七年级数学竞赛讲座数论的方法与技巧(含答案详解)

合集下载

初一数学竞赛教程含例题练习及答案⑽

初一数学竞赛教程含例题练习及答案⑽

初一数学竞赛讲座第10讲计数的方法与原理计数方法与原理是组合数学的主要课题之一,本讲介绍一些计数的基本方法及计数的基本原理。

一、枚举法一位旅客要从武汉乘火车去北京,他要了解所有可供乘坐的车次共有多少,一个最易行的办法是找一张全国列车运行时刻表,将所有从武汉到北京的车次逐一挑出来,共有多少次车也就数出来了,这种计数方法就是枚举法。

所谓枚举法,就是把所要求计数的所有对象一一列举出来,最后计算总数的方法。

运用枚举法进行列举时,必须注意无一重复,也无一遗漏。

例1四个学生每人做了一张贺年片,放在桌子上,然后每人去拿一张,但不能拿自己做的一张。

问:一共有多少种不同的方法?解:设四个学生分别是A,B,C,D,他们做的贺年片分别是a,b,c,d。

先考虑A拿B做的贺年片b的情况(如下表),一共有3种方法。

同样,A拿C或D做的贺年片也有3种方法。

一共有3+3+3=9(种)不同的方法。

例2甲、乙二人打乒乓球,谁先连胜两局谁赢,若没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止。

问:一共有多少种可能的情况?解:如下图,我们先考虑甲胜第一局的情况:图中打√的为胜者,一共有7种可能的情况。

同理,乙胜第一局也有 7种可能的情况。

一共有 7+7=14(种)可能的情况。

二、加法原理如果完成一件事情有n类方法,而每一类方法中分别有m1,m2,…,mn种方法,而不论采用这些方法中的任何一种,都能单独地完成这件事情,那么要完成这件事情共有:N=m1+m2+…mn种方法。

这是我们所熟知的加法原理,也是利用分类法计数的依据。

例 3 一个自然数,如果它顺着数和倒着数都是一样的,则称这个数为“回文数”。

例如1331,7,202都是回文数,而220则不是回文数。

问:1到6位的回文数一共有多少个?按从小到大排,第2000个回文数是多少?解:一位回文数有:1,2,…,9,共9个;二位回文数有:11,22,…,99,共9个;三位回文数有:101,111,…,999,共90个;四位回文数有:1001,1111,…,9999,共90个;五位回文数有:10001,10101,…,99999,共900个;六位回文数有:100001,101101,…,999999,共900个。

初中数学竞赛讲座——数论部分1(进位制)

初中数学竞赛讲座——数论部分1(进位制)

第一讲正整数的表示及进位制一、基础知识:1.我们通常接触的整数都是“十进制”整数,十进制计数法就是用0,1,2…9十个数码,采用“逢十进一”的法则进行计数的方法。

例如1999就是一个一千,9个一百,9个十,9个1组成的,故1999这个数也可以表示为:1999=1×1000+9×100+9×10+9底数为10的各整数次幂,恰好是十进制数的各个位数:100=1(个位上的数—第1位), 101=10(十位上的数---第2位),102=100(百位上的数---第3位),…10n(第n+1位上的数)故1999=1×103+9×102+9×101+9×1003na记作:3na=10n-1+…+102a n-2+10其中最高位a1≠0,即,其它则是0≤a1,a.各位上的数字相同的正整数记法:999=1000-1104-1,∴999n个=10n-1111n个=1019n-,333n个=103n555n个=5(101)9n-解答有关十进制数的问题,常遇到所列方程,少于未知数的个数,这时需要根据示0到9的整数这一性质进行讨论。

.二进制及其它进制二进制即计数法就是用0,1两个数码,采用“逢二进一”的法则进行计数的方法。

例如二进制中的111记为(111)2111=1×22+1×2+1=73na )2记作:3na=2n-1××a3+…+22×a其中最高位a1≠0,,其它则是0≤a1,a2,位数(n为正整数3na )b记作:3na=b n-1××a3+…+b2×a其中最高位a1≠0,,其它则是0≤a1,(一)十进制转二进制(整数部分)辗转相除直到结果为,将余数和最后的60/2 = 30 余 0 30/2 = 15 余 0 15/2 = 7 余 1 7/2 = 3 余 1 3/2 = 1 余 1所以十进制数60转为二进制数即为 (11100)2 (二)十进制小数转换为二进制小数 方法:乘2取整,顺次排列。

七年级数学尖子生培优竞赛专题辅导第一讲因式分解的常用方法和技巧(含答案)

七年级数学尖子生培优竞赛专题辅导第一讲因式分解的常用方法和技巧(含答案)

第一讲因式分解的常用方法和技巧趣题引路】你知道如何分解因式^-+X9+/+/+1吗?试作一代换:若令疋= ),,贝IJ原式=h + ),3+y2 + y+l,指数为连续整数,可考虑用公式/-l = (^-l)(/ + / + / + y+l),则原式=V4 + V3 + V2 + V + 1 = —(y5 -1))‘一1x-l x2 + X + 1= (x4 + x3 +x2 +x+ l)(x8 -x7 +x5 +x3 -x + 1)一个代换,把一个复杂的问题转化为一个较简单的问题,这是数学方法之美.多项式的因式分解是数学中恒等变形的一种重要方法,它在初等数学乃至高等数学中都有广泛的应用,因式分解的方法很多,技巧性强,认真学好因式分解,不仅为以后学习分式的运算及化简、解方程和解不等式等奠定良好的基础,而且有利于思维能力的发展.知识拓展】因式分解与整式乘法的区别是:前者是把一个多项式变成几个整式的积,后者是把几个整式的积变成一个多项式,因式分解初中可在有理数域或实数域中进行,高中还可在复数域中进行.因式分解后每个因式应在指定数域中不能再分.“例如X4-A在有理数域内可分解为(X+2)(/-2),其中每个因式就不能再分,不然分解式的系数会超过有理数的范围;在实数域中,它的分解式是(X2+2)(X+>/2)(X->/2):在复数域中,它的分解式是因式分解的方法很多,除了数学教材中的提取公因式法、运用公式法、分组分解法和十字相乘法以外, 还有换元法、待定系数法、拆项添项法和因数定理法等.本讲在中学数学教材的基础上,对因式分解的方法、技巧作进一步的介绍.一、用换元法分解因式换元法是指将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来进行运算,从而使运算过程简单明了.换元法是中学数学中常用的方法之一.例1 (1999年希望杯题)分解因式(X2-1)(X +3)(X+5)+12.解析若全部展开,过于复杂,考虑局部重新组合.注意到在(x + l)(x + 3) = X + 4x + 3和(X-1)(X+5)= X2+4X-5中出现了相同部分X2+4X ,可考虑引入辅助元y = x2+4x分解(也可设y = F+4x + 3,y = x'+4x-l 等).解原式=[(x + l)(x + 3)][(A-1)(X + 5)] +12=(x2 +4x+ 3)(x2 + 4x-5)+12设y = x2 +4x f贝!I原式= (y+3)(y-5)+12= r-2y-3= (y-3)(y + l)=(x2+4x+ 3)(x2 +4x-l)点评换元法体现了数学中的整体代换思想,它是化繁为简的重要手段这里y取(x2 +4X + 3)和(x2 + 4X-1)的平均值时分解过程最为简便例2 (2001年天津初二题)分解因式(弓-1)= + (x+_ 2)(x+ > - 2xy).解析题中巧和卄y多次出现启发我们换元分解:设xy=d, x+y=b.解设xy=a, x+y=b,则,原式=(a -1): + (b - 2)(b - 2a)=cr -2a + l+br -2b-2cib+4a=a2 +b2 +l+2a-2ab-2b=(a-b+[)2注:这里用到公式a,+b2 +c2 + 2ab + 2bc + lac = (a + b +c)2.点评换元必须考虑多项式的结构特征:当代数式中出现相同、相近或相关联(如:互为相反数,互为倒数)的部分时都可以考虑换元.二、用待定系数法分解因式待定系数法是初中数学中的又一重要方法,其应用很广泛.在因式分解时,只要假定一个多项式能分解成某几个因式的乘积,而这些因式中某些系数未定,可用一些字母来表示待定的系数•根据两个多项式恒等的性质,即两边对应项的系数必相等,可列出关于待定系数的方程或方程组,解此方程(组)即可求出待定系数.这种因式分解的方法叫做待定系数法.例3 (第9届五羊杯初二题)设x3 + 3x2-2xy + kx-4y可分解为一次与二次因式之积,则k= ______________________ .解析首先确定两个因式的结构:因多项式中疋的系数是1,常数项是0,以及没有护项,所以分解所得因式可设为x+a 和x2+bx + cy,其中e b, c为待定系数.解设x3 + 3x2 - 2xy + kx-4y可分解为(x+a)(x2 +bx+cy),贝ijx3 + 3x2 -2xy + kx-4y = x3 +(a + b)x2 + cxy + abx + acy比较系数,得a+b=3 ,a +b = 3消去c,得\ab = -k ,消去a,b,解得k=-2.ab = -ka = 2ac = -4 i点评用待定系数法分解因式,关健在于确定因式分解的最终形式.三、用公式法分解因式初中教材中出现的公式有平方差公式,完全平方公式,在因式分解中还常用到下列公式:立方和公式:a3 +b3 = (a + b)(a2 -ab + b2)立方差公式:a3 -b3 =(a-b)(a2 +ab+b2)和的立方公式:(a + b)3 =a3 + 3a2b + 3ab2 + b3差的立方公式:(a - b)3 =a3 - 3crb + 3ab2 -b3三数和的平方公式:(tz + b + c)' =a2 +b2 +c2 + 2ab 4- lac + 2bc两数n 次方差公式:a” -b n =(a-b)(a n~l + a n~2b + • • • + ab"~2 + b n~l)三数立方和公式:a3 +b3+c‘ = (a + b +c)3 -3(a + b)(b + c)(a + c)在具体问题中要根据代数式的结构特征来选用适当的公式.例4 分解因式x l5+x l4+x l3+-+x2+x+l.解析对于指数成连续整数的多项式我们可以考虑公式a" - b n =(a- + a"~2b + ab"~2 + b n~l),令b=l,得a" = + a n~2 + …+ a + l).为化繁为简,及能用公式,给原式乘以x-1解原it= (x15 +x14 +X13 + - -X2 +X+1) -_ =- ---------------------- --x-l x-l=(土 + 1)(疋 + 1)(F + l)(x + 1)(— 1)=(x8 + l)(x4 + l)(x2 + l)(x + 1)点评这里原式乘以吕很必要,这种先乘以再除以(或先加上再减去)同一个式子的变形技能经常用到.例5 (昆明市初中数学竞赛题)分解因式(c-a)2-4(b-c)(a-b).解析把拾号展开后重新组合.解原式=c? 一 2ac十/ 一 4ab + 4ac — 4bc + 4b‘=c2 + lac + a2 - Aab一4bc + 4b2=(c2 + 2ac + a2)-4b(a + c) + (2b)2= (a + c- 2b)2点评欲进先退,这是为了更清楚地认识代数式的结构特征.例6 分解因式(x+2y_77),+ (3x_4y + 6zF_(4x_2y_z)B解析本题与三个数的立方和有关.联想到公式a3 + + c5 = (a + b + c)(«2 + b2 +c2 -ab-be- ca)+ 3abc , 而(x + 2y- 7z)+(3x - 4y + 6乙)+ (- 4x + 2y+ z)= 0.故原式可分解为3(x + 2y - 7z)(3x - 4y + 6乙)(-4x + 2y + z) ■四、用拆项添项法分解因式在对某些多项式分解因式时,需要对某些项作适当的变形,使其能分组分解,添项和拆项是两种重要的技巧例7分解因式:x3-9x+8.解析多项式有三项,若考虑拆项,有三种选择.注意只有让分解能继续的拆法才是可取的.若考虑添项,式中无二次项,可添加-F + F.解法1将常数项拆成一1+9,原式=/3_9大_] + 9 =疋_1_9(尤_1) = (—1)(疋+尤_8)解法2 将一次项-9兀拆成-x-3x ,原式=X3-X-3X +3=(X3-X)- 8(x-l)=x(x + l)(x-1)-8(x-1) = (x - l)(x: +x-8)解法3 将三次项/拆成9疋-8疋,原式=9X3-8X3-9X +8=(9X3-9X)+(-8X3+8)=9x(x + l)(x-1)-8(x - l)(x2 + x + l)=(X-1)(X2+ X-8)解法4添加-x2+x2,原式=x3 -x2 +x2 -9x+8= X2(X-1)+(X-8)(X-1)= (x-l)(x2 +x-8)点评一题四种解法,可谓“横看成岭侧成峰,左添右拆都成功”.拆项、添项是因式分解中技巧性最强的一种例8己知x2 + x+l = O ,试求X8 + x4 +1的值.解析设法使疋+疋+1变成含x2+x+l的式子,因x8 = (x4)2,可考虑完全平方公式,将十拆成2x4-%4.解原式=^8+2X4+1-X4=(X4+1)-(x2)2 =(x2+x + IX%2 -x + 1)因为疋+"1 = 0,所以原式的值为0.五、利用因式定理分解因式因式定理的内容:如果x=a时,多项式的值为零,即f(a) = 0 ,则/'(x)能被x-a整除,即/(兀)一定有因式x-d・运用因式定理和综合除法可以解决一些较复杂的多项式分解问题.例9 分解因式X4+2?-9X:-2X+8.解析设f(x) = x4 + 2x3-9x2-2x + 3,可知/(1) = 0, /(-1) = 0,因此/⑴有因式(x+l)(x-l),用综合除法可求另外因式.解依题意知y(l) = /(-l) = 0,故/'(x)有因式x-1, x+1,作综合除法:12-9-2811 3 -6 -813-6-80—]—1 — 2 812-80因此f(x) = (x- l)(x + l)(x2 + 2x- 8),则原式=(x- 1)(A-+l)(x一2)(A-+4) •好题妙解】佳题新题品味例1 (2001年呼和浩特市中考题)要使二次三项式x^rnx-6能在整数范围内分解因式,则加可取的整数为.解析该式可用十字相乘法分解.那么m等于一6的两个整因数之和.而—6=lx ( —6) = ( — 1) x6=2x ( —3) = ( —2) x3,因而m 可能的值为一5, 5, —1, 1. 点评本题训练逆向思维及枚举法.例2 (2003年江苏初中竞赛)若a, b, c为三角形三边,则下列关系式中正确的是()A. a2-b2-c2-2bc>QB. a2-b2-c2-2bc = QC. a2-b2-c2-2bc<0D. a2 -b2-c2-2bc<0解析因a' -b1 -c2 -2bc = a2 -(b2 +c2 + 2bc) = a2 -(b + c)1 =(a + b + c)(a-b-c)而在三角形中,a<b+c ,即a~b—c<Q,故选C.点评注意隐含条件:三角形中两边之和大于第三边中考真题欣赏例1 (武汉中考题)分解因式a2-l+b2-2ab= _________________________ .解析将a2 +b2 -2ab作一组恰为(«-b)2与1构成平方差,应填(a—b+1) (a—b—1).例2 (北京朝阳区)分解因式m3-2m2-4m+8.解析第一、二项作一组可提公因式沪,后两项作一组可提公因数4,于是m3 -2nr一4m+3 = m2(m-2)-4(m-2) = (m2一4)(m-2) = (m—2):(m+2).点评分解因式一定分解到不能再分解为止.例3 (1999年北京中考题)多项式x2 + axy + by1 -5x+ y + 6的一个因式是x+y-2,试求d+b的值.解析 利用待定系数法,设原式=(x+y-2)(x+^y-3)展开比较系数得号; 解得 a=~l, b=~2,因此 a+b=—3.竞赛样题展示例1 (江苏省第十七届初中数学竞赛)如果是ax 3+bx 2+l 的一个因式,则b 的值为()A.-2B.-lC.OD.2解析 运用待定系数法,依题可设另一因式为ax-1,比较系数可得b=—2,选A.(23 -1)(33 ~1)(43 -1) - (1003 -1)(23 +1](33 +1J43 +1)---(1003 +1)a 3 -1 _(a ~ 1)3 + a + l) _ fl-1 (a +1)3 +1 (a + 2)(a 2 4-ti + l) a + 2故呼式=(2-1X3-1)…(99-山00,-1) 収 玖 (23 +1)(3 +1X4+ 1)-(100-1)1X 2X 3X (1OO 3-1) 3367 小― (23 +1)x99x100x1015050例3设多项式与多项式F+x-a 有非常数公因式,贝仏= ______________________________ . 解析 0或6.因为(兀3-X-d ) - (F+x-d ) = x (x+l )(x-2),所以,X’-X-d 与 F +兀-4 的公因式必为 X 、兀+1、X-2中的一个.当公因式为x 或x+1时,£7=0;当公因式为X —2时,a = 6.例4 (2003年太原市初中数学竞赛)已知直角三角形的各边长为正整数,它的周长为80.则三边长分 别是 •解析涉及直角三角形问题勾股定理举足轻重! 解 30、 16、 34.设直角三角形的三边长分别为4、b 、c.由题设得a 2+b 2^c 2且a+b+c=80.将 c=SQ-a~b 代入a 2+b 2=c 2,整理得 6400—80a — 80b+ab=3200,即(80—。

初中数学竞赛讲座-数论部分2(整数的整除性)

初中数学竞赛讲座-数论部分2(整数的整除性)

初中数学竞赛讲座-数论部分2(整数的整除性)第二讲整数的整除性一、基础知识:1.整除的基本概念与性质所谓整除,就是一个整数被另一个整数除尽,其数学定义如下.定义:设a,b是整数,b≠0.如果有一个整数q,使得a=bq,那么称a能被b整除,或称b整除a,并记作b|a.也称b是a的约数,a是b的倍数。

如果不存在这样的整数q,使得a=bq,则称a不能被b整除,或称b不整除a,记作b|a.关于整数的整除,有如下一些基本性质:性质1若a|b,b|c,则a|c证明:∵a|b,b|c,∴bap,cbq(p,q是整数),∴c(ap)q(pq)a,∴a|c性质2若a|b,b|a,则|a|=|b|.性质3若c|a,c|b,则c|(a±b),且对任意整数m,n,有c|(ma±nb).证明:∵a|b,a|c,∴bap,caq(b,q是整数),∴bcapaqa(pq),∴a|(bc)性质4若b|a,d|c,则bd|ac.特别地,对于任意的非零整数m,有bm|am性质5若a=b+c,且m|a,m|b,则m|c.性质6若b|a,c|a,则[b,c]|a.特别地,当(b,c)=1时,bc|a【此处[b,c]为b,c的最小公倍数;(b,c)为b,c的最大公约数】.性质7若c|ab,且(c,a)=1,则c|b.特别地,若p是质数,且p|ab,则p|a或p|b.性质8n个连续整数中,必有一个能被n整除.【特别地:两个连续整数必有一偶数;三个连续整数必有一个被3整除,如11,12,13中有3|12;41,42,43,44中有4|44;77,78,79,80,81中5|80.】二.证明整除的基本方法证明整除常用下列几种方法:(1)利用基本性质法;(2)分解因式法;(3)按模分类法;(4)反证法等.下面举例说明.例1若a|n,b|n,且存在整数某,y,使得a某+by=1,证明:ab|n.初中数学兴趣班系列讲座——数论部分唐一良数学工作室证明:由条件,可设n=au,n=bv,u,v为整数,于是n=n(a某+by)=na某+nby=abv某+abuy=ab(v某+uy)所以n|ab例2证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除.分析要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即可.证明:设三个连续的奇数分别为2n-1,2n+1,2n+3(其中n是整数),于是(2n-1)2+(2n+1)2+(2n+3)2+1=12(n2+n+1).所以12|[(2n-1)2+(2n+1)2+(2n+3)2].又n2+n+1=n(n+1)+1,而n,n+1是相邻的两个整数,必定一奇一偶,所以n(n+1)是偶数,从而n2+n+1是奇数,故24|[(2n-1)2+(2n+1)2+(2n+3)2].例3若整数a不被2和3整除,求证:24|(a2-1).分析因为a既不能被2整除,也不能被3整除,所以,按模2分类与按模3分类都是不合适的.较好的想法是按模6分类,把整数分成6k,6k+1,6k+2,6k+3,6k+4,6k+5这六类.由于6k,6k+2,6k+4是2的倍数,6k+3是3的倍数,所以a只能具有6k+1或6k+5的形式,有时候为了方便起见,也常把6k+5写成6k-1(它们除以6余数均为5).证明因为a不被2和3整除,故a具有6k±1的形式,其中k是自然数,所以a2-1=(6k±1)2-1=36k2±12k=12k(3k±1).由于k与3k±1为一奇一偶(若k为奇数,则3k±1为偶数,若k为偶数,则3k±1为奇数),所以2|k(3k±1),于是便有24|(a2-1).例4若某,y为整数,且2某+3y,9某+5y之一能被17整除,那么另一个也能被17整除.证明:设u=2某+3y,v=9某+5y.若17|u,从上面两式中消去y,得3v-5u=17某.①所以17|3v.因为(17,3)=1,所以17|v,即17|9某+5y.若17|v,同样从①式可知17|5u.因为(17,5)=1,所以17|u,即17|2某+3y.例5已知a,b是自然数,13a+8b能被7整除,求证:9a+5b都能被7整除.分析:考虑13a+8b的若干倍与9a+5b的若干倍的和能被7整除,证明13a+8b+4(9a+5b)=7(7a+4b)是7的倍数,又已知13a+8b是7的倍数,所以4(9a+5b)是7的倍数,因为4与7互质,由性质7|(9a+5b)例6已知a,b是整数,a2+b2能被3整除,求证:a和b都能被3整除.初中数学兴趣班系列讲座——数论部分唐一良数学工作室证明用反证法.如果a,b不都能被3整除,那么有如下两种情况:(1)a,b两数中恰有一个能被3整除,不妨设3|a,3b.令a=3m,b=3n±1(m,n都是整数),于是a2+b2=9m2+9n2±6n+1=3(3m2+3n2±2n)+1,不是3的倍数,矛盾.(2)a,b两数都不能被3整除.令a=3m±1,b=3n±1,则a2+b2=(3m±1)2+(3n±1)2=9m2±6m+1+9n2±6n+1=3(3m2+3n2±2m±2n)+2,不能被3整除,矛盾.由此可知,a,b都是3的倍数.例7已知a,b是正整数,并且a2+b2能被ab整除,求证:a=b.先考虑a,b互质的情况,再考虑一般情况。

初中数学竞赛讲座——数论部分4(辗转相除法与最大公约数)

初中数学竞赛讲座——数论部分4(辗转相除法与最大公约数)

初中数学兴趣班系列讲座——数论部分初中数学兴趣班系列讲座——数论部分 唐一良数学工作室唐一良数学工作室第四讲第四讲 辗转相除法与最大公因数辗转相除法与最大公因数一、基础知识:1.带余除法:若a ,b 是两个整数,b >0,则存在两个整数q 和r ,使得,使得a =bq+r (0≤r <b )成立,)成立,且q ,r 是唯一的。

是唯一的。

证明:【存在性】作整数序列证明:【存在性】作整数序列…,-3b ,-2b ,-b ,0,b ,2b ,3b ,…则a 必在上述序列的某两项之间,即存在一个整数q 使得使得qb ≤a <(q +1)b 成立。

成立。

令a -qb =r ,即证存在性。

,即证存在性。

【唯一性】设q 1、r 1是满足a =bq+r ,0≤r <b 的另一对整数,因为bq 1+r 1=bq +r ,于是b (q-q 1)=r 1-r 故b |q-q 1|=|r 1-r |由于r 及r 1都是小于b 的非负整数,所以上式右边是小于b 的。

的。

如果q ≠q 1,则上式左边≥b ,这是不可能的。

即证唯一性。

,这是不可能的。

即证唯一性。

【说明】特别地,如果r =0,那么a=bq 。

这时,a 被b 整除,记作b|a ,对任意整数a ,b 且b ≠0,存在唯一的整数q ,r ,使a =bq +r ,其中0≤r <|b |,这个事实称为带余除法定理,是整除理论的基础。

为带余除法定理,是整除理论的基础。

2.最大公因数:.最大公因数:若c |a ,c |b ,则称c 是a ,b 的公因数。

的公因数。

若d 是a ,b 的公因数,且d 可被a ,b 的任意公因数整除则称d 是a ,b 的最大公因数。

记为:(a ,b )=d当d ≥0时,d 是a ,b 公因数中最大者。

若a ,b 的最大公因数等于1,则称a ,b 互素。

互素。

记为:(a ,b )=13.辗转相除法:累次利用带余除法可以求出a ,b 的最大公因数,这种方法常称为辗转相除法。

初中数学竞赛:数论的方法技巧(含例题练习及答案)

初中数学竞赛:数论的方法技巧(含例题练习及答案)

初中数学竞赛:数论的方法技巧数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的。

特别地,如果r=0,那么a=bq。

这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。

2.若a|c,b|c,且a,b互质,则ab|c。

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<pk为质数,a1,a2,…,ak为自然数,并且这种表示是唯一的。

(1)式称为n的质因数分解或标准分解。

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(ak+1)。

5.整数集的离散性:n与n+1之间不再有其他整数。

因此,不等式x<y与x≤y-1是等价的。

下面,我们将按解数论题的方法技巧来分类讲解。

一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。

这些常用的形式有:1.十进制表示形式:n=an10n+an-110n-1+…+a0;2.带余形式:a=bq+r;4.2的乘方与奇数之积式:n=2m t,其中t为奇数。

例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。

初中数学竞赛:数论的方法技巧(含例题练习及答案)

初中数学竞赛:数论的方法技巧(含例题练习及答案)

初中数学竞赛:数论的方法技巧数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的。

特别地,如果r=0,那么a=bq。

这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。

2.若a|c,b|c,且a,b互质,则ab|c。

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<pk为质数,a1,a2,…,ak为自然数,并且这种表示是唯一的。

(1)式称为n的质因数分解或标准分解。

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(ak+1)。

5.整数集的离散性:n与n+1之间不再有其他整数。

因此,不等式x<y与x≤y-1是等价的。

下面,我们将按解数论题的方法技巧来分类讲解。

一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。

这些常用的形式有:1.十进制表示形式:n=an10n+an-110n-1+…+a0;2.带余形式:a=bq+r;4.2的乘方与奇数之积式:n=2m t,其中t为奇数。

例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。

七年级数学尖子生培优竞赛专题辅导第四讲 分式运算的方法和技巧(含答案)

七年级数学尖子生培优竞赛专题辅导第四讲 分式运算的方法和技巧(含答案)

第四讲 分式运算的方法和技巧趣题引路】 如何计算1111223(1)n n ++⋅⋅⋅+⨯⨯+?通分?行不通!注意1111111,,,12122323(1)n n =-=-⋅⋅⋅⨯⨯+11.1n n =-+这叫做裂项,因此原式111111(1)()()1223111nn n n n =-+-+⋅⋅⋅+-=-=+++.从这里可以看出,分式的运算还有很多学问呢.本讲我们专门研究这一问题.知识拓展】分式的运算以分式的概念、分式的基本性质、运算法则为基础,其中分式的加减运算是难点,解决这一难点的关键是根据题目的特点恰当地通分,并以整式变形、因式分解为工具进行运算,通分一般有以下技巧: (1)等式中含有整式,其分母可看作1.(2)当分子的次数高于或等于分母次数时,可将其分离为整式与真分式之和. (3)先约分,后通分,可简化计算. (4)合理搭配,分组通分,化整为零 (5)拆项相消后通分. (6)分步通分,逐步计算 (7)换元通分法.一、分步通分法 例1 计算4242111111x x x x++++++-解析 如一次性通分,最简公分母为1-x 8,可以预见计算量将非常大,注意到后两个分母:(1+x )(1-x )=1-x 2,因此采取各个“击破”法,后两个先通分.解 原式=422422111x x x ++++-=444411x x ++- =881x -点评:解题中既要看到局部特征,又要有全局考虑二、裂项通分法例2 (“五羊杯”竞赛题)计算:222222()()()x yz y zx z xyx y z x yz x z x y zx x x y z xy+-++++--+++---解析 各分母相距甚远,似乎无从下手.考虑将每一分式拆成几个分式之和,化繁为简.解 原式=()()()()()()()()()()()()x x z z x y y y x x y z z z y y z x x y x z y z y x z x z y -+++-++--+++-++-+=()()()0x z y x z y x y x z y z y x z x z y ++-+-=+-++-+点评: 裂项需要很强的变形技巧:因式分解的熟练,添项减项的意识.数学技巧需要积累!三、先约分再通分 例3 (江西竞赛题)计算:33232322112(1).2212211x x x x x x x x x x -+++-+++-+--解析 注意到第一个分母可以分解成(x 3+x 2)+(x 2+2x +1)=(x +1)(x 2+x +1),与分子有公因式,可以约分,这样就轻松了.原式=222222(1)(1)(1)(1)2(1)112(1)0.(1)(1)(1)(1)(1)(1)11(1)(1)x x x x x x x x x x x x x x x x x x x x x x -+++-++-+++-=+-=+++--++-+-+-四、换元通分法例4 化简222()()().()()()()()()y z z x x y x y x z y x y z z x z y ---++------ 解析 三个分母有关联,均与x 、y 、z 的差有关,若设法将分母换成单项式,计算量就小多了,换元试一试.解设x -y =a ,y -z =b ,z -x =c ,则a +b +c =0.所以222()()().()()()()()()y z z x x y x y x z y x y z z x z y ---++------ =2223333333[()3()]33b c a a b c a b ab a b c c abc c ac ab bc abc abc abc +++-++-++++====-------点评: 根据分式的特点选取道当的方法,往往事半功倍.五、部分分式法例5 分式226121022x x x x ++++可取的最小值为( )A.4B.5C.6D.不存在解析 当分式的分子为常数时,分母越大,分式值越小、将原式写成一个整式和另一个分式的和即可判断.原式=2222(61212)222662222(1)1x x x x x x x ++-=-=-++++++ 因(x +1)2非负,所以当(x +1)2=0时,22(1)1x ++有最大值,原式有最小值6-2=4,选A.例6 如果211,31424643x A Bx x x x=++-+-,求A 、B 的值解析 两分式相等,若分母相等,则分子相等. 解 由条件得211(43)(6)31424(6)(43)x A x B x x x x x ⋅-+⋅+=+-+-即 11x =-(4A -3Ax +Bx +6B ) 化简得11x =(3A -B )x +(-4A -6B ). 从而3A -B =11,-4A -6B =0. 解得A =3,B =-2.好题妙解】佳题新题品味例1 (2003年山东菏泽中考题)已知a +1a=5,则4221a a a ++= .解析 采取部分分式法,原式=a 2+1+21a =(a +1a)2-1=52-1=24.例2 (2003年江苏南通)先化简代数式:222222()()a b a b aba b a b a b a b ⎛⎫+--÷ ⎪-+-+⎝⎭,然后请你自取一组a 、b 的值代入求值(所取a 、b 的值要保证原代数式有意义哟).解析 有两个途径:先算括号里的式,利用分配律计算.原式化简为a +b ,取a =1,b =2,原式=3.例3 (江苏17届初二竞赛)已知111a b -=,则2a ab ba ab b+---的值等于 .解析 容易看出ab ≠0,利用分式的基本性质,分子分母都除以ab ,将111a b-=整体代入. 解 原式=111110.11122b a b a+--+==----中考真题欣赏例1 (河南省中考题)已知x 、y 是方程组245x y x y +=⎧⎨-=-⎩的解,求代数式332222122x x y x xy y x xy y y -⋅+--+++的值,[方法提示:x 3-y 3=(x -y )(x 2+xy +y 2)]解析 解方程组,求出x 、y 的值,分式乘法中的分子分母都是多项式,要分解因式,约分化简后,再代入数值求解.解 由方程245x y x y +=⎧⎨-=-⎩,解得23x y =-⎧⎨=⎩,()()()223322222221112222x y x xy y x x y x x x xy y x xy y y x xy y y x y y x y -++-⋅+-=⋅+-=+--+++++-- 当2x =-,3y =时 原式21211130192223353151515-=+-=+-=-=---.例2 (大连市中考题)阅读下列材料. ∵11111323⎛⎫=- ⎪⨯⎝⎭,111135235⎛⎫=- ⎪⨯⎝⎭,111157257⎛⎫=- ⎪⨯⎝⎭,…,1111171921719⎛⎫=- ⎪⨯⎝⎭, ∴19171751531311⨯++⨯+⨯+⨯ ⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=1911712171512151312131121 ⎪⎭⎫ ⎝⎛-++-+-+-=1911717151513131121 119121919⎛⎫=-= ⎪⎝⎭. 解答问题:在和式111133557+++⨯⨯⨯中,第5项为 ,第n 项为 ,上述求和的想法是:通过利用 法则,将和式中的各分数转化为两个实数之差,使得除首末两项外的中间各项可以 ,从而达到求和的目的.解析 本题是中考的新题型,旨在考查学生的探究能力和逆向思维能力,以及归纳推理能力.通过观察不难发现,每一项分式的分母都是两个奇数的乘积,而且每一个数都比前一项的数多2,因为第3项为157⨯,如此类推第5项应为1911⨯; 再观察第一个数总比项数的2倍少1,即21n -(n 为项数),而第二个数总比项数的两倍多1,即21n +,故第n 项为()()12121n n -+;由分式的减法知()()1112221212121n n n n -=-+-+.故上述求和的想法是通过分式(数)的减法的运用,使得中间项两两消去,达到求和的目的. 答案1911⨯,()()12121n n -+,分式(数)的减法;两两相消.竞赛样题展示例1 (2003年“信利杯”竞赛题)已知1x =2111242x x x +-=+-- . 解析 第一、三项先通分,原式234x -=-,代入1x =,可得其值为.例2 (天津市初二数学竞赛初赛试题)计算:2232233223222244113a b a b a a b ab b a a b ab b a b a b a b +++--+++-+--+-. 解析 原式()()()()2224444222223a b b a b a b a b a b a b a b a b +=++---++-+ ()()()22224422a b a b a b a b a b a b ++=---++0=. 点评 分组通分,降低难度.例3 (“五羊杯”初中数学竞赛试题)若正数a 、b 、c 都增至3倍,则()()333a b c a b c bc ca ab++++++的值增至多少倍?解析 a 、b 、c 增加至3倍:()()()()()()3333333333339333333a b c a b c a b c a b c b c c a a bbc ca ab⎡⎤++++++++⎣⎦=⋅⋅+⋅+⋅++,所以原式的值增至9倍.过关检测】A 级1.已知12x x +=,则331x x += . 2.分式2123x x x ---有意义,x 的取值范围是( )A .3x ≠B .1x ≠±C .3x ≠或1x ≠-D .3x ≠且1x ≠-3.已知226x y xy -=-,0x >,0y >,则分式3x yx y+-的值为( ) A .0 B .1 C .5- D .54.(浙江省初二数学竞赛决赛)化简:212412221111n nS x x x x -=+++++++. B 级1.已知有理数a 、b 、c 满足0a b c ++=, 8abc =,那么111a b c++的值是( ) A .正数 B .零 C .负数 D .不能确定2. 已知a 、b 满足1ab =,记1111M a b =+++,11a bN a b=+++,则M 、N 的关系为( ) A .M N > B .M N = C .M N < D .不确定3.若对于3x =±以外的一切数28339m n xx x x -=+--均成立,则mn 的值是( ) A .8 B .8- C .16 D .16-4.比较两数56789012346789012345与56789012356789012347的大小.5.化简:222222113 111112123x xx xx xx x x x xx x x⎡⎤+--+⎢⎥-⎛⎫+-+-÷⎢⎥⎪⎝⎭⎢⎥--+--+⎣⎦.6.计算:()()()()()()()()()()()() 222222y x z x z y x y x z y zx z y x y z x y z y z x y z x x z y ------+++-+-+-+-+-+-.7.求最大的正整数n,使得3100n+能被10n+整除.。

初中数学竞赛讲座——数论部分4(辗转相除法与最大公约数)

初中数学竞赛讲座——数论部分4(辗转相除法与最大公约数)

第四讲 辗转相除法与最大公因数一、基础知识:1.带余除法:若a ,b 是两个整数,b >0,则存在两个整数q 和r ,使得a =bq+r (0≤r <b )成立,且q ,r 是唯一的。

证明:【存在性】作整数序列…,-3b ,-2b ,-b ,0,b ,2b ,3b ,…则a 必在上述序列的某两项之间,即存在一个整数q 使得qb ≤a <(q +1)b 成立。

令a -qb =r ,即证存在性。

【唯一性】设q 1、r 1是满足a =bq+r ,0≤r <b 的另一对整数,因为bq 1+r 1=bq +r ,于是b (q-q 1)=r 1-r 故b |q-q 1|=|r 1-r |由于r 及r 1都是小于b 的非负整数,所以上式右边是小于b 的。

如果q ≠q 1,则上式左边≥b ,这是不可能的。

即证唯一性。

【说明】特别地,如果r =0,那么a=bq 。

这时,a 被b 整除,记作b|a ,对任意整数a ,b 且b ≠0,存在唯一的整数q ,r ,使a =bq +r ,其中0≤r <|b |,这个事实称为带余除法定理,是整除理论的基础。

2.最大公因数:若c |a ,c |b ,则称c 是a ,b 的公因数。

若d 是a ,b 的公因数,且d 可被a ,b 的任意公因数整除则称d 是a ,b 的最大公因数。

记为:(a ,b )=d当d ≥0时,d 是a ,b 公因数中最大者。

若a ,b 的最大公因数等于1,则称a ,b 互素。

记为:(a ,b )=13.辗转相除法:累次利用带余除法可以求出a ,b 的最大公因数,这种方法常称为辗转相除法。

又称欧几里得算法。

例如,一般的,设a ,b 是任意两个正整数,由带余数除法,我们有下面的系列等式: a =11bq r ,0<1r <b ,b =1r 2q +2r ,0<2r <1r , ……………2n r -=1n r -n q +n r ,0<n r <1n r -, (1) 1n r -=n r 1n q ++1n r +,1n r +=0因为每进行一次带余数除法,余数就至少减一,而b 是有限的,所以我们最多进行b 次带余数除法,总可以得到一个余数是零的等式,即1n r +=0 (1)式所指出的计算方法,叫作辗转相除法。

初中数学竞赛数学方法选讲(下)(含答案)

初中数学竞赛数学方法选讲(下)(含答案)

数学方法选讲(下)四、从反面考虑解数学题,需要正确的思路。

对于很多数学问题,通常采用正面求解的思路,即从条件出发,求得结论。

但是,如果直接从正面不易找到解题思路时,则可改变思维的方向,即从结论入手或从条件及结论的反面进行思考,从而使问题得到解决。

例1 某次数学测验一共出了10道题,评分方法如下:每答对一题得4分,不答题得0分,答错一题倒扣1分,每个考生预先给10分作为基础分。

问:此次测验至多有多少种不同的分数?分析:最高的得分为50分,最低的得分为0分。

但并不是从0分到50分都能得到。

从正面考虑计算量较大,故我们从反面考虑,先计算有多少种分数达不到,然后排除达不到的分数就可以了。

解:最高的得分为50分,最低的得分为0分。

在从0分到50分这51个分数中,有49,48,47,44,43,39这6种分数是不能达到的,故此次测验不同的分数至多有51-6=45(种)。

例2 一支队伍的人数是5的倍数,且超过1000人。

若按每排4人编队,则最后差3人;若按每排3人编队,则最后差2人;若按每排2人编队,则最后差1人。

问:这支队伍至少有多少人?分析:从条件“若按每排4人编队,则最后差3人”的反面来考虑,可理解为“若按每排4人编队,则最后多1人”。

同理,按3人、2人排队都可理解为多1人。

即总人数被12除余1。

这样一来,原题就化为:一个5的倍数大于1000,且它被12除余1。

问:这个数最小是多少?解:是5的倍数且除以12余1的最小自然数是25。

因为人数超过1000,[3,4,5]=60,所以最少有25+60×17=1045(人)。

例3 在八边形的8个顶点上是否可以分别记上数1,2,…,8,使得任意三个相邻的顶点上的数的和大于13?解:将八边形的8个顶点上的数依次记为a1,a2,a3,…,a8,则有S=a1+a2+a3+…+a8=1+2+3+…+8=36。

假设任意3个相邻顶点上的数都大于13,因为顶点上的数都是整数,所以a1+a2+a3≥14;a2+a3+a4≥14;……a7+a8+a1≥14;a8+a1+a2≥14。

数论的方法和技巧 02整点问题

数论的方法和技巧   02整点问题

整点问题整点是指平面直角坐标系中纵、横坐标都是整数的点,又称为格点.整点问题是数论与解析几何相结合的产物,不仅有趣,而且富有技巧性.对于培养学生分析问题、解决问题的能力和训练思维的灵活性等很有好处,是考核数学竞赛参赛者的良好题材.1.整点多边形问题如果一个多边形的所有顶点都是整点,则称这个多边形为整点多边形·平面直角坐标系中是否存在整点正n 边形?对于n=4,我们知道存在整点正方形,对于n=3,n ≥5呢?例1证明:不存在整点正三角形. 证 反证法,,设平面上3个整点A ,B ,C 组成一个正三角形·由于向上、下或左、右平移整数个单位,整点仍然变为整点,因此不妨设A 为原点,|AB| = r , B ,C 的坐标分别为(a ,b ),(x ,y ),其中a ,b ,x , y ∈R 如图8-5.于是,2321)sin 23cos 21()3cos(b a r r x -=-=+=θθπθ .2321)cos 23sin 21()3sin(a b r r y +=+=+=θθπθ因为a ,b 均为整数,且至少有一个不为零,所以x ,y 不可能均为整数,矛盾.因此不存在整点正三角形.例2证明:不存在整点正五边形·证 设存在一个整点正五边形ABCDE ,边长为a ,如图8-6, 易知边长a 与对角线d 的比da满足⋅=-251d a 由两点间的距离公式知,任意两个整点的距离的平方是整数,所以a 2和d 2均为整数,从而22da 是有理数,但是,253)215(222-=-⋅=d a 上式右端是一个无理数,矛盾。

因此,整点正五边形是不存在的.下面我们给出本题的另一证法.设存在整点正五边形,在所有的整点正五边形中选出边长最短的一个,记作ABCDE ,连接所有的对角线-得五边形1111E D C B A I 如图8—7.易知五边形1111E D C B A I 是正五边形.又因为E ABA 1为平行四边形,A ,B ,E 是整点,令A ,B ,A 1,E 的坐标为),,(11y x ),,(),,(),,(443322y x y x y x 则,224231x x x x +=+ 所以⋅-+=1423x x x x 同理,1423y y y y -+= 所以A 1也是整点,同理,1111,,,E D C B均为整点·这样就得到了一个比ABCDE 边长更短的整点正五边形,11111E D C B A 矛盾·我们用完全类似的方法可以证明整点正n 边形不存在。

初一数学竞赛专讲第⑵讲含例题及答案:数论的方法技巧(下)

初一数学竞赛专讲第⑵讲含例题及答案:数论的方法技巧(下)

初一数学竞赛讲座第2讲数论的方法技巧(下)四、反证法 反证法即首先对命题的结论作出相反的假设,并从此假设出发,经过正确的推理,导出矛盾的结果,这就否定了作为推理出发点的假设,从而肯定了原结论是正确的。

反证法的过程可简述为以下三个步骤: 1.反设:假设所要证明的结论不成立,而其反面成立; 2.归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、公理、定义、定理、反设及明显的事实矛盾或自相矛盾; 3.结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立。

运用反证法的关键在于导致矛盾。

在数论中,不少问题是通过奇偶分析或同余等方法引出矛盾的。

解:如果存在这样的三位数,那么就有 100a+10b+c=(10a+b)+(10b+c)+(10a+c)。

上式可化简为80a=b+c,而这显然是不可能的,因为a≥1,b≤9,c≤9。

这表明所找的数是不存在的。

说明:在证明不存在性的问题时,常用反证法:先假设存在,即至少有一个元素,它符合命题中所述的一切要求,然后从这个存在的元素出发,进行推理,直到产生矛盾。

例2 将某个17位数的数字的排列顺序颠倒,再将得到的数与原来的数相加。

试说明,得到的和中至少有一个数字是偶数。

解:假设得到的和中没有一个数字是偶数,即全是奇数。

在如下式所示的加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c≤9。

将已知数的前两位数字a,b与末两位数字c,d去掉,所得的13位数仍具有“将它的数字颠倒,得到的数与它相加,和的数字都是奇数”这一性质。

照此进行,每次去掉首末各两位数字,最后得到一位数,它与自身相加是偶数,矛盾。

故和的数字中必有偶数。

说明:显然结论对(4k+1)位数也成立。

但对其他位数的数不一定成立。

如12+21,506+605等。

例3 有一个魔术钱币机,当塞入1枚1分硬币时,退出1枚1角和1枚5分的硬币;当塞入1枚5分硬币时,退出4枚1角硬币;当塞入1枚1角硬币时,退出3枚1分硬币。

初中数学竞赛讲座——数论部分3(素数与合数)

初中数学竞赛讲座——数论部分3(素数与合数)

第三讲素数与合数一、基础知识:对于任意正整数n>1,如果除1和n本身以外,没有其它的因数,那么称n 为素数,否则n称为合数。

这样,我们将正整数分为了三类:1,素数,合数。

例如:2,3,5,7,11,…都是质数。

1既不是质数也不是和数。

1之所以要摒于质数之外,是因为它完全没有质数所具备的那些重要的数论性质。

质数p和a互质,必要而且只要p|\a事实上,若p|a,则p和a除±1外还有公因数±p,故二者不互质。

若p|\a,则±p当然就不是p,a的公因数;但除了±p,只有±1才可能是p的因数,所以只有±1才可能是p,a的公因数,即二者互质。

显然任意两个不同的质数互质。

质数的性质性质1.素数中只有一个数是偶数,它是2.性质2.设n为大于1的正整数,p是n的大于1的因数中最小的正整数,则p为素数。

性质3.设a 是任意一个大于1的整数,则a 的除1 外最小正因数q 是一质数,并且当a是合数时,q≤证明:假设q不是质数,则由定义可知q除1及本身以外还有一正因数,设它为b,因而1<b<q。

但q|a,所以b|a,这与q是a的除1外的最小正因数矛盾,因而q是质数。

当a是合数时,则a=c·q且c>1,否则a是质数。

由于q是a的除1外的最小正因数,所以q小于等于c ,2q≤q c=a故q≤说明:此性质表明,一个合数a一定是不大于的某些质数的倍数。

换言之,如果所有不大于的质数都不能整除a,那么a一定是质数(作为性质4如下)。

此性质是我们检验一个数是否为素数的最常用的方法。

例如判断191是不是素数。

因为不大于<14的素数有2,3,5,7,11,13,由于191不能被2,3,5,7,11,13整除,所以191是质数。

这种方法还可以求不大于a的所有素数,例如,求50以内的全体素数。

由于不大于的质数有:2,3,5,7,可以在2,3,4,,50中依次划去2,3,5,7的倍数(保留2,3,5,7)最后余下的数就是50以内的全体质数。

2020-2021学年七年级数学专家讲座⑵:数论的方法技巧(下)

2020-2021学年七年级数学专家讲座⑵:数论的方法技巧(下)

2020-2021学年七年级数学专家讲座第2讲数论的方法技巧(下)四、反证法 反证法即首先对命题的结论作出相反的假设,并从此假设出发,经过正确的推理,导出矛盾的结果,这就否定了作为推理出发点的假设,从而肯定了原结论是正确的。

反证法的过程可简述为以下三个步骤: 1.反设:假设所要证明的结论不成立,而其反面成立; 2.归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、公理、定义、定理、反设及明显的事实矛盾或自相矛盾; 3.结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立。

运用反证法的关键在于导致矛盾。

在数论中,不少问题是通过奇偶分析或同余等方法引出矛盾的。

解:如果存在这样的三位数,那么就有 100a+10b+c=(10a+b)+(10b+c)+(10a+c)。

上式可化简为80a=b+c,而这显然是不可能的,因为a≥1,b≤9,c≤9。

这表明所找的数是不存在的。

说明:在证明不存在性的问题时,常用反证法:先假设存在,即至少有一个元素,它符合命题中所述的一切要求,然后从这个存在的元素出发,进行推理,直到产生矛盾。

例2 将某个17位数的数字的排列顺序颠倒,再将得到的数与原来的数相加。

试说明,得到的和中至少有一个数字是偶数。

解:假设得到的和中没有一个数字是偶数,即全是奇数。

在如下式所示的加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c≤9。

将已知数的前两位数字a,b与末两位数字c,d去掉,所得的13位数仍具有“将它的数字颠倒,得到的数与它相加,和的数字都是奇数”这一性质。

照此进行,每次去掉首末各两位数字,最后得到一位数,它与自身相加是偶数,矛盾。

故和的数字中必有偶数。

说明:显然结论对(4k+1)位数也成立。

但对其他位数的数不一定成立。

如12+21,506+605等。

例3 有一个魔术钱币机,当塞入1枚1分硬币时,退出1枚1角和1枚5分的硬币;当塞入1枚5分硬币时,退出4枚1角硬币;当塞入1枚1角硬币时,退出3枚1分硬币。

初一数学竞赛习题 专题讲座 第10讲 计数的方法与原理 含例题练习及答案⑽

初一数学竞赛习题 专题讲座  第10讲 计数的方法与原理 含例题练习及答案⑽

初一数学竞赛讲座第10讲计数的方法与原理计数方法与原理是组合数学的主要课题之一,本讲介绍一些计数的基本方法及计数的基本原理。

一、枚举法一位旅客要从武汉乘火车去北京,他要了解所有可供乘坐的车次共有多少,一个最易行的办法是找一张全国列车运行时刻表,将所有从武汉到北京的车次逐一挑出来,共有多少次车也就数出来了,这种计数方法就是枚举法。

所谓枚举法,就是把所要求计数的所有对象一一列举出来,最后计算总数的方法。

运用枚举法进行列举时,必须注意无一重复,也无一遗漏。

例1四个学生每人做了一张贺年片,放在桌子上,然后每人去拿一张,但不能拿自己做的一张。

问:一共有多少种不同的方法?解:设四个学生分别是A,B,C,D,他们做的贺年片分别是a,b,c,d。

先考虑A拿B做的贺年片b的情况(如下表),一共有3种方法。

同样,A拿C或D做的贺年片也有3种方法。

一共有3+3+3=9(种)不同的方法。

例2甲、乙二人打乒乓球,谁先连胜两局谁赢,若没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止。

问:一共有多少种可能的情况?解:如下图,我们先考虑甲胜第一局的情况:图中打√的为胜者,一共有7种可能的情况。

同理,乙胜第一局也有 7种可能的情况。

一共有 7+7=14(种)可能的情况。

二、加法原理如果完成一件事情有n类方法,而每一类方法中分别有m1,m2,…,mn种方法,而不论采用这些方法中的任何一种,都能单独地完成这件事情,那么要完成这件事情共有:N=m1+m2+…mn种方法。

这是我们所熟知的加法原理,也是利用分类法计数的依据。

例3 一个自然数,如果它顺着数和倒着数都是一样的,则称这个数为“回文数”。

例如1331,7,202都是回文数,而220则不是回文数。

问:1到6位的回文数一共有多少个?按从小到大排,第2000个回文数是多少?解:一位回文数有:1,2,…,9,共9个;二位回文数有:11,22,…,99,共9个;三位回文数有:101,111,…,999,共90个;四位回文数有:1001,1111,…,9999,共90个;五位回文数有:10001,10101,…,99999,共900个;六位回文数有:100001,101101,…,999999,共900个。

初中数学竞赛讲座——数论部分5(最小公倍数)

初中数学竞赛讲座——数论部分5(最小公倍数)

第五讲 最小公倍数一、基础知识:对于4,8,12这一组数,24,48和72等都能被它们中的每一个数整除,24,48和72等都叫它们的公倍数,而24是公倍数中最小的,把这个概念推广到一般情形,有如下的定义:如果1a ,2a ,…,n a 和m 都是正整数,且m a m a m a n |,...,|,|21,那么m 叫做1a ,2a ,…,n a 的公倍数。

公倍数中最小的数叫做1a ,2a ,…,n a 的最小的公倍数,记作[1a ,2a ,…,n a ]。

如果m 是1a ,2a ,…,n a 的公倍数,那么km (k 是正整数)也是它们的公倍数,因此不存在最大公倍数。

一些性质:(1)若a b |,则[a , b ]=a .(2)若[a , b ]=m ,且n 为正整数,则[na , nb ]=nm 。

(3)若b n a n |,|,则[]nb a nb n a ,,=⎥⎦⎤⎢⎣⎡最大公约数与最小公倍数这两个概念有着密切的联系,下面的性质揭示了它们的关系。

(4)若[a , b ]=m ,则1,=⎪⎭⎫⎝⎛b m a m (5)],[),(b a abb a =由性质(5)知,在已知a , b 两数的最大公约数和最小公倍数之一时,便很容易求出另一个。

二、典型例题例1 某正整数与24的最大公约数和最小公倍数分别为4和168,求这个正整数。

解:设所求正整数为x ,则由(x , 24)=4,有x =4n (n 是正整数)。

于是有 [4n , 24]=168.根据性质(4),有124168,4168=⎪⎭⎫⎝⎛n ,即 .17,42=⎪⎭⎫⎝⎛n 由n42是正整数,得n 可能取的值是1,2,3,6,7,14,21,42。

分别代入上式检验,只有n =7。

故所求正整数是28。

例2.(1999年希望杯初一2试)从0,1,2,3,4,5,6,7,8,9这十个数中选出五个组成五位数, 使得这个五位数能被3,5,7,13都整除,这样的五位数中最大的是___________.解:所求五位数能被3、5、7、13整除,当然也能被3、5、7、13的最小公倍数整除.即这个五位数是3×5×7×13=1365的倍数.通过除法,可算出五位数中1365的最大倍数是73×1365=99645. 但99645的五个数码中有两个9,不合题意要求,可依次算出 72×1364=98280(两个8重复,不合要求). 71×1365=96915(两个9重复,不合要求). 70×1365=95550(三个5重复,不合要求). 69×1365=94185(五个数码不同). 因此,所求的五位数最大的是94185.例3 已知两个正整数的和是45,它们的最小公倍数是168,求这两个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学竞赛讲座数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得abq+r(0≤r<b),且q,r是唯一的。

特别地,如果r0,那么abq。

这时,a被b整除,记作b|a,也称b 是a的约数,a是b的倍数。

2.若a|c,b|c,且a,b互质,则ab|c。

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<pk为质数,a1,a2,…,ak为自然数,并且这种表示是唯一的。

(1)式称为n的质因数分解或标准分解。

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)(a1+1)(a2+1)…(ak+1)。

5.整数集的离散性:n与n+1之间不再有其他整数。

因此,不等式x<y与x≤y-1是等价的。

下面,我们将按解数论题的方法技巧来分类讲解。

一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。

这些常用的形式有:1.十进制表示形式:nan10n+an-110n-1+…+a0;2.带余形式:abq+r;4.2的乘方与奇数之积式:n2mt,其中t为奇数。

例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。

结果小明发现,无论白色卡片上是什么数字,计算结果都是1998。

问:红、黄、蓝3张卡片上各是什么数字?解:设红、黄、白、蓝色卡片上的数字分别是a3,a2,a1,a0,则这个四位数可以写成:1000a3+100a2+10a1+a0,它的各位数字之和的10倍是10(a3+a2+a1+a0)10a3+10a2+10a1+10a0,这个四位数与它的各位数字之和的10倍的差是:990a3+90a2-9a01998,110a3+10a2-a0222。

比较上式等号两边个位、十位和百位,可得a08,a21,a32。

所以红色卡片上是2,黄色卡片上是1,蓝色卡片上是8。

例2 在一种室内游戏中,魔术师请一个人随意想一个三位数a,b,c依次是这个数的百位、十位、个位数字,并请这个人算出5个数与的和N,把N告诉魔术师,于是魔术师就可以说出这个人所想的数。

现在设N3194,请你当魔术师,求出数来。

解:依题意,得a+b+c>14,说明:求解本题所用的基本知识是,正整数的十进制表示法和最简单的不定方程。

例3 从自然数1,2,3,…,1000中,最多可取出多少个数使得所取出的数中任意三个数之和能被18整除?解:设a,b,c,d是所取出的数中的任意4个数,则a+b+c18m,a+b+d18n,其中m,n是自然数。

于是c-d18(m-n)。

上式说明所取出的数中任意2个数之差是18的倍数,即所取出的每个数除以18所得的余数均相同。

设这个余数为r,则a18a1+r,b18b1+r,c18c1+r,其中a1,b1,c1是整数。

于是a+b+c18(a1+b1+c1)+3r。

因为18|(a+b+c),所以18|3r,即6|r,推知r0,6,12。

因为100055×18+10,所以,从1,2,…,1000中可取6,24,42,…,996共56个数,它们中的任意3个数之和能被18整除。

例4 求自然数N,使得它能被5和49整除,并且包括1和N在内,它共有10个约数。

解:把数N写成质因数乘积的形式:N由于N能被5和7249整除,故a3≥1,a4≥2,其余的指数ak为自然数或零。

依题意,有(a1+1)(a2+1)…(an+1)10。

由于a3+1≥2,a4+1≥3,且102×5,故a1+1a2+1a5+1…an+11,即a1a2a5…an0,N只能有2个不同的质因数5和7,因为a4+1≥3>2,故由(a3+1)(a4+1)10知,a3+15,a4+12是不可能的。

因而a3+12,a4+15,即N52-1×75-15×7412005。

例5 如果N是1,2,3,…,1998,1999,2000的最小公倍数,那么N等于多少个2与1个奇数的积?解:因为2101024,2112048>2000,每一个不大于2000的自然数表示为质因数相乘,其中2的个数不多于10个,而1024210,所以,N等于10个2与某个奇数的积。

说明:上述5例都是根据题目的自身特点,从选择恰当的整数表示形式入手,使问题迎刃而解。

二、枚举法枚举法(也称为穷举法)是把讨论的对象分成若干种情况(分类),然后对各种情况逐一讨论,最终解决整个问题。

运用枚举法有时要进行恰当的分类,分类的原则是不重不漏。

正确的分类有助于暴露问题的本质,降低问题的难度。

数论中最常用的分类方法有按模的余数分类,按奇偶性分类及按数值的大小分类等。

例6 求这样的三位数,它除以11所得的余数等于它的三个数字的平方和。

分析与解:三位数只有900个,可用枚举法解决,枚举时可先估计有关量的范围,以缩小讨论范围,减少计算量。

设这个三位数的百位、十位、个位的数字分别为x,y,z。

由于任何数除以11所得余数都不大于10,所以x2+y2+z2≤10, 从而1≤x≤3,0≤y≤3,0≤z≤3。

所求三位数必在以下数中:100,101,102,103,110,111,112,120,121,122,130,200,201,202,211 ,212,220,221,300,301,310。

不难验证只有100,101两个数符合要求。

例7 将自然数N接写在任意一个自然数的右面(例如,将2接写在35的右面得352),如果得到的新数都能被N整除,那么N称为魔术数。

问:小于2000的自然数中有多少个魔术数?解:设P为任意一个自然数,将魔术数N(N<2000=接后得,下面对N为一位数、两位数、三位数、四位数分别讨论。

⑴当N为一位数时,10P+N,依题意N?,则N?10P,由于需对任意数P成立,故N?10,所以N1,2,5;⑵当N为两位数时,100P+N,依题意N?,则N?100P,故N|100,所以N10,20,25,50;⑶当N为三位数时,1000P+N,依题意N?,则N?1000P,故N|1000,所以N100,125,200,250,500;⑷当N为四位数时,同理可得N1000,1250,2000,2500,5000。

符合条件的有1000,1250。

综上所述,魔术数的个数为14个。

说明:(1)我们可以证明:k位魔术数一定是10k的约数,反之亦然。

(2)这里将问题分成几种情况去讨论,对每一种情况都增加了一个前提条件,从而降低了问题的难度,使问题容易解决。

例8 有3张扑克牌,牌面数字都在10以内。

把这3张牌洗好后,分别发给小明、小亮、小光3人。

每个人把自己牌的数字记下后,再重新洗牌、发牌、记数,这样反复几次后,3人各自记录的数字的和顺次为13,15,23。

问:这3张牌的数字分别是多少?解:13+15+2351,513×17。

因为17>13,摸17次是不可能的,所以摸了 3次, 3张扑克牌数字之和是17,可能的情况有下面15种:①1,6,10 ②1,7,9 ③1,8,8④2,5,10 ⑤2,6,9⑥2,7,8 ⑦3,4,10 ⑧3,5,9 ⑨3,6,8 ⑩3,7,7114,4,9 124,5,8 134,6,7 145,5,7 155,6,6只有第⑧种情况可以满足题目要求,即3+5+513;3+3+915;5+9+923。

这3张牌的数字分别是3,5和9。

例9 写出12个都是合数的连续自然数。

分析一:在寻找质数的过程中,我们可以看出100以内最多可以写出7个连续的合数:90,91,92,93,94,95,96。

我们把筛选法继续运用下去,把考查的范围扩大一些就行了。

解法1:用筛选法可以求得在113与127之间共有12个都是合数的连续自然数:114,115,116,117,118,119,120,121,122,123,124,125,126。

分析二:如果12个连续自然数中,第1个是2的倍数,第2个是3的倍数,第3个是4的倍数……第12个是13的倍数,那么这12个数就都是合数。

又m+2,m+3,…,m+13是12个连续整数,故只要m是2,3,…,13的公倍数,这12个连续整数就一定都是合数。

解法2:设m为2,3,4,…,13这12个数的最小公倍数。

m+2,m+3,m+4,…,m+13分别是2的倍数,3的倍数,4的倍数……13的倍数,因此12个数都是合数。

说明:我们还可以写出13!+2,13!+3,…,13!+13(其中n!1×2×3×…×n)这12个连续合数来。

同样,(m+1)!+2,(m+1)!+3,…,(m+1)!+m+1是m个连续的合数。

三、归纳法当我们要解决一个问题的时候,可以先分析这个问题的几种简单的、特殊的情况,从中发现并归纳出一般规律或作出某种猜想,从而找到解决问题的途径。

这种从特殊到一般的思维方法称为归纳法。

例10 将100以内的质数从小到大排成一个数字串,依次完成以下5项工作叫做一次操作:(1)将左边第一个数码移到数字串的最右边;(2)从左到右两位一节组成若干个两位数;(3)划去这些两位数中的合数;(4)所剩的两位质数中有相同者,保留左边的一个,其余划去;(5)所余的两位质数保持数码次序又组成一个新的数字串。

问:经过1999次操作,所得的数字串是什么?解:第1次操作得数字串7;第2次操作得数字串11133173;第3次操作得数字串111731;第4次操作得数字串1173;第5次操作得数字串1731;第6次操作得数字串7311;第7次操作得数字串3117;第8次操作得数字串1173。

不难看出,后面以4次为周期循环,19994×499+3,所以第1999次操作所得数字串与第7次相同,是3117。

例11 有100张的一摞卡片,玲玲拿着它们,从最上面的一张开始按如下的顺序进行操作:把最上面的第一张卡片舍去,把下一张卡片放在这一摞卡片的最下面。

相关文档
最新文档