泵汽蚀余量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽蚀余量有两个概念:
我们一般讲的汽蚀余量,是“有效汽蚀余量”,与泵的安装方式有关,它是指流体经吸入管路到达泵吸入口后所余的高出临界压力能头的那部分能量,是可利用的气蚀余量,属于“用户参数”;另一个,我们称为“临界的气蚀余量”,也称“必需的气蚀余量”,它是流体由泵吸入口至压力最低处的压力降低值,是临界的气蚀余量,属于“厂方参数”。
前者,越大,泵系统性能越好;后者,越小,泵的吸入性能越好。即:不易发生气蚀。
实际情况证明,叶轮吸人过程中最低压力点是在叶片人口稍后的某断面处.为了避免离心泵发生汽蚀,应使叶片人口处的最低液流压力PK大于该温度下的液体饱和蒸汽压Pt,即在水泵入口K处的液流具有的能头除了要高出液体的汽化压力Pt外,还应当有一定的富余能头.这个富余能头称为泵装置的有效汽蚀余量,用符号△Ha表示.吸人装置能量平衡示意图可知,从由吸液缸液面至泵人口的能量平衡方程可写为:
△Ha=(PA-P1)/ρg-HG- Ha-s
式中PA——吸人缸液面上的压力;
Pt——输送温度下液体的饱和蒸汽压;
ρ——液体的密度;
Hg——泵安装高度(泵轴中心和吸人液面垂直距离);
Ha-s——吸人管路内的流动损失.
液流从泵人口流到叶轮内最低压力点K处的过程中,不仅没有能量加入,而且还需克服这段流道内的局部阻力损失.这部分能量损失,称为泵必须的最小汽蚀余量,用符号△hr,表示.在泵人口到K点的能量平衡方程,并简化可得
Ps/ρ-Pt/ρ+CS2/2=λ1C0/2+λ2W02/2
式中 Cs——吸人池流速,一般为零;
C0——叶轮人I=1处的平均流速;
W0——叶轮人口处液流的相对速度;
λ1——与泵人口几何形状有关的阻力系数;
λ2——与叶片数和叶片头部形状有关的阻力系数.
上式等号左端称为△忍.,是靠压差吸人后,在叶轮人口处的能量,可以理解为吸人动力;等号右端是叶轮人口处流动和分离的能量损失Ah,.
这个公式,只能供理解用,即△危,可理解为叶轮吸人I=1处水力阻力和水力分离损失,是一种水力消耗.在设计时用此公式是难以算准的,其确切数值只能由实验决定.为了防止汽蚀,工程上的实验值上再多留0.3m的安全余量,称为允许汽蚀余量,用符号[△h]表示,即[△h]= △hr,+0.3m
可知,△危,大小与流量有关,可画出△hr-p的关系曲线,所示,称为吸人特性.泵样本上给出的[△h]-Q曲线,都是制造厂用水在常温下试验测出的(输
油时需要换算).
重复强调一下,汽蚀余量的概念,从能量消耗角度来说,是指叶轮人口的流动阻力和流动分
离所损失消耗的能量,国外用脚表示,称为为保证不发生汽蚀所必需的净正吸人压力;从能量提供角度来说,是指在叶轮人口处,应具有的超过汽化压力的富余能量,国外
用NPSHa表示,是推动和加速液体进入叶轮人口的高出汽化压力以上的有效压力或水头.
以上是一个问题两种角度的说法,显然:
若Aha>Ah,时,不会发生汽蚀;
若Aha=Ah,时,正是汽蚀的临界点;
若Aha 由于叶轮机械中流体运动的复杂性,很难从理论上计算出流场中何处可能出现气蚀,再加上气蚀现象不仅仅取决于流体的流动特性,还取决于流体本身的热力学性质,所以,更难于从理论上提出气蚀发生的判据。因此,在实践中往往是采用经验加实验的办法来提出气蚀判据。水泵的气蚀余量概念即是其中的重要判据之一,它既具有一定的理论意义,又是产品验收的标准之一。 水泵气蚀余量有两个概念:其一是与安装方式有关,称有效的气蚀余量NPSHA,它是指水流经吸入管路到达泵吸入口后所余的高出临界压力能头的那部分能量,是可利用的气蚀余量,属于“用户参数”;其二是与泵结本身有关,称必需的气蚀余量NPSHR,它是流体由泵吸入口至压力最低处的压力降低值,是临界的气蚀余量,属于“厂方参数”。要确保水泵在运行中不气蚀,必须在安装上保证NPSHA≥K×NPSHR,(K为安全裕量),而后者由制造厂所保证。从这个意义上看,降低水泵气蚀余量的意义在于保证水泵的绝对提水高度,满足使用要求。离心泵汽蚀基本关系式 离心泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHrNPSHc——泵开始汽蚀 NPSHaNPSHa>NPSHrNPSHc——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀;NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好; NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量;[NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。推荐答案不是很适合初学者理解: 汽蚀余量: 泵在工作时液体在叶轮的进口处因一定真空压力下会产生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压力,汽蚀余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。单位用米标注,用(NPSH)r。吸程即为必需汽蚀余量Δh:即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米)标准大气压能压管路真空高度10.33米。 泵的吸入口必需的压力,大于这个深度或压力才不会产生汽蚀。 离心泵汽蚀基本关系式 离心泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHrNPSHc——泵开始汽蚀 NPSHaNPSHa>NPSHrNPSHc——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀;NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好; NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量;[NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 由于叶轮机械中流体运动的复杂性,很难从理论上计算出流场中何处可能出现气蚀,再加上气蚀现象不仅仅取决于流体的流动特性,还取决于流体本身的热力学性质,所以,更难于从理论上提出气蚀发生的判据。因此,在实践中往往是采用经验加实验的办法来提出气蚀判据。水泵的气蚀余量概念即是其中的重要判据之一,它既具有一定的理论意义,又是产品验收的标准之一。 水泵气蚀余量有两个概念:其一是与安装方式有关,称有效的气蚀余量NPSHA,它是指水流经吸入管路到达泵吸入口后所余的高出临界压力能头的那部分能量,是可利用的气蚀余量,属于“用户参数”;其二是与泵结本身有关,称必需的气蚀余量NPSHR,它是流体由泵吸入口至压力最低处的压力降低值,是临界的气蚀余量,属于“厂方参数”。要确保水泵在运行中不气蚀,必须在安装上保证NPSHA≥K×NPSHR,(K为安全裕量),而后者由制造厂所保证。从这个意义上看,降低水泵气蚀余量的意义在于保证水泵的绝对提水高度,满足使用要求。 泵的气蚀-转载 一、汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)——泵开始汽蚀