过合金元素处理后,钢的抗屈服性可进一步提高,同时也提高了钢的韧性,韧性指的是钢材在沿着其中一方向的钢材断裂时,它所承受的变形能力,也就是钢材在拉伸时断裂前所耗费的能量。
4、改善钢的耐腐蚀性能:合金元素加入钢中可以改善钢的耐腐蚀性能,使钢在高温、腐蚀性环境中能更好地保持完好的外观,同时也增加了钢的耐磨性。
5、提升钢的强度:合金元素加入钢中有助于提高钢的强度。
合金元素例如铬、锰等可以在钢中形成一种稳定的均质化套结构,使钢的强度提高。
6、增加钢的热稳定性:加入合金元素可以提高钢的热稳定性,使钢能够耐受更高温度的处理,同时还可以改善晶粒细化。
7、改善钢的焊接性能:合金元素可以改善钢的焊接性能。
合金元素在钢中的作用
1. 合金元素对钢性能的影响钢材中合金元素可以提高钢铁材料洁净度、均匀度、组织细度等影响材料性能,提高冶金行业资源、能源利用效率,实现节能、环保,促进钢铁行业可持续发展。
主要有以下几个方面:(1)结晶强化。
结晶强化就是通过控制结晶条件,在凝固结晶以后获得良好的宏观组织和显微组织,从而提高金属材料的性能。
它包括:(2)形变强化。
金属材料经冷加工塑性变形可以提高其强度。
这是由于材料在塑性变形后位错运动的阻力增加所致。
(3)固溶强化.通过合金化(加入合金元素)组成固溶体,使金属材料得到强化称为固溶强化。
(4)相变强化。
合金化的金属材料,通过热处理等手段发生固态相变,获得需要的组织结构,使金属材料得到强化,称为相变强化。
(5)晶界强化。
晶界部位的自由能较高,而且存在着大量的缺陷和空穴,在低温时,晶界阻碍了位错的运动,因而晶界强度高于晶粒本身;但在高温时,沿晶界的扩散速度比晶内扩散速度大得,晶界强度显著降低。
因此强化晶界对提高钢的热强性是很有效的。
硼对晶界的强化作用,是由于硼偏集于晶界上,使晶界区域的晶格缺位和空穴减少,晶界自由能降低;硼还减缓了合金元素沿晶界的扩散过程;硼能使沿晶界的析出物降低,改善了晶界状态,加入微量硼、锆或硼+锆能延迟晶界上的裂纹形成过程;此外,它们还有利于碳化物相的稳定。
(6)综合强化。
在实际生产上,强化金属材料大都是同时采用几种强化方法的综合强化,以充分发挥强化能力。
例如:1)固溶强化十形变强化,常用于固溶体系合金的强化。
2)结晶强化+沉淀强化,用于铸件强化。
3)马氏体强化+表面形变强化。
对一些承受疲劳载荷的构件,常在调质处理后再进行喷丸或滚压处理。
4)固溶强化+沉淀强化。
对于高温承压元件常采用这种方法,以提高材料的高温性能。
有时还采用硼的强化晶界作用,进一步提高材料的高温强度。
2.合金元素的存在形式根据合金元素与碳的作用不同,可将合金元素分为两大类:碳化物形成元素,它们比Fe具有更强的亲碳能力,在钢中将优先形成碳化物,依其强弱顺序为Zr、等,它们大多是过渡族元素,在周期表上均位Fe、Mn、Cr、Mo、W、V、Nb、Ti 于Fe的左侧;非碳化物形成元素,主要包括Ni、Si、Co、Al等,他们与碳一般不生成碳化物而固溶于固溶体中,或生成其它化合物如AlN,一般位于周期表的右侧。
不锈钢中的主要合金元素及其作用
不锈钢中的主要合金元素及其作用不锈钢是一种含有铬超过10.5%的合金钢,根据不同的合金元素含量和作用,不锈钢可以分为多种类型。
以下是不锈钢中的主要合金元素及其作用的介绍:1.铬(Cr):铬是不锈钢中最重要的合金元素之一,它能够与空气中的氧气反应形成一层致密的氧化膜,防止钢材进一步氧化。
这层薄膜称为“钝化膜”,能够抵御大部分化学物质的腐蚀侵袭,使不锈钢具有良好的耐久性和抗腐蚀性。
合适的铬含量可以提高不锈钢的耐腐蚀性能。
2.镍(Ni):镍能够提高不锈钢的机械强度、韧性和耐腐蚀性。
添加镍可以使不锈钢保持良好的塑性和可锻性,同时提高其耐冲击性。
此外,镍还可以改善不锈钢的耐磁性能,使其在电磁波或电磁干扰环境中具有较好的性能。
3.钼(Mo):钼主要用于提高不锈钢的耐腐蚀和抗蚀磨性能。
添加适量的钼可以延长钢材在酸性和碱性环境中的使用寿命。
此外,钼还可以提高不锈钢的强度,抗拉伸和抗压能力。
4.锰(Mn):锰主要用于提高不锈钢的耐高温性能。
在高温环境下,锰可以与氧化钢中的硫反应生成硫化锰,减少硫对钢的脆化作用。
此外,锰还可以提高不锈钢的强度和硬度。
5.钼(Mo):钼主要用于提高不锈钢的耐腐蚀和抗蚀磨性能。
添加适量的钼可以延长钢材在酸性和碱性环境中的使用寿命。
此外,钼还可以提高不锈钢的强度,抗拉伸和抗压能力。
6.铌(Nb):铌主要作为稳定元素用于不锈钢中,可以防止在焊接时发生晶粒长大和析出细晶界沟槽。
此外,铌还能够提高不锈钢的机械性能和抗腐蚀能力。
7.钒(V):钒主要用于提高不锈钢的强度、韧性和耐蚀性。
添加钒可以改善不锈钢的非均匀析出和沉淀行为,提高晶粒的稳定性,使不锈钢具有更好的耐热性能。
8.碳(C):不锈钢中的碳含量通常较低,一般在0.03%~0.08%之间。
适量的碳可以提高不锈钢的硬度和强度,但过高的碳含量会导致不锈钢易于发生晶间腐蚀。
以上是不锈钢中的一些主要合金元素及其作用的介绍。
不同的合金元素含量和配比可以使不锈钢具有不同的性能特点,以满足不同工程和应用的需求。
合金元素在钢中的作用
四、合金元素对Fe-Fe3C状态图的影响
在铁碳合金中加入某种合金元素后,相当于二元合金变成了 三元和金。因此,必然会引起Fe-Fe3C状态图中临界点、相 区等发生相应变化。
3.1对奥氏体形成的影响
合金元素的加入提高了钢奥氏体化温度和延长了奥氏体化的 时间。Al、Ti、Nb、V元素强烈阻止了奥氏体晶粒长大,W 、Mo中等阻止奥氏体晶粒长大,C、P、Mn(高碳时)促进 奥氏体晶粒长大。
3.2 对Fe-Fe3C状态图中γ区的影响 根据对Fe-Fe3C状态图中γ区的影响,可以将合金元素分为 扩大γ区的元素和缩小γ区的元素两大类。
二、合金元素与碳氮的作用
碳是提高钢的强度和硬度的最有效元素合金元素 根据其与钢中碳的相互作用,可分为碳化物形成元 素和非碳化物形成元素两大类。 1、非碳化物形成元素 这类元素在钢中不能与碳化合,主要以原子态存在 于奥氏体中,Si、Al、Cu、Ni和Mo等即属于这一类 元素。
2、碳化物形成元素
这类元素能与钢中的碳化合,形成各种类型的碳化物。按其与碳结合 的能力由强到弱,这类元素依次是Ti、Zr、V、Nb、W、Mo、Cr、Mn 。只要有碳化物形成元素存在,Fe3C就不是钢中唯一的碳化物。 Ti、Zr、V、Nb等是强碳化物形成元素,能与碳单独结合,形成TiC、 ZrC、VC、NbC等特殊化合物。 Mn是弱碳化物形成元素,多溶于渗碳体中,形成渗碳体类型的碳化物 ,如(Fe、Mn)3C,这类碳化物常称为合金渗碳体。 W、Mo、Cr等是中强合金元素,当其含量低时,多溶于渗碳体,形成( Fe、W)3C、(Fe、Mo)3C、(Fe、Cr)3C等合金渗碳体;而当其含量 足够高时,则单独形成(W、Fe)6C、(Cr、Fe)7C3和Cr23C6等特殊化 合物。
合金元素在钢中的作用
合金元素的阻碍 作用,延缓马氏 体的分解、
推迟残留奥 氏体的转变
提高铁素体的 再结晶温度
碳化物不易聚集和长大,保持细小颗粒
提高钢的回火稳定性
提高回火稳定性的好处
在相同回火温度下,合金钢比相同含碳量 的碳钢具有更高的硬度和强度 在达到相同强度的条件下,合金钢可以在 更高温度下回火,以充分消除内应力,而使 韧性更好 高的回火稳定性使钢在较高温度下,仍能 保持高硬度和高耐磨性
合金元素提高钢的淬透性的好处:
合金钢可以采用冷却能力较弱的淬火介质 (如油、熔盐等)淬火,这样可以减少形状复 杂工件在淬火时变形和开裂; 在淬火条件相同的情况下,合金钢可获得 较深的淬硬层,能使大截面的工件获得均匀一 致的组织,从而获得较高的力学性能。
ቤተ መጻሕፍቲ ባይዱ
提高钢的回火稳定性
所有的合金元素当它们溶入奥氏 体中以后,都能:
形成碳化物的好处:
碳化物具有很高的硬度和熔点,并 且很稳定,热处理时不易分解。稳定性愈 高的碳化物,其熔点和硬度愈高,淬火加 热时也愈难溶入奥氏体中,回火时要加热 到较高温度才能从马氏体中析出,聚集长 大也较慢。当碳化物在钢中呈弥散分布时, 能显著提高钢的强度、硬度和耐磨性,而 不降低韧性。
阻碍奥氏体晶粒长大
非碳化物形成元素:一部分与铁形成固 溶体,一部分与碳形成碳化物。 非碳化物形成元素:不和碳形成碳化物, 主要与铁形成固溶体,此外,还有少量 形成非金属夹杂物和金属化合物。
形成合金碳化物
常见的非碳化物形成元素:
镍、钴、铜、硅、铝和硼
常见的碳化物形成元素有:
锰、铬、钼、钨、铌、钒、锆、钛
形成合金碳化物
工 程 材 料 及 热 处 理
合金元素在钢中的作用
合金元素在钢中的作用
合金元素在钢中的作用1.碳(C):碳是钢中最常见的合金元素,它主要存在于钢的晶体结构中。
碳含量的增加可以提高钢的硬度和强度,但会降低其韧性和可焊性。
高碳钢常用于制造刀具等需要高硬度的应用。
2.硅(Si):硅主要用于去氧化,它可以与氧反应生成氧化硅,从而减少钢中的氧含量。
合适的硅含量可以改善钢的塑性和可焊性。
3.锰(Mn):锰是一种强力抗氧化元素,它可以减少钢中的氧气和硫化物含量,从而提高钢的强度和延展性。
锰还可以提高钢的耐磨性和硬度。
高锰含量的钢常用于制造铁路轨道等耐磨部件。
4.磷(P):磷是一种杂质元素,存在于许多钢中。
高磷含量会降低钢的塑性和韧性,对钢的冷加工性能有不利影响。
因此,在高强度低合金钢和不锈钢中通常要控制磷含量。
5.硫(S):硫是一种杂质元素,存在于矿石和燃料中,并通过冶炼过程进入钢中。
高硫含量会导致钢脆性增加,对钢的冷加工和焊接性能有不利影响。
因此,在高质量要求的钢材中需要控制硫含量。
6.铬(Cr):铬是一种重要的合金元素,它能够提高钢的耐腐蚀性和氧化性。
铬与氧化剂反应生成一层致密的氧化铬保护层,防止钢材被进一步氧化。
高铬含量的钢常用于制造不锈钢等需要较高耐腐蚀性的应用。
7.镍(Ni):镍可以提高钢的韧性和强度,增加钢的延展性和冲击韧性。
镍还能够提高钢在低温下的抗冷脆性能。
因此,镍在制造低温应用和高强度低合金钢中广泛使用。
8.钼(Mo):钼主要用于提高钢的硬度和强度,增加钢的耐磨性和抗拉伸性。
钼还可以改善钢的热处理性能,促使材料形成致密的纳米结构,从而提高钢的力学性能。
9.钛(Ti):钛主要用于去氧化和进行变质处理。
它结合钢中的氧,从而减少氧含量,提高钢的韧性和可焊性。
钛还可以通过与碳反应生成碳化钛,提高钢的硬度和强度。
10.铌(Nb):铌主要用于细化晶粒和提高钢的强度。
铌的添加可以形成若干小晶粒,提高钢的塑性和韧性。
铌还可以通过与碳反应生成碳化铌,提高钢的硬度和强度。
总之,合金元素在钢中的作用是多方面的,可以改变钢的硬度、强度、韧性、耐腐蚀性、耐磨性等性能,使钢更加适用于各种不同的应用领域。
各种合金元素在钢铁中的作用
各种合金元素在钢铁中的作用1、铬Cr 铬在钢中的角色多元且重要,它会形成稳定而硬的碳化物,而且具有抗蚀性,其主要作用有:a、增进钢的硬化能力和渗碳作用。
b、使钢在高温时具有高强度。
c、能增加耐磨耗性。
d、增高钢的淬火温度。
e、能增进钢的抗腐蚀性。
2、镍Ni 镍在钢中的影响有:a、增进钢的硬化能力。
b、能降低热处理时的淬火温度,因为在处理时的变形小。
c、能增加钢的韧性。
d、高镍合金钢能耐腐蚀,例如:不锈钢就含有8%左右的镍。
3、钨W 钨能耐高温,而且溶于钢中会与碳形成碳化物成为碳化钨,能提高钢的强度。
此外,a、钨能提高钢的淬火温度。
b、加强钢钢的断面组织细微化,抵抗挥霍软化。
c、可以降低淬火时钢的晶粒生长趋势。
d、钨钢刀具有红热硬度。
e、可增加钢的保磁性,故可配入钢中而制造永久磁钢。
4、钒V 钒可以无限量固溶入钢中,并能阻止奥氏体晶粒的长大,钒在钢中有脱酸除氧的能力,故含钒的钢,其断面结晶密实,此外,钒的作用还有:a、能提高淬火温度。
b、改善硬化能力,高温淬火加热时,能阻止其晶粒生长。
c、有助于钢的结晶组织细微化。
5、锰Mn 锰亦为钢中的重要元素,其作用及影响如下:a、添加适量时,锰含量增加可增加钢的最大强度及硬度。
b、锰有脱氧及脱硫的功效,故锰能发挥钢的锻造性与可塑性。
c、锰在钢中含量多,可降低钢的淬火温度。
d、可增进钢的硬化深度,尤其在含碳量高的由硬性锰钢最为显著。
6、钼Mo 钼可增加钢的最大强度及硬度,因此,在合金钢中也颇为重要:a、能改善钢在高温下抗拉及潜变强度。
b、在工作红热情况下,能使钢的硬度保持不变。
c、高速工具钢含钼,可予以较佳的机器切割性能。
d、合金钢中加入钼可去除回火脆性。
7、钴Co 钴为制造合金钢的重要元素,在钢中可以生成碳化物,但也可能有不良影响,它具有以下特性:a、钴可替代镍,如增加强度及耐热等性能。
b、会降低钢的硬化能。
c、能提高钢的淬火温度。
d、增加钢的保磁能力,故为制造磁石钢的主要元素。
钢中加入合金元素的作用
钢中加入合金元素的作用
在钢中加入合金元素可以带来以下几个方面的作用:
1. 提高强度和硬度:合金元素可以通过固溶强化、析出强化等方式提高钢的强度和硬度。
例如,加入碳、锰、铬等元素可以提高钢的硬度和强度。
2. 改善韧性和塑性:适量的合金元素可以改善钢的韧性和塑性,使其在受到外力作用时不易断裂或产生裂纹。
例如,加入镍、钼等元素可以提高钢的韧性。
3. 提高耐腐蚀性:一些合金元素可以提高钢的耐腐蚀性,使其在恶劣环境下具有更好的抗腐蚀性能。
例如,加入铬、镍、钼等元素可以形成不锈钢,提高钢的耐腐蚀性。
4. 改善焊接性能:某些合金元素可以改善钢的焊接性能,使其在焊接过程中不易产生裂纹、气孔等缺陷。
例如,加入钛、钒等元素可以改善钢的焊接性能。
5. 优化热处理性能:合金元素可以影响钢的相变点和晶粒长大行为,从而优化钢的热处理性能。
通过合理选择合金元素,可以使钢在热处理过程中达到预期的组织和性能。
6. 获得特殊性能:不同的合金元素可以赋予钢特殊的性能,如耐磨性、高温强度、磁性等。
例如,加入钨、钴等元素可以提高钢的耐磨性。
总之,在钢中加入合金元素可以显著改善钢的性能,使其适应各种工程应用的需求。
通过合理选择和控制合金元素的种类、含量以及热处理工艺,可以获得具有优异综合性能的合金钢材料。
合金元素在钢中的主要作用
合金元素在钢中的主要作用1.强度增加:合金元素的添加可以显著提高钢的强度。
例如,镍和铬被广泛用于制造不锈钢,它们可以提高钢的强度和耐腐蚀性能。
其他合金元素如硼、钼、钛和钒等也可以提高钢的强度。
2.耐腐蚀性提高:合金元素的添加可以提高钢的耐腐蚀性。
例如,铬的添加可以形成一层钝化膜,保护钢材不受环境腐蚀的影响。
因此,不锈钢中添加了较高比例的铬来提高其抗腐蚀性。
3.硬度增加:合金元素对钢的硬度有直接的影响。
添加硅和锰可以增加钢的硬度,从而提高其抗磨损性能。
硬度的提高对于汽车发动机零件、刀具和轴承等耐磨件来说是非常重要的。
4.可加工性改善:有些合金元素可以提高钢的可加工性,使得钢更容易被切削、锻造和焊接。
铝和钛等元素可以形成易于切削和锻造的中间相,从而提高钢材的可塑性。
5.热处理性能改善:合金元素的添加可以改善钢的热处理性能,使得钢更容易通过热处理来改变其组织和性质。
例如,铌和钛等合金元素的添加可以在钢中形成稳定的碳化物,从而提高硬化深度和抗热脆性。
6.电磁性能调节:合金元素的加入还可以影响钢的电磁性能。
例如,镍和锰等元素的添加可以提高钢的磁导率,使其更适合用于电磁设备和电动机。
7.温度变化下的性能稳定性:合金元素的添加可以使钢在温度变化下保持稳定的性能。
例如,锰和硅等元素的添加可以减轻钢在高温下的软化倾向,从而提高其高温下的机械性能。
值得注意的是,不同的合金元素对钢的性质有不同的影响。
合金元素的种类、含量、配比和钢的制造工艺等因素都会对钢的性能产生显著的影响。
因此,在具体的钢材制造中,需要根据不同的要求和使用环境来选择合适的合金元素组合,以达到最佳的性能。
常见合金元素在钢中的作用
8、钒在钢中的作用
⑴、细化钢的组织和晶粒;提高晶粒粗化温度,从而降低钢的过热敏感性。
⑵、在高温溶入奥氏体时,增加钢的淬透性;如以碳化物形式存在时,却将降低钢的淬透性。
⑵、铬加入钢中能显著改善钢的高温抗氧化性(不起皮)。
⑶、显著提高钢的淬透性,改善钢的抗回火稳定性。
⑷、阻止石墨化
缺点:①、铬能促进钢的回火脆性倾向。
5、镍在钢中的作用
⑴、可提高钢的强度而不显著降低其塑性。
⑵、镍可降低钢的脆性转变温度,即可提高钢的低温韧性。
⑶、改善钢的加工性和可焊性。
⑸、提高钢的淬透性,回火稳定性,防止回火脆性。
缺点:钼的主要不良作用是它能使低合金钼钢发生石墨化的倾向。
7、钨在钢中的作用
⑴、提高钢的硬度、强度和耐磨性
⑵、增加淬火钢的回火稳定性,并产生二次硬化效应(约560℃回火时析出弥散分布的W2C)
⑶、提高钢的抗氢性能。
⑷、是使钢具有热硬性。因此钨是高速工具钢中的主要合金元素。
⑴、钛能改善钢的热强性,提高钢的抗蠕变性能及高温持久强度;
⑵、并能提高钢在高温高压氢气中的稳定性。使钢在高压下对氢的稳定性高达600℃以上,在珠光体低合金钢中,钛可阻止钼钢在高温下的石墨化现象。因此,钛是锅炉高温元件所用的热强钢中的重要合金元素之一。
10、铌在钢中的作用
⑴、铌和碳、氮、氧都有极强的结合力,并与之形成相应的极为稳定的化合物,因而能细化晶粒,降低钢的过热敏感性和回火脆性。
⑷、镍可以提高钢的抗腐蚀能力,不仅能耐酸,而且能抗碱和大气的腐蚀。
合金元素在钢中的作用
元素在钢中的作用一、常存杂质元素对钢材性能的影响钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。
这些元素并非为改善钢材质量有意加入的,而是由矿石及冶炼过程中带入的,故称为杂质元素。
这些杂质对钢性能是有一定影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格的规定。
1)硫硫来源于炼钢的矿石与燃料焦炭。
它是钢中的一种有害元素。
硫以硫化铁(FeS)的形态存在于钢中,FeS和 Fe形成低熔点(985℃)化合物。
而钢材的热加工温度一般在1150~1200℃以上,所以当钢材热加工时,由于 FeS化合物的过早熔化而导致工件开裂,这种现象称为“热脆”。
含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。
高级优质钢:S<0.02%~0.03%;优质钢:S<0.03%~0.045%;普通钢:S<0.055%~0.7%以下。
2)磷磷是由矿石带入钢中的,一般说磷也是有害元素。
磷虽能使钢材的强度、硬度增高,但引起塑性、冲击韧性显著降低。
特别是在低温时,它使钢材显著变脆,这种现象称"冷脆"。
冷脆使钢材的冷加工及焊接性变坏,含磷愈高,冷脆性愈大,故钢中对含磷量控制较严。
高级优质钢:P<0.025%;优质钢:P<0.04%;普通钢:P<0.085%。
3)锰锰是炼钢时作为脱氧剂加入钢中的。
由于锰可以与硫形成高熔点(1600℃)的 MnS,一定程度上消除了硫的有害作用。
锰具有很好的脱氧能力,能够与钢中的FeO成为MnO进入炉渣,从而改善钢的品质,特别是降低钢的脆性,提高钢的强度和硬度。
因此,锰在钢中是一种有益元素。
一般认为,钢中含锰量在0.5%~0.8%以下时,把锰看成是常存杂质。
技术条件中规定,优质碳素结构钢中,正常含锰量是0.5%~0.8%;而较高含锰量的结构钢中,其量可达0.7%~1.2%。
4)硅硅也是炼钢时作为脱氧剂而加入钢中的元素。
合金元素在钢中的作用
合金元素在钢中的作用合金元素在钢中的作用,不外是与钢中的铁和碳两个基本组元发生作用,合金元素之间的相互作用,以及由此而影响钢的组织和相变过程,改变钢的性能等。
下面仅简述其几方面最基本的作用。
一、强化铁素体大多数合金元素都能溶于铁素体,形成合金铁素体。
由于合金元素与铁的晶格类型和原子半径的差异,引起铁素体的晶格畸变,产生固溶强化,使铁素体的强度、硬度提高,但塑性和韧性有下降的趋势。
如Si、Mn能显著提高铁素体的强度和硬度,但Si超过1%,Mn 超过1.5%时,都会降低铁素体的韧性,只有Ni比较特殊,在一定范围内(不超过5%)能显著强化铁素体的同时又能提高韧性。
二、形成合金碳化物在钢中能形成碳化物的元素有Fe、Mn、Cr、Mo、W、V、Nb、Zr、Ti等(按与碳的亲合能力由弱到强依次排列)。
与碳的亲合力超强,形成的碳化物越稳定。
根据合金元素与碳的亲合力的强弱和元素在钢中含量的多少,钢中的合金碳化物有合金渗碳体和特殊碳化物两种类型。
弱碳化物形成元素(如Mn)或较强碳化物形成元素(如Cr、W等)在钢中含量不多(0.5~3%)时,一般都倾向于溶入渗碳体形成合金渗碳体。
如(Fe,Mn)3C、(Fe,Cr)3C、(Fe,W)3C 等。
合金渗碳体的硬度和稳定性都略高于渗碳体。
强碳化物形成元素(如V、Nb、Ti等)或较强碳化物形成元素在钢中含量足够高(大于5%)时,就形成与渗碳体晶格完全不同的特殊碳化物。
如Cr23C6、WC、VC、TiC等。
这些碳化物具有更高的熔点、硬度和耐磨性,并且更为稳定。
在淬火加热时很难溶于奥氏体;回火时加热到较高温度才能从马氏体中析出;聚集长大也较慢。
当其在钢中呈弥散分布时,能显著提高钢的强度、硬度和耐磨性,而不降低韧性。
所以工具钢中常加入碳化物形成元素。
三、阻碍奥氏体的晶粒长大强碳化物形成元素Ti、Nb、V等形成的碳化物及Al形成的AlN、Al2O3等细小质点,分布在奥氏体晶界上,能强烈地阻碍奥氏体晶粒的长大,所以合金钢(除锰钢外)淬火加热时不易过热,这样有利于获得细马氏体;有利于提高加热温度,使奥氏体中溶入更多的合金元素,有利于改善钢的淬透性和机械性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简述几种常见合金元素在钢中的主要作用为了改善和提高钢的某些性能和使之获得某些特殊性能而有意在冶炼过程中加入的元素称为合金元素。
常用的合金元素有铬,镍,钼,钨,钒,钛,铌,锆,钴,硅,锰,铝,铜,硼,稀土等。
磷,硫,氮等在某些情况下也起到合金的作用。
(1)铬(Cr)铬能增加钢的淬透性并有二次硬化的作用,可提高碳钢的硬度和耐磨性而不使钢变脆。
含量超过12%时,使钢有良好的高温抗氧化性和耐氧化性腐蚀的作用,还增加钢的热强性。
铬为不锈钢耐酸钢及耐热钢的主要合金元素。
铬能提高碳素钢轧制状态的强度和硬度,降低伸长率和断面收缩率。
当铬含量超过15%时,强度和硬度将下降,伸长率和断面收缩率则相应地有所提高。
含铬钢的零件经研磨容易获得较高的表面加工质量。
铬在调质结构中的主要作用是提高淬透性,使钢经淬火回火后具有较好的综合力学性能,在渗碳钢中还可以形成含铬的碳化物,从而提高材料表面的耐磨性。
含铬的弹簧钢在热处理时不易脱碳。
铬能提高工具钢的耐磨性、硬度和红硬性,有良好的回火稳定性。
在电热合金中,铬能提高合金的抗氧化性、电阻和强度。
(2)镍(Ni)镍在钢中强化铁素体并细化珠光体,总的效果是提高强度,对塑性的影响不显著。
一般地讲,对不需调质处理而在轧钢、正火或退火状态使用的低碳钢,一定的含镍量能提高钢的强度而不显著降低其韧性。
据统计,每增加1%的镍约可提高强度。
随着镍含量的增加,钢的屈服程度比抗拉强度提高的快,因此含镍钢的比可较普通碳素钢高。
镍在提高钢强度的同时,对钢的韧性、塑性以及其他工艺的性能的损害较其他合金元素的影响小。
对于中碳钢,由于镍降低珠光体转变温度,使珠光体变细;又由于镍降低共析点的含碳量,因而和相同的碳含量的碳素钢比,其珠光体数量较多,使含镍的珠光体铁素体钢的强度较相同碳含量的碳素钢高。
反之,若使钢的强度相同,含镍钢的碳含量可以适当降低,因而能使钢的韧性和塑性有所提。
镍可以提高钢对疲劳的抗力和减小钢对缺口的敏感性。
镍降低钢的低温脆性转变温度,这对低温用钢有极重要的意义。
含镍%的钢可在-100℃时使用,含镍9%的钢则可在-196℃时工作。
镍不增加钢对蠕变的抗力,因此一般不作为热强钢的强化元素。
镍含量高的铁镍合金,其线胀系数随镍含量增减而显著变化,利用这一特性,可以设计和生产具有极低或一定线胀系数的精密合金、双金属材料等。
此外,镍加入钢中不仅能耐酸,而且也能抗碱,对大气及盐都有抗蚀能力,镍是不锈耐酸钢中的重要元素之一。
(3)钼(Mo)钼在钢中能提高淬透性和热强性,防止回火脆性,增加剩磁和矫顽力以及在某些介质中的抗蚀性。
在调质钢中,钼能使较大断面的零件淬深、淬透,提高钢的抗回火性或回火稳定性,使零件可以在较高温度下回火,从而更有效地消除(或降低)残余应力,提高塑性。
在渗碳钢中钼除了具有上述作用外,还能在渗碳层中降低碳化物在晶界上形成连续网状的倾向,减少渗碳层中残留的奥氏体,相对地增加了表面层的耐磨性。
在锻模刚中,钼还能保持钢有比较稳定的硬度,增加对变形。
开裂和磨损等的抗力。
在不锈耐酸钢中,钼能进一步提高对有机酸(如蚁酸、醋酸、草酸等)以及过氧化氢、硫酸、亚硫酸、硫酸盐、酸性染料、漂白粉液等的抗蚀性。
特别是由于钼的加入,防止了氯离子的存在所产生的点腐蚀倾向。
含1%左右钼的W12Cr4V4Mo高速钢具有耐磨性、回火硬度和红硬性等。
(4)钨(W)钨在钢中除形成碳化物外,部分地溶入铁中形成固溶体。
其作用与钼相似,按质量分数计算,一般效果不如钼显著。
钨在钢中主要样图是增加回火稳定性、红硬性、热强性以及由于形成碳化物而增加的耐磨性。
因此它的主要用于工具钢,如高速钢、热锻模具用钢等。
钨在优质弹簧钢中形成难熔碳化物,在较高温度回火时,能缓解碳化物的聚集过程,保持较高的高温强度。
钨还可以降低钢的过热敏感性、增加淬透性和提高硬度。
65SiMnWA弹簧钢热轧后空冷就具有很高的硬度,50mm2截面的弹簧钢在油中即能淬透,可作承受大负荷、耐热(不大于350℃)、受冲击的重要弹簧。
30W4Cr2VA高强度耐热优质弹簧钢,具有大的淬透性,1050~1100℃淬火,550~650℃回火后抗拉强度达1470~1666Pa。
它主要用于制造在高温(不大于500℃)条件下使用的弹簧。
由于钨的加入,能显著提高钢的耐磨性和切削性,所以,钨是合金工具钢的主要元素。
(5)钒(V)钒和碳、氨、氧有极强的亲和力,与之形成相应的稳定化合物。
钒在钢中主要以碳化物的形式存在。
其主要作用是细化钢的组织和晶粒,降低钢的强度和韧性。
当在高温溶入固溶体时,增加淬透性;反之,如以碳化物形式存在时,降低淬透性。
钒增加淬火钢的回火稳定性,并产生二次硬化效应。
钢中的含钒量,除高速工具钢外,一般均不大于%。
钒在普通低碳合金钢中能细化晶粒,提高正火后的强度和屈服比及低温特性,改善钢的焊接性能。
钒在合金结构钢中由于在一般热处理条件下会降低淬透性,故在结构钢中常和锰、铬、钼以及钨等元素联合使用。
钒在调质钢中主要是提高钢的强度和屈服比,细化晶粒,捡的过热敏感性。
在渗碳钢中因能细化晶粒,可使钢在渗碳后直接淬火,不需二次淬火。
钒在弹簧钢和轴承钢中能提高强度和屈服比,特别是提高比例极限和弹性极限,降低热处理时脱碳敏感性,从而提高了表面质量。
五铬含钒的轴承钢,碳化弥散度高,使用性能良好。
钒在工具钢中细化晶粒,降低过热敏感性,增加回火稳定性和耐磨性,从而延长了工具的使用寿命。
(6)钛(Ti)钛和氮、氧、碳都有极强的亲和力,与硫的亲和力比铁强。
因此,它是一种良好的脱氧去气剂和固定氮和碳的有效元素。
钛虽然是强碳化物形成元素,但不和其他元素联合形成复合化合物。
碳化钛结合力强,稳定,不易分解,在钢中只有加热到1000℃以上才能缓慢地溶入固溶体中。
在未溶入之前,碳化钛微粒有阻止晶粒长大的作用。
由于钛和碳之间的亲和力远大于铬和碳之间的亲和力,在不锈钢中常用钛来固定其中的碳以消除铬在晶界处的贫化,从而消除或减轻钢的晶间腐蚀。
钛也是强铁氧体形成元素之一,强烈的提高了钢的A1和A3温度。
钛在普通低合金钢中能提高塑性和韧性。
由于钛固定了氮和硫并形成碳化钛,提高了钢的强度。
经正火使晶粒细化,析出形成碳化物可使钢的塑性和冲击韧性得到显著改善,含钛的合金结构钢,有良好的力学性能和工艺性能,主要缺点是淬透性稍差。
在高铬不锈钢中通常需加入约5倍碳含量的钛,不但能提高钢的抗蚀性(主要是抗晶间腐蚀)和韧性;还能组织钢在高温时的晶粒长大倾向和改善钢的焊接性能。
(7)铌/钶(Nb/Cb)铌与钶常和钽共生,它们在钢中的作用相近。
铌和钽部分溶入固溶体,起固溶强化作用。
溶入奥氏体时显著提高钢的淬透性。
但以碳化物和氧化物微粒形式存在时,细化晶粒并降低钢的淬透性。
它能增加钢的回火稳定性,有二次硬化作用。
微量铌可以在不影响钢的塑性或韧性的情况下提高钢的强度。
由于有细化晶粒的作用,能提高钢的冲击韧性并降低其脆性转变温度。
当含量大于碳的8倍时,几乎可以固定钢中所有的碳,使钢具有良好的抗氢性能。
在奥氏体钢中可以防止氧化介质对钢的晶间腐蚀。
由于固定碳和沉淀硬化作用,能提高热强钢的高温性能,如蠕变强度等。
铌在建筑用普通低合金钢中能提高屈服强度和冲击韧性,降低脆性转变温度有益焊接性能。
在渗碳及调质合金结构钢中在增加淬透性的同时。
提高钢的韧性和低温性能。
能降低低碳马氏体耐热不锈钢的空气硬化性,避免硬化回火脆性,提高蠕变强度。
(8)锆(Zr)锆是强碳化物形成元素,它在钢中的作用与铌、钽、钒相似。
加入少量锆有脱气、净化和细化晶粒作用,有利于钢的低温性能,改善冲压性能,它常用于制造燃气发动机和弹道导弹结构使用的超高强度钢和镍基高温合金中。
(9)钴(Co)钴多用于特殊的钢和合金中,含钴的高速钢有高的高温硬度,与钼同时加入马氏体时效钢中可以获得超高硬度和良好综合力学性能。
此外,钴在热强钢和磁性材料中也是重要的合金元素。
钴降低钢的淬透性,因此,单独加入碳素钢中会降低调质后的综合力学性能。
钴能强化铁素体,加入碳素钢中,在退火或正火状态下能提高钢的硬度、屈服点和抗拉强度,对伸长率和断面收缩率有不利的影响,冲击韧性也随着钴含量的增加而降低。
由于钴具有抗氧化性能,在耐热钢和耐热合金中得到应用。
钴基合金燃气涡轮中更显示了它特有的作用。
(10)硅(Si)硅能溶于铁素体和奥氏体中提高钢的硬度和强度,其作用仅次于磷,较锰、镍、铬、钨、钼、钒等元素强。
但含硅量超过3%时,将显著降低钢的塑性和韧性。
硅能提高钢的弹性极限、屈服强度和屈服比(σs/σb),以及疲劳强度和疲劳比(σ-1/σb)等。
这是硅或硅锰钢可作为弹簧钢种的缘故。
硅能降低钢的密度、热导率和电导率。
能促使铁素体晶粒粗化,降低矫顽力。
有减小晶体的各向异性倾向,使磁化容易,磁阻减小,可用来生产电工用钢,所以硅钢片的磁阻滞损耗较低。
硅能提高铁素体的导磁率,使钢片在较弱磁场下有较高的磁感强度。
但在强磁场下硅降低钢的磁感强度。
硅因有强的脱氧力,从而减少了铁的磁时效作用。
含硅的钢在氧化气氛中加热时,表面将形成一层SiO2薄膜,从而提高钢在高温时的抗氧化性。
硅能促使铸钢中的柱状晶成长,降低塑性。
硅钢若加热时冷却较快,由于热导率低,钢的内部和外部温差较大,因而断裂。
硅能降低钢的焊接性能。
因为与氧的结合能力硅比铁强,在焊接时容易生成低熔点的硅酸盐,增加熔渣和融化金属的流动性,引起喷溅现象,影响焊接质量。
硅是良好的脱氧剂。
用铝脱氧时酌情加一定量的硅,能显著提高率的脱氧性。
硅在钢中本来就有一定的残存,这是由于炼铁炼钢时作为原料带入的。
在沸腾钢中,硅限制在<%,有意加入时,则在炼钢时加入硅铁合金。
(11)锰(Mn)锰是良好的脱氧剂和脱硫剂。
钢中一般都含有一定量的锰,它能消除或减弱由于硫引起的钢的热脆性,从而改善钢的热加工性能。
锰和铁形成的固溶体,提高钢中铁素体和奥氏体的硬度和强度;同时又是碳化物形成的元素,进入渗碳体中取代一部分铁原子,锰在钢中由于降低临界转变温度,起到细化珠光体的作用,也间接地起到提高珠光体钢强度的作用。
锰稳定奥氏体组织的能力仅次于镍,也强烈增加钢的淬透性。
已用含量不超过2%的锰与其他元素配合制成多种合金钢。
锰具有资源丰富、效能多样的特点,获得了广泛的应用,如含锰较高的碳素结构钢、弹簧钢。
在高碳高锰耐磨钢中,锰含量可达10%~14%,经固溶处理后有良好的韧性,当收到冲击而变形时,表面层将因变形而强化,具有高的耐磨性。
锰与硫形成熔点较高的MnS,可防止因FeS而导致的热脆现象。
锰有增加钢晶粒粗化的倾向和回火脆性敏感性。
若冶炼浇注和锻轧后冷却不当,容易使钢产生白点。
(12)铝(Al)铝主要用来脱氧和细化晶粒。
在渗氮钢中促使形成坚硬耐蚀的渗氮层。
铝能抑制低碳钢的时效,提高钢在低温下的韧性。