软磁铁氧体磁芯现下的市场形态
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
软磁铁氧体磁芯现下的市场形态
发布时间:2014-7-7 9:59:17 浏览次数:16
软磁铁氧体磁性材料和软磁铁氧体磁芯统称软磁铁氧体,长期以来软磁铁氧体产量的增长是建立在其生产技术和应用技术共同发展的基础之上的。电子技术的飞速发展,对软磁铁氧体器件,如电感器、变压器、滤波器等不断提出了各种新的要求,这种要求促进了软磁铁氧体的发展,如适应开关电源向高频化发展的高频低功耗功率铁氧体材料,适应光纤通信和数字技术发展的宽频带变压器和抗干扰扼流圈用的高磁导率与宽频带铁氧体材料,同时具有高μ与高Bs的材料(双高材料),适应高清晰度和大屏幕显示器发展的偏转线圈和回扫变压器用高频低损耗功率材料,以及适应表面贴装技术发展的平面电感器和变压器用低烧结温度和低热阻的铁氧体材料等等,就是生产和应用技术共同发展的最直接结果。
在开发和研究过程中,由于软磁铁氧体材料和磁芯的研究始终结合在一起,从而形成了由各种软磁铁氧体材料制成的各种形状的磁芯,所有这些材料及磁芯的不同组合可以具有各种不同的性能、特点和用途,以满足各种需求。
软磁铁氧体磁芯材料是一种用途广、产量大、成本低的电子工业及机电工业和工厂产业的基础材料,是其重要的支柱产品之一,它的应用直接影响电子信息、家电工业、计算机与通讯、环保及节能技术的发展,亦是衡量一个国家经济发达程序的标志之一。
软磁铁氧体材料是品种最多、应用最广的一类磁性功能材料,也是铁氧体材料中发展最早的一类材料。自从1935年荷兰Philip实验室研究开发成功至今已有将近七十年的历史,其性能也已得到了很大的改进和提高。由于这类材料具有高的本征电阻率ρ,所以在交流条件下具有许多金属软磁材料所无法比拟的优越性且价格低廉,并可制成各种形状的磁芯,因此,在高频区一般都使用软磁铁氧体材料。用这类材料制成的磁芯被广泛应用于通信、广播、电视、自动控制、航天技术、计算机技术、电子设备及其它IT产业中来制作各种类型的电感器、变压器、扼流圈、抑制器和滤波器等器件。
目前由于软磁铁氧体具有广阔的发展前景和可预期的市场潜力,从而成为世界各国铁氧体公司开发和研究的重点。权威机构对全球软磁行业的评估认为,世界软磁铁氧体需求量的平均增长速度在今后几年中将继续保持在10%~15%的水平。由此可以看出,开发具有自己独立知识产权的可批量生产的综合性能好的软磁铁氧体材料并迅速占领市场已经成为各个公司的当务之急。本文在对软磁材料,特别是软磁铁氧体材料的发展过程及发展趋势进行综合分析之后,指出了一些研究和开发人员在材料研究中普遍容易忽视的问题。
一、软磁铁氧体材料的发展过程及发展趋势
一般地,从应用角度来分,软磁铁氧体材料主要分为功率材料和高磁导率材料两大类,为适应世界电子技术发展的需要,这两类铁氧体材料都已经得
到了很大的发展,并且它们各自的分类也越来越细。现代功率铁氧体材料也主要分为两大类:一类主要用于高频开关电源,即所谓高频低功耗材料;另一类主要用于高清晰度彩色电视机和显示器,即所谓偏转磁芯
(Deflection Yoke)。我国在1997年发布的SJ/T1766-1997《软磁铁氧体材料分类》行业标准中,按工作频率的不同把功率铁氧体材料分成了PW1~PW5五类:PW1材料的工作频率为15~100kHz;PW2的为25~200kHz;PW3
的为100~300kHz;PW4的为0.3~1MHz;PW5的为1~3MHz。目前,国内的大多数企业都已经能大批量生产出相当于PW1~PW3的材料,部分企业也已经研究开发出了相当于PW4和PW5的材料,并且这些材料在各方面的性能指标也都已经基本上达到甚至超过了国外同类产品的先进水平,但对此类产品能实现大批量生产的企业还为数不多。
自日本TDK公司在国际上最早批量生产各种软磁铁氧体磁芯以来,因其特殊
的地位,即它既是铁氧体软磁磁芯材料的生产者,同时又是各种软磁铁氧体磁芯器件的开发和使用者,所以,无论从材料的开发上,还是材料的应用上,它一直主导着世界软磁铁氧体的发展趋势。有关铁氧体方面的新材料、新工艺、新技术,以至新的应用领域大都是由TDK公司首先推出的,世界各大铁氧体生产企业也都在紧跟TDK的发展步伐,但是近年来TDK的领先地位已受到世界其它大铁氧体生产公司的挑战。开关电源变压器中很早就开始使用软磁功率铁氧体MnZn材料,随着开关电源工作频率的不断提高,这种功率铁氧体材料的发展也已经历了四代。最初,为适应开关电源市场的需要,TDK 于70年代初开发出了第一代功率铁氧体材料如HC35。由于这种材料的功耗较大,只能用在中心工作频率为20kHz左右的民用开关电源中,因此,TDK 于80年代初开发出了第二代功率铁氧体材料如H7C1(PC30),这种材料的特点是其功耗温度系数为负值,即随着温度的升高,功耗呈下降趋势,且中心工作频率也已提高到了100kHz左右。日本TDK公司于80年代最早开发了使用频率可达300kHz(中心频率为100kHz)的第三代功率铁氧体材料如H7C4(PC40),但由于当时磁芯的工作频率普遍低于50kHz,只需采用PC30或相当于PC30的材料就能满足使用要求,因此这种材料的发展比较缓慢。到80年代后期,开关电源的工作频率已提高到了250kHz左右,由于PC40对工作频率为数百kHz的开关电源特别适用,因此在工业类开关电源中得到了广泛的应用。进入90年代中期,电子工程的发展对磁芯变压器的工作频率范围不断提出了更高的要求,其目的是想通过减小磁路的体积和重量的方法来减小使用电感元件的系统的体积(重量),以使这类器件小型化、片式化,从而为更小体积的电子线路的发展提供保证。TDK开发的第四代功率铁氧体材料如H7F(PC50)的中心工作频率可达500kHz以上,满足了开关电源进一步对轻、小、薄的需要,并被认为是今后功率铁氧体材料的发展方向。
随后,Philips公司推出了可用至2MHz的3F4,今年又推出了可用至4MHz 的3F5材料,其4F1材料(NiZn)可用至4~10MHz。以前人们普遍认为,PC50材料在几年以后才可能会有市场,但从目前的发展趋势来看,业界对PC50材料已经有需求,可见其市场基本已经起动。在90年代,日本TDK还开发成功了PC44、PC45、PC46及PC47材料,其功率损耗比PC40材料降低了约1/4~1/3,在f=100kHz,Bm=200mT的条件下,其功率损耗均在
300kW/m3以下,甚至可到250kW/m3左右;在f=100kHz,Bm=200mT,