初三下册数学第二十九章投影与视图
九年级数学下册 第二十九章 投影与视图 29.1 投影教学课件下册数学课件
第三十八页,共四十页。
课堂(kètáng)小结
12/10/2021
第十四页,共四十页。
中心投影
由同一点(点光源)发出的光线形成的投影(tóuyǐng)叫做中心投影. 例如:物体在灯泡(dēngpào)发出的光照射下形成影子就是中心投影.
12/10/2021
第十五页,共四十页。
练一练 请你分别指出下面的例子属于什么(shén me)投影?
(1)平行投影
一 投影的概念
观察(guānchá) 与思考 思考:你知道物体(wùtǐ)与影子有什么关系吗?
12/10/2021
第六页,共四十页。
概念归纳
一般地,用光线照射物体,在某个平面(地面、
墙壁等)上得到的影子叫做物体的投影. 照射光线叫做(jiàozuò)投影线 投影所在(suǒzài)的平面叫做投影面.
12/10/2021
第九页,共四十页。
例如,物体在太阳光的照射下形成的影子(简称日影) 就是平行投影.日影的方向可以反映(fǎnyìng)时间,
我国古代的计时器日晷,就是根据(gēnjù)日影来观测时间 的.
12/10/2021
第十页,共四十页。
例1:某校墙边有甲、乙两根木杆(mù ɡǎn).已知乙杆的高度为1.5 m. (1) 某一时刻甲木杆在阳光下的影子如下图,你能画出此时乙木杆 的影子吗?
教学 课件 (jiāo xué)
数学(shùxué) 九年级下册 RJ
12/10/2021
第一页,共四十页。
第二十九章 投影 与视图 (tóuyǐng)
29.1 投影
12/10/2021
第二页,共四十页。
第1课时 平行投影与中心投影
第二十九章 投影与视图
第二十九章投影与视图一、课标导航二、核心纲要l.投影(1)投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.(2)中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影(如下左图所示).(3)平行投影:由平行光线形成的投影是平行投影(如下中图所示).(4)正投影:投影线垂直于投影面产生的投影叫做正投影(如下右图所示).2.平行投影与中心投影的区别和联系(如下表所示)3.三视图是指从兰个不间位置观察间一个空间几何体而画出的图形,包括主视图、俯视图、左视图(如下图所示)(1)主视图:从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状.(2)俯视图:从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状.(3)左视图:从物体的左面向右面投射所得的视图称左视图-- 能反映物体的左面形状.注:画三视图时应注意三视图的位置要准确,看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线,主俯长对正、主左高平齐、俯左宽相等.即主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.本节重点讲解:三个投影,三个视图.三 .全能突破基础演练1.下列说法正确的是( ).A.物体在阳光下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长.C.物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化.D.物体在阳光照射下,影子的长度和方向都是固定不变的.2.下图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是( ).A.①②③④ B.④①③② C.④②③① D.④③②①3.把一个正五棱柱按下图摆放,当投射线由正前方射到后方时,它的正投影是( ).4.(1)如下左图所示,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,则投影三角尺的对应边长为( ).C2.3.cmD10..cmB20cmA8.cm(2)如下右图所示,在一间黑屋子里用一盏白炽灯照一个球,球在地面上阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小变化情况是( ).A.越来越小 B.越来越大 C.大小不变 D.不能确定5.(1)左下图所示的几何体中主视图、左视图、俯视图都相同的是( ).(2)右下图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,那么他所画的三视图中的俯视图应该是( ).A.两个外切的圆 B.两个内切的圆 C.两个相交的圆 D.两个外离的圆6.由7个大小相同的正方体搭成的几何体如右图所示,则关于它的视图说法正确的是( ).A.正视图的面积最大 B.俯视图的面积最大C.左视图的面积最大 D.三个视图的面积一样大7.(1)左下图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为( ).(2)右下图是由一些大小相同的小立方体组成的几何体的主视图和左视图,则组成这个几何体的小立方体的个数不可能是( ).A.3个 B .4个 C .5个 D .6个8.在安装太阳能热水器时,主要考虑太阳光线与热水器斜面间的角度(垂直时最佳).如下图所示,当太阳光线与水平面成35角照射时,热水器的斜面与水平面的夹角最好应为9.在平面直角坐标系内,一点光源位于A(O ,4)处,线段CD ⊥x 轴,D 为垂足,C(3,1),则CD 在x 轴上的影子长为__________,点C 的影子坐标为 .能 力 提 升10.太阳光线与地面成60的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,310cm 则皮球 的直径是( ) cm .35.A 38.B 15.C 20.D11.(1)如果用口表示1个立方体,用图表示两个立方体叠加,用■表示三个立方体叠加,左下图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( ).(2)右下图是由27个相同的小立方块搭成的几何体,它的三个视图都是3×3的正方形,若拿掉若干个小立方块后(几何体不倒掉),其三个视图仍都为3×3的正方形,则最多能拿掉小立方块的个数为( ).11.A 12.B 13.C 14.D12. (1)-个几何体的三视图如下左图所示,其中主视图、左视图都是长为4、宽为x 的矩形,这个几何体 的表面积为l87c ,则x 的值为( ).2.A 21.B 4.C 8.D(2)右下图是某几何体的三视图及相关数据,则下面判断正确的是( ).c a A >. c b B >. 2224.c b a C =+ 222.c b a D =+13.下图是一个上下底密封纸盒的三视图,请根据图中数据,计算这个密封纸盒的表面积为 2cm (结果可保留根号).14.右图是一个几何体的三视图. (1)写出这个几何体的名称.(2)根据所示数据计算这个几何体的表面积.(3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表面爬到AC 的中点D ,请你求出这个线路的最短路程.15.用小立方体搭一个几何体,它的主视图和俯视图如下图所示,俯视图中小正方形中的字母表示在该位置小立方体的个数,请解答下列问题: (l)a ,b ,c 各表示几?(2)这个几何体最少由几个小立方体搭成?最多由几个小立方体搭成? (3)当2,1===f e d 时,画出这个几何体的左视图.16.下图所示电线杆上有一盏路灯0,电线杆与三个等高的标杆整齐排列在马路一侧的一条直线上,AB 、CD 、EF 是三个标杆,相邻的两个标杆之间的距离都是2m ,已知AB 、CD 在灯光下的影长分别为.6.0,6.1m DN m BM ==(1)请画出路灯0的位置和标杆EF 在路灯灯光下的影子. (2)求标杆EF 的影长,中 考 链 接17.(2012.湖北成宁)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池,类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,如下左图所示,则该几何体为( ).18.(2013.湖北荆门)过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如下左图所示,则它的俯视图为( ).19.(2012.湖南衡阳)一个圆锥的三视图如下图所示,则此圆锥的底面积为( ).230.cm A π 225.cm B π 250.cm C π 2100.cm D π巅 峰 突 破20.如下图所示,一根直立于水平地面上的木杆AB 在灯光下形成影子,当木杆绕A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的影长为AC (假定AC>AB ),影长的最大值为m ,最小值为n ,那么下列结论:;;;AB n AC m AC m ==>③②①④影子的长度先增大后减小.其中,正确的结论的序号是21.学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律,如下图所示,在同一时间,身高为1.6m 的小明(AB)的影子BC 长是3m ,而小颖(EH)刚好在路灯灯泡的正下方H 点,并测得HB=6m.(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G . (2)求路灯灯泡的垂直高度GH. (3)如果小明沿线段BH 向小颖(点H)走去,当小明走到BH 中点1B 处时,求其影子11C B 的长;当小明继续走剩下路程的31到2B 处时,求其影子22C B 的长;当小明继续走剩下路程的41到3B 处,……按此规律继续走下去,当小明走剩下路程的11+n 到n B 处时,其影子n n C B 的长为 m(直接用n的代数式表示).。
新人教版九年级数学下册第29章投影与视图课件PPTppt课件
主视图 左视图
俯视图
ppt精选版
31
用小立方块搭出符合下列三视图的几何体:
主视图
左视图
俯视图
ppt精选版
32
主视图
俯视图
左视图
ppt精选版
33
探究 根据三视图摆出它的立体图形
主视图
左视图
俯视图
ppt精选版
34
下面图(1)与图(2)是几个小方块所搭几何体俯视图, 小正方形中的数字表示在该位置的小立方块的个数. 请画出这两个几何体的主视图、左视图.
• 左视图反映:上、下 、前、后
三视图能反映物体真实的形状和长、宽、高。
ppt精选版
14
三视图的对应规律
主视图和俯视图 ----长对齐 主视图和左视图 ----高对齐
俯视图和左视图
----宽对齐
ppt精选版
15
单组合体的三视图
正视图
侧视图
俯视图
ppt精选版
16
例1、画下例几何体的三视图
延
伸
拓
展
下面所给的三视图表示什么几何体?
ppt精选版
26
下面所给的三视图表示什么几何体?
ppt精选版
27
下面所给的三视图表示什么几何体?
ppt精选版
28
下面是一个物体的三视图,试说出它的形状述出它的形状
主视图 左视图
俯视图
ppt精选版
30
下列是一个物体的三视图,请描述出它的形状
4.一个几何体的三视图都是半径相等的圆,则这个几 何体是___球____.
5.一个几何体的主视图和左视图如图所示,它是什么 几何体?请补画这个几何体的俯视图.
(第5题) 直三棱柱
数学九年级下册第29章投影与视图29.2三视图
(打“√”或“×”)
(1)一个物体的主视图是矩形,则该物体形状可能是圆柱.
()
(2)一个物体的左视图是带圆心的圆,则该物体可能是圆锥. () √
(3)一个物体的俯视图是三角形,则该物体的形状可能是三
棱柱.( )
(4)由三视图不一定能确定物体的形状.( )
√
√ ×
知识点 1由三视图复原几何体 【例1】(2013·凉山州中考)下面是一个几何体的三视图, 则这个几何体的形状是( )
29.2 三 视 图 第2课时
1.能根据三视图还原立体图形.(重点) 2.掌握三视图还原立体图形的综合应用.(重点、难点)
由三视图复原成几何体:由三视图复原几何体,要先分别 根据_______、_______和_______想象立体图形的前面、左面和 上面,主然视后图再综左合视在图一起想俯象视整图体图形.
A.圆柱 B.圆锥 C.圆台 D.三棱柱
【思路点拨】根据题目给定的三视图,运用逆向思维,想象出 对应的几何体,然后作出正确的判断. 【自主解答】选B.俯视图为圆的有球、圆锥、圆柱等几何体, 主视图和左视图为三角形的只有圆锥,故选B.
【总结提升】由三视图描述几何体的“三步法”
知识点 2 三视图的有关计算 【例2】(2013·临沂中考)如图是一个 几何体的三视图,则这个几何体的侧面 积是( ) A.12π cm2 B.8π cm2 C.6π cm2 D.3π cm2
(3)左视图反映物体的宽和高.( (4)俯视图反映物体的长和宽.(
√
) )
√
√
知识点 1 物体三视图的判断 【例1】如图是一根钢管的直观图,则它的三视图为( )
【思路点拨】主视图、左视图、俯视图是分别从物体正面、侧 面和上面看所得到的图形;注意看得见部分的轮廓线画成实线, 看不见部分的轮廓线用虚线表示. 【自主解答】选D.从正面看和从左面看都应是长方形,但内部 会出现虚线,从上面看应是圆环.
九年级数学下册 第二十九章 投影与视图 29.1 投影课件下册数学课件
与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子 就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针
的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.
12/10/2021
第二页,共十五页。
一、新课引入
1 能结合具体例子说明有关(yǒuguān)什么是 投影,什么是投影线和投影面等概念;
√
8、确定图中路灯灯泡(dēngpào)的位置,并画出小赵在灯光下的影 子.
12/10/2021
第十二页,共十五页。
五、布置(bùzhì)作业
1.皮影戏是在哪种光照射下形成的( )
A.灯光 B.太阳光 C.平行光 D.都不是2.下列各种现象 属于中心投影(tóuyǐng)现象的是( )
A.上午10点时,走在路上的人的影子 B.晚上10点时,走在路灯下的人的影子 C.中午用来乘凉的树影 D.升国旗时,地上旗杆的影子
叫做物体影的子投影.
叫做投影线照射,光投线影所在的
叫做投影面.
平面
2、一般地,投影可分为两类,即:
形成平的行投光影线是平行投影; 由 同一点(点光源)发出的光线
平行、投影
.由中心投影
形成的投影叫做中心投影.
3、学习反思:__________________________________ __
____________________________
____ .
12/10/2021
第九页,共十五页。
四、强化训练
1、太阳光线下形成的投影(tóuyǐng)是平行投影
,
灯光下形成的投影是
中心投影 .
2、小玲和小芳两人身高相同(xiānɡ tónɡ),两人站在灯光下的不同位 置,已知小玲的影子比小芳的影子长,则可以判定小芳离灯光较 近 .(填“远”或“近”) .
第29章 投影与视图全章教案
第二十九章投影与视图29.1投影(1)学习目标1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;2、了角平行投影和中心投影的区别。
3、使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。
学习重点理解平行投影和中心投影的特征;学习难点在投影面上画出平面图形的平行投影或中心投影。
教学互动设计备注(一)创设情境你看过皮影戏吗?皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,在关中地区很为流行。
皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎。
(二)你知道吗北京故宫中的日晷闻名世界,是我国光辉出灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.问题:那什么是投影呢?出示投影让学生感受在日常生活中的一些投影现象。
一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线(如图).由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.(三)问题探究(在课前布置,以数学学习小组为单位)探究平行投影和中心投影和性质和区别1、以数学习小组为单位,观察在太阳光线下,木杆和三角形纸板在地面的投影。
2、不断改变木杆和三角形纸板的位置,什么时候木杆的影子成为一点,三角形纸板的影子是一条线段?当木杆的影子与木杆长度相等时,你发现木杆在什么位置?三角形纸板在什么位置时,它的影子恰好与三角形纸板成为全等图形?还有其他情况吗?(四)应用新知:(1)地面上直立一根标杆AB如图,杆长为2cm。
九年级数学下册 第二十九章 投影与视图 29.1 投影(第2课时)教学课件2下册数学课件
第十三页,共十七页。
【微点拨】 正投影计算的“三个步骤”
1.对应:找准物体与其正投影之间的对应关系. 2.画图:根据实际(shíjì)问题,画出几何图形. 3.计算:根据图形的相关计算公式计算.
第十四页,共十七页。
【纠错园】 请用平行投影的方法(fāngfǎ)画出圆柱的正投影.
第十页,共十七页。
注意:画图时一定要将物体(wùtǐ)的边缘、棱、顶点都体现 出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.
第十一页,共十七页。
知识点二 正投影的有关计算 【示范题2】(6分)(2016·庐江校级月考)如图,边长为acm的正 方体其上下底面的对角线AC,A1C1与平面H垂直(chuízhí).计算正 方体六个面在平面H上的正投影图形MNPQ的面积.
Image
12/10/2021
第十七页,共十七页。
【自我诊断】
1.判断对错:
(1)正投影是中心投影.( ) ×
(2)正投影是平行投影. ( ) √ (3)正投影与物体的形状(xíngzhuàn)、大小相同×.( ) (4)正投影的形状大小决定于物体与投影面的关系.
第三页,共十七页。
() √
2.球的正投影是( ) A
A.圆面 B.椭圆面 C.点 D.圆环
29.1 投 影
第2课时(kèshí)
第一页,共十七页。
【基础梳理】
1.正投影 投影线__垂__直_于__投影面产生的投__影__(_t.óuyǐng) 2.正投影的性质 当物体(wùtǐ)的某个面平__行__于___投影面时,这个面的正投影 与这个面的___形__状__、__大__完小全相同.
第二页,共十七页。
人教版九年级数学下册《第二十九章投影与视图》教案
人教版九年级数学下册《第二十九章投影与视图》教案一. 教材分析《人教版九年级数学下册》第二十九章《投影与视图》是学生在学习了平面几何、立体几何的基础上,进一步研究三视图、投影等知识。
这一章节的内容既巩固了学生以前所学的几何知识,又为后续的立体几何学习打下基础。
本章主要包括以下几个知识点:1.投影的概念和分类2.正投影和斜投影3.视图的概念和分类4.一视图、二视图、三视图的画法5.几何体的三视图二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,对几何图形的认知有一定的基础。
但投影与视图的概念对于他们来说比较抽象,需要通过具体的实例和实践活动来理解和掌握。
另外,学生对于空间想象能力的培养还不够,需要在教学过程中加强训练。
三. 教学目标1.让学生理解投影的概念,掌握正投影和斜投影的性质。
2.让学生掌握视图的分类,学会画一视图、二视图、三视图。
3.培养学生空间想象能力,提高他们解决实际问题的能力。
四. 教学重难点1.投影的概念和分类2.正投影和斜投影的性质3.视图的画法4.空间想象能力的培养五. 教学方法1.采用直观演示法,通过实物和模型展示投影与视图的概念和性质。
2.采用实践操作法,让学生动手画一视图、二视图、三视图,培养空间想象能力。
3.采用问题驱动法,引导学生思考和探讨,提高他们解决问题的能力。
六. 教学准备1.准备投影仪、实物、模型等教学道具。
2.准备相关的练习题和测试题。
3.准备黑板和粉笔。
七. 教学过程1. 导入(5分钟)教师通过展示实物和模型,引导学生观察和思考,让学生初步认识投影和视图的概念。
2. 呈现(10分钟)教师通过投影仪展示PPT,详细讲解投影的分类、正投影和斜投影的性质,以及视图的分类和画法。
3. 操练(10分钟)学生分组进行实践活动,每组选择一个几何体,分别画出它的三视图。
教师巡回指导,解答学生疑问。
4. 巩固(10分钟)教师出示一些练习题,让学生独立完成,检查他们对于投影与视图知识的掌握程度。
人教版九年级数学第二十九章 投影与视图 课件
师生活动: 教师引导学生从两个方面考虑,第一,观察光线的特点;第二,观察照射 的方式. 结论:图(1)中的投影线集中于一点,由同一点(点光源)发出的光线形成的 投影叫做中心投影.例如,物体在灯泡发出的光照射下形成的影子就是中心投 影. 图(2)、(3)中,投影线是互相平行的射线,由平行光线形成的投影是平行 投影.例如,物体在太阳光的照射下形成的影子(简称日影)就是平行投影.
五、课堂小结 1.物体在光线的照射下,会在地面或墙壁上留下它的影子 ,这就是投影. 2.由同一点(点光源)发出的光线形成的投影叫做中心投影 . 3.太阳光线可以看成平行光线,像这样的光线所形成的投 影称为平行投影. 4.物体在太阳光下形成的影子随着物体与投影面的位置关 系的改变而改变.
本节课我让学生通过实践、观察、探索了解平行投影、中心 投影的含义,学会辨别光源是太阳光线还是灯光光线,学会 进行中心投影条件下的物体与其投影之间的相互转化,感悟 灯光与影子在现实生活中的应用价值.
三、例题讲解 例 (1)地面上直立一根标杆AB,如图,杆长为2 cm. ①当阳光垂直照射地面时,标杆在地面上的投影是什么图形 ? ②当阳光与地面的倾斜角为60°时,标杆在地面上的投影是 什么图形?画出投影示意图. (2)一个正方形纸板ABCD和投影面平行(如图),投影线和投 影面垂直,点C在投影面的对应点为C′,请画出正方形纸板的 投影示意图.
(3)下面两幅图表示两根标杆在同一时刻的投影,请在图中画出形成影 的光线.它们是平行投影还是中心投影?说明理由.
解:(1)①一点 ②线段(图略) (2)图略 (3)分别连接标杆的顶端与投影上的对应点,很明显, 图(1)的投影线互相平行,是平行投影.图(2)的投影线相交 于一点,是中心投影.
四、巩固练习 1.圆形的物体在太阳光的投影下是( D ) A.圆形 B.椭圆形 C.线段 D.以上都有可能 2.在同一时刻的阳光下,小明的影子比小强的影子长 ,那么在同一路灯下( D ) A.小明的影子比小强的影子长 B.小明的影子比小强的影子短 C.小明的影子和小强的影子一样长 D.无法判断谁的影子长
第二十九章 投影与视图(解析版)
班级姓名学号分数第二十九章投影与视图(A卷·知识通关练)核心知识1. 投影1.下列各种现象属于中心投影的是()A.晚上人走在路灯下的影子B.中午用来乘凉的树影C.上午人走在路上的影子D.阳光下旗杆的影子【分析】根据中心投影的性质,找到是灯光的光源即可.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有A选项得到的投影为中心投影.故选:A.【点评】此题主要考查了中心投影的性质,解决本题的关键是理解中心投影的形成光源为点还是平行光线.2.如图,小亮居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小亮由A处径直走到B处,他在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.【分析】根据中心投影的性质得出小亮在灯下走的过程中影长随路程之间的变化,进而得出符合要求的图象.【解答】解:小路的正中间有一路灯,晚上小亮由A处径直走到B处,他在灯光照射下的影长l与行走的路程S之间的变化关系应为:当小亮走到灯下以前:l随S的增大而减小;当小亮走到灯下以后再往前走时:l 随S 的增大而增大,∴用图象刻画出来应为B .故选:B .【点评】此题主要考查了函数图象以及中心投影的性质,得出l 随S 的变化规律是解决问题的关键.3.如图,11A B 是线段AB 在投影面P 上的正投影,20AB cm =,170ABB ∠=︒,则投影11A B 的长为( )A .20sin70cm ︒B .20cos70cm ︒C .20tan70cm ︒D .20sin 70cm ︒【分析】如图,过点A 作1AH BB ⊥于点H ,则四边形11AHB A 是矩形,解直角三角形求出AH ,可得结论.【解答】解:如图,过点A 作1AH BB ⊥于点H ,则四边形11AHB A 是矩形,11AH A B ∴=,在Rt ABH ∆中,sin7020sin70()AH AB cm =⋅︒=⋅︒,1120sin 70()A B AH cm ∴==︒.故选:A .【点评】本题考查平行投影,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.4.如图所示,表示两棵小树在同一时刻阳光下的影子的图形可能是( )A.B.C.D.【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.【解答】解:A、影子的方向不相同,故本选项错误;B、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;C、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误;D、影子的方向不相同,故本选项错误;故选:B.【点评】本题考查了平行投影特点,难度不大,注意结合选项判断.5.人从路灯下走过时,影子的变化是()A.长→短→长B.短→长→短C.长→长→短D.短→短→长【分析】由题意易得,离光源是由远到近再到远的过程,根据中心投影的特点,即可得到身影的变化特点.【解答】解:因为人在路灯下行走的这一过程中离光源是由远到近再到远的过程,所以人在地上的影子先变短后变长.故选:A.【点评】本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.6.由四个相同小立方体拼成的几何体如图所示,当光线由上向下垂直照射时,该几何体在水平投影面上的正投影是()A.B.C.D.【分析】根据平行投影的定义进行判定即可得出答案.【解答】解:根据题意可得,当光线由上向下垂直照射时,该几何体在水平投影面上的正投影有4个小正方形组成,如图.故选:A.【点评】本题主要考查了平行投影,熟练掌握平行投影的应用进行求解是解决本题的关键.7.太阳发出的光照在物体上是(),路灯发出的光照在物体上是()A.平行投影,中心投影B.中心投影,平行投影C.平行投影,平行投影D.中心投影,中心投影【分析】根据平行投影与中心投影的定义判断即可.【解答】解:太阳发出的光照在物体上是平行投影,路灯发出的光照在物体上是中心投影.故选:A.【点评】本题考查中心投影,平行投影等知识,解题的关键是理解中心投影,平行投影的定义,属于中考常考题型.8.下列现象是物体的投影的是()A.灯光下猫咪映在墙上的影子B.小明看到镜子里的自己C .自行车行驶过后车轮留下的痕迹D .掉在地上的树叶【分析】利用投影的定义确定答案即可.【解答】解:A 、灯光下猫咪映在墙上的影子是投影,符合题意;B 、小明看到镜子里的自己是镜面对称,不是投影,不符合题意;C 、自行车行驶过后车轮留下的痕迹不是投影,不符合题意;D 、掉在地上的树叶不是投影,不符合题意,故选:A .【点评】考查了中心投影和中心对称的知识,判断投影是中心投影的方法是看光线是否相交于一点,如果光线是相交于一点,那么所得到的投影就是中心投影.9.如图,在平面直角坐标系中,点光源位于(2,2)P 处,木杆AB 两端的坐标分别为(0,1),(3,1).则木杆AB 在x 轴上的影长CD 为( )A .3B .5C .6D .7【分析】利用中心投影,作PE x ⊥轴于E ,交AB 于M ,如图,证明PAB CPD ∆∆∽,然后利用相似比可求出CD 的长.【解答】解:过P 作PE x ⊥轴于E ,交AB 于M ,如图,(2,2)P ,(0,1)A ,(3,1)B .1PM ∴=,2PE =,3AB =,//AB CD ,∴AB PM CD PE =, ∴312CD =, 6CD ∴=,故选:C .【点评】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.10.如图,EB 为驾驶员的盲区,驾驶员的眼睛点P 处与地面BE 的距离为1.6米,车头FACD 近似看成一个矩形,且满足32FD FA =,若盲区EB 的长度是6米,则车宽FA 的长度为( )米.A .117B .127C .137D .2 【分析】通过作高,利用相似三角形的对应高的比等于相似比,列方程求解即可.【解答】解:如图,过点P 作PM BE ⊥,垂足为M ,交AF 于点N ,则 1.6PM =,设FA x =米,由32FD FA =得,23FD x MN ==, 四边形ACDF 是矩形,//AF CD ∴, PAF PBE ∴∆∆∽,∴PN FA PM EB=, 即1.66PN x =, 415PN x ∴=, PN MN PM +=,∴42 1.6153x x +=, 解得,127x =, 故选:B .【点评】本题考查视点、视角、盲区的意义,此类问题可以转化为相似三角形的知识进行解答.核心知识2.简单几何体的三视图11.下列几何体中,从左面看到的形状为三角形的是()A.B.C.D.【分析】四个几何体的左视图:长方体是长方形,圆锥是等腰三角形,圆柱是矩形,三棱锥是长方形,由此可确定答案.【解答】解:因为圆柱、三棱锥的左视图是矩形,圆锥的左视图是等腰三角形,长方体的左视图是长方形,故左视图是三角形的几何体是圆锥;故选:B.【点评】本题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于基础题.12.如图所示,下列几何体中主视图是圆的是()A.B.C.D.【分析】根据球体、圆锥、圆柱、正方体的主视图的形状进行判断即可.【解答】解:球体的主视图是圆,圆锥体的主视图是三角形,圆柱的主视图是长方形,正方体的主视图是正方形,故选:A.【点评】本题考查简单几何体的三视图,掌握圆柱、圆锥、正方体、球的三视图的形状是正确判断的前提.13.如图的四个几何体,它们各自从正面,上面看得到的形状图不相同的几何体的个数是()A.1 B.2 C.3 D.4【分析】根据三视图的定义一一判断即可.【解答】解:正方体的主视图,俯视图相同,都是正方形;三棱柱的主视图是矩形(包括中间的一条虚线),俯视图是三角形.圆柱的主视图是矩形,俯视图是圆.圆锥的主视图是三角形,俯视图是圆(包括圆心).故选:C.【点评】本题考查简单几何体的三视图,解题的关键是理解三视图的定义,属于中考常考题型.14.襄阳牛杂面因襄阳籍航天员聂海胜的一句“最想吃的还是我们襄阳的牛杂面”火爆出圈,引发了全国人民的聚焦和关注.襄阳某品牌牛杂面的包装盒及对应的立体图形如图所示,则该立体图形的主视图为()A.B.C.D.【分析】根据主视图的意义,从正面看该立体图形所得到的图形进行判断即可.【解答】解:从正面看,是一个矩形,故选:A.【点评】本题考查简单几何体的主视图,理解视图的意义,掌握三视图的画法是正确判断的前提.15.下面立体图形中,从左面看到的平面图形与其他三个不一样的是()A.B.C.D.【分析】A,B,D从左面看到的图形为三角形,C从左面看到的图形为长方形.【解答】解:A,B,D从左面看到的图形为三角形,C从左面看到的图形为长方形,故选:C.【点评】本题考查了常见几何体三视图的相关知识,关键在于要知道从哪个方位进行观察.16.分别观察如图所示几何体,其中主视图、左视图和俯视图完全相同的有()A.1个B.2个C.3个D.4个【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答即可.【解答】三棱柱的主视图和俯视图是矩形,左视图是三角形;球的三视图都是圆;圆柱的主视图和左视图是矩形,俯视图是圆;正方体的三视图都是正方形.所以主视图、左视图和俯视图完全相同的有2个.故选:B.【点评】本题考查的是几何体的三视图,理解主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形是解题的关键.17.如图,从左面观察这个立体图形,得到的平面图形是()A.B.C.D.【分析】根据解答组合体的三视图的画法画出左视图即可.【解答】解:这个组合体的左视图如下:故选:A.【点评】本题考查简单组合体的三视图,理解视图的定义,掌握简单组合体的三视图的画法及形状是正确解答的前提.18.如图是由6块相同的小正方体组成的立体图形,从左面看到的形状是()A.B.C.D.【分析】根据简单组合体的三视图得出结论即可.【解答】解:根据题意知,组合体的左视图为,故选:B.【点评】本题主要考查简单组合体的三视图,熟练掌握简单组合体的三视图是解题的关键.19.如图,将一个规则几何体的上半部分钻一个圆孔,则该几何体的俯视图是()A.B.C.D.【分析】根据几何体的俯视图得出结论即可.【解答】解:由题意知,几何体的俯视图为,故选:A.【点评】本题主要考查几何体的三视图,熟练掌握几何体的三视图是解题的关键.20.图所示的几何体的左视图是()A.B.C.D.【分析】根据简单组合体的三视图得出结论即可.【解答】解:由题意知,几何体的左视图为,故选:B.【点评】本题主要考查简单组合体的三视图,熟练掌握简单组合体的三视图是解题的关键.21.如图,该几何体的左视图是()A.B.C.D.【分析】根据几何体的左视图得出结论即可.【解答】解:根据题意知,几何体的左视图为,故选:D.【点评】本题主要考查简单组合体的三视图,熟练掌握简单组合体的三视图是解题的关键.22.如图,是由两个正方体组成的几何体,则从上面看该几何体的形状图为()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看到的几何体的形状图是C,故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.23.如图所示的几何体的左视图()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看,是一个矩形,矩形的中间有一条横向的虚线,故选:C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.24.一个圆柱和正三棱柱组成的几何体如图水平放置,其主视图是()A.B.C.D.【分析】根据简单组合体的三视图的定义画出其主视图即可.【解答】解:这个组合体的主视图如下:故选:B.【点评】本题考查简单组合体的三视图,理解视图的定义掌握简单组合体三视图的画法是正确解答的前提.核心知识3.由三视图判断几何体25.已知圆锥的三视图及相关数据如图所示,则这个圆锥的侧面展开图(扇形)的圆心角度数为( )A .270︒B .216︒C .108︒D .135︒【分析】根据展开图的扇形的弧长等于圆锥底面周长计算.【解答】解:观察三视图得:圆锥的底面半径为3cm ,高为4cm ,所以圆锥的母线长为5cm ,56180n ππ=, 解得216n =︒.故选:B .【点评】考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.26.一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的左视图为( )A .B .C.D.【分析】由已知条件可知,左视图有3列,每列小正方形数目分别为3,2,1.据此可作出判断.【解答】解:该几何体的左视图为.故选:A.【点评】本题考查了几何体的三视图的画法,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图形是俯视图.27.用3个大小相同的小正方体搭成的几何体,从三个方向看到的形状图如图所示,则这个几何体可能是( )A.B.C.D.【分析】在俯视图上摆小立方体,确定每个位置上摆小立方体的个数,得出答案.【解答】解:在俯视图标出相应位置摆放小立方体的个数,如图所示:则这个几何体可能是.故选:B.【点评】本题考查了学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.28.如图是从三个方向看到的由一些相同的小正方体构成的几何体的形状图,则构成这个几何体的小正方体的个数是()A.8 B.7 C.6 D.5【分析】由主视图易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图和左视图可得第二层立方体的个数,相加即可.【解答】解:由三视图易得最底层有6个正方体,第二层有2个正方体,那么共有628+=个正方体组成.故选:A.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.29.如图四个由小正方体拼成的立体图形中,从正面看是的是()A.B.C.D.【分析】先画出各个图形从正面看的视图,再判断即可.【解答】解:A、图形从正面看得出的图形为,故本选项不符合题意;B、图形从正面看得出的图,故本选项不符合题意;C、图形从正面看得出的图形为,故本选项符合题意;D、图形从正面看得出的图形为,故本选项不符合题意;故选:C.【点评】本题考查了简单组合体的三视图,能理解三视图的定义是解此题的关键.30.一个几何体是由7个完全相同的小正方体搭建而成的,从上面看到的形状图如图所示,则从正面看到的形状图不可能是()A.B.C.D.【分析】根据俯视图可知最下面一层有6个小正方体,所以第二层有1个,即可判断出答案.【解答】解:根据俯视图可知最下面一层有6个小正方体,所以第二层有1个,所以主视图不可能为C.故选:C.【点评】本题考查了简单组合体的三视图,利用了主视图的定义.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.31.一个立体图形,从上面看到的平面图形,从左面看到的平面图形,搭成这样的几何体所需要的小正方体个数为()A.5 B.6 C.7 D.5或6【分析】根据从上面看到的图形结合从左面看到的图形,可以确定这个立体图形需要小正方体的个数.【解答】解:如图,这个几何体需要的小正方体个数为21115+++=(个)或22116+++=(个).故选:D.【点评】本题考查由三视图判定几何体,简单的三视图等知识,解题的关键是理解三视图的定义,属于中考常考题型.32.一个长方体,从左面、上面看得到的图形及相关数据如图,则从正面看该几何体所得到的图形的面积为()A.6 B.8 C.12 D.9【分析】先根据从左面、从上面看到的形状图的相关数据可得,从正面看到的形状图是长为4宽为2的长方形,再根据长方形的面积公式计算即可.【解答】解:根据从左面、从上面看到的形状图的相关数据可得:从正面看到的形状图是长为4宽为2的长方形,则从正面看到的形状图的面积是428⨯=;故选:B.【点评】此题考查了由三视图判断几何体,关键是根据从左面、从上面看到的形状图的相关数据得出从正面看到的形状图是长为4宽为2的长方形.33.如图,三视图所对应的立体图形是下面的()A.圆柱B.正方体C.三棱柱D.长方体【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,根据给出的三视图,分析、判定出即可.【解答】解:根据题意,从俯视图中知,这个立体图形有3条棱,底面为三角形,从左视图中可知,侧面是长方形,从主视图可知,正面是长方形,因此,符合条件的几何体是三棱柱.故选:C .【点评】本题主要考查了由三视图判定几何体,主要考查了学生的抽象思维能力和空间想象能力.34.一个几何体的三视图如图所示,其中俯视图为正三角形,则该几何体的左视图中a 的值为()A .1.8B .1.7C 3D .2【分析】根据三视图的定义以及正三角形的性质进行计算即可.【解答】解:如图,由图形中所标识的数据可知,在俯视图中,2AB =,ABC ∆是正三角形,过点C 作CM AB ⊥于M ,112AM BM AB ∴===,33CM AM ∴==,即左视图中a 3故选:C .【点评】本题考查由三视图判断几何体,简单几何体的三视图,理解视图的定义,掌握简单几何体三视图的形状以及正三角形的性质是解决问题的前提.35.一个圆锥体容器的主视图如图1所示,向其中注入一部分水后,水的高度如图2所示,则图2中,上水面所在圆的半径长为( )A .1cmB .2cmC .3cmD .6cm【分析】根据相似三角形的性质列出算式计算即可求解.【解答】解:设上水面所在圆的半径长为为x cm ,依题意有:2123812x -=, 解得3x =.故选:C .【点评】本题考查了由三视图判断几何体,关键是得到上水面所在三角形与主视图所在三角形相似.。
人教版九年级数学下册《第二十九章投影与视图》教学设计
人教版九年级数学下册《第二十九章投影与视图》教学设计一. 教材分析人教版九年级数学下册《第二十九章投影与视图》是学生在学习了平面几何、立体几何等相关知识后,对三维空间进行进一步探索的一章。
本章主要内容有:三视图、斜二测画法、简单几何体的直观图等。
通过本章的学习,使学生掌握投影的基本原理,提高学生的空间想象能力,培养学生运用几何知识解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何、立体几何有一定的了解。
但学生在空间想象力方面存在差异,部分学生对三维空间的认知仍较为困难。
此外,学生在学习过程中,往往对理论知识较感兴趣,但对实际操作、动手能力培养方面略显不足。
三. 教学目标1.理解投影的概念,掌握正投影、斜投影的性质及作法。
2.学会用三视图观察几何体,提高空间想象力。
3.掌握斜二测画法,能运用斜二测画法画出简单几何体的直观图。
4.能运用投影与视图的知识解决实际问题。
四. 教学重难点1.投影的基本原理及正投影、斜投影的性质。
2.三视图的作法及应用。
3.斜二测画法的原理及应用。
五. 教学方法1.采用讲授法,讲解投影的基本原理,正投影、斜投影的性质。
2.采用示范法,展示三视图的作法,引导学生动手实践。
3.采用案例分析法,分析实际问题,培养学生运用投影与视图知识解决问题的能力。
4.采用小组讨论法,分组探讨,提高学生的合作能力。
六. 教学准备1.准备投影仪、几何模型等教具。
2.制作多媒体课件,包括投影原理、三视图作法等教学内容。
3.准备实际问题案例,用于课堂讨论。
七. 教学过程1.导入(5分钟)利用投影仪展示几何模型,引导学生观察,提出问题:“请大家思考,这个几何体在投影过程中,会呈现出哪些特点?”从而引出投影的概念。
2.呈现(10分钟)讲解正投影、斜投影的性质,通过多媒体课件展示各种几何体在正投影、斜投影下的图像,让学生直观地理解投影的性质。
3.操练(10分钟)讲解三视图的作法,引导学生动手实践,尝试绘制简单几何体的三视图。
人教版九年级下册第二十九章:投影与视图小结课件
(2)铁丝倾 斜于投影面
线段(长度变小)
把一块正方形硬纸板P(例如正方形ABCD)放在 三个不同的位置: (1)纸板平行于投影面; (2)纸板倾斜于投影面; (3)纸板垂直于投影面。
D A
D
A D* A* Q (1) B
C
D A B C D* C* B
C
C* B*
D*(C*) A*(B*) (3)
本章内容的地位和作用
承前启后,贯穿始终
图形的认识初步 三角形与四边形 相似(位似) 相交线与平行线 圆锥的侧面展开图与侧面积 三角函数,解直角三角形
空间几何体的三视图和直观图(高中数学必修2)
从平面几何向空间几何过渡
章节分析
29.1投影
知识目标:
1、了解投影的有关概念,能根据光线的方向辨 认物体的投影; 2、了解平行投影和中心投影的区别; 3、了解物体正投影的含义,能根据正投影的性 质画出简单平面图形的正投影。
S
投影面 A 投影中心
投影线
B
C
b
投影
P
s c
投影的形成
投影的种类
1.平行投影:由平行光线形成的投影。 2.中心投影:由同一点(点光源)发出的光线形成的投 影。 S S
A A
D
C
B
D
B
C
d
b d
a c
b
P
P
a c
中心投影
平行投影
投影的种类
请注意总结各种投影与物体的关系
中心投影
平行投影
平行投影 正投影
上午九时,阳光灿烂,小李在地面上 同时摆弄两根长度不相等的竹竿,若它们 的影子长度相等,则这两根竹竿的相对位 置可能是( C ) A.两根都垂直于地面 B.两根都倒在地面上 C.两根不平行竖在地面上 D.两根平行斜竖在地面上
九年级数学下册第29章投影与视图29.1投影1课件新版新人教版
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等等,这些 用语往往体现了老师的思路。来自:学习方法网
活动一:新课导入
导入一: 你注意过周围物体在日光或灯光下的影子吗?影子和物体有着怎样的联系呢? 人们从光线照射物体会产生影子得到启发,得出了投影的有关知识,并用这些知 识来绘制视图.在生产实践中,制造机器、建筑高楼、设计火箭……无一不和视 图密切相关.本章我们将学习投影的有关知识,并借助投影认识视图.
活动二 :认识概念
观察与思考 思考:你知道物体与影子有什么关系吗?
活动二 :认识概念
一般地,用光线照射物体,在某个平面(地面、 墙壁等)上得到的影子叫做物体的投影.
照射光线叫做投影线 投影所在的平面叫做投影面.
投影
投影线 投影面
活动二 :认识概念
思考:探照灯发出的光线与灯泡发出的光线是否相同?太阳光 线与哪种光线相同?
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/5/25
最新中小学教学课件
14
谢谢欣赏!
2019/5/25
最新中小学教学课件
15
二、[知识拓展] (1)光线移动时,物体影子的大小、方向也随着变化,物体的形状与影子的形状有密切的 联系. (2)光是沿直线传播的,因此我们可以由投影与物体确定光线方向. (3)平行投影的应用:①根据阳光下影子的大小、位置的变化判断时刻的不同;②已知 一个物体及其在阳光下的影子,可作出同一时刻另一个物体在阳光下的影子;③根据 物高和影长的关系可以求物高或影长. (4)中心投影的应用:①根据点光源下两种或两种以上物体及影子的情况判断点光源的 位置;②已知点光源的位置,可以画物体在点光源下的影子.
人教版数学九年级下册:第二十九章《投影与视图》知识点
第29章投影与三视图一、目标与要求1.会从投影的角度理解视图的概念2.会画简单几何体的三视图3.通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系4.明确正投影与三视图的关系5.经历探索简单立体图形的三视图的画法,能识别物体的三视图6.培养动手实践能力,发展空间想象能力。
二、知识框架四、重点、难点重点:从投影的角度加深对三视图的理解和会画简单的三视图,能够做出简单立体图形的三视图的画法。
难点:对三视图概念理解的升华及正确画出三棱柱的三视图,三视图中三个位置关系的理解。
四、中考所占分数及题型分布本章在中考中会出1道选择或者填空,也有可能不出。
在简答题中会在几何题中穿插应用,本章约占3-5分。
第29章 投影与三视图29.1 投影1.投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。
2.平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。
由平行光线形成的投影是平行投影.3.中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影。
4.正投影:投影线垂直于投影面产生的投影叫做正投影。
例.把一根直的细铁丝(记为线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情形下铁丝的正投影各是什么形状?通过观察、测量可知:(1)当线段AB 平行于投影面P 时,它的正投影是线段11A B ,线段与它的投影的大小关系为11AB A B =;(2)当线段AB 倾斜于投影面P 时,它的正投影是线段22A B ,线段与它的投影的大小关系为22AB A B =;(3)当线段AB 垂直于投影面P 时,它的正投影是一个点3A .例.把一正方形硬纸板P (记正方形ABCD )放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面。
人教版九年级数学下册第29章投影与视图全章教案
第 29章投影与三视图一、教学内容及教材分析:1、本章的主要内容有测量、一是从不同方向看物体,以及由此而产生的盲区和影子的概念与性质,二是物体的三视图、投影时视图的基础。
2、空间观念的形成是一个长期的过程。
本章是第七章内容的继续和发展。
二、重难点与关键1、了解中心投影的概念以及中心投影下线段、平面图形与其投影的关系。
2、认识平行投影及其特征,能够画简单几何体在水平投影面和竖直投影面上的正投影。
3、能通过正投影理解三视图的概念、三视图的投影规律,能画出简单几何体的三视图。
4、能由三视图想象简单几何体。
难点:几何体与其投影的关系及由三视图想象几何体。
三、教学目标:1、通过实例,了解视点、视线、盲区的含义及生活上的应用。
2、通过实例,了解中心投影、平行投影和正投影的概念和基本性质。
3、了解三视图的概念:会画基本几何体的三视图,能判断简单的物体的视图,并会根据视图描述简单的儿何体。
4、通过简单几何体与它的三视图之间的相互转化,体会几何体与平面图形的之间的相互联系,感悟转化的数学思想,发展学生的空间观念。
5、通过三视图的学习,培养学生识图、画图的基本技能。
6、通过实例,了解视图在现实生活中的应用,增强学生的应用意识。
四、教学方法与策略:(一)重视结合实际例子讨论问题,在直观认识的基础上归纳基本规律数学易以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从理牢世界中抽象出来的。
很明显,关于投影和视图的知识是从实际需要(建筑、制造等)中产生的,它们与实际模型联系得非常紧密。
在本章之前,学生已经数次接触过“从不同方向看物体”等内容,对投影和视图的知识已有初步的,朦胧的了解,只是还没有明碗地接触过一些基本名词术语,对有关基本规律还缺乏归纳总结。
(二)重视平面图形与立体图形的联系,重在培养空间想象能力在学习本章之前,学生已经具有一定的关于平面图形与立体图形的匆识,并且接鲀过“从不同方向观察物体”,基本儿何体的平面展开图等反映平面图形与立体图形之间的联系的问题。
届九年级数学下册 第29章 投影与视图 29.2 三视图 画三视图课件 (新版)新人教版.ppt
数据,可以算出图1中液体的体积为
dm234.(提示:V=底面积×高)
指出正方体六个面在平面H上的正投影图形;
解:图1中,液体形状为三棱柱(填几何体的名称); 利用图2中数据,可以算出图1中液体的体积为 V液=3×4×4÷2=24(dm3). 故答案为:三棱柱,24
7
王师傅买来九块木板,要自己做一个书架.现在有两个书架的样子, 请你观察一下,再猜一猜,王师傅做的是哪个样子的书架,并说明 理由.
画三视图
2
主视图
与投影关系
正面
侧视图
左视图
侧面 水平面
3
视图与投影的关系
三视图就是物体 的三个正投影
4
画三视图
主视图
左视图 高平齐
长对正
宽相等
俯视图Leabharlann 5作三视图 6一透明的敞口正方体容器ABCD-A′B′C′D′装有一些有色液体,棱AB始终在水平桌面上,容器底部的倾斜
角为α (注:图1中∠CBE=α,图2中BQ=3dm).探究:如图1,液面刚好过棱CD,并与棱BB′交于点Q ,其三视图及尺寸如图2所示,那么:图1中,液体形状为 三棱柱 (填几何体的名称);利用图2中
新人教版九年级数学教材(第二十九章投影与视图)
第二十九章“投影与视图”教材分析课程教材研究所田载今一、教科书内容和课程学习目标(一)教科书内容本章的主要内容包括:1.投影的基础知识,包括投影、平行投影、中心投影、正投影等概念,正投影的成像规律;2.视图、三视图等概念,三视图的位置和度量规定,一些基本几何体的三视图,简单立体图形(包括相应的表面展开图)与它的三视图的相互转化;3.课题学习:制作立体模型。
这是由三视图向立体图形转化的实践活动。
全章共包括三节:29.1 投影29.2 三视图29.3 课题学习制作立体模型29.1 节首先从物体在日光或灯光下的影子说起,引出投影、平行投影、中心投影、正投影等概念;然后以铁丝和正方形纸板的影子为例,讨论当直线和平面多边形与投影面成三种不同的位置关系时的正投影,归纳出其中蕴涵的正投影的一般规律;最后以正方体为例,讨论立体图形与投影面成不同位置关系时的正投影。
可以发现,整个讨论过程是按照一维、二维和三维的顺序发展的。
29.2节讨论的重点是三视图,其中包括三视图的成像原理、三视图的位置和度量规定、一些基本几何体的三视图等,最后通过6道例题讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化。
这一节是全章的重点内容,它不仅包括了有关三视图的基本概念和规律,而且包括了反映立体图形和平面图形的联系与转化的内容,与培养空间想象能力有直接的关系。
29.3节安排了观察、想象、制作相结合的实践活动──“课题学习制作立体模型”,这是结合实际动脑与动手并重的学习内容。
进行这个课题学习既可以采用独立完成的形式,也可以采用合作式学习的方式。
应该把这个课题学习看作对前面学习的内容是否切实理解掌握以及能否灵活运用的一次联系实际的检验。
本章内容与其他章有较为明显的区别,它与直观图形的关系密切,需要在图形形状方面进行想象和判断,要完成的题目多是识图、画图、制作模型等类型的问题,而很少涉及定量的计算。
(二)本章知识结构框图(三)课程学习目标1.以分析实际例子为背景,认识投影和视图的基本概念和基本性质;2.通过讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化,使学生经历画图、识图等过程,分析立体图形和平面图形之间的联系,提高空间想象能力;3.通过制作立体模型的课题学习,在实际动手中进一步加深对投影和视图知识的认识,加强在实践活动中手脑结合的能力.(四)课时安排本章教学时间约需11课时,具体分配如下(仅供参考):29.1 投影2课时29.2 三视图5课时29.3 课题学习制作立体模型2课时数学活动小结2课时二、本章的编写特点本章教科书在编写中力图体现以下两个特点。
人教数学九年级下册第二十九章投影与视图 教学课件
正面
一个物体在三个投影面内同时进行正投影, 在正面内得到的由前向后观察物体的视图,叫主视图 (从前面看);
在水平面内得到的由上向下观察物体的视图,叫俯视图 (从上面看) ;
在侧面内得到的由左向右观察物体的视图,叫左视图(从 左面看)
将三个投影面展开在一个平面内,得到这一物体的三视 图.
三视图是主视图、俯视图、左视图的统称.它是从三个 方向分别表示物体形状的一种常用视图.
(3)纸板垂直于投影面.
三种情况的正投影各是什么形状?
D A
D
C
A
B
D
A
C
B
C B
D1
C1
A1
B1
Q
D2 A2
C2
D3 (C3)
B2
A3(B3)
(1)
长方形
(2)
正方形
(3)
一条线段
结论:
通过观察、测量可知: (1)当纸板P平行于投影面Q时,P的正投影与P的形状、大小一 样. (2)当纸板P倾斜于投影面Q时,P的正投影与P的形状、大小发 生变化. (3)当纸板P垂直于投影面Q时,P的正投影成为一条线段.
的几何体中,主视图、左视
图、俯视图均相同的是( D)
AB
CD
4.(安徽·中考)下图是五个相同的小正方体搭成的几何 体,其左视图是( A )
A
B
C
D
5.将两个圆盘、一个茶叶桶、一个皮球和一个蒙古包以如图的 方式摆放在一起,其主视图是( )
D
名 茶
三视图
主视图——从正面看到的图
左视图——从左面看到的图
A
B
线段AB即为旗杆的影子
它们是太阳的光线下形成的.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十九章投影与视图
1.如图所示的几何体的截面形状是( )
2.有如图所示的几种几何体:
将它们按截面形状分成两类时,下面的分法正确的是( ).
A.截面可能是圆和三角形两类 B.截面可能是圆和四边形两类
C.截面可能是圆和五边形两类 D.截面可能是三角形和四边形两类3.有如图所示的一座小屋,站在小屋的前面和右面看到的依次是( ).
4.在如第二、10题图所示的正方体的三个面上,分别画了填充不同的圆,下面的4个图中,是这个正方体展开图的有( ).
5.如图,表示一个用于防震的L形的包装塑料泡沫,当俯视这一物体时看到的图形形状是()
6.如图,DH∥EG∥BC,且DC∥EF,那么图中与∠1相等的角的个数(不包括∠1)是( )个.
(A)2 (B)4 (C)5 (D)6
7.如图(1),是一起吊重物的简单装置,AB是吊杆,当它倾斜时,将重物挂起,当它逐渐直立时,重物便能逐渐升高.在阳光下,当∠ABC=60°时,量得吊杆AB的影子长BC=11.5米,很快将吊杆直立(直立过程所需时间忽略不计),如图(2),AB与地面垂直时,量得吊杆AB 的影子长BC=4米,求吊杆AB的长(结果精确到1米).
8.如图(1)表示一幢小楼,图(2)是它的俯视图.小明、小亮和小勇在这儿玩踢球游戏,小明、小亮各守一个球门,小勇无论将球踢进谁的球门都算胜利.为此,小勇打算在他们两人都看不见的区域运球,然后突然出现,以便使守门的措手不及.你能在俯视图上画出小明和小亮都看不见的区域吗?
9.将一块正六边形硬纸片(左图),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图右图),需在每一个顶点处剪去一个四边形,例如图中的四边形AGA'H,那么的大小是度.
参考答案:
1.B;2.B;3.B;4.C;5.B;6.D;7.设调杆AB的长,利用图二中三角形相似证明;8.作图略;9.60。